Synopsis2008 - CBU statistics Wiki

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment
Type the odd characters out in each group: abz2a 125t7 HhHaHh year.s 5433r21 worl3d

location: Synopsis2008

Synopsis of the CBU Graduate Statistics Course 2008

  1. The Anatomy of Statistics: Models, Hypotheses, Significance and Power

    • Experiments, Data, Models and Parameters
    • Probability vs. Statistics
    • Hypotheses and Inference
    • The Likelihood Function
    • Estimation and Inferences
    • Maximum Likelihood Estimate (MLE)
    • Schools of Statistical Inference
      • Ronald Aylmer FISHER
      • Jergy NEYMAN and Egon PEARSON
      • Rev. Thomas BAYES
    • R A Fisher: P values and Significance Tests
    • Neyman and Pearson: Hypothesis Tests
    • Type I & Type II Errors

    • Size and Power
  2. Exploratory Data Analysis (EDA)

    • What is it?
    • Skew and kurtosis: definitions and magnitude rules of thumb
    • Pictorial representations - in particular histograms, boxplots and stem and leaf displays
    • Effect of outliers
    • Power transformations
    • Rank transformations
  3. Categorical Data Analysis

    • The Naming of Parts
    • Categorical Data
    • Frequency Tables
    • The Chi-Squared Goodness-of-Fit Test
    • The Chi-squared Distribution
    • The Binomial Test
    • The Chi-squared test for association
    • Simpson, Cohen and McNemar

    • SPSS procedures that help
      • Frequencies
      • Crosstabs
      • Chi-square
      • Binomial
    • Types of Data
      • Quantitative
      • Qualitative
      • Nominal
      • Ordinal
    • Frequency Table
    • Bar chart
    • Cross-classification or Contingency Table
    • Simple use of SPSS Crosstabs
    • Goodness of Fit Chi-squared Test
    • Chance performance and the Binomial Test
    • Confidence Intervals for Binomial Proportions
    • Pearson’s Chi-squared
    • Yates’ Continuity Correction
    • Fisher’s Exact Test
    • Odds and Odds Ratios
    • Log Odds and Log Odds ratios
    • Sensitivity and Specificity
    • Signal Detection Theory
    • Simpson’s Paradox
    • Measures of agreement: Cohen's Kappa
    • Measures of change: McNemar’s Test

    • Association or Independence: Chi-squared test of association
    • Comparing two or more classified samples
  4. Regression

    • What is it?
    • Expressing correlations (simple regression) in vector form
    • Scatterplots
    • Assumptions in regression
    • Restriction of range of a correlation
    • Comparing pairs of correlations
    • Multiple regression
    • Least squares
    • Residual plots
    • Stepwise methods
    • Synergy
    • Collinearity
  5. Between subjects analysis of variance

    • What is it used for?
    • Main effects
    • Interactions
    • Simple effects
    • Plotting effects
    • Implementation in SPSS
    • Effect size
    • Model specification
    • Latin squares
    • Balance
    • Venn diagram depiction of sources of variation
  6. The General Linear Model and complex designs including Analysis of Covariance

    • GLM and Simple Linear Regression
    • The Design Matrix
    • Least Squares
    • ANOVA and GLM
    • Types of Sums of Squares
    • Multiple Regression as GLM
    • Multiple Regression as a sequence of GLMs in SPSS
    • The two Groups t-test as a GLM
    • One-way ANOVA as GLM
    • Multi-factor Model
      • Additive (no interaction)
      • Non-additive (interaction)
    • Analysis of Covariance
      • Simple regression
        • 1 intercept
        • 1 slope
      • Parallel regressions
        • multiple intercepts
        • 1 slope
      • Non-parallel regressions
        • multiple intercepts
        • multiple slopes
    • Sequences of GLMs in ANCOVA
  7. Power analysis

    • Hypothesis testing
    • Boosting power
    • Effect sizes: definitions, magnitudes
    • Power evaluation methods:description and implementation using an examples
      • nomogram
      • power calculators
      • SPSS macros
      • spreadsheets
      • power curves
      • tables
      • quick formula
  8. Repeated Measures and Mixed Model ANOVA

    • Two sample t-Test vs. Paired t-Test
    • Repeated Measures as an extension of paired measures
    • Single factor Within-Subject design
    • Sphericity
    • Two (or more) factors Within-Subject design
    • Mixed designs combining Within- and Between-Subject factors
    • Mixed Models, e.g. both Subjects & Items as Random Effects factors

    • The ‘Language as Fixed Effects’ Controversy
    • Testing for Normality
    • Single degree of freedom approach
  9. Latent variable modelling – factor analysis and all that!

    • Path diagrams – a regression example
    • Comparing correlations
    • Exploratory factor analysis
    • Assumptions of factor analysis
    • Reliability testing (Cronbach’s alpha)
    • Fit criteria in exploratory factor analysis
    • Rotations
    • Interpreting factor loadings
    • Confirmatory factor models
    • Fit criteria in confirmatory factor analysis
    • Equivalence of correlated and uncorrelated models
    • Cross validation as a means of assessing fit for different models
    • Parsimony : determining the most important items in a factor analysis
  10. What to do following an ANOVA

    • Why do we use follow-up tests?
    • Different ways to follow up an ANOVA
    • Planned vs. Post Hoc Tests
    • Choosing and Coding Contrasts
    • Handling Interactions
    • Standard Errors of Differences
    • Multiple t-tests
    • Post Hoc Tests
    • Trend Analysis
    • Unpacking interactions
    • Multiple Comparisons: Watch your Error Rate!
    • Post-Hoc vs A Priori Hypotheses
    • Comparisons and Contrasts
    • Family-wise (FW) error rate
    • Experimentwise error rate
    • Orthogonal Contrasts or Comparisons
    • Planned Comparisons vs. Post Hoc Comparisons
    • Orthogonal Contrasts/Comparisons
    • Planned Comparisons or Contrasts
    • Contrasts in GLM
    • Post Hoc Tests
    • Control of False Discovery Rate (FDR)
    • Simple Main Effects