All models are wrong and yours are useless

Making clinical prediction tools impactful for patients

Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1038/s41698-024-00553-6

All models are wrong and yours are useless: making clinical prediction models impactful for patients

Florian Markowetz

Most published clinical prediction models are never used in clinical practice and there is a huge gap between academic research and clinical implementation. Here, I propose ways for academic researchers to be proactive partners in improving clinical practice and to design models in ways that ultimately benefit patients.

"All models are wrong, but some are useful" is an aphorism attributed to the statistician George Box. There is humility in claiming your model is

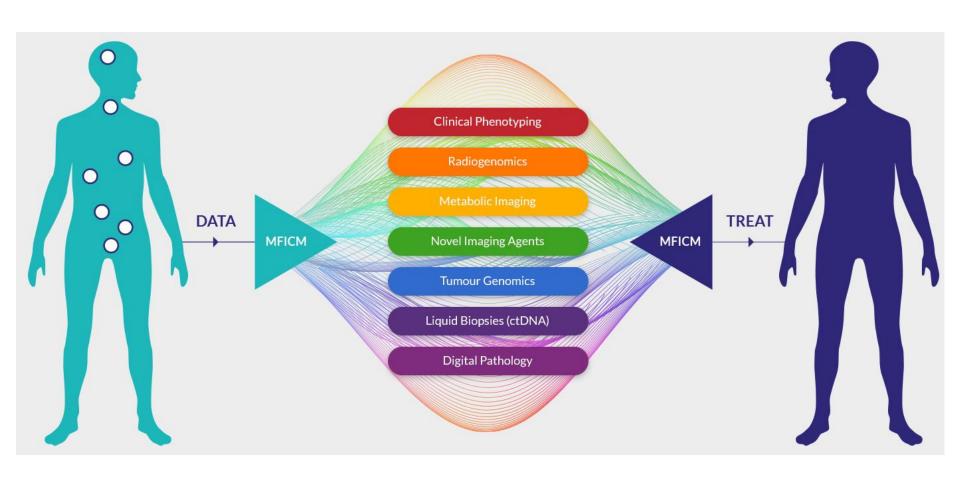
By all academic standards our work was a success, it has been widely noted in the community, and the papers are well-cited. Still, it feels to me like there is something missing. Over the years I have come to see academic papers not as ends in themselves, but as the beginning of the journey to clinical implementation, and I am frustrated with how little of my own work ever had clinical impact. Looking back, here are some lessons I had to learn over the last two decades:

Observation 1: Success in academia is not the same as success in the

RESTRICTED

UNDER 17 REQUIRES ACCOMPANYING PARENT OR ADULT GUARDIAN

Strong Views And Harsh Truths



"This model could

be used in the clinic"

"This model could probably have the notential to maybe he used in the clinic"

"realising the potential of precision Medicine"

Science Discovery Translation

Insights

Actions

Landscape of clinical prediction models

- 408 models for COPD prognosis (Bellou, 2019)
- 363 models for cardiovascular disease general population (Damen, 2016)
- 263 prognosis models in obstetrics (Kleinrouweler, 2016)
- 258 models mortality after general trauma (Munter, 2017)
- 232 models related to COVID-19 (Wynants, 2020)
- 160 female-specific models for cardiovascular disease (Baart, 2019)
- 119 models for critical care prognosis in LMIC (Haniffa, 2018)
- 101 models for primary gastric cancer prognosis (Feng, 2019)
- 99 models for neck pain (Wingbermühle, 2018)
- 81 models for sudden cardiac arrest (Carrick, 2020)
- 74 models for contrast-induced acute kidney injury (Allen, 2017)
- 73 models for 28/30 day hospital readmission (Zhou, 2016)
- 68 models for preeclampsia (De Kat, 2019)
- 67 models for traumatic brain injury prognosis (Dijkland, 2019)
- 64 models for suicide / suicide attempt (Belsher, 2019)
- 61 models for dementia (Hou, 2019)
- 58 models for breast cancer prognosis (Phung, 2019)
- 52 models for pre-eclampsia (Townsend, 2019)
- 52 models for colorectal cancer risk (Usher-Smith, 2016)
- 48 models for incident hypertension (Sun, 2017)
- 46 models for melanoma (Kaiser, 2020)
- 46 models for prognosis after carotid revascularisation (Volkers, 2017)
- 43 models for mortality in critically ill (Keuning, 2019)
- 42 models for kidney failure in chronic kidney disease (Ramspek, 2019)
- 40 models for incident heart failure (Sahle, 2017)

- 37 models for treatment response in pulmonary TB (Peetluk, 2021)
- 35 models for in vitro fertilisation (Ratna, 2020)
- 34 models for stroke in type-2 diabetes (Chowdhury, 2019)
- 34 models for graft failure in kidney transplantation (Kabore, 2017)
- 31 models for length of stay in ICU (Verburg, 2016)
- · 30 models for low back pain (Haskins, 2015)
- 27 models for pediatric early warning systems (Trubey, 2019)
- 27 models for malaria prognosis (Njim, 2019)
- · 26 models for postoperative outcomes colorectal cancer (Souwer, 2020)
- · 26 models for childhood asthma (Kothalawa, 2020)
- 25 models for lung cancer risk (Gray, 2016)
- 25 models for re-admission after admitted for heart failure (Mahajan, 2018)
- 23 models for recovery after ischemic stroke (Jampathong, 2018)
- 23 models for delirium in older adults (Lindroth, 2018)
- 21 models for atrial fibrillation detection in community (Himmelreich, 2020)
- 19 models for survival after resectable pancreatic cancer (Stijker, 2019)
- · 18 models for recurrence hep. carcinoma after liver transplantation (Al-Ameri, 2020)
- 18 models for future hypertension in children (Hamoen, 2018)
- 18 models for risk of falls after stroke (Walsh, 2016)
- 18 models for mortality in acute pancreatitis (Di, 2016)
- 17 models for bacterial meningitis (van Zeggeren, 2019)
- 17 models for cardiovascular disease in hypertensive population (Cai, 2020)
- 14 models for ICU delirium risk (Chen, 2020)
- 14 models for diabetic retinopathy progression (Haider, 2019)

of models never get used for patient benefit

When is a prediction model successful?

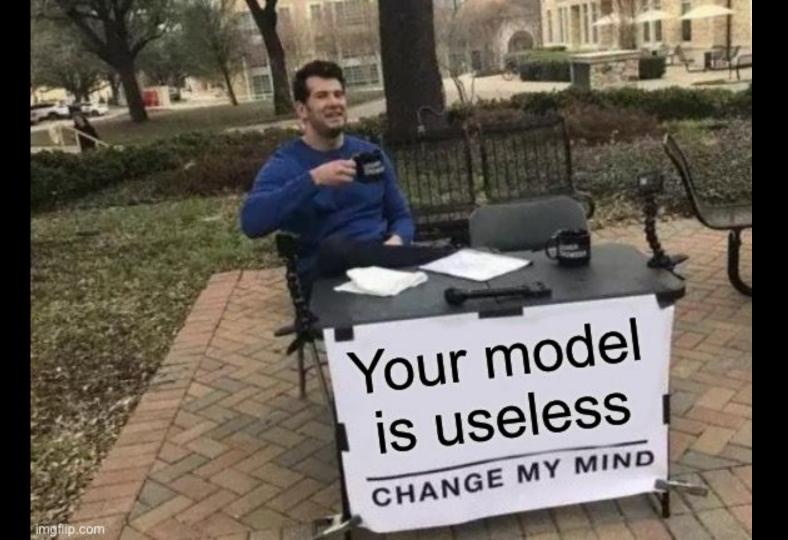
- Novelty of the algorithm
- Number of citations
- Glamour factor of journal

When is a prediction model successful?

If it helps patients!

Real success =

- Makes people's lives better (impact beyond my CV)
- Routinely used (not just one-off in academic lab)
- World/Europe/UK-wide
 (not just in a single centre of excellence)



doi:10.1038/nature10983

The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups

Christina Curtis^{1,2}†*, Sohrab P. Shah^{3,4}*, Suet-Feung Chin^{1,2}*, Gulisa Turashvili^{3,4}*, Oscar M. Rueda^{1,2}, Mark J. Dunning², Doug Speed^{2,5}t, Andy G. Lynch^{1,2}, Shamith Samarajiwa^{1,2}, Yinyin Yuan^{1,2}, Stefan Gräf^{1,2}, Gavin Ha³, Gholamreza Haffari³, Ali Bashashati², Roslin Russell², Steven McKinney^{3,4}, METABRIC Group⁴, Anita Langerød⁶, Andrew Green⁷, Elena Provenzano⁸, Gordon Wishart⁸, Sarah Pinder⁹, Peter Watson^{9,4,10}, Florian Markowetz^{1,2}, Leigh Murphyl⁰, Ian Ellis⁷, Arnie Purushotham^{9,11}, Anne-Lise Børresen-Dale^{6,12}, James D. Brenton^{2,13}, Simon Tavaré^{6,12,5,14}, Carlos Caldas^{1,2,8,13} & Samuel Aparicio^{3,4}

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cisand trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA-RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the 'CNA-devoid' subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome.

Inherited genetic variation and acquired genomic aberrations contrib- and Canada (Supplementary Tables 1-3). Nearly all oestrogen receptor tumours from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium).

A breast cancer population genomic resource

fresh-frozen breast cancer specimens from tumour banks in the UK has an impact on its own expression, or in trans when it is associated

ute to breast cancer initiation and progression. Although somatically (ER)-positive and/or lymph node (LN)-negative patients did not receive acquired CNAs are the dominant feature of sporadic breast cancers, the chemotherapy, whereas ER-negative and LN-positive patients did. driver events that are selected for during tumorigenesis are difficult to Additionally, none of the HER2 patients received trastuzumab. As such. elucidate as they co-occur alongside a much larger landscape of random the treatments were homogeneous with respect to clinically relevant non-pathogenic passenger alterations^{1,2} and germline copy number groupings. An initial set of 997 tumours was analysed as a discovery group variants (CNVs). Attempts to define subtypes of breast cancer and to and a further set of 995 tumours, for which complete data later became discern possible somatic drivers are still in their relative infancy 1-6, in available, was used to test the reproducibility of the integrative clusters part because breast cancer represents multiple diseases, implying that (described below). An overview of the main analytical approaches is large numbers (many hundreds or thousands) of patients must be provided in Supplementary Fig. 1. Details concerning expression and studied. Here we describe an integrated genomic/transcriptomic copy number profiling, including sample assignment to the PAM50 analysis of breast cancers with long-term clinical outcomes composed intrinsic subtypes34.7 (Supplementary Fig. 2), copy number analysis of a discovery set of 997 primary tumours and a validation set of 995 (Supplementary Tables 4-8) and validation (Supplementary Figs 3 and 4 and Supplementary Tables 9-11), and TP53 mutational profiling

(Supplementary Fig. 5) are described in the Supplementary Information. Genome variation affects tumour expression architecture

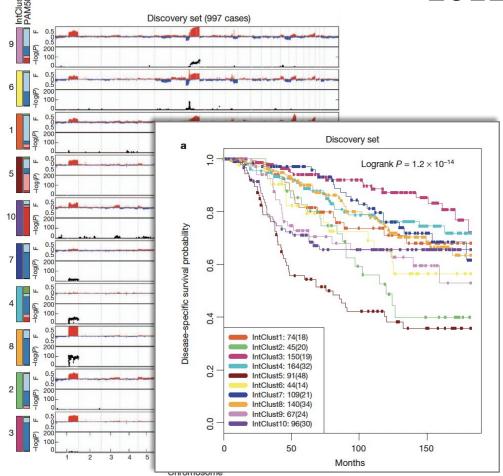
We assembled a collection of over 2,000 clinically annotated primary Genomic variants are considered to act in cis when a variant at a locus

Department of Onoclogy, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK. *Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. 3 Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada, 4 Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada. *Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Cambridge CB3 0WA, UK. Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello, 0310 Oslo, Norway. Department of Histopathology, School of Molecular Medical Sciences University of Nottingham, Nottingham, NG5 1PB, UK. 8 Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital, NHS Foundation Trust and NHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, IK. Ning's College London, Breakthrough Breast Cancer Research Unit, London WC2R 2LS, UK. Manitobs Institute of Cell Biology, University of Manitobs, Manitobs R3E OV9, Canada, 11 NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London WC2R 2LS, UK, 12 Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway, 13 Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 ORE, UK. 14 Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA, *Present addresses: Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA, *Present addresses: Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA, *Present addresses: Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA, *Present addresses: Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA, *Present addresses: Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA, *Present addresses: Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA, *Present addresses: Department of Preventive Medicine, University of Southern California, USA, *Present addresses: Department of Preventive Medicine, University of Southern California, USA, *Present addresses: Department of Preventive Medicine, USA, *Present addresses: Department of Preventive Medicine USA (Ch.C.): University College London, Genetics Institute, WC1E 6BT, UK (D.S.).

*These authors contributed equally to this work

*Lists of participants and affiliations appear at the end of the pape

346 | NATURE | VOL 486 | 21 JUNE 2012 ©2012 Macmillan Publishers Limited. All rights reserved



ANALYSIS

Poormoled serrat

Felipe De S Joan H de J Maartie var Jan Paul Me

Colon cancer makes it diffi most from ad new targeted of colon canc is therefore n classification colon cancer, can be recogn identified and and microsat largely micro island methy be identified We provide e serrated ader profiles, inclu matrix remod

samples from cancer (AMCously develope (Supplementa subdivision in pointing to th Supplementar (Supplementa 90 patients in

1 aboratory for ²Computational Amsterdam, The 5Department of ⁷These authors Received 24 Se

The consensus molecular subtypes of colorectal cancer

Justin Guinney^{1,21}, Rodrigo Dienstmann^{1,2,21}, Xin Wang^{3,4,21}, Aurélien de Reyniès^{5,21}, Andreas Schlicker^{6,21}, Charlotte Soneson^{7,21}, Laetitia Marisa^{5,21}, Paul Roepman^{8,21}, Gift Nyamundanda^{9,21}, Paolo Angelino⁷, Brian M Bot1, Jeffrey S Morris10, Iris M Simon8, Sarah Gerster7, Evelyn Fessler3, Felipe De Sousa E Melo3, Edoardo Missiaglia⁷, Hena Ramay⁷, David Barras⁷, Krisztian Homicsko¹¹, Dipen Maru¹⁰, Ganiraju C Manyam¹⁰, Bradley Broom 10, Valerie Boige 12, Beatriz Perez-Villamil 13, Ted Laderas 1, Ramon Salazar 14, Joe W Grav 15, Douglas Hanahan¹¹, Josep Tabernero², Rene Bernards⁶, Stephen H Friend¹, Pierre Laurent-Puig^{16,17,22}, Jan Paul Medema^{3,22}, Anguraj Sadanandam^{9,22}, Lodewyk Wessels^{6,22}, Mauro Delorenzi^{7,18,19,22}, Scott Kopetz^{10,22}, Louis Vermeulen^{3,22} & Sabine Teipar^{20,22}

Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated. microsatellite unstable and strong immune activation: CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC—with clear biological interpretability—and the basis for future clinical stratification and subtype-based targeted interventions.

Gene expression-based subtyping is widely accepted as a relevant RESULTS source of disease stratification. Despite the technique's widespread Comparison of published molecular subtyping platforms use, its translational and clinical utility is hampered by discrepant We evaluated the results of six CRC subtyping algorithms³⁻⁸, each results, which are probably related to differences in data processgeneral framework that integrates and compares multiple strategies is elucidate the intrinsic subtypes of CRC.

A full list of affiliations appears at the end of the paper. Received 6 March; accepted 6 September; published online 12 October 2015;

Inspection of the published gene expression-based CRC classifications2-9 revealed only superficial similarities. For example, all of the groups identified one tumor subtype enriched for microsatellite instability (MSI) and one subtype characterized by high expression of mesenchymal genes, but they failed to achieve full consistency among the other subtypes. We envisioned that a comprehensive crosscomparison of subtype assignments obtained by the various approaches on a common set of samples could resolve inconsistencies in both the number and the interpretation of CRC subtypes. The CRC Subtyping Consortium (CRCSC) was formed to assess the presence or absence of core subtype patterns among existing gene expressionbased CRC subtyping algorithms. Recognizing that transcriptomics represents the level of high-throughput molecular data that is most intimately linked to cellular or tumor phenotype and clinical behavior, we also wanted to characterize the key biological features of the core subtypes, integrate and confront all other available data sources (mutation, copy number, methylation, microRNA and proteomics) and assess whether the subtype assignment correlated with patient outcome. Furthermore, our aim was to establish an important paradigm for collaborative, community-based cancer subtyping that will facilitate the translation of molecular subtypes into the clinic, not only for CRC but for other malignancies as well.

developed independently using different gene expression data sets ing and algorithms applied to diverse patient cohorts, sample prepa- and analytical approaches (Supplementary Tables 1 and 2). Figure 1 ration methods and gene expression platforms. In the absence of a summarizes the workflow of our analysis. A total of 18 CRC data clear methodological gold standard to perform such analyses, a more sets (n = 4,151 patients) from both public (GSE42284, GSE33113, GSE39582, GSE35896, GSE13067, GSE13294, GSE14333, GSE17536, needed to define common disease patterns in a principled, unbiased GSE20916, GSE2109 and The Cancer Genome Atlas (TCGA)) and manner. Here we describe such a framework and its application to proprietary 3,10 sources (Supplementary Table 3)—which consisted of multiple gene expression platforms (Affymetrix, Agilent and RNA-sequencing), sample types (fresh-frozen samples and formalin-fixed paraffin-embedded (FFPE) samples) and study designs (retrospective and prospective series and one clinical trial 10)-were uniformly preprocessed and normalized from the raw formats to reduce technical variation. The six expert groups applied their

VOLUME 21 | NUMBER 11 | NOVEMBER 2015 NATURE MEDICINE

2013-2016

Cancer Research

Practical and Robust Identification of Molecular **Subtypes in Colorectal Cancer by** Immunohistochemistry

Anne Trinh^{1,2}, Kari Trumpi³, Felipe De Sousa E Melo^{4,5}, Xin Wang^{1,6}, Joan H. de Jong⁴, Evelyn Fessler⁴, Peter J.K. Kuppen⁷, Marlies S. Reimers⁷, Marloes Swets⁷, Miriam Koopman³, Iris D. Nagtegaal⁸, Marnix Jansen^{9,10}, Gerrit K.J. Hooijer⁹, George J.A. Offerhaus³, Onno Kranenburg³, Cornelis J. Punt¹¹, Jan Paul Medema⁴, Florian Markowetz¹, and Louis Vermeulen⁴

Abstract

Purpose: Recent transcriptomic analyses have identified four distinct molecular subtypes of colorectal cancer with evident tities of bulk tumor and difficulties in obtaining high-quality genome-wide transcriptome data from formalin-fixed paraffinembedded tissue are obstacles toward widespread adoption of based classifier to validate the prognostic and predictive value of molecular colorectal cancer subtyping in a multicenter study.

Experimental Design: Tissue microarrays from 1,076 patients with colorectal cancer from four different cohorts were stained for five markers (CDX2, FRMD6, HTR2B, ZEB1, and KER) by immunohistochemistry and assessed for microsatellite instability. An automated classification system was trained on one cohort using quantitative image analysis or semiquantitative pathologist scoring of the cores as input and applied to three independent

Results: This classifier demonstrated 87% concordance with the gold-standard transcriptome-based classification. Application clinical relevance. However, the requirement for sufficient quanmesenchymal-like molecular colorectal cancer subtype. In addition, retrospective analysis demonstrated the benefit of adding cetuximab to bevacizumab and chemotherapy in patients with this taxonomy. Here, we develop an immunohistochemistry-

> Conclusions: This study shows that a practical and robust immunohistochemical assay can be employed to identify molecular colorectal cancer subtypes and uncover subtypespecific therapeutic benefit. Finally, the described tool is available online for rapid classification of colorectal cancer samples, both in the format of an automated image analysis pipeline to score tumor core staining, and as a classifier based on semiquantitative pathology scoring. Clin Cancer Res; 23(2);

Introduction

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom. ²Department of Medical Oncology, Dana-Farber Cancer Insti tute, Boston, Massachusetts. ³Cancer Center UMC Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands, *Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. ⁵Department of Molecular Oncology, Genentech Inc., South San Francisco, California. ⁶Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong. Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands, 8Department of Pathology Radboud University Medical Center, Nilmegen, the Netherlands, 9Department of Pathology, Lymphoma and Myeloma Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands, 10 Centre for Tumour Riology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ¹¹Department of Medical Oncology, Academic Medical Center, University of Amsterdam Amsterdam the Netherlands

Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

Corresponding Author: Louis Vermeulen, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, the Netherlands, Phone: 31-20-5664777; Fax: 31-20-6977192; E-mail: I.vermeulen@amc.uva.nl

dal: 10 1159/1079-0432 CCD-16-0690

©2016 American Association for Cancer Research

Colorectal cancer is a heterogeneous disease with an overall 5-year survival of below 60% (1). There is an urgent need to improve selection of early-stage patients who may benefit from adjuvant therapy, or to identify patients with metastasis who may profit from a specific targeted therapy. To facilitate this, stratification methods based on histopathologic characteristics are extensively implemented: For example, only patients with colorectal cancer with high-risk features such as high-grade and poorly differentiated morphology are believed to benefit from adjuvant chemotherapy (2). Although histopathologic classification is difficult to implement uniformly, associations with molecular characteristics have been noted, such as microsatellite instability (MSI) in serrated tumors (3). This provides a more robust/objective means of determining the suitability of a patient for a given therapy: For example, mutation in the KRAS/BRAF axis is a well-characterized determinant of resistance to anti-EGFR therapy in metastatic disease (4, 5). However, current mutational profiling provides only limited biomolecular understanding of the disease, particularly in chromosomal instable disease where the large heterogeneity in patient response to

AAC-R 397

Article

Multi-omic machine learning predictor of breast cancer therapy response

https://doi.org/10.1038/s41586-021-04278-5

Received: 30 July 2021

Accepted: 23 November 2021

Published online: 7 December 2021

Open access

Check for updates

Stephen-John Sammut^{1,2,3}, Mireia Crispin-Ortuzar^{1,15}, Suet-Feung Chin^{1,15}, Elena Provenzano³, Helen A. Bardwell¹, Wenxin Ma⁴, Wei Cope¹, Ali Dariush^{1,5}, Sarah-Jane Dawson^{6,7}, Jean E. Abraham^{2,3}, Janet Dunn⁸, Louise Hiller⁸, Jeremy Thomas^{9,10}, David A. Cameron⁹, John M. S. Bartlett^{0,11,12}, Larry Hayward⁹, Paul D. Pharoah^{3,13}, Florian Markowetz¹, Oscar M. Rueda^{1,14}. Helena M. Earl^{2,3} & Carlos Caldas^{1,2,3,50}

Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment1. The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy². Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2)-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery3 were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers.

Neoadiuvant treatment, that is, systemic therapy (chemotherapy with or without targeted therapy) administered before surgery, is increasingly used in the management of breast cancer to improve rates of breast-conserving surgery and increase survival4. However, many patients do not have a good response35. Features associated with response to neoadjuvant therapy have been derived from clinical6, molecular7-12 and digital pathology analysis 13,14. However, these studies have been frequently small, combined data from patients receiving different treatments and used single platform profiling that fails to capture the complexity of the tumour ecosystem. Unsurprisingly, physicians continue to select patients for neoadjuvant therapies using empirical clinical risk-stratification15.

Tumour ecosystems are increasingly recognized as major determinants of treatment response2 and we hypothesized that improved prediction models need to account for tumours as complex ecosystems. comprising communities of malignant clones within a microenvironment of stromal, vascular and immune cell types that are perturbed by therapy.

Here we characterized biological parameters extracted from a prospective neoadiuvant study that collected detailed pre-therapy tumour multi-omic data and associated these with eventual response. We found that malignant cell, immune activation and evasion features were associated with treatment response. These features, derived from clinicopathological variables, digital pathology and DNA and RNA sequencing, were used as input into an ensemble machine learning approach to generate predictive models. We validated the accuracy of the predictive models in independent, external cohorts and demonstrated that the best performers integrated clinicopathological and molecular data. The overall approach is widely applicable to other cancers and can be customized to include both fewer and newer features.

Multi-platform profiling of tumour biopsies

We prospectively enrolled 180 women with early and locally advanced breast cancer undergoing neoadjuvant treatment into a molecular

1Cancer Research UK Cambridge Institute, University of Cambridge, LI Ka Shing Centre, Cambridge, UK, 2Department of Oncology, University of Cambridge, Cambridge, UK, 3CRUK Cambr Centre, Cambridge Experimental Cancer Medicine Centre (ECMC) and NIHR Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. School of Clinical Medicine, University of Cambridge, Cambridge, UK. Institute of Astronomy, University of Cambridge, UK. Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Dentre of Cencer Research and Sir Peter MacCellium Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. Warwick Clinical Trials Unit, University of Warwick, Coventry, UK. Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, UK. 32 Laboratory Solutions, Livingston, UK. 10 Intario Institute for Cancer Research, Toronto, Ontario, Canada, "Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada, "Strangeweys Research Laboratory, University of Cambridge, UK. "MRC Biostatistics Unit, University of Cambridge, Cambridge, UK, "These authors contributed equally: Mireia Criscin-Ortuzar, Suet-Feung Chin, "e-mail: carlos.caldas@cruk.cam.ac.uk

Nature | Vol 601 | 27 January 2022 | 623

Clinical work flow and data acquisition

Diagnosis of breast cancer

Clinical data acquisition

Multi-platform profiling of therapy-naive tumours

Mutations: WES Copy number: sWGS Expression: RNA-seq

Digital pathology

Chemotherapy ± targeted therapy (18 weeks)

Surgery

Evaluation of response to therapy

No tumour

RCB-I

Increasing residual disease

ER+ HER2-

ER-HER2-

n = 38

n = 65

So what PIP

Triage-driven diagnosis of Barrett's esophagus for early detection of esophageal adenocarcinoma using deep learning

Marcel Gehrung 12, Mireia Crispin-Ortuzar 11, Adam G. Berman, Maria O'Donovan 14,

Deep learning methods have been shown to achieve excellent performance on diagnostic tasks, but how to optimally combine them with expert knowledge and existing clinical decision pathways is still an open challenge. This question is particularly important for the early detection of cancer, where high-volume workflows may benefit from (semi-)automated analysis. Here we present a deep learning framework to analyze samples of the Cytosponge-TFF3 test, a minimally invasive alternative to endoscopy, for detecting Barrett's esophagus, which is the main precursor of esophageal adenocarcinoma. We trained and independently validated the framework on data from two clinical trials, analyzing a combined total of 4,662 pathology slides from 2,331 patients. Our approach exploits decision patterns of gastrointestinal pathologists to define eight triage classes of varying priority for manual expert review. By substituting manual review with automated review in low-priority classes, we can reduce pathologist workload by 57% while matching the diagnostic performance of experienced pathologists.

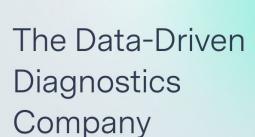
effectively treated2. Most pre-malignant lesions amenable to early detection rely on targeted sampling and show only minor tissue changes on pathology assessment3-5. In addition, pathology procedures often involve laborious and time-consuming steps that can lead to errors and adversely affect patient care. Recent developments in artificial intelligence (AI) have achieved excellent pertechniques can be integrated into clinical workflows most efficiently ing of the GERD population and, thus, the vast majority of patients and assessing the actual benefits they bring remain a challenge. The design of a clinical decision support system needs to balance its performance against workload reduction and potential economic effect. Replacing pathologists entirely could lead to substantial workload reduction, but such an approach would be viable only if performance remains similar to that of human experts. Between a fully automated approach and the status quo of fully manual review lies a semi-automated approach that uses computational methods to triage patients and presents pathologists only with equivocal cases. A semi-automated approach will not reduce workload as much as a fully automated approach, but its performance benefits from existing expert knowledge and heuristics. Here we present such a semi-automated triage system using deep learning for the detection of Barrett's esophagus (BE), a precusor of esophageal adenocarci-

Esophageal cancer is the sixth most common cause of cancer-related deaths10. Patients usually present at an advanced stage with dysphagia and weight loss, and the 5-year overall survival of EAC-one of two pathological subtypes-is 13%11, EAC can arise from a precursor lesion called BE 1213, providing an effective starting epithelium 1, TFF3 stains allow the identification and quantification point for early detection. BE occurs in patients with gastresophageal reflux disease (GERD), a digestive disorder where acid and bile diagnostic biomarker for BE20.

arly detection of cancer often leads to better survival, because from the stomach return into the esophagus, often leading to heart-* pre-malignant lesions and early-stage tumors can be more burn symptoms. In Western countries, 10-15% of the adult population are affected by GERD14 and, therefore, are at an increased risk of having BE. The pathognomonic feature of BE is intestinal metaplasia (IM), a process whereby the stratified squamous epithelial lining localized in the lower esophagus is replaced with columnar epithelium containing goblet cells 15,16. The conventional diagnosis of BE requires an invasive endoscopic procedure of the upper gasformance on diagnostic tasks 7-9. However, understanding how these trointestinal tract. However, there is no routine endoscopic screenwith BE are undiagnosed14.

> Cytosponge-TFF3 is a non-endoscopic, minimally invasive diagnostic test for BE17-19. It is a cell collection device consisting of a compressed sponge on a string inside a soluble capsule. The capsule is swallowed by the patient and dissolves in the stomach, releasing the sponge. The expanded sponge is withdrawn by the attached string, sampling superficial epithelial cells from the top of the stomach, the esophagus and the oropharynx (Fig. 1a). Therefore, the cellular composition of the sample is dominated by squamous cells, gastric columnar epithelium and respiratory epithelium as well as any IM cells, if present. After removal, the device is placed in a container with preservative solution, and the sampled cells are processed, embedded in paraffin and stained with hematoxylin & eosin (H&E) as well as immunohistochemically stained with TFF3 (trefoil factor 3)20, H&E stains allow the identification and quantification of cellular phenotypes, which is critical for quality control. TFF3 is over-expressed in mucin-producing goblet cells, which are a key feature of BE. TFF3 also functions as a protector of the mucosa from insults, stabilizes the mucus layer and promotes healing of the of goblet cells, which are indicative of IM. Therefore, TFF3 is the key

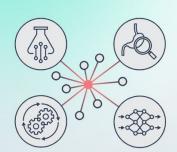
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. The Alan Turing Institute, London, UK. MRC Cancer Unit, University of Cambridge, Cambridge, UK, 4Department of Pathology, Cambridge University Hospitals NHS Trust, Cambridge, UK, 5These authors contributed equally: Rebecca C. Fitzgerald, Florian Markowetz. Se-mail: RCF29@MRC-CU.cam.ac.uk; florian.markowetz@cruk.cam.ac.ul



Our unique approach combines expertise in gastrointestinal oncology, digital pathology and Al-driven biomarker discovery.

Learn more

Latest news



tailer bio

COI: I am co-founder and director

PAN-CANCER PRECISION THERAPEUTICS

CONTACT

Home

About Predict ▼

Predict Tool

Contact

Legal ▼

Change Language -

What is Predict?

Predict is an online tool that helps patients and clinicians see how different treatments for early invasive breast cancer might improve survival rates after surgery.

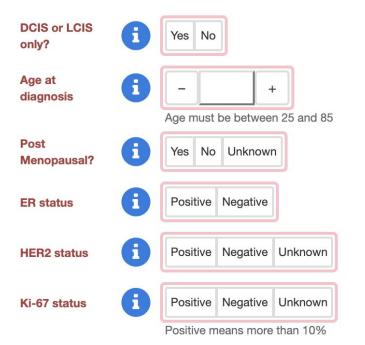
It is endorsed by the American Joint Committee on Cancer (AJCC).

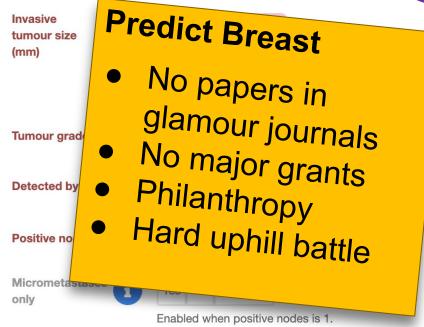
Change Language ▼

Did you mean to visit Predict Prostate? Key decision: adjuvant chemotherapy – yes or no?

Reset

Predict is not designed to be used in all cases. <u>Click here for more details.</u> If you are unsure of any inputs or outputs, click on the ① buttons for more information.





Treatment options and results will appear here when you have filled in all the information needed above.

"It takes time!"

"For 20 years, I thought my job was, as a **basic scientist**, to publish papers and **throw them over the wall** for someone else to apply.

I now realize there's **no one** on the other side of the wall, just a huge pile of papers we've all thrown over."

Attributed to Duncan "Six Degrees" Watts

"This time will be different!"

Every translational paper needs an

Implementation plan

Implementation plan

- 1. What decision is your model addressing?
- 2. How will the data be routinely collected?
- 3. What evidence will convince clinicians?
- 4. How will you navigate medical device regulations?

Implementation plan

When the paper is out, what are your concrete next steps?

Currently: No incentives for implementation

Systemic bias against implementation harms patients

Journals publish

Universities promote

Hospitals innovate

Researchers / implement /

Funders fund

Patients "So what?!"

Regulators streamline



Thank you!

Read all about it!

All models are wrong and yours are useless: making clinical prediction tools impactful for patients.

NPJ Precision Oncology 2024

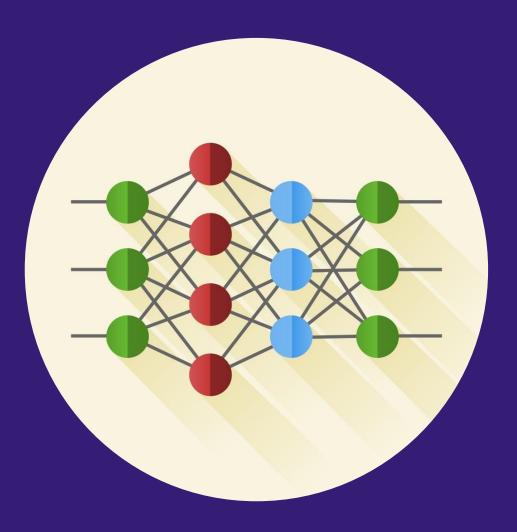
Constructive feedback:

Paul Pharoah, Sarah Burge, Louis Vermeulen, James Brenton, Oscar Rueda, Mireia Crispin Ortuzar, Jason Yip, Geoff Macintyre, Stephen John Sammut, Raza Ali, William Prew, Greta Markert

"Amateurs talk strategy.

Professionals talk logistics."

Military aphorism, source unknown



"Amateurs talk algorithms.

Professionals talk implementation."