FAQ/RTM2 - CBU statistics Wiki
location: FAQ / RTM2

Computing the regression to the mean effect?

The below example uses equation (1) of Barnett, AG, van der Pols1, JC and Dobson, AJ (2005) 34 215-220 which uses the example below where only people with a score of 40 or below were sampled at baseline from a population with a mean of 60 and a standard deviation of 15.

```* Taken from http://hisdu.sph.uq.edu.au/lsu/adrian/rtmcode.htm#Rcode

# Change these parameters depending on your data;
sigma<-15; # total std;
mu<-60; # population mean;
cut<-40; # cut-off;
# Loops to run through rho and m scenarios;
sigma2_w=vector(length=11,mode="numeric")
sigma2_b=vector(length=11,mode="numeric")
Rl=vector(length=11,mode="numeric")
Rg=vector(length=11,mode="numeric")
rho=vector(length=11,mode="numeric")
for (rhox in 0:10){
rho[rhox+1]<-rhox/10
sigma2_w[rhox+1]<-(1-rho[rhox+1])*(sigma^2); # within-subject variance;
sigma2_b[rhox+1]<-rho[rhox+1]*(sigma^2); # between-subject variance;
for (m in 1:1){ # Number of baseline measurements;
zg<-(cut-mu)/sigma; # z;
zl<-(mu-cut)/sigma; # z;
x1g<-dnorm(x=zg); # phi - probability density;
x2g<-1-pnorm(q=zg); # Phi - CDF
x1l<-dnorm(x=zl); # phi;
x2l<-1-pnorm(q=zl); # Phi;
czl<-x1l/x2l; # C(z) in paper;
czg<-x1g/x2g; # C(z) in paper;
Rl[rhox+1]<-(sigma2_w[rhox+1]/m)/sqrt(sigma2_b[rhox+1]+(sigma2_w[rhox+1]/m))*czl; # RTM effect, Equations (1) m=1 & (2) m>1;
Rg[rhox+1]<-(sigma2_w[rhox+1]/m)/sqrt(sigma2_b[rhox+1]+(sigma2_w[rhox+1]/m))*czg; # RTM effect;
}
}
output<-cbind(sigma2_b,sigma2_w,rho,Rl,Rg)
print("The expected RTM effect for a range of baseline samples sizes and rhos")
print(output)
print("sigma2_b=between-subject variance, sigma2_w=within-subject variance")
print("rho=within-subject correlation, Rl=RTM effect (<cut-off), Rg=RTM effect (>cut-off)");```

None: FAQ/RTM2 (last edited 2015-10-15 14:23:39 by PeterWatson)