FAQ/RTM2 - CBU statistics Wiki

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
Type the odd letters out: ONlY twO thinGs aRE infiNite

location: FAQ / RTM2

Computing the regression to the mean effect?

The below example uses equation (1) of Barnett, AG, van der Pols1, JC and Dobson, AJ (2005) 34 215-220 which uses the example below where only people with a score of 40 or below were sampled at baseline from a population with a mean of 60 and a standard deviation of 15.

* Taken from http://hisdu.sph.uq.edu.au/lsu/adrian/rtmcode.htm#Rcode

# Change these parameters depending on your data;
 sigma<-15; # total std;
 mu<-60; # population mean;
 cut<-40; # cut-off;
 # Loops to run through rho and m scenarios;
 sigma2_w=vector(length=11,mode="numeric")
 sigma2_b=vector(length=11,mode="numeric")
 Rl=vector(length=11,mode="numeric")
 Rg=vector(length=11,mode="numeric")
 rho=vector(length=11,mode="numeric")
 for (rhox in 0:10){
 rho[rhox+1]<-rhox/10
 sigma2_w[rhox+1]<-(1-rho[rhox+1])*(sigma^2); # within-subject variance;
 sigma2_b[rhox+1]<-rho[rhox+1]*(sigma^2); # between-subject variance;
 for (m in 1:1){ # Number of baseline measurements;
 zg<-(cut-mu)/sigma; # z;
 zl<-(mu-cut)/sigma; # z;
 x1g<-dnorm(x=zg); # phi - probability density;
 x2g<-1-pnorm(q=zg); # Phi - CDF
 x1l<-dnorm(x=zl); # phi;
 x2l<-1-pnorm(q=zl); # Phi;
 czl<-x1l/x2l; # C(z) in paper;
 czg<-x1g/x2g; # C(z) in paper;
 Rl[rhox+1]<-(sigma2_w[rhox+1]/m)/sqrt(sigma2_b[rhox+1]+(sigma2_w[rhox+1]/m))*czl; # RTM effect, Equations (1) m=1 & (2) m>1;
 Rg[rhox+1]<-(sigma2_w[rhox+1]/m)/sqrt(sigma2_b[rhox+1]+(sigma2_w[rhox+1]/m))*czg; # RTM effect;
 }
 }
 output<-cbind(sigma2_b,sigma2_w,rho,Rl,Rg)
 print("The expected RTM effect for a range of baseline samples sizes and rhos")
 print(output)
 print("sigma2_b=between-subject variance, sigma2_w=within-subject variance")
 print("rho=within-subject correlation, Rl=RTM effect (<cut-off), Rg=RTM effect (>cut-off)");