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What ETCETERA does

ETCETERA is a WINPEPI program (Abramson 2004, 2011), pathe PEPI suite of computer
programs for epidemiologists. (“PEPI” is an acnonfpr “Programs for EPldemiologists”.)

This program has 33 modules. They perform randomization and random sampling, adjust
P values derived from multipletests, appraise synergism, evaluate scales, compar e three or
mor e samples, control unmeasured confounders, and apply procedures concer ned with
correlation coefficients, large and three-way tables, median and mean polish, simple and
multiplelinear regression, factorial-design and crossover studies, and Bayes factors.
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WORDS OF CAUTION
It is unwise to use a statistical procedure whaseone does not understand. This manual cannplystings
knowledge, and it is certainly no substitute far tasic understanding of statistics and epidemicdbghinking that
is essential for the wise choice of methods andateect interpretation of their results.




How to use ETCETERA

Running the program:  The program provides detailed on-screen instoastand help. ETCETERA can
be run in any version of Windows except Windows 3

Recalling results:  Click on“View” in the top menu to display the current sessiorgsipus results

Pasting results:  Results shown on the screen are automatically ddpi¢he Windows clipboard, from
which they can be pasted into a Microsoft Word thieo text file at the site of the cursor (usualy pressingshift-
Insertor Ctrl-V. To ensure proper alignment of tabulated resaltSourier font should be used in the text filethe
current session's previous results are recalledl{bking on 'View'), text can be marked (drag the mouse over it
with button pressed) and copied to the clipboaydpfiessingCtrl-Insert or Ctrl-C) for pasting elsewhere

Adding comments:  Click on 'Note' in the top menu if you wish to add explanatoryncoents to be placed
in the clipboard, saved, or printed with the result

Saving results: By default, all results are saved in PEPI.TXT ia WinPepi folder, with a warning if it
exceeds 500K. Results also go to PEPL.TMP (faoldisin the View” option); this file may be overwritten unless
it is renamed on quitting ETCETERA. Click bB8aving (in the top menu) to see the default procedure or t
change itpr to find a button that opens PEPI.TXT (which edsp be accessed by clicking on "Results" in the
Winpepi portal). [Results saved in earlier ingttins may be found in C:\PEPI.TXT]

TXT files can be combined with JOINTEXT (supplieith the Winpepi programs).

Printing results : Click on"Print". If this fails, a simple solution is to paste tharently-shown results
(which have automatically been copied to the Winslalipboard) into a Microsoft Word or other texbgram, and
print from there. To ensure proper alignment ofitated results, a Courier or similar font shouldused in the text
file. Results can also be printed from one of flesfin which they are automatically saved, e.gPPEXT.

FINDING WHAT YOU WANT
FINDER.PDF (provided with this program) is an alphabeticaler that identifies the modules (in all WinPepi
programs) that deal with a specific procedure ndlof study. It is called up by pressing F9 ockilig on ‘Finder’
in any WinPepi program, or on the FINDER icon, aad be printed for easy reference.

A DO-IT-YOURSELF THREESOME
1. The WinPepi suite afomputer programs for epidemiologists, with theanmals. Can be downloaded free fram
www.brixtonhealth.com
2. “Research Methods in Community Medicine: Sysy&pidemiological Research, Programme Evaluation,
Clinical Trials” (J.H. Abramson and Z.H. Abramsosixth edition. John Wiley & Sons, 2008.
3. “Making Sense of Data: A Self-Instruction Mahaa the Interpretation of Epidemiological Data’HJ
Abramson and Z.H.Abramson), third edition. Oxfo@ikford University Press, 2001.

HOW TO OBTAIN PEPI PROGRAMS
All WINPEPI (PEPI-for-Windows) and other PEPI grams can be downloaded free. The latest versibns
WINPEPI programs — currently COMPARE2, DESCRIBEEITERA, LOGISTIC, PAIRSetc, POISSON, and
WHATIS — and their PDF manuals, can be downlodd®a www.brixtonhealth.com. The latest release of
Version 4 of PEPI, which contains over 40 DOS-bgs®grams (which can be used in Windows) can be
downloaded from www.sagebrushpress.com/pepibook.htm
A printed manual is available for the DOS-basedqypams and WHATIS (Abramson and Gahlinger 2001).

WINPEPI programs are provided with no liability to users and without any warranties, whether expressed or
implied. They are copyrighted, but may befreely copied and distributed for personal use; they may not be
exploited commer cially without permission.

Wilko C Emmens's XYgraph unit (version 2.2) createsgraphs displayed by this program.



Al. SIMPLE RANDOMIZATION (UNSTRATIFIED)

Al. SIMPLE RANDOMIZATION (UNSTRATIFIED)

This module assigns subjects randomly to betwesmd28 groups, each subject having an equal
probability of assignment to each group. The gsoang usually treatment or control groups in
trials.

This simple randomization procedure may producemgdhat (by chance) differ somewhat in
size, especially if the number of subjects is sma&lhance differences in the baseline
characteristics of the groups are to be expedtedlemonstrate that the groups exhibit random
variation, and are not necessarily equivalentntimaber and proportion of odd-numbered
subjects in each group are reported (if therae3 groups).

The candidates for selection must first be numberegquence, starting with 1 or any other
number

METHOD

The program uses a pseudo-random number genersoriloed by Wichman and Hill (1985). Extensivdistial
tests have demonstrated the statistical soundrig¢kis @lgorithm, which derives each number in tfrom three
seed numbers (in the range 1 — 30,000) which itifiesdfor subsequent use. Initial values for thednumbers are
generated by Delphi's inbuilt random-number proceslttRANDOMIZE, which derives a preliminary seeaifrthe
system clock, and RANDOM,, which is used to gereettee random numbers from which the required seed
numbers are computed. Delphi's RANDOM procedusigmented by an additional randomizing shufflingis
the algorithm of Bays and Durham, as describedrbgget al. (1989: 215-217).

For simple randomization of subjectsGayroups, the range of random numbers (OR< 1) is divided intds
equal fields, one for each group. A random nunibselected for each subject in turn, and the asségt is

determined by the field in which the random nunfaéis. The probability of assignment to each grisip / G.




A2. SIMPLE RANDOMIZATION OF SEPARATE STRATA

A2. SIMPLE RANDOMIZATION OF SEPARATE STRATA

This module assigns subjects in different stratdoetween 2 and 8 groups, each subject having
an equal probability of assignment to each grolipe groups to which the subjects are allocated
are usually treatment or control groups in trials

The strata will usually reflect variables thatsitielieved may influence the outcome of the trial,
the procedure prevents imbalance between the greitipsespect to these variables. In a
multicentre trial, each centre may be regardedsaisagum.

The maximum number of strata is 6; if there areerstrata, module Al should be applied
separately in each stratum

The candidates in each stratum must first be nuealke sequence, starting with 1 or any other
number

*This simple randomization procedure may produaaigs that (by chance) differ somewhat in
size, especially if the number of subjects in atan is small

METHOD

The same method is used as in Module Al (see abapplying it separately to each stratum




A3, BALANCED RANDOMIZATION (UNSTRATIFIED)

A3 BALANCED RANDOMIZATION (UNSTRATIFIED)

This module assigns subjects randomly to betwesmd28 groups, using a "biased coin”
procedure that applies a constraint on the selegtiocess to ensure that the groups to which the
subjects are allocated are equal in size, or hay®ther requiredelative sizes (insofar as the total
number of subjects permits this). The groups atmlly treatment or control groups in trials

Chance differences in the baseline characterisfitdse groups are to be expected

The candidates for selection must first be numberegquence, starting with 1

METHOD

The program uses a pseudo-random number geneegtorilted by Wichman and Hill (1985). Extensivdista&al
tests have demonstrated the statistical soundrig¢kis @lgorithm, which derives each number in tirom three seed
numbers (in the range 1 —30,000), which it modif@ssubsequent use. Initial values for the sagdlyers are
generated by Delphi's inbuilt random-number proceslttRANDOMIZE, which derives a preliminary seegnfrthe
system clock, and RANDOM,, which is used to geresthtee random numbers from which the required seetbers
are computed. Delphi's RANDOM procedure is augeiny an additional randomizing shuffle, using akgorithm
of Bays and Durham, as described by Petsd. (1989: 215-217).

For balanced randomization of subject&tgroups, the range of random numbers (0R < 1) is divided intdG
consecutive fields, one for each group. A randoamiper is selected for each subject in turn, anchisggnment is
determined by the field in which the random nunfla#is. The relative sizes of the fields are deieed by the

groups' quotas, i.e. the number of subjects tleagtbups require in order to meet their prespetifgdative sizes. The
quotas, and hence the probabilities of assignnaeetcalculated anew before the assignment of adijbd, the
probability that the next subject will be assignecny specific groupbeing specified ady / N, whereA is the
number of additional subjects required to complleéequota for group andN is the number of subjects remaining to
be assigned



A4. BALANCED RANDOMIZATION OF SEPARATE STRATA

A4. BALANCED RANDOMIZATION OF SEPARATE STRATA
This module randomly assigns subjects in sepatttago between 2 and 8 groups, applying
constraint on the selection process to ensurdritegich stratum the groups to which the subje
are allocated are equal in size, or have any o#tgiired relative sizes (insofar as the number
subjects in the stratum permits this). The grotgsvhich the subjects are allocated are usua
treatment or control groups in trials

The strata will usually reflect variables thatsitielieved may influence the outcome of the trig
The procedure prevents imbalance between the gretipsespect to these variables. In a
multicentre trial, each centre may be regardedsaisagum.

The candidates for selection must first be numberedsequence starting with 1 in each
stratum.

The maximum number of strata is 8; if there areerstrata, module A3 should be applied
separately in each stratum
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METHOD

The same method is used as in Module A3 (see abapplying it separately to each stratum




A5. BALANCED RANDOMIZATION OF SUCCESSIVE BLOCKS

A5. BALANCED RANDOMIZATION OF SUCCESSIVE
BLOCKS

This module randomly allocates the subjects in esgige blocks to between two and eight
groups, applying a constraint on the selection ggec¢o ensure that in each block the same

number of subjects (one or more) are allocatecth group. The groups to which the subje¢

are allocated are usually treatment or control gedn trials

This method of randomization is appropriate inichhtrials in which the subjects are not
known at the outset, but become available withptgsage of time; in such studies, the
procedure may serve to control for effects conmewati¢gh the passage of time.

The blocks may be the same size as the numbeoopgy or a multiple of that number. The
larger the blocks, the more difficult it becomesdbnicians to guess the assignment of the ne
candidate and to influence the assignment by degihen to enter a subject into the study.

The subjects in each block must be numbered 1,,étc3

The results may also be used if unequal assigrmtermroups are required. For example, if it
wished to have twice as many controls as treatselscdhe module could be used to assign ¢
to groups A, B, and C, defining group A as thettremt group, and B and C (together) as the
control group

This blocked randomization procedure may be usdliff@rent strata, in order to prevent
imbalance between the groups with respect to impbstariables. For this purpose, the modu
should be used repeatedly, for each stratum in linmay also be applied separately to each
centre in a multi-centre trial
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METHOD

The same method of balanced randomization is uséudodule A3 (see above), but applying it to ebldtk in
turn.




A6. MINIMIZATION

Minimization is a method of balanced randomizati@eommended for use in small trials
(Altman 1991: 443-445, Altman and Bland 2006, Seb#l 2002), whereby the assignment of
each subject to a group is influenced by the thgtion of selected prognostic categorical
variables in the previously-assigned members ofthaps.

Weighted randomization is used, in such a way dsa®the scales in favour of a decision that
will minimize the differences between the groupthwegard to these prognostactors. This
may make the findings of the study more persuasven in small studies, although it may
reduce the power of conventional simple signifi@atests that do not include the prognostic
factors in the analysis (Simon 1979, Sattal. 2002).

Except in very large studies, minimization pernthis control of more prognostic factors than
stratification (Scotet al. 2002).

A separate decision must be made for each sulbjeéctn, based on the prior findings in each
group with respect to the prevalence of the sealgotegnostic factors. This — and especially the
need to maintain a record of the prior findingeath group- makes this a relatively
inconvenient method, despite its effectivenesse rBcord provides a basis for the entry, for
each subject except the first (who is allocated Bymple random decision.) of a “similarity
score” for each group, based on the numbers afpgneembers with the same attributes as the
candidate. Each of the chosen attributes is tlesgparately for this purpose. For example, if
the prognostic factors are sex, age, and the presdrdiabetes, and the candidate is a diabetic
man aged 35-44, and Group A already contains 8 hpapple aged 35-44, and 3 diabetics, the
score for Group A at this stage is the sum of timesebers, i.e. 20 (8 + 9 + 3). The same
weight is given to each prognostic factor. A ramdidecision is then made, weighting the
probabilities so that the candidate is most likelye put in the group with the lowest score

METHOD

The method proposed by Taves (1974), as descripédiiman (1991: 443-445) and Scettal. (2002), is based on
the "similarity scores" (see above) that are edtere

The probabilities of assignment are determinecceoedance with the similarity scores. Weightedd@anization is
used, setting the probability of assignment togiwmip with the lowest score at four times thatrof ather group.

If there is a tie folowest score, all groups that do not have the Hgkeore are given a probability of assignment
that is four times that of the group with the highgcore. If there are ties both for the lowests@nd for the
highest score also, or if all scores are the samegqual probability is set for each group




A7. RANDOM SEQUENCING OF PROCEDURES

A7. RANDOM SEQUENCING OF PROCEDURES

This module randomly determines the sequence ef afswo to eight procedures to which ea
subject in a study will be exposed

It may be useful in circumstances where theredasar to believe that the effects of the
procedures may be affected by their sequence dicappn. The procedures might, for
example, be different treatment regimes whose tsfiecs wished to compaltgy applying them
to the same subjects. Or, in an evaluative corsparf study methods, the procedures might
the examinations or interviews that it is wisheddmpare

be

METHOD

The same method of balanced randomization is usédModule A3 (see above), but applying it (focleaubject)
to the set of procedures under study.

10



B1-B4 SIMPLE RANDOM SAMPLES

B1. SIMPLE RANDOM SAMPLE, WITHOUT REPLACEMENT

This module selects a simple random sample of efggsize, or using a specified sampling
fraction. Subjects are drawn one by one by theofisandom numbers. Subjects who are
selected are not returned to the pool of candidatesder to ensure that they cannot be seleg
more than once. This is the kind of sample regluimemost studies (Cochran 1977: 18).

The selected subjects are listed both in therafigelection and in numerical order. The
former listing may be useful in studies in whiclerthis a possibility that the recruitment of
subjects may be terminated prematurely becaulselobf funds or other contingencies, since
candidates are recruited in the specified ordeséimeple will be a random one (although not
necessarily of the required size) at whatever goimication occurs. It may also be useful in
studies usingnverse samplingi.e. where the sample size is not determinextiirance, but it is
planned to continue sampling until a prespecifiaohber of suitable study subjects have been
identified (e.g., subjects who are revealed bgraening procedure to have evidence of a
specific disease).

The candidates for selection must be numberedquence, starting with 1 or any other
specified number.

A stratified random samplean be selected by choosing a separate simplemasdmple from
each stratum in turn.. In each stratum, the catesadfor selection must be numbered in
sequence, starting with 1 or any other specifiadlmer. Different sampling fractions can be us
in the different strata

METHOD

The program uses a pseudo-random number genersoriloed by Wichman and Hill (1985). Extensivdistal
tests have demonstrated the statistical soundrig¢kis @lgorithm, which derives each number in tfrom three
seed numbers (in the range 1 — 30,000), which difies for subsequent use. Initial values for sked numbers
are generated by Delphi's inbuilt random-numbecgdares, namely RANDOMIZE, which derives a preliarin
seed from the system clock, and RANDOM, which isdu® generate three random numbers from which the
required seed numbers are computed. Delphi's RAMP&cedure is augmented by an additional randaorgizi
shuffle, using the algorithm of Bays and Durhamdescribed by Presg al. (1989: 215-217).

The formula for each selection is

truncRM) + 1
where Ris a random number in the range < 1
M = the number of candidates.

The same integer may be selected more than ontprduiously selected numbers are filtered out

11
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B1-B4 SIMPLE RANDOM SAMPLES

B2. SIMPLE RANDOM SAMPLE, WITH REPLACEMENT

This module selects a simple random sample (in vbach candidate has the same chance @
inclusion) of a specified size, or using a spediBampling fraction.

Subjects are drawn one by one by the use of ramdonbers Subjects who are selected are
returned to the pool of candidates, and may betseleagain. A sample of this kind is
occasionally required, since the formulae for theances and estimated variances of estimat

made from the sample are often simpler when sagiwith replacement (Cochran 1977: 18).

The selected subjects are listed in the ordeeletton. Repetitions are indicated by asterisk

A stratified random sample can be selected by chga@sseparate sample from each stratum.
each stratum, the candidates for selection mustubered in sequence, starting with 1 or ar
other specified number. Different sampling fraci@an be used in the different strata

—
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METHOD

The same method is used as in Module B1, excepptkaiously selected numbers are not filtered out

B3. TWO OR MORE SIMPLE RANDOM SAMPLES, WITHOUT
REPLACEMENT

This module selects two to six simple random sampfespecified sizes from a single pool of
candidates. This may be useful in studies thattaiexamine the reproducibility of findings,
e.g. concerning the validity of a screening tegtcdmparing théindings in different samples.
No subject is selected more than once. The catedidar selection must be numbered in
sequence, starting with any chosen number

METHOD

The same method is used as in Module B1, filteangpreviously selected subjects, until the nunibéhe
combined samples has been chosen. The total gf@glected subjects is then divided into coneesamples,
in accordance with the requiretzes of the samples

12



B1-B4 SIMPLE RANDOM SAMPLES

B4. RANDOM CHOICE OF ONE SUBJECT FROM EACH
(EQUALLY-SIZED) SET

This module randomly selects one of the subjecezaoh of a number of sets of equal size (fra
2 to 6). It might be used, for example, in a studwhich cases of a disease are gradually
accrued over time, and a subject is randomly sedeftobm each successive set of patients.

METHOD

The program uses the pseudo-random number geneesoribed above (see Module B1). In each seffatmula
for the selection is

truncRM) + 1

whereRis a random number in the range R< 1
M = the size of the set

13
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B5. RANDOM SEQUENCE

B5. RANDOM SEQUENCE

This module arranges up to 5000 consecutive nunibersandom sequence

It may be useful for determining the order of emfgubjects into a study, if there is a
possibility that addition of subjects to the studgy be terminated prematurely because of lag
of funds or other contingencies; if candidatesaaiged in the specified order the sample will

a random one (although not necessarily of the elgssize) at whatever point truncation occurs.

It may also be useful ihverse samplings proposed, i.e. if the sample size is not detegthin
advance, but it is planned to continue sampling arprespecified number of suitable subject
have been identified (e.g., subjects who are reddal have a specific disease).

[23K=)
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METHOD

The program uses the pseudo-random number gendestoribed above (see Module B1). The numbetsimew
sequence are selected one by one, without replateosng the formula
truncRM) + 1

where Ris a random number in the range R< 1
M = the number in the sequence that have not yet selected

14



B6, B7. RANDOM NUMBERS, RANDOM DECISION

B6. TABLE OF RANDOM NUMBERS

This module displays as many tables of random nusrdeare required

Each table contains 144 numerals

METHOD

The program uses the pseudo-random number gendegtoribed above (see Module B1).

B7. RANDOM DECISION (YES OR NO)

This module provides a random yes-no decision

Each time the module is run it provides a randoes™por "no" decision, equivalent to tossing|a
coin.

It may be of invaluable help to epidemiologicale@shers who are faced by critical decisions
their lives

in

METHOD

The program uses the pseudo-random number gendegtoribed above (see Module B1).

15



C. MULTIPLE SIGNIFICANCE TESTS: ADJUSTED P VALUES

C. MULTIPLE SIGNIFICANCE TESTS: ADJUSTED P VALUES

This module assists in the appraisal of multipie@gtaneous) significance tests performed on
the same data. It may be used in situations whererobability of spuriously significant results
(Type | errors) is elevated; for example, whendhame a number of groups and each group is
compared with each other group; when several gratmsompared with the same control
group; when several related hypotheses are tasi@daomparison of two groups; or when the
selection of associations for analysis is basedngdrior hypotheses but on an examination g
the data, and selected eye-catching differencetested. Type | errors are particularly likely if
data are “dredged” for statistically significantgparisons, withoua priori hypotheses.

-

The P values are adjusted in such a way that wea#pha (critical P value) is used for
appraising significance in individual tests, thelmbility of at least one spuriously significant
result (Type | error) in the total set is no mdrart thisalpha.Use is made of Holm's procedure
(Holm 1979, Aickin and Gensler 1996) and Hommeéferimel 1988) and Finner's procedures
(Finner 1990, 1993), which are based on the famibe error-rate, and also of two procedure$
that use the false discovery rate (FDR) method j@eimi and Hochberg 1995, Benjamini and
Liu 1999).

U

Either the lowest P values in the set, or all th@Res, must be entered, in any sequence. If all
the values are not entered, the total number t§ beghe set is required. This may be the
number performed, or (if the tests were selecteat akamination of the data), the total numbe
possible, including those not actually performean(8els 1991). In pairwise comparison$Nof
groups, for example, the number of possible teftgN-1) / 2.

=

Different P values occasionally yield identicalwsted P values. This is not an error

Multiple comparison or simultaneous inference pdaces adjust P values by taking account of
the performance of multiple tests, to reduce thegdathat associations will be reported as
significant when they are flukes. Opinions on thusie varies. ‘It is to be hoped that they will
become as much a part of accepted statisticalipeaars unadjusted P values are now,’ says
Wright (1992). Others consider them unnecessarsieaniling, or inefficient (Rothman and
Greenland 1998, Cole 1979, Perneger 1998) on thegreunds, because their use implies that
the results of a test are interpreted differentlyoading to how many other tests are performed,
and because Type |l errors may occur.

Bender and Lange (2001) say that ‘different persnag have different but nevertheless
reasonable opinions’, but they ‘prefer that date>gfloratory studies be analyzed without
multiplicity adjustment. “Significant” results ... shld clearly be labeled as exploratory results.
To confirm these results the corresponding hypethéswve to be tested in further confirmatory
studies.” Perneger (1998) concludes that multgoleyparison procedures make sense in only a

16



C. MULTIPLE SIGNIFICANCE TESTS: ADJUSTED P VALUES

few situations. These include 'when searchingifpriBcant associations without pre-established
hypothesésas well as in repetitions of the same test ifeght strata or subsamples, and
sequential testing of the results of a trial.

The program uses Holm's procedure (Holm 1979, Aiekid Gensler 1996) and Hommel's
(Hommel 1988) and Finner's procedures (Finner 19993), which are based on the family-
wise error-rate, and it also uses two proceduraseaimploy the false discovery rate (FDR)
(Benjamini and Hochberg 1995, Benjamini and Liu90®Il these procedures are more
powerful than the well-known Bonferroni procedusdaich in effect adjusts the P value by
multiplying it by the number of tests.

While different methods of handling multiple comisans may be appropriate in different
situations, Curran-Everett (2000) suggests thatalse discovery rate (FDR) procedure
described by Benjamini and Hochberg (1995), whsch fversatile, simple, and powerful
approach”, may be the best practical solution. FD® is the expected proportion of false
discoveries (false “statistically significant” réts) among the discoveries. The two FDR
methods used by the program are the “step-up” pieedescribed by Benjamini and Hochberg
(1995), and a “step-down” procedure described hyj@eini and Liu 1999). The pros and cons
of these alternatives are discussed by BenjamohiL&n(1999) and Benjamirat al. (2001).

For convenience, the observedalues are adjusted by multiplying themfbfthe value of
depending on which multiple-comparisons procedsitgsed), instead of reporting that a specific
observed/alue can be regarded as significant atlpba significance level because it does not
exceedalpha / f. An adjusted value can then be regarded as significant (detipatenultiple
comparisons) if it does not exceed 0.05, 0.0hngrother chosen significance level. The
adjusted P values for the FDR procedures are mghag <0.00001, <0.0001, <0.001, <0.01,
<0.05, or >0.05.

In clinical trials in which multiple outcome measarare used, suggested solutions (instead of
adjusting the P values) are selection of a singlagry outcome measure, or creation of a global
assessment measure (Feise 2002).

METHODS

Holm's procedures a sequential one. Each P value in turn, sigsith the lowest, is multiplied By - i, whereN
is the total number of tests ani the number of P values already adjusted. Hdjosted value is lower than a
previous adjusted value, it is changed to the previvalue, and if it exceeds 1 it is changed.to 1

Hommel's proceduris a more complicated sequential method, valid&dethdependent tests; the program uses an
algorithm provided by Wright (1992). If only somee( the lowest) of the values are entered, thgnara makes the
assumption that the missing values are evenly sijaetveen the highest value entered and 1. Tlgsnierally
conservative, and may produce unduly high adjussbaes for the higher values entered. As a prémaut

Hommel's adjusted P is therefore not displayedHerthree highest values entered, unless all vatesntered

For Finner's procedurgthe P values are arranged in a sequence fronstdednighest (tied values are ranked
consecutively), and the adjusted value offPvalue numbeirin the sequence) is computed as

1-@-pP)™
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C. MULTIPLE SIGNIFICANCE TESTS: ADJUSTED P VALUES

where Nis the total number of P-values in the set.

If an adjusted value is lower than a previous adlisalue, it is changed to the previous value,ifitééxceeds 1 it
is changed to 1.

The program uses an adaptation of a Fortran algoritom MULTI (Version 2.0), by B.W. Brown and KuRsell
(The University of Texas M. D. Anderson Cancer @ent

For the step-upfalse discovery rate (FDRyrocedure (Benjamini and Hochberg 1995) , the ranogarranges th@
values in a sequence from highést(N, i.e. the total number of P values in the setptvest { = 1) (tied values
are ranked consecutively), and compares each adasealue in turn (starting with the highest) witle tappropriate
FDR thresholds, calculated as the significancel Ig\e 0.05, 0.01, 0.001, 0.001, and 0.00001yin) divided by f
=N /. This process identifies the points at which thetiexalue in the sequence is less than the FDRHbte

for a more significant level, so th@ach P value can be reported as having an adjustaed in accordance with its
relationship to the FDR thresholds (i.e., P < 00X < 0.0001, P < 0.001, P < 0.01, P <0.0®, »10.05, as the
case may be).

For thestep-dowrfalse discovery rate (FDRjrocedure (Benjamini and Liu 1999), the programarages the
observedP values in a sequence from lowest(1) to highesti(=N) and compares each observed value in turn
(starting with the lowest) with the appropriate FBiResholds, calculated as the significance |e¥€Q001, 0.0001,
0.001, 0.01 and 0.05, in turn) dividedfog (N + 1 - i)2 / N. This process identifies the points at which thet e
value in the sequence is less than only the FD&stuld for a less significant level, sotteach P value can be
reported as having an adjusted value in accordaitbdts relationship to the FDR thresholds (iR<0.00001,
P<0.0001,bP < 0.001, P <0.01, P <0.05, or P5,@s the case may be).
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D. ASSESSMENT OF A SCALE

This module appraises ti@ernal consistencgnddiscriminatory powenf a scale whose score
is derived by summing the scores allotted to itsstituent items. The items may relate to
attitudes, practices, knowledge, the presencermpgyms, etc. They may all have Likert-like
scores (e.g. 1, strongly agree; 2, agree; 3, udddcd, disagree; and 5, strongly disagree), or
they may all be 'yes-no' (binary) items scored @;0n the latter case the total score is the
number of 'yes' responses.

The program computédronbach's alphaeliability coefficient the $andard error of
measuremerdnd the 95% confidence interval for individual &rand theorrelations
between each item and the total score and betvwaedmpair of items.

If the scale is based on 'yes-no' items, the progigo computes approximatetrachoric
correlationsbetween items, and appraisemformity with a Guttman scall reports the
proportion of 'yes' responses for each item, tlq@eece in which the items would be placed in a
Guttman scale, the percentage of individuals wiesponses conform with perfect Guttman
scale types, and error rates for each item. Itpedes acoefficient of reproducibilityand
compares this with a coefficient of reproducibility chance (CRC) and with the minimal
marginal reproducibility (MMR). It also computesefficients of scalability performs a
goodness-of-fit test, and provides a sensitiviglgsis to assist in deciding whether the scale
would be improved by the removal of specific items.

The program also computégrguson’s delta coefficiends a measure of the scale’s
discriminatory power, and performs a sensitivitglgisis to appraise the effect of removing
specific itemsDelta is also computed for each scale item.

For a summated Likert scale, full data must beredtér each subject - i.e., each subject's score
for each item in turn.

For a scale composed of 'yes-no' (1 or 0) itemegtdata-entry options are available - (a)
separate entry of each subject's scores (which bmagdious if the sample is large), (b) entry pf
each pattern of responses and its frequency, @ntcy of the frequency of each total score, and
the frequency of 'yes' responses to each itemfréqeencies required in options (b) and (c)
must be determined in advance. If option (a) oighjsed, the data can be pasted from a data
file. If option (c) is selected, only the alpha ffamgent is computed.

Items with only 'yes' responses and items with ardyresponses must not be included in the
scale, and missing values or missing-value codesairpermitted.
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D. ASSESSMENT OF A SCALE

Cronbach's alpha coefficient

The alpha coefficient is a measure of the intecoakistency, or 'internal-consistency reliability’,
of the scale, i.e., the extent to which the itespomses correlate highly with each other. If the
items were divided into two groups in every possilshy, alpha would be the average
correlation between the scores for the two 'sg@ltdbs’ of the scale; it is essentially the sqaéire
the correlation between the observed score andvitigge score that would be obtained if the
scale were applied an indefinite number of time®(Bach 2004). A high value points to
internal consistency, but does not necessarily rtegtrall the items measure the same
dimension.

A value of 0.7 is generally regarded as the loweseptable value, and a value of at least
0.8 is recommended. For clinical applications, aimum of 0.9 has been recommended (Bland
and Altman 1997).

For 'yes-no' items, an adjusted value of alpledsis computed, using Horst's formula
(Guilford and Fruchter 1978: 429-430), which alldwsdifferences between items in their
'difficulty’ (i.e., in their proportions of 'Yesesponses). The usual formula for alpha assumes that
the proportions of 'Yes' responses to the diffettents are similar.

If the items are all 'yes-no' items, alpha is egl@nt to the Kuder-Richardson formula 20
(K-R 20) coefficient.

Standard error of measurement

The standard error of measurement, which is inlerstated to alpha, is an estimate of error for
use in interpreting an individual's score. It cathiought of as the standard deviation of the
scores a subject would receive in repeated appicabf the scale. The program uses it to
estimate a 95% confidence interval for individuadres, on the assumptions (which are not
necessarily true) that the error is the same d\adls of the score, and that the erforany
subject are normally distributed.

Correlations

Two sets of correlation coefficients are computed:

(a) correlations between each item and the totaks@xcluding the item from the total score).
For yes-no items, coefficients of point biseriatretation between each item and the total score
are calculated, with Henrysson's adjustment to @msate for the inclusion of the item in the
total. The significance of the correlation is ¢kt

(b) correlations between each pair of items, aedikan inter-item correlation coefficient. If the
scale is based on 'yes-no' items, approxirt@tachoric correlationdetween itemsre also
computed; these provide an estimate of what theeletions would be if the distributions were
not dichotomised, assuming an underlying distrdouthat is continuous and approximately
normal; they are not computed if there is unduesaneess of the marginal totals (see Methods).

These coefficients permit the identification ohiig that it may be advisable to remove from the
scale.
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D. ASSESSMENT OF A SCALE

Guttman scale

A Guttman scale (or scalogram) is one whose itesnstdute a unidimensional series, such that
a 'yes' response to any item predicts that thequevtems in the series must also have 'yes'
responses.

If the scale conforms with a Guttman scale, thgggests that the scale is a cumulative one (with
a 'hierarchy’ of responses), and that the itemsunea single dimension. In most cases an
individual's score (the number of "Yes' responggs)id be both a quantitative measure of this
dimension and an indication of the specific patt#rresponses.

To make the appraisal of conformity, the progranst fie-arranges the items in accordance with
the frequency of positive responses, and defings1@n scale types on the basis of this
sequence. For example, for a three-item scale #merfour acceptable patterns. When the items
are arranged in order. from the one with the méss"responses to the one with the least, the
perfect Guttman scale types are: 'Yes-Yes-Yes§-¥Wes-No', "'Yes-No-No' and 'No-No-No'.

Other patterns, e.g. "Yes-No-No', are non-scgdesy The proportion of 'Yes' responses to each
item and the sequence of the items in the scaleepmeted by the program.

Each individual's pattern of responses is then @vetpwith the perfect Guttman scale type that
has the same number of positive responses, anddescbpant response to a specific item is
defined as an error. The percentage of individwétls perfect scale types is reported. The
program also reports the error rate for each i, its proportions of errors in what should be
'Yes' and 'No' responses. It has been suggesteththvalidity of a Guttman scale should be
guestioned if the errors for any item exceed 1584, @ver half the positive responses or over
half the negative responses to any item are erten@erd 1954: 294-295).

A coefficient of reliability is computed. Thisike proportion of responses (in the total sample)
that are not 'erroneous’; 0.9 is usually regardetti@ minimal requirement for a satisfactory
scale.

Since a high coefficient of reproducibility may &e expression of the overall distribution of
responses to the various items, it is compared avitbefficient of reproducibility by chance
(CRC), which is computed by first estimating thelgbility of each perfect scale type by
multiplying the appropriate marginal probabiliti@sd then summing the probabilities of all
perfect scale types (Riley 1963: 477). The progreports the absolute improvement achieved
by the scale (the coefficient of reproducibilityrmas the CRC), and calculates a coefficient of
scalability by dividing this by (1 - CRC). In a gb&Guttman scale, the coefficient of scalability
should be well above 0.6. The program also conspaiternative values of the absolute
improvement and the coefficient of scalability, &®n the minimal marginal reproducibility
(MMR) instead of the CRC. The MMR is calculatedaalding the marginal probabilities of all
items (using the probability of either a positivenegative response, whichever is larger), and
dividing the sum by the number of items (Nie etl&I75: 528-533).

A sensitivity analysis is performed by recomputihg coefficients of reproducibility and

scalability (based on the CRC) after removing atah in turn, in order to detect items whose
removal would appreciably increase the scale'soramfy with a Guttman scale.
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D. ASSESSMENT OF A SCALE

The significance of the Guttman scale (Schues$léi)lis appraised by an exact binomial
goodness-of fit test that compares the observefficdeat of reproducibility with the computed
coefficient of reproducibility by chance. A oneléal mid-P value is displayed, expressing the
probability of by chance obtaining a coefficienatis as high as, or higher than, the observed
value. A low P value - say < 0.001 (Hofmann 191§)morts the possibility that the scale is a
Guttman scale. It does not ‘prove’ that the SeadeGuttman scale; but Schuessler suggests that
only if this P value is low should the various eria listed above be applied.

Ferguson’s delta coefficient

The scale’sdiscriminatory powercan be measured with Fergusodalta coefficient, which
ranges from O if all subjects have the same searedo 1 if subjects are equally divided among
all possible scale scores. A scale may be consldiseriminating ifdeltais above 0.9.

Deltais computed for scales composed of ‘yes-no’ itesomsed 1 or O, or of items that have
Likert-like scores that all have the same rangg (6, 1, 2, or 1, 2, 3, 4, 5).

Deltais computed for the total scale, for the totalsexcluding each item in turn, and for each
separate item.

Note that the removal of uncorrelated but validhdemay reduce the scale’s discriminatory
power, whereas heterogeneity of the items may asereliscriminatory power at the expense of
internal-consistency reliability.

METHODS

The program can deal with scales containing ugtdesns (if they all have single-digit scores), anqdto 4000
subjects (if individual subjects are entered) otad000 patterns of 'yes-no' responses. Becauthe difnited size
of the data entry box, the maximum number of ité®&y if all items have two-digit scores, and 46atf have two-
digit scores.

Cronbach's alpha coefficient and related statistics

The formulaforalpha((GuiIforgl an02I Fruchter 1986: 428) is
[k/(k-1)](Q-2(s"/s)

where k= number of items in the scale
s = standard deviation of scores for itém
s = standard deviation of total scores

For a scale composed of 'yes-no' itelgg; is substituted fos? in the above formula
Where p; = proportion of 'yes' responses to item

g=1-p
this is the Kuder-Richardson formula 20 (Guilfortdaruchter 1986: 427-428.

Horst's modified Kuder-Richardson formula, adjugtiar differences in item difficulty (Guilford anféruchter
1986: 429-430), is:

[(s% - X / {(sn” - Tpia)] (S’ / &°)
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D. ASSESSMENT OF A SCALE

where Si2=2*YRpi-T (1 +T)
T = mean score
R = rank position of iteny, (the item with a lowest pi being ranked 1)

The standard error of measuremediy) is SV[(1 - alpha)]
The 95% confidence interval for individual scorgegdcore - 1.98F,) to (score + 1.96EM).
Correlations

If the scale is composed of 'yes-no' items, cokeffits of point biserial correlation between eaemitand the total
score are calculated, with Henrysson's adjustn@uaiiford and Fruchter 1986: 466) to compensatdHerinclusion
of the specific item in the total score.

In some unusual circumstances the program skipsateelation of coefficients, especially adjusteefficients,
because of computational difficulties.

Approximat tetrachoric correlation coefficientre calculated by the formula proposed by Edwamd Edwards
1984): . .

r=(OR"-1)/(OR"™-1)
where OR = odds ratio

a andd = numbers of concordant pairs

b andc = numbers of discordant pairs

This simple method, which was used by Stata uatiéntly, provides an approximation that is accdptabmany
situations (Digby 1983, referring to an almost itilead formula, with % instead of pi/4 ) but can\eEry inaccurate
(Uebersax 2000). V. Wiggins, of the Stata Corporgtin a reply cited by Gunther and Hofler (200&)ys that the
approximation works well when the marginals in bditections are above 10%. ETCETERA does not distile
coefficient unless this condition is met.

Conformity with a Guttman scale
The methods are explained above.
Ferguson’s delta coefficient

Deltais computed by a formulaéltaQ that is applicable both to ‘yes-no’ items andtéons with more responses
(Hankins 2007):

DeltaG = [(1 +k(m— 1)](* =9 / n’k(m — 1)
where n=sample size
k = number of items in scale
m = number of possible responses (from zero to tope3 to each item
f, = frequency of scale score

S= Zfiz
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E. APPRAISAL OF STATISTICAL SYNERGISM

This module appraisestatistical synergismbetween two binary ("yes-no") variablésandB,
with respect to a binary "outcome" variakle Statistical synergism (or antagonism) does not
necessarily mean biological (causal) interactidme computation is based on comparisons of
risk ratios or odds ratios.

The program providegsts for synerggn additive and multiplicative scales, and several
measures of synergn both scales - the interaction contréS),(the interaction contrast ratio
(ICR, also calledRERI the relative excess risk due to interactioime attributable proportion du
to interaction AP), the attributable proportion due to interactiomomg cases attributable to the
combined factorsAP*, or APsta)), Rothman's synergy inde&lj, and the synergy facto®8p).

\14

Confidence intervals for tH€R, AP, SlandSFmeasures, and the statistical tests, are provided

the frequencies in the 4x2 table (see below) atered

Three modes of data entry are offered. First, idles ofC can be entered, i.e. the risk@fvhen
only Ais present, and when orjis present, and when bofhandB are present, and when
neitherA norB is present. Risk ratios are then computed folirusiee analysis

Secondly, a 4x2 table can be entered, showinguh®ars with and without (the "outcome™)
whenA is present an& absent, wheB is present ané absent, when both are present, and
when neither is present. The main analysis is Hased on risk ratios, but measures based of
odds ratios, which may differ from those basediskinatios, are also provided. In case-contrg
studies with unequal sampling fractions for casebaontrols, the risk ratios are derived from
ancillary information on the ratio of these fracsp or roughly estimated from the prevalence
cases in the population.

Thirdly, odds ratios can be entered, and the progvél then calculate measures based on od
ratios onlys

of

Tests for synergy

Statistical tests for synergy, or (more accuratedg)s for departure from an interaction-free
additive model and from an interaction-free muitiative model (de Gonzalez and Cox 2005)
are performed if the frequencies in the four-by-table are entered. The tests permit an
assessment of whether the data are consistenneiitier, one, or both of the two models,

namely additive with no interaction, and multiptiza with no interaction. It is assumed that the

disease (or other outcome variable) is.rare
Synergism on an additive scale

Five measures ofyaergism on an additive scalRothman 1986) are computed, based on
comparisons of the joint effect 8fandB with the sum of their separate effects. They are
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E. APPRAISAL OF STATISTICAL SYNERGISM

(a) IC (the interaction contrast), which is the excesk due to interaction;

(b) ICR (the interaction contrast ratio), which is alsteththeRER] the relative excess risk due
to interaction (the excess risk due to interactretative to the risk in the absence of A and B);

(c) AP (the attributable proportion), which, if positive,the proportion of cases attributable to
the interaction of A and B;

(d) AP* (APstar) which (if positive) is the proportion of casetiatitable to the interaction of A
and B, among subjects exposed to both A and B; and

(e) Rothman's$l (synergy index), which is the excess risk fromasype to both A and B when
there is interaction, relative to the excess nisknfexposure to both A and B in the absence of
interaction

The first four of these have a zero value if theneo additive interaction, whereas the null value
of Slis 1. If the measures exceed their null valdlee possibility of biological (causal)
synergism may be considered. Statistical synergisan additive scale — i.e., evidence that the
joint effect is greater than the sum of the sepagffiects (rather than their product) — is
generally regarded as the minimum requirement befonsidering biological synergisnif.the
measures are below their null values, this indgateluced additivity, but is not evidence of
antagonism; the possibility of biological antagomisiay be considered if the joint effect is
smaller than the separate effects of bdtmdB.

If the four-by-two table showing numbers with anitheut C is entered, 90%. 95%, and 99%
confidence intervals fotCR, AP, andSl are estimated, using the “MOVER” procedure (method
of variance estimates recovery) described by Z00&®, whose simulation studies have
demonstrated its appropriateness. Also, a signiéiedest is provided for departureSiffrom its
null value of 1 This test, which does not always conform with¢bafidence intervals, assumes
that the sample sizes are reasonably large

Synergism on a multiplicative scale

A measure of multiplicative interactidrased on risk ratios is also computed, based on a
comparison of the joint effect & andB with the product of their separate effects, ad aethe
synergy facto(SF suggested by Cortina-Borlet al.(2009), which is based on odds ratios. The
null values are 1.

Risk ratios

The risk ratios required for calculating the measuwf interaction can be computed from the

risks of C —i.e., its risk when only A is presemhen only B is present, when both A and B are
present, and when neither A nor B is present.
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E. APPRAISAL OF STATISTICAL SYNERGISM

If these risks are not entered, the risk ratioslEnomputed from the four odds (in favour of C)
—i.e., the odds when A is present and B absergnvithis present and A absent, when both are
present, and when both are absent. This computaarres the frequencies of C and its
absence, in each tifese circumstances. Since the odds in a casestetudy are affected by
the sampling probabilities for cases (subjects Wiftand controls (subjects without C), the
calculation takes account of the ratio (if it igexed) of these sampling fractions. If the rafio o
sampling fractions is not entered, the programroaghly estimate it from the overall rate or
proportion of cases in the population studied.

Odds ratios versus risk ratios

The use of odds ratios rather than risk ratiosge¢adxaggerate the interaction (Zou 2008), as is
obvious in the program outputs in which both aredust may yield results that diverge
appreciably (especially for tHER andSI measuresirom those based on risk ratjdkeir
divergence varying with the baseline risk and tlagnitude of interaction (Kalilani and Atashili
2006). For more than additive interaction, théetdlé@nce is more pronounced for @R andSl
measures, and for less than additive interacti@nitore marked foAP. Even when the

outcome (C) is rare, the use of odds ratios maptpoiinteraction (additive or multiplicative) in
instances where the use of risk ratios would irtditiae absence of interaction (Cample¢iél
2005).

METHODS

Synergy tests

The tests for departure from the additive or miiltggive model (using risk ratios) are describeddeyGonzalez
and Cox (2005, formulae 6 and 16). They are peréaronly if the risk when A and B are present exsdbd
expected risk according to the relevant model. ¢tase-control study, for the purpose of these testedds
estimates used for this purpose are first adjusyedividing them by the ratio of the sampling fiaos used for
cases and controls. If this ratio is not entered, @stimated roughly by dividing the observedoraf cases to non-
cases by the ratio of cases to non-cases in thagtam.

A test based on odds ratios, for the analysis sé-@@ntrol data, uses formula 22 of De GonzalezGmd(2005)

The significance o8l andSFis appraised bytests (Hogarmt al. 1978 and Cortina-Borjat al 2009, respectively)
if the outcomes (i.e., the numbers with and withGuare entered. One-tailed P values are displayed

The various tests and confidence intervals mayratonsistent with one another

Tests for interaction

The tests for departure from the additive or miittgdive model are described by de Gonzalez and (2085,
formulae 6 and 16). They are performed only ifridie in the population is entered, and the riskrwhend B are
present exceeds the expected risk according teetbeant model. In a case-control study, for theppge of these
tests the reported numbers of cases are firstatiMay the ratio of the sampling fraction for caethe sampling
fraction for controls; if this ratio is not enteretis estimated by dividing the observed casetrabmatio by the rate
in the population (Rothman and Greenland 199818). One-tailed P values are displayed.
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Measures of additive interaction

The following formulae fotC, ICR, AR andSl|, based on risk ratios (see below), are providelddifani and
Atashili 2006 (formula 1-4) ; but note that thergat denominator in the formula f&i

is
(RRo-1) + RRy1 - 1) and not
(RRo - 1)(RRy1— 1) as printed.

IC =R11- Rio- Ro1 + Roo

ICR=I1C /Ry

AP=IC/ Rll

SI=(RRi1-1)/[RRo-1) + RR1—1)]

The formula forAP* (APstar) (based on Rothman 1986: 322 and 325) is:
AP* = AP/ [(RR1—-1) /RR)]

In analyses based on odds ratios, the risk ratitise above formulae are replaced by odds ratios.

Confidence intervalare estimated by the formulae provided by Zou 808nd tally very closely with the results
computed by a spreadsheet provided by Zou.

Risk ratios

These formulae are based on risk ratios, derivaa the risks of C:

RRo = Ri0/ Roo
RRy1 = Ro1/ Roo, and
RRi1=Ri1/ Roo

where Ryq=risk of C when only A is 'yes'
Ry1 = risk of C when only B is 'yes'
Ry, = risk of C when both A and B are 'yes'
Rqo = risk of C when both A and B are 'ho'

If the risks are not entered, the risk ratios a@lewated from odds estimates (the odds in favé@ onder the
above four conditions) derived from the data, us{agjlani and Atashili's formulae 8-10 (which araded on the
odds estimates and their ratios), and these aréogatpin the additive-interaction formulae; in effeKalilani and
Atashili' s formulae 12, 14, and 15 @R, AP, andSl are used. In a case-control study, the odds astsrused for
this purpose are first adjusted by dividing thenthmy ratio of the sampling fractions used for cases controls. If
the ratio of sampling fractions is not entereds estimated by dividing the observed case-comatid by the rate or
proportion of cases in the population (Rothman@neknland 1998: p. 418), if this is entered.

Index of multiplicative interaction:

The index of multiplicative interaction is basedtbe risks or risk ratios. The formulais : \
RR11 / (RR10 * RROL)Campbellet al. 2005),
which is equivalent t{R11 * R0O0) / (R10 * R01)

The formula for thesynergy factg based on odds ratios, is

OR11 / (OR10 * OROXcCortina-Borkaet al. 2009)
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F1. CORRELATION COEFFICIENT: TESTS, CONFIDENCE
INTERVALS, UNBIASED ESTIMATES

This module provides tests and other procedurelicapfe to a Pearson’s correlation coefficient
— a simple correlation coefficient (ergg), a partial correlation coefficient (ergs.c Or rag.cp),
or a multiple correlation coefficient (e 8a scoe)).

If a simple correlation coefficignis entered, the program computessighificancein
comparison with zero and (optionally) in comparisath any other selected value, provides an
unbiased estimate of tip@pulation correlation coefficienand estimates its 90%, 95%, and 99%
confidence intervals.

If a partial or multiple correlation coefficieris entered, the program computessitmificance
in comparison with zero, and provides an unbias¢idhate of thgopulation correlation
coefficient

If a simple or multiple correlation coefficierd entered, the program displays toefficients of
determination, nondetermination, and alienataimd theéndex of forecasting efficiency.

Besides the coefficient, the size of the sampletine®ntered. If the coefficient is a partial
correlation coefficient, the total number of vategbis required; and if it is a multiple correlatia
coefficient, the number of independent variablestne entered.

Thepopulation correlation coefficienis anunbiased estimataf the correlation in the
population represented by the sample studied vialig only if the variation between individuals
in the sample and in the population are compar@ighamet al. 1992).

Thecoefficient of determinatio(based on a simple correlation coefficient) & pnoportion of
variability in one of the variables that can becasted for by its correlation with the second
variable. Thecoefficient of multiple determinatiqgbased on a multiple correlation coefficient)
is the amount of variability in the dependent Valeathat is explained by the correlation with the
other variables. Theoefficient of nondeterminatiaa the amount of variability that is not
explained by the correlation, and teefficient of alienatiorndicates the degree of lack of
relationship (Guilford and Fruchter 1986).

Theindex of forecasting efficiency the estimated percentage reduction in erropsexfiction
by reason of knowledge of the correlation.
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METHODS

Note
Some procedures are omitted if the number of viegais too large for the sample size.

Significance tests

Comparison with zero correlation

If the sample size is 30 or more, the significantasimple correlation coefficiens tested by the formula
t=[rV(n-2) /(1 -r?), with (n - 2) degrees of freedom

where r = correlation coefficient
n = sample size

If the sample size is less than 30, a test basetbbelling's modifiedz transformation is used (Zar 1984: 392, Sokal
and Rohlf 1981: 587)

z=HA(n-1)
where H = Hotelling’s modifiedz transformation of
=T—(3T+r1)/4n

T =ztransformation of
=0.5N[(1 +r) / (1 -1)]

The significance of partial correlation coefficients tested by an F test with 1 and (n - 3) degoédeedom
(Blalock 1979: 496):

F=r’(n-v-1) /(19
where v = total number of variables.
The significance of aultiple correlation coefficienR, is tested by afr test withv and o — v —1) degrees of
freedom (Blalock 1979: 494; Howell 1997: 522):

F=R(h-v-1) /vl -R)

where v =number of independent variables.

Comparison with a nonzero correlatip

If the sample size is 30 or more, significancdesed by the formula (Sokal and Rohlff 1981: 517):
t=(T1-T2(n-23)

where T1andT2 = ztransformations of the two valuesrof

If the sample size is less than 30, significancedmparison with a nonzero correlation is testethieyformula

(Sokal and Rohlff 1981: 518):

t=(H1-H2(n-1)

where H1andH2 = Hotelling's modifiedz transformations of the two valuesrof

Note
Tests using Hotelling’s transformation should bgareled as approximate if the sample size is less 26 (Sokal
and Rohlf 1981: 519).

Population correlation coefficient

For asimple correlation coefficienthe formula is
Wr** (n-1)-1]/6-2)}

For apartial correlation coefficientthe formula (Croxton & Cowden 1939: 775) is
{r)(n-1)/ @ -v- 1]}

For amultiple correlation coefficienR, the formula (Howell 1997: 521) is:
W1 -[1-R)(n-1)/ o-v-1)}}

where v = number of independent variables.
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F1. CORRELATION COEFFICIENT: TESTS, CIs, UNBIASED ESTIMATE

Note: If the correlation is very low, the number whos@are root is taken as the population correlatmefficient
may be negative, and the population correlatiorffimdent is then arbitrarily displayed as 0 (Cromtand Cowden
1939: 679).

Confidence intervals

For asimple correlation coefficientonfidence intervals for the population corralatcoefficient (Altman and
Gardner 2000: 89) are estimated as

[exp(2 *F) — 1] / [exp(2 *F) + 1] to [exp(2 *G) — 1]/ [exp(2 *G) + 1]
where F=Z-A/(n-3)

G=Z-A/V(n-3)

Z =log((L+r)/(1-r))*0.5

A=1.645, 1.96, or 2.576r 90%, 95%, or 99% confidence intervals respebt.
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F1. CORRELATION COEFFICIENT: TESTS, CIs, UNBIASED ESTIMATE

The same procedure is used fqraatial correlation coefficientwith the following changes (Blalock 1979: 496):
F=Z-A/Jn-v-1)
G=Z-A/V(n-v-1)
v = total number of variables

The same procedure is used fanaltiple correlation coefficientwith the following changes (Blalock 1979: 496):

F=Z-A/Jn-v-2)
G=Z-A/N(n-v-2)

v = number of independent variables
Coefficients of determination, nondetermination and alienation
The coefficient of determinatiofjor multiple determinatiohis r2, thecoefficient of nondeterminatiors

1 —r? and thecoefficient of alienatiofisV(1 -r?,
where r = a simple correlation coefficient or the unbiasstimate of the multiplR in the population.

Index of forecasting efficiency

This index = 100(1 —V(1 —r?).
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F2. APPRAISAL OF INDEPENDENT CORRELATION
COEFFICIENTS

This module appraises two or more Pearson’s @iioal coefficients that are based on differgnt
unmatched samples.

It computessignificanceand 95%confidence intervalfor each coefficient, and estimates the
common correlation coefficienti.e. the value of the coefficient in the popigiatrepresented by
the samples, with its confidence intervals (ameste that is not valid if there is significant
heterogeneity).

If only two coefficients are entered, the prograsts their difference, and if more than two arg
entered, it performs laeterogeneity test

\1%4

Approximate 95%confidence intervals for the differences betweweffcientsare computed.

If more than two coefficients are enterpdjrwise comparisamare performed, using a Tukey-
type multiple-test procedure. As an optional alé¢ive, one of the coefficients can be

designated as a control value, with which eaclmefothers is compared, using a Dunnett-type
multiple-test procedure.

METHODS
Significance of coefficients

The significance of each coefficient, in comparisath zero correlation, is tested by Zar's form@ia4 (Zar 1998:
381) if the sample size is 30 or more:

t=[rV(n-2) /(1 -r?), with (n - 2) degrees of freedom
where r = correlation coefficient

n = sample size
If the sample size is less than 30, a test basetbtelling's modifiedz transformation is used (Zar 1984: 392, Sokal
and Rohlf 1981: 587)

z=H\(n-1)
where H = Hotelling’s modifiedz transformation of
=T—(3T+r)/4n

T =ztransformation of
=0.5N[(L +r) / (1 -1)]
Note Tests using Hotelling's transformation shoulddgarded as approximate if the sample size isttess25
(Sokal and Rohlf 1981: 519).
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F2. APPRAISAL OF INDEPENDENT CORRELATION COEFFICIENTS

Confidence intervals for coefficients

A 95% confidence interval for the population coat&n coefficient (Altman and Gardner 2000: 8% ssimated as
[exp(2 *F) — 1] / [exp(2 *F) + 1] to [exp(2 *G) — 1]/ [exp(2 *G) + 1]
where F=Z-A/(n-3)
G=2Z-A/V(n-3)
Z =log((L+r)/(1-r))*0.5
A=1.96

Confidence intervals for differences between coeffi cients

Approximate confidence intervals for the differesdeetween coefficients are computed by the modd®anptotic
methods described by Zou (2007), using formulaltey are based on the confidence intervals oféparate
coefficients. There may be discrepancies betweerdhfidence intervals and the results of the figarice tests.

Common correlation coefficient

The common correlation coefficient (Zar 1998: fofanli9.32, p. 390) is estimated by calculatingzits
transformationz., as
2A(ni—3)z] / X (ni— 3)
where n; = size of samplé
z = z transformation of coefficiemt
and then converting. to the corresponding correlation coefficiemt,

re= [exp?®- 1]/ [exgf © * 1]

Paul's formulae (Paul 1988) are used as well;glaee said to provide better estimates if the adefft is less than
about 0.5:
For two coefficients, this is Zar's formula 19.28a¢ 1998: 388):
= [(n—1¢ 1+ (2 - 122 /[(m - 1) + (2 — 1)]
andz is then converted to the corresponding correlatmefficient,r..:
re=[exp?®- 1]/ [exp?** 1]
where, for each value af
Z=z—(X+r)/[4 (h-1)]
For three or more coefficients), & 3) is replaced byn(— 1) in formula 19.32 (see Zar 1998: 392).

Thesignificanceof the common correlation coefficient (in relatimzero) is computed by Paul’s formula (Zar
1998: 390, formula 19.35):
chisq = {[ni(ri - r)?] / (L =ri.re)?
with k — 1 degrees of freedom,
where r; = coefficienti
r. = common correlation coefficient
k = number of coefficients.

An approximate 95%onfidence intervails computed by the formula used for single cotretacoefficients (see
above), using the combined sample sizes. as

Comparison of correlation coefficients
For two correlation coefficients, Zar's formula 29.(Zar 1998: 386) is used:
Z=(@z-2)/V[1/(Mm-3)+ 1/ 6:-3)]

where zj, z, are the z transformations of the coefficients
ny, N, are the sizes of the two samples.
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F2. APPRAISAL OF INDEPENDENT CORRELATION COEFFICIENTS

For three or more correlation coefficients, tieterogeneity tegzar 1998: 390, formula 19.31) is:

chisq =3[(ni — 3)zf] - Y[(ni — 3)zi*/ 3 (ni - 3)
Multiple pairwise comparisons of correlation coeff icients

If from 3 to 40 coefficients are entered, multipirwise comparisons are performed by a Tukey-tgpe(Zar
1996: 393, formula 19.36) and appraised by refgrrincritical values of th® distribution for P = 0.001, 0.01, and
0.05 (Zar 1996: Table B.5). Gaps in the tablerifoal values are filled by harmonic interpolation

As an optional alternative (if from 3 to 20 coeiffiots are entered), multiple comparisons with glsispecified
‘control' coefficient are performed (Zar 1996: 3ftmula 19.39) and appraised by reference tocalitralues for
Dunnett's test for (two-tailed) P = 0.01 and 0.0&r(1996: Table B.7; Dunnett 1964: Tables Il and)ll Gaps in
the tables of critical values are filled by harnmmimterpolation
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F3. APPRAISAL OF CORRELATION COEFFICIENTS BASED
ON THE SAME SAMPLE

This module appraises two or more Pearson’s @iioal coefficients that are based on the same
sample.

The coefficients to be appraised (up to 15) mugdriiered in the left-hand data box, specifying
the variables whose correlation they measure.tH®ipurpose, the variables should be allocated
consecutive numbers — 1, 2, 3 etc. Unless thesifidents comprise a complete matrix, the
coefficients for all other combinations of the dfied variables should be entered in the right-
hand data box.

The program computesgnificanceand 95%confidence intervalfor each coefficient listed in
the left-hand box, and it tests thigferencebetween each paof these coefficients. Approximate
95% confidence intervals for the differences betwesffcientsare computed. The program
also performseterogeneity tester sets of three or more coefficients.

Pairwise comparisons

Two tests are used for comparisons of correlatibasoverlap (i.e., those that have a variable in
common): the tests described by Meb@l (1992) and by Dunn and Clark (1969). A
simulation study led Hittnest al (2003) to recommend Dunn and Clarks’s testt®overall
statistical properties. The method of Raghuna#tal. (1996) is used if the correlations do not
overlap. Approximate 95% confidence intervals for tlifferences between coefficients are
computed; the intervals are not always consistéht tlve results of the significance tests

Since a large number of pairwise tests may be pagd, there is a possibility that apparently
significant findings may be flukes. In additiontt® P values estimated by the tests, the
program therefore provides adjusted P values #kat account of the performance of multiple
tests. For this purpose, use is made of Finnedsquure (Finner 1990, 1993), which is more
powerful than the well-known Bonferroni method.

Heterogeneity tests

If more than two coefficients are entered in tHe@nd box, Raghunathan’s approximate test
(Raghunathan 2003) is applied. This appraisehéterogeneity of all these coefficients
(irrespective of whether or not they have varialolesommon), while controlling for other
correlations (if any) between the specified vaesbl

In addition, the methods of Memg al (1992) is used to compare any sets of three oe mo
coefficients (among those entered in the left-Hamx) that have a variable in common.
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METHODS

Significance of coefficients

The significance of each coefficient, in comparisath zero correlation, is tested by Zar's formia4 (Zar 1998:
381) if the sample size is 30 or more:

t=[rV(n-2) /(1 -r?), with (n- 2) degrees of freedom
where r = correlation coefficient

n = sample size
If the sample size is less than 30, a test basedbtelling's modifiedz transformation is used (Zar 1984: 392, Sokal
and Rohlf 1981: 587)

z=HA(n-1)
where H = Hotelling’s modifiedz transformation of
=T—(@T+r1)/4n

T =ztransformation of
=0.5Nn[(L +r1)/ (1 -r)]
Note Tests using Hotelling's transformation shoulddgarded as approximate if the sample size isthess25
(Sokal and Rohlf 1981: 519).

Confidence intervals for coefficients

A 95% confidence interval for the population coat&n coefficient (Altman and Gardner 2000: 89%ssimated as
[exp(2 *F) — 1] / [exp(2 *F) + 1] to [exp(2 *G) — 1]/ [exp(2 *G) + 1]
where F=Z-A/\(n-23)
G=Z-A/(n-3)
Z =log((L+r)/(1-r))*0.5
A=1.96

Confidence intervals for differences between coeffi cients

Approximate confidence intervals for the differestmtween coefficients are computed by the moddmeptotic
methods described by Zou (2007), using applicatadrfermulae 13 and 14 to (respectively) overlagpin
correlations, i.e. those that have a variable mmon (Example 2), and nonoverlapping correlatidsample 3).
The intervals are based on the confidence intenfalse separate coefficients, and take accoutiteoflependencies
between the correlations that are compared.

Pairwise comparisons

Formula 1 of Menget al (1992) and Dunn and Clark’s test are used fampsé comparisons afverlapping
coefficientsFormulae for both tests are cited by Hittneal (2003). Fornonoverlapping coefficieat the program
applies the ZTP (modified Pearson-Filon) procedlagcribed by Raghunathahal (1996) (formula 3), with an
approximate method of adjusting for nonindependéfarenula 6). If over three pairwise comparisons done, the
Dunn-Clark and Raghumnathan tests are used, an® Halues are supplemented by values adjustedtifhiple
testing, using the procedure described by Finn@®@11993).

Heterogeneity tests

The formula for the test statistic for RaghunatBaapproximate test is expressed in formula 1 ohlagthan
(2003). P values are based on the chi-squarétdison. If there are fractional degrees of freed®hvalues are
estimated approximately, using harmonic interpolatietween the integers (Zar 1998L: App10).
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F4. COMPUTATION OF PARTIAL AND MULTIPLE
COEFFICIENTS

This module computgzartial and multiple correlation coefficientsased on the correlations (in
the same sample) between up to nine variablefieHearson’s correlation coefficients or rank
correlation coefficients (Spearman’s or Kendalitgly be entered (Lehmann 1977).

The module provides bofthist-order partial correlation coefficient¢e.g.r12.4), and,
optionally,second-ordepartial correlation coefficient$e.g.r12.45), and theguared partial
correlation coefficier.

For each first-order partial correlation coeffidigiie extent to which the third variable affects
the correlation is examined by estimatBifo confidence intervals for the difference between
the simple and first-order coefficients.

If correlations between three or four variableseargered, it can also computailtiple
correlation coefficientsg.g.R1.24) and their squaresogfficients of multiple determination,
R%), with unbiased estimates of the multiple correlationficient in the population

If the sample size is entered, the significancthefcorrelations is tested, and confidence
intervals are estimated for partial Pearson’s ¢ation coefficients. If the sample size varies
(because of missing data), entry of the smallest\sill provide conservative tests and intervals.

Partial correlation coefficients

First-order partials(e.g.r12.4) express the linear correlation between twabées when a third
variable is controlled, angsecond-order partial¢e.g.r12.35) express the linear correlation
between two variables when two others are contiolle

Optionally, the significance of the coefficients (omparison with zero) is tested, and 95%
confidence intervals are estimated. Caution shbeldsed in interpreting the significance tests
for partial correlation coefficients (Siegel ands@dani 1988: 261) since if there are many such
tests there is a considerable risk of obtainingisps significanceSince the standard error of
the z transform of Spearmantso is 1.03 times that of the standard error of Peasspand the
standard error of Kendalltmuis 0.66 times that of Pearsom’¢Fielleret al 1957, 1961),
separate tests are conducted for partial ranleladion coefficients.

Thesquared patrtial correlation coefficientse also displayed. These reflect the percent of
unexplained variance in the dependent variableishatplained by adding the control variable or
variables. The square of r12.4 can be interpreddte@percent of the variance in variable 1 not
accounted for by variable 2, that is accountedfovariable 4.
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For each first-order partial correlation coeffidigime extent to which the third (control) variable
affects the correlation is examined by estima@iBgo confidence intervals for the difference
between the simple (zero-order) and first-orderfitoents.|f the confidence interval does not
straddle zero, this points to a significant efi@ck 0.05).This difference expresses the extent to
which the correlation can be attributed to the antariable or (if the partial coefficient is

larger than the simple coefficient) the influenééh@ control variable as a suppressor variable.

Multiple correlation coefficients

Multiple correlation coefficients (e.g1.24) measure the combined influence of two or more
independent variables on a dependent variable.sdbare of the multiple correlation
coefficient,R?, expresses the percentage of the variance ingjendlent variable that is
explained by the independent variable or variafdesorrected coefficient is also displayed; this
is an unbiased estimate of the value of the caoeffian the population.

Multiple correlation coefficients are displayed piflthere are three variables, or if there are
four variables and the “2nd-order partials” optisselected. The corrected coefficient is
computed only if the sample size is entered.

METHODS

If a value cannot be computed (e.g. because théigerts on which a partial coefficient is based a
incompatible), the program displays “?”.

Partial correlation coefficients

Partial Pearson's correlation coefficients are aaengb by formulae 19.3 and 19.4 of Blalock (1979 partial rank
correlation coefficients by corresponding formu{Bor Kendall'stau, see Siegel and Castellan 1988: 259, formula
9.13; for Spearmantho, see Altman (1991: 296).

The significance of Pearson's partial correlatioefficients is tested by formulae 19.28 and 19d2®Blalock
(1979), and their 95% confidence intervals arenestied as

[exp(2 *F) — 1] / [exp(2 *F) + 1] to [exp(2 *G) — 1]/ [exp(2 *G) + 1]
where F=Z— /(n-v-1)

G=2Z-1.96/\(n-v-1)

v = total number of variables

Z =log((1 +r)/ (1 -r)) * 0.5

Confidence intervals for the difference betweeninapke coefficient and the corresponding first-ordeartial
correlation coefficientire estimated by the procedure described as Mot @lkin and Finn (1995), using their
formulae 7 and 8 to compute the elements of theiwee-covariance matrix.

The significance of first-degrgmartial tau coefficientss assessed by comparison with critical levelsofue-tailed
P =0.05, 0.025, 0.01, 0.005, and 0.001 (SiegelCaxtellan 1988: Table S) if the sample size isr2@ss. If the
sample size exceeds 20 a large-sample Z testdls(8#sgel and Castellan 1988: 260, formula 9.15).

If the sample size is 31 or less, the significanicirst-degreepartial rho coefficientss appraised by the use of
critical levels for one-tailed P = 0.05, 0.025,10.0.005, and 0.001 (Siegel and Castellan 1988leT@} after
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reducing the sample size by 1 (Altman 1991: 53aj@ sample size exceeds 31 the followttgst is used (Altman
1991: 296:
t = sqrt{(N - 3) / [1 - (partiatho)® with (N - 3) degrees of freedom

Multiple correlation coefficients

Multiple correlation coefficients are computed byrfiulae 19.20 and 19.21 of Blalock (1979) and thiginificance
is tested by formula by Blalock’s formula 19.27.

Theunbiased estimate of the population vaisiestimated by Blalock’s formula 19.24.
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F5. SAMPLE SIZE AND POWER FOR TESTING A
CORRELATION COEFFICIENT

This module computes the requireample sizéthe minimum number of subjects, i.e. of pairs
observations) andowerfor tests of the difference of a correlation cmééht from zero and
(optionally) from a specified reference value.

The required significance levalpha must be entered, together with the required pdtoer
compute the sample size) or sample size (to congmwter). Optionally, the expected
percentage of selected subjects expected to bbdoatise of refusal to participate or other
reasons can also be entered.

The computed sample size is adjusted by inflatiri necessary) to allow for losses (which of
course does not compensate for possible seleatsi), land then rounded up to the nearest

whole number.

METHODS

The program uses formulae 19.18, 19.19 and 19.Z&10f(1998).

The required sample size is rounded up to the seafeole number, after making allowance (if necegdar the
percentage of expected losses (L%) by multiplylgriumber byl / [1 - (L / 100)].
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F6. CALCULATION OF A CORRELATION COEFFICIENT
FROM A PAIRED T-TEST RESULT

This module uses the result of a paired t-tesatoutate a correlation coefficient between two
variables

It requires entry of the t value (or the two-tailedalue and the number of pairs of observatio
and the two mean values and standard deviations

It may help in the use of reports that provide iagokt-test but not a correlation coefficient

METHODS

The formula, which is derived from equation 17.6kmeskin (2007), is

r=[(SDa/~ (N))* + SDs/ < (N))* - (mean - meam)®/t*] / (2 * SDa/ V(N) * SDg/ v (N))
where r = correlation coefficient

N = no. of pairs

mean and meapare the two means

SD, and SIR are the two standard deviations

If tis not entered, it is derived from the P value tradegrees of freedom (N — 1).

41



G. ANALYSIS OF A LARGE CONTINGENCY TABLE

G. ANALYSIS OF A CONTINGENCY TABLE LARGER THAN
2X2

This module analyzes a contingency table with 2ev@s and 3-50 columns, providing
measures of association and significance testaf@ahtise the association between two
variables. The categories of the variables maydmeinal or ordered. The moduenot
designed for comparisons of paired observations

Several of the measures and tests are applicabithey nominal-scale or ordinal-scale
variables. These af@ramer'sV, Sakoda's modified contingency coeffici€@uhen’s effect-size
index(w), Goodman and Kruskal's taliheil's uncertainty coefficienvdds ratiogexpressing
the association of each row category with eachrenloategory), and conventional (Pearson)
and log-likelihood-ratio (G2¢hi-square testswith adjusted residuals It permits comparisons
with a single selected row or column, perfoqpasrwise comparisonsf all rows and of all
columns, andllows chi-square to be partitiondry combining (collapsing) categories.
Haldane's large-table chi-square test is perforifidere are 30 or more degrees of freedom

If both variables have ordered categories, thevaglemeasures are Goodman and Kruskal's
gammathegeneral odds rati@andgeneral risk differenceandSpearman's and Kendall's rank
correlation coefficientand achi-square test for trend performed.Kruskal-Wallis one-way
analysis of variance by ranks appropriate if only one variable has ordereégaties.

Optionally, the module can examiassociations with multi-response variableg can analyse
a table in which the categories of one or botthefwariables are not mutually exclusive, i.e.,
where each subject may have entries in more tharcategory of the variable.

Optionally, the module can analyse a 2x3 table sahghe results of a study with bilateral dat
e.g. a randomized trial in which the outcome iregdl in both eyes (or other paired parts of the
body).Donner's adjusted chi-square testdRosner's testare performed, and 90%, 95% and
99% confidence limits are estimated for the diffeee between the two treatments.

R

Measures of association between categorical variabl  es

Cramer's coefficient {Siegel and Castellan 1988: 225-233pkoda's modified contingency
coefficienf Goodman and Kruskal's tatrheil's uncertainty coefficienand theoddsratios are
measures of the strength of the association betivamnategorical variables. The categories
may be nominal or ordinal, but their ordering donesaffect these indices

Cramer's coefficientaries from O (no association) to 1 (complete dépace in a square table ).
It is based on chi-square and is regarded as avdoaharbitrary measure; it gives greater weight
to the columns or rows with the smallest margiotdls (Blalock 1979: 303-306). Its value
(unlike that of chi-square) is not influenced byngpde size
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Sakoda's contingency coefficieatmodification of Pearson's contingency coeffitienalso
based on chi-square, and (unlike the Pearson ceif) varies from 0 to 1. Like Cramer's
coefficient, it can be interpreted as a proporbbthe maximum variation between the variables.

Cohen's effect-size indéx) is computed from chi-square; it can exceed 1CBken's criteria,

0.5 or more indicates a large effect size, 0.3 orenfbut less than 0.5) indicates a medium effect
size, and 0.1 or more (but less than 0.3) indicatewall effect size (Cohen 19822 — 226).
Cohen warns that these criteria should be usedvamiy there is no better basis for evaluation.
An adjustedw, controlling for the size of the table, is alsonguted, as suggested by Sheskin
(2007: 658).

Goodman and Kruskal's taexpresses the extent to which knowledge of orieeo¥ariables
enhances the accuracy with which the other carrdmigied (Blalock 1979: 307-310; Jacobson
1976: 430-434; Agresti 1990: 24-25). It varieqir®, which means that the onariable is no
help in predicting the other, to 1, which meang tha one variable perfectly specifies the other.
Goodman and Kruskaltau is calculated for predictions in each directiosyenmetric
(nondirectional) version is also comput@&dutends to become smaller as the number of
categories increases

Theil’'s uncertainty coefficiens another measure tife extent to which knowledge of one of the
variables enhances the accuracy with which ther @@ be predicted. It varies from 0, which
means that the onariable is no help in predicting the other, tavhjch means that the one
variable perfectly specifies the other. The ce#ht is calculated for predictions in each
direction; a symmetric (nondirectional) versioraiso computed.

Theodds ratioghat are displayed express the associations betessh row category and each
column category. They should be treated withioaugs their confidence intervals may be
wide unless numbers are large. An odds ratio alhaudicates a positive association. If the
table has more than 100 cells, the odds ratiodiaptayed only if "Show very detailed results"
is checked

Chi-square tests

Pearson(conventional) antbg-likelihood-ratio chi-square testgenerally lead to the same
conclusions. When they do not, many statisticfaneser the log-likelihood-ratio test (Zar 1996:
503). If Williams's criterion for preferring thed-likelihoodratio chi-square to the Pearson chi-
square is met — i.e. if any expected frequencydutite null hypothesis) is less than its
difference from the observed frequency (William3@p- the program displays a message to
this effect

Chi-square tests may be misleading if the expeiceepliencies (under the null hypothesis) are
too small. Cochran (1954) recommended that felam bne-fifth of the cells should have
expected frequencies of less than 5, and nonedhawke an expected frequency of less than 1.
The program displays a warning if these conditiargsnot met. A warning is also shown if the
mean frequency per cell is under 5, since theilikeld-ratio test may then be of low validity; the
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P-value tends to be too high if most expected \sadue less than 0.5, and too low if most
expected values are between 0.5 and 5 (Agresti: 1985.

Haldane's large-table chi-square tdddaxwell 1961: 41-44) is performed if there ared0
more degrees of freedom. This test is based oaxaet mean and variance of chi-square
(Maxwell 1961: 41-44), and its validity is not affed by zeroes or small cell frequencies. Two
alternative P values are displayed, based on Ddsvaod Bartlett's modifications respectively

Comparisons of rows or columns

The program performgairwise comparisonsf all rows and of all columns, using likelihood-
ratio chi-square tests, and providing two P valnesach instance — one appropriate for a
planned test of aa priori hypothesis, and one applying a Bonferroni correctioorder to
compensate for multiple testing.

It also permits comparisons with a single selectéerence row or column, providing a
Bonferroni-corrected P value.

Adjusted residuals

Adjusted residuals, which show which cells conti@nost to the chi-square, may be helpful in
determining the sources of a significant assoaiatibhe residuals are the discrepancies between
the observed frequencies and the values expectist thre null hypothesis, convertedao

scores so as to indicate their statistical sigaifce. An adjusted residual over 1.96 or under -
1.96 indicates significance at the P < 0.05 lexet] an adjusted residual over 2.58 or under -2.58
indicates significance #lhe P < 0.01 level. The use of this procedureescdbed by Everitt

(1977: 46-48) and Agresti (1996:31-32).

If the table has more than 100 cells, the adjustediuals are displayed only if "Show very
detailed results" is checked

Partitioning of chi-square

Options are offered for comparisons of each rovnwdch other row, and of each column with
each other column. These may be useful if one@tategories is a reference or control group.
The P values are adjusted for multiple comparisons

Options are also offered for the combination (qudlag) of selected rows, selected columns, or
selected rows and columns. The selected rowslomes need not be adjacent ones. For
explanations of some of the possibilities, see fage and Berry (2002: 514-516) Siegel and
Castellan (1988 194-198). Two sets of P valuesispayed - one suitable for the testingaof
priori hypotheses, and one for safe use even if hypaivese suggested by the data.
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Associations between ordinal variables

The following measures are appropriate if bothrtve variable and the column variable have
categories that fall into a natural order

Two coefficients of rank correlatioare provided, namely Spearmaiie and Kendall'sau b
These have different numerical values but are aimmi their ability to appraise the significance
of associations (Siegel and Castellan 1988: 2Blje-tailedand two-tailed P values are
displayed. The significance tdu bis tested by a large-sample method, and P should be
regarded as approximate if the sample is small

Goodman and Kruskalgammawhich ranges from -1 to 1, expresses the difisedretween

the probability that, in a randomly selected péioloservations, a higher value of one variable is
accompanied by a higher value of the other varidiacordance) and the probability that a
higher value of one variable is accompanied byaetosalue of the other variable (discordance),
when tied observations are ignored). Confidencarwals (90%,95%and 99%) are reported

Thegeneral odds ratigedwardes and Baltzan 2000), which is computech frgamma, is an
estimate of the ratio of concordant to discordaitspof observations; it is Agrestiagdpha

(Agresti 1980). If the variables represent expedara risk or protective factor, and a disease or
other outcome, the general odds ratio expressggéesof shift of median severity as exposure
increases”, but is not affected by the distancésdsn severity categories (Edwardes and
Baltzan 2000). It is applicable at least to cramstisnal studies, unmatched case-control studies,
cohort studies comparing different exposure categpand two-armed randomized control

trials. Confidence intervals (90%, 95%, and 99%e)raported

Thegeneral risk differencé€Edwardes and Baltzan 2000), whiclSsmers' dis a weighted
average of the risk differences seen in the compahe 2 tables that can be constructed from
the large(r x c) table. Two alternative values are reported, tapplicability depending on
which of the two variables is the outcome varialblee measure is applicable at least to cross-
sectional studies, cohort studies comparing diffeexposure categories, and two-armed
randomized control trials.

Kruskal-Wallis one-way analysis of variance by rank s

This analysis (Siegel and Castellan 1988: 206-3p8ent 1993: 138-141, 226-228) is
appropriate if one variable has ordered categoaies the other has not. The analysis is done
twice. The first analysis is appropriate if thewsoh variable has ordered categories; it tests the
null hypothesis that the distribution in the ordeoelumn categories is the same in all row
categories. The second analysis is appropridie ifow variable has ordered categonésests
the null hypothesis that the distribution in thdemed row categories is the same in all column
categories.

A large-sample approximation is used, treatingkheskal-Wallis statistic as chi-square; the

result should be treated with reserve if the samate very small. The P values may be regarded
as two-tailed.
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Test for trend

A chi-square test for trend (the "Mantel-Haensikelsguare), based on scores (1, 2, 3, etc.)
allocated to the categories, is appropriate if b@attiables have ordered categories (Armitage and
Berry 2002: 509-511). The overall chi-squareagiponed into two components, one
expressing the effect of the linear regression,areexpressing departure from linear
regression.

Associations with multi-response variables

Optionally, the module can analyse a table in whiehcategories of one or both of the variables
are not mutually exclusive, i.e., where each subjexy have entries in more than one category
of the variable. The table might, for example, pane the symptoms of different groups of
subjects, where each subject may have more thasyomgtom, or it might show responses to a
multiple-response ("pick any of the following") say question, or to two multiple-response
guestions

It provides two alternative summary chi-squarestést marginal independence between a
single-response variable (whose mutually exclusategories are entered in separate rows) and
a multi-response variable (whose categories aereshin separate columns), or between two
multi-response variables. The tests use the sutreathi-square values and degrees of freedom
for the associations in separate components datiie

The first summary chi-square test is based ongbkeaations between the "row" variable (which
may be a single-response or multi-response onegactu category of the "column" (multi-
response) variable. Anx 2 table (where is the number of categories in the "row" varialide)
constructed for each category of the "column"alalg, showing the association between the
row variable and one category of the column vaeiahhd the chi-squares and degrees of
freedom in the various tables are summed.'Ti$ve" summary chi-square statistic (Agresti
and Liu 1999) can be regarded as a first-order neemmbthe Rao-Scott family of tests (Thomas
and Decady 2004). It is an approximate test, anghbadliberal” (giving an unduly low P value)
if there are large inter-item correlations

The second summary chi-square test is similarisdodised on a set of 2 x 2 tables constructed to
show the association between each category ofthé' Y/ariable and each category of the
"column” variable; the chi-squares and degreeseafdfom in the various tables are summed
(Vlach and Plasil, undated; Bilder and Loughlin 2D0"his test too may be "liberal"if there are
large inter-item correlations

The chi-squares in the separate component tabjef and 2 x 2 tables) are reported, together
with P values that have been adjusted by the Bamfemethod to compensate for multiple
testing. Each of the summary chi-square testsasmapanied by an overall test that uses the
lowest of its component Bonferroni-adjusted P valag an overall test of multiple marginal
independence, a "valid albeit somewhat conservataseof simultaneously using the ...
marginal Pearson statistics to test multiple indeleace ... When [the] overall test gives
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G. ANALYSIS OF A LARGE CONTINGENCY TABLE

evidence against the null hypothesis, the sepahitsquared components provide information
about the marginal tables that are responsiblefdggtgand Liu 1999). The Bonferroni-adjusted
tests are likely to be especially conservativééf variables have many categories (Bilder and

Loughlin 2004).

The odds ratios in the 2x2 tables are reportededisas the chi-squares, and these too may throw
light on the overall finding

Studies with bilateral data

This analysis is applicable to a study with bilatetata, e.g. a trial in which randomly selected
subjects receive different treatments, and theroecoe of a specified outcome is reported in
both eyes (or other paired parts of the body). ddta required, for each treatment, are the
numbers of subjects with the specified outcomeathar side, on one side, or on both sides. A
treatment may be compared with another treatmatit,axcontrol procedure, or with no
treatment.

The analysis takes account of the probable colel@ietween the occurrence of the specified
outcome in the two eyes [etc.] of the same subject.

The tests performed aBonner's adjusted chi-square teghich uses an empirical estimate of
the intraclass correlation between the responstgitwo eyes of the same person, and provides
a P value considerably lower than that of an uradglichi-square test that ignores this
correlation (Donner 1989), and twests proposed by Rosn@®82), one assuming complete
independence between the findings on the two satespne assuming that the outcome in the
two eyes of the same subject are dependent.

The program estimates 90%, 95% and 99% confidernieevals for the difference between the
proportions of eyes with the specified outcomehmtivo treatment groups, using methods based
on Wald-type statistics (Tang et al. 2011). Twe sétintervals are reported, based respectively
on dependence and independence models.

All these procedures have been validated by comgutailation studies.

METHODS

Measures of association between categorical variabl es

Cramer's coefficient & calculated from chi-square (Siegel and Castel@88: formula 9.1)

The formula forSakoda's modified contingency coefficiisnt
C/[(k-1) /K]
where C = Pearson's contingency coefficient
= V[chi-square / (chi-square N)]
N = total number of observations
k = number of columns or number of rows, whichegesrmaller
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G. ANALYSIS OF A LARGE CONTINGENCY TABLE

Cohen's effect-size indéw) is computed by the formula
w =V (chi-square N) (Volker 2006: formula 17).

The adjustedv takes account of the size of the table by using&als contingency coefficiers:
w= V(S /(1 =) (Sheskin 2007: 658)

Theodds ratiosexpressing the associations between each rowargtagd each column category.are computed by
collapsing the table to a 2x2 table for each phpair of categories

Goodman and Kruskal's tgé\gresti 1990: 24) is computed twice, with fixedngiaal totals for the row and
column variables in turn; a symmetric version moatomputed. For detailed formulae, see Jacoh86é 1

A convenient formulation of the asymmetric and syetnie versions ofheil’'s uncertainty coefficieris available
on the Internet at http://www.statisticssolutiomsnégNominal-Association.htm.

Chi-square tests

Formulae for chi-square are provided by most stesisextbooks (e.g. Zar (1998: formula 23.1 foaRen's chi-
square and 23.11 for the likelihood ratio testhe Tomputation of likelihood-ratio chi-squares wiieere is a zero
frequency is made possible by changing the ze@o@000001; an appropriate message is displayed

Formulae for the computation and appraisaHafdane's large-table chi-square tese provided by Maxwell
(1961: 41-44). Expressions provided by Dawsomtida 2.3) and Bartlett (formula 2.5) are used

Comparisons of rows or columns

To compensate for multiple comparisons, the P viedumultiplied by the number of comparisons, ix. b
a/(a-1) / 2when all pairs of rows or columns are compared,i&re.— 1 when comparisons are made with a

single row or category,
where a= number of rows or categories.
Adjusted residuals

See Haberman (1973), Everitt (1977: formulae 3.8.8) or Agresti 1996: formula 2.4.4).

Partitioning of chi-square

See Armitage and Berry (2002: 516) or Siegel anstélan (1988 194-198).8
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Kruskal-Wallis one-way analysis of variance by rank s

Formulae for the Kruskal-Wallis test are providgdSiegel and Castellan (1988). The Kruskal-Watetistic is
corrected for ties (formula 8.5, p 210).

Test for trend

The test for trend is described by Armitage andyB&002: 509-511). Formula 15.12 is used. Thealvehi-
square is partitioned as described by Maxwell 1961:

Associations between ordinal variables

Spearman'sho is computed by a formula that takes account of ta#ks (Siegel and Castellan 1988: 241, formula
9.7). If there are 30 or fewer observations, igaiicance ofrho is appraised by the use of critical levels for-one
tailed P = 0.05, 0.05, 0.01, 0.005, and 0.001 (@iagd Castellan 1988: Table Q). If N > 3@;tast is used (Siegel
and Castellan 1988: 243, footnote), based on thevariance.

Kendall'stau b is calculated by a formula that makes allowamediéd observations (Siegel and Castellan 1988:
249, formula 9.10). The program uses kbadl2algorithm of Presst al. (1989: 542-543).

The computation of Goodman and Kruskgbsnmaand Somersl (which is reported as thtgeneral risk differenge
is described byiffter alii) Siegel and Castellan (1988: 291-298 and 303-310).

Confidence intervals fogammaare estimated by estimator 9 of Lui and Cumber(@0®4), as recommended on
the basis of their computer simulations. In accocgawith their recommendation, if any cell in thble has a zero
value, 0.5 is first added to all cells

The general odds ratiés computed as (1 gamma/ (1 -gamma3, as proposed by Edwardes and Baltzan (2000).
Its confidence limits are derived similarly, frahe confidence limits cjamma

Associations with multi-response variables
The summary chi-square and overall (Bonferroni-sigid) tests are described by Agresti and Liu (1,98®J Vlach
and Pasil (undated: formula 4). The P values arddroni-adjusted by multiplying them loy(for r x 2 tables) or
byrc (for 2 x 2 tables),
where r = number of categories in the "row" variable

¢ = number of categories in the "column" variable
If there is a zero cell in any of the component &adles, 0.5 is added to each cell in the table

Studies with bilateral data

No adjustment is made to the observed cell totals.

The computation of Donner's adjusted chi-squaexjsained by Donner (1989: 607-608).

Rosner's test statistics (TRD and TRI) are comphyeithe formulae provided by Tang et al. (2008:33224), and
are evaluated by the aymptotic test method. Thesoreaof dependence used for this purpose (R) imatsd by a

formula provided by Rosner (1982: 109).

Formulae for the confidence intervals for the défece between proportions (based on Wald-typestitd) are
provided by Tang et al. (2011: 236). No adjustmgemhade to the cell totals.
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H. MEDIAN POLISH OR MEAN POLISH OF A TWO-WAY
TABLE

This module applies the median polish or mean pgi®cedure to a two-way table (with up ta
50 columns and up to 200 rows). It fiten@del representing the additive or multiplicativeeets
of the row and column variables, reports deeiations from the motieand displays thpattern
of the deviations It appraisegoodness of fiand computes the residual (unexplained) variatipn,
which may point to statistical interaction, e.gatoohort effect if the variables are time and age.

The values in the table may be numbers of any kifrdquencies, measurements, proportions, or
rates.

Median polish differs from mean polish in that Hrealysis uses medians and not means, giving
less weight to extreme values.

Median polish

The median polish procedure fits an additive ortiplitative model, representing the additive or
multiplicative effects of the row and column vatied) to a two-way table. This is done by
subtracting the row median from each value, thdxtraating the column median, and repeating
these two steps until they produce no further chang

Multiplicative effects are appraised by using tbgsl of the values shown in the table.

The row and column effects (respectively) are rieggbn terms of the differences (in the
additive or multiplicative model) from (respectiygfow 1 and columnl, which can be used as
reference categories.

The values in the table may be numbers of anykifréq@ancies, measurements, proportions,
or rates. The values in each row must be sepabgtedaces. Since the rows in the table have a
limited available length, difficulty may be encoered if there are many columns; it may be
necessary to reduce the number of decimal placesier to ensure that the values are spaced.
The procedure and its epidemiological applicatiamesdescribed by Selvin (2004: 100-110).

Mean polish

Mean polish is performed in the same way, but utiegow and column means instead of their
medians. This gives more weight to extreme valaed,is less robust than median polish.
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Goodness of fit

The program reports the proportion of the totalataon that is accounted for by the combined
effects (additive or multiplicative) of the row andlumn variables, and the residual proportion
that is not explained by these effects. The ure®pl variation may point to statistical
interaction, e.g. to a cohort effect if the varesbhre time and age.

Deviations from the model

The program reports the deviations of the obsedatd from the adjusted values in the model, in
terms of arithmetical differences (if the modehdditive) or ratios (if the model is
multiplicative).

To facilitate detection of patterns, the deviatians displayed as symbols as well as numerically.
For the additive model, the symbols are ++, +;, and --.
For the multiplicative model, they are +++, ++, #,-, --, and ---.

METHODS

Median polish and mean polish
SeeSelvin (2004: 100-110).
Goodness of fit

The proportion of variation accounted for by the/rand column effects (Emerson and Wong1985; citedrbali
etal (1997)is

12/ 2(yi—M)

and the unexplained variation &rij / X(Y; — M)

where r; = residual value in rowand columrj
y; = observed value in rowand columrj
M = overall median or mean
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|. ANALYSIS OF A THREE-WAY CONTINGENCY TABLE
(LOGLINEAR ANALYSIS)

This module analyzes a three-way contingency tatkhich each of the three variables has
two to four categories. It is not necessary tcgpa@ dependent variable.

The module fits a number a@dglinear modeldo the observed frequencies and evaluates and
compares theigoodness-of-fito permit appraisal of the relative importance iffiedent effects.

If there are binary (two-category) variables, ibydesodds ratiosthat express their association.

Loglinear models

Loglinear analysis appraises association and ictierapatterns among a set of categorical
variables. Its application to three-way tablesdsl@ned in detail by (inter alia) Agresti (1996:
150-162 and 1990: 135-150).

This program performs a limited loglinear analydisuses the following loglinear models for
the relationships between variabkeB, andC:

ModelsAB, AC, andBC, which represent two-way associations, in each ga®ring the third
variable.

Model A,B,C which expresses complete independence of the tanéables.

ModelsAB,C, AC,B andBC,A which express partial independence.

In modelAB,C,variablesA andB are jointly independent & —variablesA andB may or may not be related, but
neither is related t€; and variableC is independent of andB.

In modelAC,B,variablesA andC are jointly independent d —variablesA andC may or may not be related, but
neither is related tB; and variable is independent o& andC.

In modelBC,A,variablesB andC are jointly independent & —variablesB andC may or may not be related, but
neither is related té; and variablé\ is independent d8 andC..

ModelsAC,BC, AB,BCandAB,AC which express conditional independence:

Model AC,BCexpresses the relationship between variaflasdB whenC is controlled; if a relationship is found
betweenA andB, this might be explained hy.

Model AB,BCexpresses the relationship between variablasdC whenB is controlled.

Model AB,ACexpresses the relationship between variaBlaadC whenA is controlled.

In addition, the conditional independence of eaain @f variables in the separate categories of
the third variable is examined.
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Goodness-of-fit tests

Log-linear chi-square tests are used to appraesgdbdness of fit of the models. The program
reports the chi-square, with its degrees of freedumd the associated P value, and specifies the
null hypothesis, which is that the variables areratated..

If the P value is under 0.05, the null hypothesfar{dependence) is rejected. If P > 0.1, this is
taken to indicate an adequate fit, and “good &tfeported.

The results may indicate that a variable or as$ioci can be ignored, or that it must be taken
into account because of its modifying or possildgfounding effect.

The fit of different models can be compared byrigkhe difference between their goodness-of-
fit chi-squares and determining the relevant Pe/éiising the difference between the degrees of
freedom of the two tests). The program provideséhcomparisons of models with ‘good fits’.

A nonsignificant result indicates that the two mledio not differ significantly in their goodness-
of-fit, and the more parsimonious model, i.e. the based on less information, may be
preferred.

The goodness-of-fit results may be misleading thdae sparse. A warning is displayed if the
total sample size is less than the recommendedmaimi which is five times the number of cells
in the three-way table.

Odds ratios

If there are at least two binary (two-category)aales, odds ratios (with their approximate 95%
confidence intervals) are displayed to express #ssociation, both when the third variable is
ignored or controlled, and for each separate cayagjdhe third variable. The odds ratio when

the third variable is controlled is computed by t@ntel-Haenszel procedure (apparent
inconsistencies may be due to the fact that tlosg@ture uses the raw data, whereas 0.5 is added
to each cell frequency before calculation of tHeeobdds ratios).

METHODS

Odds ratios

Odds ratios are computed after adding 0.5 to eeltfirequency in the relevant 2x2 table (Flesssl 2003,
formula 6.20).

An approximate 95% confidence interval for the odat® (OR) is estimated by the formulae
exp[In(OR) - 1.96¢8] and
exp[In(OR) + 1.96¢€)]

whereseg the standard error of In(OR), is calculated fribva cell frequencies, b, ¢, andd, by formula 6.33 of
Fleisset al 2003:

se=V[L/(@+05)+1/b+0.5) +1/¢+0.5)+1/¢+0.5)]

The Mantel-Haenszel odds ratio is computed by féami0.52 of Fleiss (2003), and the estimatiorto€onfidence
intervals is described by Robins, Breslow and Geea(1986) and by Rothman (1986: 219-220).
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Goodness-of-fit tests

Log-linear chi-square tests are used, after comgeeny zero values to 0.0000001.
For the total three-way table (log-linear mod8C), use if made of formula 23.24 of Zar 1998.

For the component two-way tables, ignoring thedthiriable (model&B, AC, andBC) and in separate categories
of the third variable, Zar's formula 23.11 is u¢eith 1 degree of freedom).

Chi-square values for the other models are deffira@d the above chi-squares by subtraction:

The chi-square for thaB,Cmodel is the difference between the chi-squarethimA,B,CandAB models.

The chi-square for thaC,Bmodel is the difference between the chi-squarethi=A,B,Cand AC models.

The chi-square for thBC,Amodel is the difference between the chi-squarethi=A,B,Cand BC models.

The chi-square for thAB,BCmodel is the difference between the chi-squaré¢hfeA,B,Cmodel and the sum of the
chi-squares for th&B andBC models.

The chi-square for thAC,BCmodel is the difference between the chi-squaréhfeA,B,Cmodel and the sum of the
chi-squares for th&C andBC models.

The chi-square for thAB,ACmodel is the difference between the chi-squaréhfeA,B,Cmodel and the sum of the
chi-squares for thAB andAC models.

The degrees of freedom for all the tests are listelthble 6.5 of Agresti (1990).
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J. LINEAR REGRESSION (SIMPLE OR MULTIPLE)

This module performs linear regression for a medti up to seven independent variables,
appraising their additive effects on a dependenakike. It computes gegression equatign
based on least-squares regression analysis, aadhessignificance of coefficients. It reports
the coefficient of determinatio(R-squared), thadjusted coefficient of determinaticamd the
standard error of the estin®, and provides aanalysis of variancand an F-test. Outliers are
reported

If there is a single independent variable (siniplear regression), he distribution of
residualsis displayed, and linear regression is also peréal for log-transformed values of the
dependent variabl®&onparametric regression analysssalso performedCorrelation
coefficientsare computed, including (for multiple regressigigrtial correlation coefficients
between the dependent variable and each predictor.

If multiple regression is performed,iateractionterm or two interaction terms can be
included in the model, and analyses are done widhvdthout interactions; an F-test compares
the twoR-squared values. A backward elimination (step-dooptjon is provided (if there are
no interaction terms), permitting the removal oé @mosen independent variable at a time. A
partial F-test assesses the significance of the chanBesguared

If multiple regression is performedhe tevel-importancef each independent variable is
reported.

The results may be unreliable if the glensize is small. The module provides estimates
of thesample sizeequired to attain a power of.80 (with alpha =).0%is facility can be used tqg
estimate the sample size required for any regnessialysis.

The module useG-computationbased on the multiple regression coefficients) to
estimate the effect of a dichotomous variable ihatvolved in an interaction with another
variable or variables.

Regression equation

The regression equation, which comprises a conataht coefficient for each of the
independent variables, is computed by the ordileast squares method. Two-tailed P values
are provided for the coefficients. Antest appraises the significance of the modelntiie
hypothesis being that there is no relationship betwthe independent and dependent variables

The standard error of the estimate is providea@naisdication of the accuracy of predictions that
use the regression equation. It is the standar@iilev of the residuals. For large samples, the
standard error of the estimate approximates thelatderror of a predicted value

If there is one independent variable, the regressidhe dependent variable on the independent

variable is supplemented by the regression ofdgdransformed dependent variable on the
independent variable (unless this is preventedeby ar negative values). The regression lines
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are shown in graphs (see below), together witraplgshowing the distribution of the deviations
in relation to the value of the independent vagalf the deviations are equally distributed
above and below zero, this is evidence of homosteity (equality of variation) which is an
assumption of regression analysis. If the distafroes zero tend to increase as the value of the
independent variable increases, possibly creatfiag-dike or cone-like appearance, this is
evidence of heteroscedasticity, and may justifyube of log transformation.

The nonparametric procedure, which does not assuneemal distribution, has the advantage of
robustness — i.e., discrepant ‘outlier’ observati@ve a reduced effect; two estimators of the
intercept may behown; the second is recommended if deviations fr@regression line can be
assumed to be symmetrical

Interaction terms

An interaction term (e.g. “height*age”) expresdes joint effect of two of the independent
variables, each of which modifies the effect of dtiger. The product of the values of the two
variables is treated as an additional term in dgeassion model. An interaction expresses a
multiplicative relationship, and if present it indies a departure from simple additivity.

The inclusion of interaction terms in the modebjmional. Up to six independent variables and
one interaction term can be entered, or up toifidependent variables and two interaction
terms.

An F-test compares the-squared values obtained when the model includeg@udes the
interaction(s).

Correlation coefficients

In simple regression analysis the program compbeesorrelation coefficient, and in multiple
regression analysis it computes correlation caefiits between the dependent variable and each
predictor — both the simple bivariate zero-ordesfficients and the partial correlation

coefficients ( controlling for all other predictyrsThe significance of each coefficient in
comparison with zero is computed, and the corregipgrcoefficients of determinatioR{

squared) or partial determination (r-squared) &splayed.

Coefficients of determination

R-squared (the coefficient of determination) canrerpreted as the proportion of variation in the
dependent variable that is explained by the indégenvariables. It is not a satisfactory measurief
goodness of fit of the regression maodel

The adjusted coefficient of determination is aneptable measure of the goodness of fit of the sxipa
model, and is a better estimate t&aquared of the population coefficient of deterrtiora It
incorporates a downward adjustment to compensathdopossible effect of the number of independent
variables on the residual variance. It may be tiegyé the population coefficient is near zero (2898:
423).
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Effect of removing a variable

If a variable is removed from the model, the prograports the change Risquared (the
marginal R-squared), and performs an F test tis#saes the significance of the change

Outliers

The program displays a list of outliers (if anyg. icases where the prediction based on the
regression equation is very far from the obsenadderof the dependent variable

Sample size

If the sample is small, tests may be insufficigptbwerful and the results may be unreliable.
The module provides estimates of the sample stuainedl to attain a power of .80 (wisthpha =
.05), for a regression analysis and for testingigdazorrelation coefficients, for comparison with
the actual sample size. These estimates are bagedrothe number of predictors and the
strength of the association, as reflected by eoefits of determination.

Estimates of the sample size required for a regnessalysis are provided for selected
coefficients of determination ranging from 0.02]izative of a weak association (i.e., a
correlation coefficient of 0.1), to 0.26 (i.e.,teosig association, with a correlation coefficient
0.51). Estimates of the sample size required f&iirtg partial correlation coefficients are
provided for selected coefficients of determinati@tween 0.01 (weak) and 0.26 (strong), and
also for the partial correlation coefficients reedrfor the observed data.

This module may also be used to estimate the sasiggegequired for any regression analysis
with up to seven predictors or for computing aipadorrelation coefficient, by entering the
number of predictors (or, for a partial correlatmefficient, the number of variables held
constant plus one) and then by entering imaginatg dnd (ignoring all the results except those
concerning sample size, which are reported atndeoéthe output) finding the sample size
corresponding to the expected coefficient of deteation or partial determination in the
proposed study.

The estimates of sample size are based on a rdlesofb method suggested by Harris (1975), as
modified by Green (1991), a new rule-of-thumb medteaggested by Green (1991), and a newer
method proposed by Maxwell (2000). These metlawedairly accurate in comparison with
power analyses if there are fewer than seven gmedicand then become more conservative. If
the association is strong, they tend to overesértia sample size if the association is weak and
to underestimate it slightly if the associatiosti®ng, although the degree of underestimation is
not great when there are few predictors (Green 1991 discrepancies from power analyses
are slight if the strength of the association islime, or the number of predictors is small.

Maxwell et al. (2008) point out that these sample sizes may peogpate if the purpose of the
study is to appraise the significance of findirtyg, may often underestimate or (sometimes)
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overestimate the sample size required to provideige estimates of parameters (i.e., with
narrow confidence intervals).

Level-importance

This statistic (Achen 1982) expresses the influentkis sample of each independent variable
on the level of the dependent variable. Assumingatlty, it is the net change in the dependent
variable's level attributable to each independantable. This is akin to the elasticity concept
commonly used in economics, expressing the pedtentge in a dependent variable for a 1%
change in an independent variable (Kruskal and Maj889). Since the sum of the level-
importance statistics (plus the intercept) is @elgi the mean of the dependent variable, the
level-importance of each variable can also be esga@ as a percentage of the mean of the
dependent variable.

G-computation

If one of the variables is a dichotomous (Yes/Narjable (coded 1/0) whose effect is modified
by another variable or variables, a single estiméthais effect (the marginal causal treatment
effect) is calculated by G-computation (Snowdeale2011). This requires entry of the binary
valuable as the second in the list of variabled,tae inclusion in the regression model of an
interaction or two interactions with this variabde, well as suspected confounders. The model
must include main terms for the modifiers

The analysis is meaningful if the variable precatiesdependent (outcome) variable in time, and
refers to a point-treatment (not time-varying) esyre@. The procedure has been validated by
computer simulation (Snowdet al.2011). The estimated effectaguivalent to standardization
using the distribution of covariates in the studgnple as the standard Vansteelandt and Keiding
(2011). “Application of this method", say Snowdsdral ,"allows investigators to use
observational data to estimate parameters thatddmeibbtained in a perfectly randomized
controlled trial".

If interaction is the primary concern, for examplelinical settings where the effectivity of
treatment varies in different groups, the condaiagstimates of effect that are provided by
regression analysis are of course of more intéhest the estimate provided by G-computation
Graphs

For a simple linear regression, two graphs showhegegression lines are displayed. The
regression lines are truncated at the edges afrtiph. If there are identical values, hey are
superimposed on each other. The vertical axessdb the dependent variable (Y), and the
horizontal axis to the independent variable (X).

The following graph shown the regression of Y on X:
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The following graph shows the regression of lognvo(for the same data).
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In addition. a scatterplot is displayed, showing dstribution of residuals (the observed value of
the independent variable minus the value computed the simple linear regression equation).
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Note: The program’s accuracy has been validatethsigéne certified results for the statistical refece multilinear
regression dataset provided by the National wmgtiof Standards and Technology
(http://www.itl.nist.gov/div898/strd/).

Regression equation

The regression equation is computed by the usualiflae (as listed by, for example, Yeomans 1970-205).
The log transformations use natural logs

Two-tailed P values for the partial regression fioieints are computed from the inverseSqKymn 1970) which
follows anF distribution with N - k N - K degrees of freedom
where S=(1+r)/(1-r)

r = the corresponding partial correlation coeffitie

n = size of sample

k = number of variables

F=1/{(1 +absf)]/[1 - abs())]}
The standard error of the estimate is the squanteafathe residual mean squafdeF value to test the significance
of the model is the ratio of the regression mearasg|to the residual mean square

59



J. MULTIPLE LINEAR REGRESSION

Interaction terms

The product of the values of the two variables ined in each interaction is treated as an addititeran in the
regression model.

The significance of the difference between the Rasegd values before and after inclusion of therauigon(s) is
appraised by ah test, using the formula

F = [(R? - RA)/(k2- k)] / [(1 - RAI(N - ka2 =1)]
where R,? = R-square for the second model (the model with tkeramwtion[s])

R.?= R-square for the first model (the model without iatgions)

n = total sample size

k, = number of predictors in the second model

ki = number of predictors in the first model

Nonparametric regression analysis

The nonparametric regression analysis procedueedescribed by Daniel (1995: 622-625), Sprent (1293-202)
and Sen (1968). The analysis is not done if theseover 146 values. Three alternative ways tifhasing beta
(the slope coefficient) are used

If up to 30 numbers are entered, Theil's estim@beil 1950) is computed by a method described g (1993:
195-198). If more than 30 sets of values are edteBen’'s method (Sen 1968) is used ; but if terenore than
146 different sets the prograamploys the abbreviated Theil method (Sprent 1298:202), which uses a
systematic sample of the data. For the Sprent bhrkgiated Theil methods, which (unlike Sen's mé}jtassume
distinct values of the independent variable, thegpmm treats tied observations as if they werddweottical by
imputing differences of (alternately) 0.000001 @000001

The point estimate dfeta(R) is the median value of,where

5= (- ¥i) / (% — %)
for each pair of values of the independent variatipg and ¥) and the corresponding values of the dependent
variable y (yand y). Using Sprent's method; 5 calculated for all of the N(N-1)/2 possible nsaof values; zero
values of (x- x) are changed to 0.000001 or -0.000001 (alternatétySen's procedurg % calculated only if (x
X;) is not zero. In the abbreviated Theil procedeszh of the first N/2 pairs in the sequence ia thked with the
pair situated N/2 positions further along the arfiayis computed only for these linked observationsp z@lues of
(x;- x;) are changed to 0.000001 or -0.000001

Alphais estimated by two alternative formulae. Thetfis the median of the;(33%) terms for the N pairs of
observations, and the second (Daniel 1995: 623-82&%e median of the averages of the (i) terms calculated
for each of the pairwise combinations of observatio Both estimators are shown if they differ.eTinst estimator
is recommended if deviations from the regressiodehoannot be assumed to be symmetrical; the sezstirdator
of alpha (which is not calculated if the abbrevibIédneil procedure is used) is recommended if timensgtry
assumption is tenable.

Confidence intervals for betare obtained from an array of values pfrborder of increasing magnitude. Sen's
method (Sen 1968) uses critical values provided layge-sample formula based on a variance esticoatected
for ties, and Sprent's method (Sprent 1993: 199;2f5ed on Theil's, uses critical values basetthewritical
value for Kendall'sau for significance at the nominal 5% level in twaled tests, obtained from Siegel and
Castellan (1988: 363, Table RII) and Sprent (19%hle IX). Approximate confidence intervals arémated in a
similar way in the abbreviated Theil procedurengsiritical values based on formula 2.3 in Spré8e@: 34).

Coefficients of variation

R-squared ) is the ratio of the regression sum of squardhedotal sum of squares
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The formula for the adjusted coefficient of detaration (Zar 1998: formula 20.23) is
1-[-1)/(n-m-1)]/1-R)

where n=sample size
m = no. of independent variables

Effect of removing a variable

The significance of the changeRasquared resulting from the removal of a variabladgsessed tpartial F, with
degrees of freedouwifl anddf2.
Partial F = (RSSp - RS$q (dfl / df2 * RSSq)
where RSSq residual sum of squares in the larger model
RSSp= residual sum of squares in the smaller model
sfl= degrees of freedom f®RSSp,minus degrees of freedom BESq
df2 = degrees of freedom f&®RSSq

Outliers

Ouitliers are defined as cases where the standdrois@lual (the difference between the observedpaadicted
values of the dependent variable, divided by thadard error of the estimated) is 2 or more

Correlation coefficients

The zero-order and partial coefficients are coragutty the usual formulae (as listed by, for exambbniel 1995:
391-393 and 446; or Yeomans 1970: 179 and 197-205

The significance of zero-order coefficients is asee by d test (Daniel 1995: formula 9.7.3):
t=r* J[(n-2 /(1 -r?] withn- 2 degrees of freedom,
wherer = correlation coefficient

n=sample size

If nis less than 30, a test based on Hotelling's mexlifiransformation is used (Zar 1984: 392, Sokal aodIR
1981: 587)

z=HV(n-1)
where H = Hotelling’s modifiedz transformation of
=T—-(3T+r)/4n

T =ztransformation of r
=0.5.In[(L#) /(1 -1)]

The significance of partial correlation coefficignis assessed byt géest (Daniel 1995: formula 10.6.10):
t=r*\[(n-k-1)/ (1 —r?] with n-k-1 degrees of freedom,

wherer = partial correlation coefficient
n=sample size
k= number of predictors

Level-importance

The level-importance of an independent variablbésproduct of the variable's regression coefficand the
variable's mean value. It is also expressed ascapage of the mean value of the dependent varistiteractions
are not taken into account.

G-computation

The module applies the simple procedure descrilgeghiowderet al. (2011), and explained in detail in a web
appendix to their paper. It uses the multiple regjen coefficients to compute two counterfactual. (ipredicted)
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values of the dependent (outcome) variable for sathect, based respectively on the presence enabs
(observed or imaginary) of exposure to the dichatoswvariable of interest. The total set of coumrtefals is then
regressed on the value (observed or imaginanfebtnarywaluable to obtain an estimate of the marginalotféé
the binary variableThis estimate is the mean of the differences betveach subject’s counterfactual values.

Sample size

The estimates of sample size are based on methgdssted by Harris (1975), Green (1991), and Max{@6e00)
(see text above).
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K. CONTROLLING AN UNMEASURED CONFOUNDER

This module performs a sensitivity analysis tolsee the strength of an observed association
with a biunary (“yes-no”) variable might be redua@d=nhanced by controlling for a
hypothetical unmeasured confounder. The calculasitiased on scenarios that make differer
assumptions concerning the strength of the confeiufekpressed as an odds ratio or hazard
ratio) and its prevalence in groups exposed angposed to some factor or (in a case-control
study) in cases and controls.

If the adjustment renders the association negéginlnonsignificant, or reverses its
direction, and the scenario is a plausible ons, ibints to a need to measure and take account of
other variables, or to be circumspect when drawoigrlusions.

The program requires entry of the odds ratio ar ¢fudies that take account of time-tg
event) the hazard ratio that expresses the olibassociation, and its confidence limits (95%) or
other). These figures may be derived from a MaH#B#nszel, logistic regression, Cox
regression, or other analysis in which allowance made for the effects of known (measured
variables. Alternative sets of results are prodjdeepending on whether the prevalence of th
unmeasured confounder is to be considered highteiexposed (or cases) or in the unexposed
(or controls).

—

D

The unmeasured confounder is assumed to be bityas-00”). It can be regarded as
representing a set of unmeasured confounders airccttmbined effect (“the dichotomy of high
risk versus low risk determined by multiple risktias” — Linet al. 1998).

The computation is based on a procedure descripéthlet al. (1998), who say that it is
applicable to any study design, prospective opsgtective, matched or unmatched.

Different scenarios are used, their respectiverapians being that the hypothetical
confounder's effect on the outcome variable is esged by an odds ratio or hazard ratio of 10, 9,
8,7,6,5,4,3,2,0.5,0.45, 0.4, 0.35, 0.3502, 0.15, or 0.1), and that the confounder's
prevalence is 10%, 20%, 30%, 40%, 50%, 60%, 70%4, 80% or 100% in one group, and less
(between 0% and 90%) in the othdhe bounds (i.e., the most extreme effects of the
adjustment) are reached when the prevalences 88 &48d 0% respectively.

The table of results is extensive, but attentieadhbe directed only at those scenarios (with
respect to the hypothetical confounder’s prevaler@eel the odds or hazard ratio expressing the
strength of its effect) that are deemed plausible.

The adjusted result is marked with two asterislksig nonsignificant (i.e., if 1.0 falls within ¢h
confidence interval), and with three asteriskfie adjustment has reversed the direction of the
association). If a scenario that appears to besfiilurenders the odds ratio or hazard ratio
negligible or nonsignificant, or reverses its dii@g, this points to a need to include other
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variables in the analysis or, failing that, forccimspection when drawing conclusions from the
the study findings.

The adjusted estimates of the odds ratio or hazdi@ may be termed “externally adjusted”
estimates, since the assumptions about the hypmhebdnfounder's effect on the outcome
variable are not based on the study data (Greerla86).

The procedure should be a useful one althoughoised on various assumptions that are not
necessarily met, e.g. that the effect of the camflen is identical in the exposed and unexposed
groups, that the confounder is conditionally indegent of the exposure variable or other
covariates, that hazard functions for the exposeld@®nexposed are proportional over time, and
thatthe observed odds ratio for a binary outcome isvdérfrom a log-linear regression analysis
However, simulation studies by Let al (1998) show that when applied to unmeasured Yinar
confounders the procedure yields results thatufeiently accurate to be useful, even when
events are not rare.

METHODS

The program uses formulae 2.8 and 2.9 ofdtiml. (1998) to adjust odds ratios, and the correspanftimmula 3.8
to adjust hazard ratios. In both instances, tteeoded odds ratio or hazard ratio and each obit$idence limits is
adjusted by dividing it by (R.Py + (1 -P1)) / (R.P+ (1 -P2))
where R= the assumed effect (odds ratio or hazard radfdhe unmeasured confounder

=2,3,4,5,6,7,8,9,0r10

(or, if the observed effect is negative, ©.85, 0.4, 0.35, 0.3, 0,25, 0.2, 0.15, or 0.1)
P, andP, = assumed prevalences of the confounder in thegteaps
(0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%0OL0), wherd>; > P,
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L. BAYES FACTOR FOR AN OBSERVED ASSOCIATION

This module computd3ayes factorsfor use by proponents of Bayesian statistics velgard the
usual significance tests (tests of null hypothegae® association) as possibly misleading, an
prefer to interpret an observed association by thogethat takes account of the pre-study
estimate of its strength

r

The observed association and the prior estimaits sefrength may be expressed as an odds ratio,

hazard ratio, rate ratio, or ratio of risks or pydjns, as a difference between rates, risks,
proportions, or means, or as a standardized difter¢'effect size”).

The module provides a sensitivity analyses, comguayes factors for a wide range of prior
estimates of strength, extending (for a ratio) frtb@b to 20 and (for a difference) from one-

tenth to twenty times the observed difference cozering the whole gamut from scepticism tg
enthusiasm

The observed effect must be entered, with its (aved) P value and (except for "effect sizes'
its 90%, 95%, or 99% confidence interval. The dimecof the association must be such that t
observed effect is positive (i.e., a ratio mormnti, or a difference more than 0).

Optionally, the module also computes loannidisslibility indexfor the series of pre-study
estimates. This index may be helpful in a studylch a very large number of associations ig
screened, with little prior expectation of finditigat an association is true. The pre-study
credibility must be entered

Bayes factor

The Bayes factor measures the weight of evidencenéotruth of the association, taking account

of the prior expectation, following the principleat the lower the expectation, the stronger is
evidence required to demonstrate the truth of #se@ationA low P value, say Bayesian
statisticians, is not necessarily convincing evadeagainst a null hypothesis (Katki 2008,
Goodman 2005); findings with P values near 0.08 t&ot to be confirmed in subsequent
studies.

The lower the value of the Bayes factor, the steong)its support for the association. The
following guidelines (Jeffreys 1961) are often used

< 0.010: decisive support for the association

0.010-0.032: very strong support

0.032-0.10: strong support

0.10-0.32:  substantial support

0.32-1.00: not worth more than a bare mention

> 1.00: less credible after than before the study
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The Bayes factors are estimated by the methodibeddoy loannidis (2008a). This assumes
normality of the effect, and may be inappropriatemall studies

Credibility index

This index (loannidis 2008b) is a measure of gsoaiation's credibility (the probability that it
is true). It can be used in "discovery-orienteditiges that examine a large number of
associations in the expectation that only a verglspmoportion of them are true. The pre-study
odds is arbitrarily set at a default value of 0,08t in a study where a very large number of
associations is examined (e.g. a genome-wide stiggnetic associations) this should be
replaced by a value as low as 0.000001

METHODS

Bayes factors

The Bayes factorsB} are computed by the method described by loan(24i88a, equations 4 and 6).
B=+(1+m) exp{(-?) / [2(1 + 1M)]}

where m =A%/ 2V
A = the alternative effect (the prior estimatehd tatio or difference).
V = the variance of the observed effect, compuged a
(for the log of a ratidf = {[IN(H) - In(L)] / 2zed?

(for a difference)V = [ H - L) / 2zed?

(for a standardized differencdy = [(observed difference)z?
H = upper confidence limit at a given confidenceelesf 90%, 95%, or 99%
L = lower confidence limit at a given confidencedksf 90%, 95%, or 99%
z = thez statistic derived from the observed P value (e.9.2.576 ifP = 0.01)
zed= 1.645 if confidence level = 90%, 1.96 if confiide level = 95%, and 2.576

if confidence level = 99%

The results have been checked against a spreadshpgtied by loannidis (2008C).

The computed Bayes factor is not necessarily lowbsin the observed effect coincides with A, becaugethe
average prestudy estimate under the assumption that ikexgositive effect - it is the average value bi-
normal distribution (loannidis, personal communizay.

Credibility index

The credibility index is computed by the formulalofnnidis (2008b). It is expressed as a percentage
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M. OTHER BAYESIAN MEASURES OF THE
NOTEWORTHINESS OF AN ASSOCIATION

This module provides theonditional error probability theBayesian false-discovery probabilit
(BFDP), or both. These two measures are for uggdgyonents of Bayesian statistics who
regard the usual significance tests (which are w@fstno association” null hypotheses) as
possibly misleading, on the grounds that they edrthe probability of false reports of an
association when there is no true associationgrdbtan pointing to the probable truth or
incorrectness of a report that there is an associa low P value, say Bayesian statisticians, |is
not necessarily convincing evidence against amydbthesis (Katki 2008, Goodman 2005);
findings with P values near 0.05 tend not to bdfiomed in subsequent studies.

<

Conditional error probability

The conditional error probability (Selllet al. 2001), which is based on a Bayes factor derived
from the observed P value, is the approximate Idweeind of the posterior probability of the
null hypothesis. A value of 20%, for example, neetrat the association has about a 20%
chance, or more, of being spurious. A low valuegests that the observed association is
noteworthy.

The computation requires the prior probabilitylod association - that is, a subjective
assessment of the probability of the alternativiaéonull hypothesis. This assessed probability
may be based on prior research, theoretical plaitagilor scientific consensus. The effect of the
subjective assessment can be appraised by rep#atipgogram, using different priors

Bayesian false-discovery probability (BFDP)

The Bayesian false-discovery probability (BFDP)easgs the noteworthiness of an observed
association (Wakefield 2007, 2009). It is the appnate probability of the null, and therefore
represents the probability of a false discoverg.( a false positive report), given the observed
odds ratio. A low BFDP indicates that the obseragssbciation is noteworthy. The BFDP is
influenced by the prior evaluation of the probdpithat there is an association, following the
principle that the lower the expectation, the sgeris the evidence required to demonstrate the
truth of the association. The program permitscth@ce of a number of alternative estimates of
this prior probability of an association, and cotesua separate BFDP for each alternative.

The computation requires entry of (a) the obseonds ratio and its confidence interval, and (b)
ana priori specification of the upper limit for the odds oaiie. the level that it is believed
unlikely (with a 2.5% probability) to be exceeded

A threshold level for the BFDP is provided, belowigh the association may be regarded as
noteworthy. This threshold is based on the relatos&s of false negative reports (false
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nondiscovery) and false positive reports (falsealisry). This necessitates a subjective
decision concerning the ratio of the cost (undeditg) of a false negative report (calling an
association non-noteworthy when in fact the assiotiaxists) to the cost of a false positive
report (reporting an association as noteworthy wheact the null is true). BFDP results that
fall below the threshold, indicating noteworthine$she association, are marked with an
asterisk

Wakefield (2007) advocates use of the BFDP instédle false-positive report probability
(FPRP), which, according to Lucke (2009), is umsband can lead to seriously incorrect
inferences

METHODS

Conditional error probability
This is computed by the formula provided by LuckéQqQ: p. 149).
Bayesian false-discovery probability (BFDP)

An asymptotic Bayes factor (ABF) is calculated bynfiula 6 of Wakefield (2007), and multiplied by theor odds
for each assumed probability that there is anaason, providing a series of alternative BFDPued, which can
be compared with the threshold value. The variaricke log of the odds ratio is derived from thé&®8onfidence
limits, and the prior variance is computed by Wakdfs formula 8

The inverse of the normal distribution function {ammula 8) is computed by an adaptation of icncardelphi unit

written by G. MocCormick (http://home.online.no/apklam/notes/invnorm/impl/mccormick/), using analthm
by P.J. Acklam {http://home.online.no/~pjacklam/@sfinvnorm/#Delphi}

Thethreshold valués R/ (1 +R), whereR s the ratio of the cost of a false non-discoverthe cost of a false
discovery
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N. COMPARISON OF NUMERICAL DATA IN THREE OR
MORE INDEPENDENT SAMPLES

This module compares numerical data (ratio-scaterval-scale or ordinal scale) in three or
more independent sampléiscan compare the distributions of ordered categdo which
numbers have been allocated.

If a normal distribution is assumed and threeve 8amples are to be compared, either full da
(individual values, or discrete grouped values with their frequencies) or summaitg dmeans
standard deviations, and size) may be enteredafdr sample. If more than five samples are t(
be compared, only summary data may be enteregll Hdta are entered, the program provides
means and standard deviatiomone-way analysis of variancatest for the homogeneity of
variances measures of the magnitude of the effeatéga-squareceta-squaredandCohen's f
indey, confidence intervals for the means and for theifedencestests for the differences
between meanand aest for trend If full data are entered, a covariate can alseitered; the
program then provides (in additioa)one-way analysis of variance on the covariateanalysis
of covarianceadjusted mean&ontrolling for the covariatejests for the differences between
the adjusted meanand measures of the magnitude of the effectr@dng for the covariate).
If summary data are entered, the only results pexiare confidence intervals for the means,
and tests for the differences between the means

If a normal distribution is not assumed, only thted&ve samples may be compared, and full
data are required. The program displaysnieeliansof each sample, and compares the samp
by performingMood’s median testheKruskal-Wallis testand thevan der Waerden normal-
scores testPairwise comparisonsghe Jonckheere-Terpstra tefr trend, and th&lack-Wolfe
umbrella tesfor an inverted-U trend are performed

ita

A=)

U7

es

Analysis of variance

A one-way analysis of variance (single-factor betmsubjects ANOVA) is performed. The
analysis assumes that the samples were drawn réynffom three to five independent
populations with normal distributions and similariances. A significant result points to a
significant difference between the means of att lves of the groups represented.

Levene test for homogeneity of variances

A significant result points to a significant difeerce between the within-group variances of at
least two of the groups represented
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Measures of magnitude of effect

Three measures of the magnitude of the effect -the strength of the association between the
independent variable (represented by the variomples) and the dependent variable — are
computed

Omegasquared¢?) is an estimate of the proportion of variabilifytioe dependent variable

that is associated with the independent varigBihegkin 2007: 916-917). By Cohen's criteria, a
value of 0.1379 or more indicates a large effexs,90.0588 or more (but less than 0.1379)
indicates a medium effect size, and 0.0099 or rtlmseless than 0.0588) indicatesraall effect
size (Sheskin 2007: 917). Cohen (1988) warnsttteste criteria should be used owlgen there
is no better basis for evaluation. A zero or negatialue indicate absence of an association

Eta-squareds) is an alternative estimate of the proportion afiability of the dependent
variablethat is associated with differences between theksnit is a more biased estimate of
thepopulation parameter th@megasquared, and the program uses an adjustaegquared, to
reduce this bias (Sheskin 2007: 917-918).

Cohen's f indexSheskin 2007; 918) is a "standard deviation aiddadized means”. By Cohen's
criteria, a value of 0.4 or more indicates a laffect size, 0.25 or more (but less than 0.4)
indicates a medium effect size, and 0.1 or morél@ss than 0.25) indicates a small effect size.

If a covariate is entered, the measures of magaitdieéffect are computed again, controlling for
the covariate (Sheskin 2007: 962).

Confidence intervals for the means

If full data are entered, two sets of 90%, 95%, 8@% confidence intervals are computed for
the mean of each group. The first set is basdati@estimated variance in the specific group,
and the second set (which has narrower intervalsased on the within-groups variance derived
from the analysis of variance, and assumes thatahances are homogeneous. If summary data
are entered, the second set (which generally hdarwitervals) is based on a pooled variance
computed as a weighted average of the total vaggamcthe specific groups.

Confidence intervals for the differences between me ans

The confidence intervals are based on the pooladnae, on the assumption that the variances
are homogeneous

Pairwise comparisons

If a normal distribution is assumed and full dataentered, three tests for the difference
between means are performed for each comparis@nfirehtwo are simple comparisons, one
assuming that the variances are equal, and orgseoming equal variances. These tests are
appropriate if the comparison was a planned onstoara priori hypothesis. The third test,
which uses the procedure described by Games an@lH@®76) for pairwise comparisons of
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any number of means, takes account of multiple @ispns, and may be used even if there
were noa priori hypotheses; computer simulations have demonsttiaaedhis procedure is
relatively powerful and accurate (Keselman and Rdg/8). If a normal distribution is
assumed and summary data are entered, the sespigldmitted Each group is compared

with the first group entered, on the assumption i@ first group is a control group The Dunnett
(1955) and Tukey-Kramer (Sheskin 2007: p. 973) guoces are employed to take account of
multiple comparisons.

If a normal distribution is not assumed, #miskal-Wallis procedurés used to test the
significance of the difference between the meakgaf the observations in each pair of
samples. Two two-tailed P values are computeddoh €omparison. The first is appropriate if
the comparison was a planned one, to test arori hypothesis. The second test takes account
of multiple comparisons by using the Bonferroni-Dyrocedure, and may be used even if the
comparison was not planned.

Trend tests

If a normal distribution is assumed, a test foeéintrend is performed for the means of the
samples (Sheskin 2007: 928-929), with the samplasged in the sequence in which they are
entered (in accordance with a prior prediction)e phogram reports the P value, the slope —
which expressethe average change in the dependent variablestlaatsbciated with a change
from one sample to the next, and the proportiothefvariability of the dependent variable that
can be explained by the linear trend

If a normal distribution is not assumed, the trehtheir medians (with the samples arranged in
the sequence in which they are entered, in accoedaith a prior prediction) is appraised by the
Jonckheere-Terpstra tekir ordered alternatives (Sheskin 2007: 993-1000¢ test assumes

that the samples were randomly drawn and are erdgmt, and represent populations with
distributions that are similar in shape. A oneew@iP value is reported. This is determined from a
table applicable to samples with small numbers(farnumbers not covered in this table, and
also for downward trends) by use of a normal appnaion

Umbrella test

The Mack-Wolfe umbrella tedor an inverted-U trend (Mack and Wolfe 19&d performed only

if there is evidence that, with the samples arrdngehe sequence in which they are entered, the
values increase and then decrease. The peak sansplecified. If there are two equal peaks or
the peak extends over two samples, the left-haedoohosen. Significance is reported as P
<0.01, <0.05, <0.10, or >0.10.

Analysis of variance on the covariate
A one-way analysis of variance on the covariaggeidormed. A significant result points to a

significant difference between the means of theadate in at least two of the groups
represented. P values are shown.
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Analysis of covariance

An analysis of covariance is performed, showingttiial and mean sum of squares for the
covariate, as well as the total and mean betweempgrand within-groups sums of squares. Two
P values are shown. The P value computed for thariate tests the null hypothesis that there is
no correlation between the covariate and the degendriable; a low P value indicates a
significant linear relationship between the covariand the dependent variable (Sheskin 2007:
956-957). A low between-groups P value points goificant variation of the dependent variable
among the samples, controlling for the covariate

The procedure is described by Sheskin (2007: 953-95
Adjusted means and their comparison

Adjusted means of the dependent variable (conigfior the covariate) are computed for each
sample

Two tests are performed for each comparison. Trigeifi a simple comparison, appropriate if the
comparison was a planned one, to tesh gniori hypothesis. The second test, which uses
Tukey's HSOthonestly-significant-difference) procedure, wkecount of multiple

comparisons, and may be used even if the companasmot planned.

Mood's median test

The null hypothesis tested by the median test (Mb®80) is that all the samples come from
populations with the same medidrhis test has poor power, but is very robust egaintliers.

Kruskal-Wallis test

The Kruskal-Wallis one-way analysis of variance@yks tests the null hypothesis that the
samples come from populations with the same medtigbased on the assumptions that the
samples were drawn randomly from three to five pahelent populations with distributions that
are similar in shape; but it is less affected fedences between the variances than is the
parametric single-factor ANOVA (Sheskin 2007: 98& significant result points to a significant
difference between the medians of at least twb®froups represented.

Van der Waerden test

The Van der Waerden normal-scores test (Sheskii: 2@ 7-1019) tests the null hypothesis
that the samples represent populations with theeshistribution. A significant result points to a
difference between at least two of the groups sepreed.

The advantage of the Van Der Waerden test is tipabvides the high efficiency of the standard

(parametric) ANOVA analysis when the populatiomeally normal, and has the robustness of
the Kruskal-Wallis test when normality assumptians not satisfied.
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METHODS

If grouped values are entered, each observatiatidsated the value midway between the lower amkuporders
of thegroup; this may, of course, affect the accuracthefresults.

Analysis of variance

The method is described in detail lytér alia) Sheskin (2007: 869-873) and Altman (1991: 218)219

Levene test for homogeneity of variances

The method is described by Sheskin (2007: 908-91.%3) based on the absolute deviations of theescérom the
group means.

Measures of magnitude of effect

These measures are computed by equations 21.4dn(egasquared), 21.44 (for the adjuste@dsquared), and
21.46 (forCohen's f indéxof Sheskin (2007). Coherf'tndex is not computed dmegasquared is negative.
If a covariate was entered, adjusted values amd wben computing these measures (Sheskin 2007: 962)

Confidence intervals for the means

The first set of confidence intervals uses the fdaSheskin 2007: equation 2.8)

Mean +t.SE
where t=the critical two-tailed value in thalistribution for n- 1 degrees of freedom

SE= standard error of the mearSB/Vn

n = size of the sample

SD = standard deviation
If full data are entered, the second set of comfi@antervals for the mean uses the formula (She2®07: equation
21.48)

Mean +t.v(WGMS/ N)

where t=the critical two-tailed value in thalistribution forN - 1 degrees of freedom
WGMS= the within-group mean square shown in the ANQBle (the residual variance)
N = sum of sample sizes

If summary data are entered, WGMS is replaced bytioled variancé/pomed in the above formula
whereVpooled =3(vi * [Ni— 1)) / S(ni—1)
Confidence intervals for the differences between me ans

Confidence intervals for the differences betwednmspaf means are estimated by the formula (Altm@8a1t 210):

Mean *t. V(WGMS. V(A /m +1/mny)

where t = the critical two-tailed value in thalistribution for the within-groups degrees of fiteen
WGMS= the within-group mean square shown in the ANQBle (the residual variance)
n; and n = sizes of the two samples that are compared

Pairwise comparisons

If a normal distribution is assumed, the simptests (for testing priori hypotheses) use formulae 8.7a and 8.11 of
Zar (1998). The calculated degrees of freedonthedatter test (formula 8.12) are rounded dowth&onearest
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integer. For th&ames-Howell procedur@&ames and Howell 1976), the program employs féem@ and 5 of
Toothaker (1993), and appraises significance bypaoing the result with critical values for P < 0&id P < 0.05
in the studentized range (Daniel 1995: 702-704has&in 2007: Table A13).

If a normal distribution is not assumed, formula®2@f Sheskin (2007) is used (based on the Krugkallis test).
The Bonferroni-Dunn adjustment is made by multipdythe P value bg(s-1)/2, wheres = number of samples

Dunnett's test (Dunnett 1955) and the Tukey-Krarest (Sheskin 2007 : p. 973) are used for compasisoth a
control group.

Trend tests

Formulae for the trend test (assuming a normatilligion) are provided by Sheskin (2007: 928-929he number
of observationsn) used in the formula fd8Slinear(or SScompn equation 21.17) is the harmonic mean (equation
1.5) of the numbers in the various samples; ifstumples are very different in size, use of thistmaampromises
the accuracy of the analysis (Sheskin 2007: 917@.coefficients required for the analysis are cotag by
allocating a numbei € 1, 2, 3, etc.) to each successive sample, ardghbtracting the mean valuei dfom each
sample's (coefficient =i - i nean). The estimated slope is the sum of the meanghiesi by the coefficients, divided
by the sum of the squared coefficients (Maxwetl Belaney 2004: 248).

The method of calculating thlmnckheere-Terpstra statisti€ described by Sheskin (2007: 995-996); the nbrma
approximation is computed by Sheskin's formula 1Z@r small numbers (three samples with eightearefr
observations in each), or four or five equally-dizamples with 2 to 5 observations in each), useaide of a table
of critical values (Sheskin's Table A24) for onietd P values of < 0.005, < 0.01, < 0.025, andG50This table is
appropriate only if the trend is an upward one éRhre2007: 1006).

Umbrella test

The Mack-Wolfe umbrella test with peak unknown, égual or unequal sample sizes, is described &ildBt
Hollander and Wolfe (1999: 226-229). The Mack-Védifatistic is compared with tabulated criticalues
(Hollander and Wolfe 1999: Table A.15).

Analysis of variance on the covariate

The procedure is described by Sheskin (2007: 9R)-95
Analysis of covariance

The procedure is described by Sheskin (2007: 953-95
Adjusted means and their comparison

Formulae for the adjusted means and for comparigbrseans are provided by Sheskin (2007: 958 a8d98®
respectively). Tukey's HSD test makes use of thdesitized range. The number of observatiofhsi$ed in the
formulae is the harmonic mean (equation 1.5) ofsikes of the various samples; if the samples emngdifferent in
size, use of this mean compromises the accuratheanalysis (Sheskin 2007: 970).

Median test

The test is performed by determining the mediathefcombined samples, and then categorizing theresisons
(in each sample) that are (respectively) belowbava this overall median. If there are observatibias are equal to
the median, half of them are placed in the "belogadian" group and half in the "above-median" groBpgskin
2007: 646). A chi-square test (Wil degrees of freedom) is then performed on theltaas 2 xstable (wheres =
the number of samples).
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Kruskal-Wallis test

The Kruskal-Wallis statistic is computed by form@a 1 of Sheskin (2007), corrected for ties (foraeu22.3 and
22.4). The statistic is referred to the chi-squdistribution, withs-1 degrees of freedom (whese number of
samples). If the numbers are very small, the Beshre approximate

Van der Waerden test

The van der Waerden chi-square statistic is congpigformula 23.2 of Sheskin (2007).The numbedexrees of
freedom iss-1 (wheres= number of samples)
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O. FACTORIAL-DESIGN AND CROSSOVER TRIALS

This module can analyse factorial-designs that kanaously evaluate the effect of two factor
on a numerical dependent variable, and crossowds with a numerical dependent variable

In thefactorial-design studyeach factor can have two or three levels, e.gtfrent and Control
or Treatments A and B and Control. Random allocatibthe subjects to the 4, 6 or 9 groups
the study is assumed. The program perfortmstaeen-subjects factorial analysis of variance
and displaysnean values, with their confidence intervdis factor has three levels, its mean
values at different levels are compared, usirgiper's LSD testhe Scheffé testand Tukey's
HSD testAnalyses of theimple effectsf each factor are also performed, and three messi
the magnitude of the effect on the dependent viariafe computedsf{andard and partial
omega-squarecard Cohen's f index) he heterogeneity of variances tested by thBrown-
Forsythe tesbr Hartley's Fmax test

The standard analysis assumes that the samples vatious groups are equal in size. If they
not (e.g. because of loss of subjects), two anslgse performed: one uses timveighted-
means procedurenhich is suitable for unequal samples), and theragimalysis is based on
equal-sized samples, after they have been eqddlizéeleting randomly-chosen subjefitsm
the larger group or groups. These are only apprate solutions to the unequal-size problem
but unless the samples are very smatheir sizes are very different (in which instasithe
whole study is of questionable validity), the majesults of these two methods may be
reasonably similar

For acrossover trialof the effects of two treatments, X and Y, condddby randomly allocating
the subjects to two groups with a different seqeesfdreatments (X first or Y first), the
program performs gactorial analysis of variance for a mixed designd displaysnean values
andconfidence intervals for the mean differebegween treatments (adjusting for sequence)
Analyses of simple effe@se also performed - a separate analysis, in gzgience of
treatments, of the effect of treatment, and a s¢panalysis, for each treatment, of the effect
the order of treatments. The effects of the treatmim the first period are compared, (with
confidence intervals for their difference), for ufsa "period effect”, e.g. a persistent carry-ove
effect of the previous treatment, is suspected

The standard procedure used to analyze a cross@les appropriate if the numbers in the tw
sequence groups are equal. If they are not, trgrgamocan equalize them bgmoving
randomly-selected subjedt®m the larger group, thus converting it to a derdbut still random
sample

S

are

of

=

Between-subjects factorial analysis of variance (factorial-design studies)

This analysis of variance assumes a normal digtoibun the underlying population, and similar
variances in the subgroups. It evaluates the effieeach factor, and the presence of interaction
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between them. A significant result for a factoriaadesthat at least two of the levels of that
factor represent populations with different mealuea

The analysis is supplemented by the display of nwelures and their 90%, 95%, and 99%
confidence intervals, and by test&isher's LSD (least-significant-difference) tabie Scheffé
test,and Tukey's HSD ((honestly-significant-difference) tetfhat compare the means at
different levels. These tests are not performeldffactor has only two levels, since the F value
shown for the factor in the analysis of variandd@ddhen represents the comparison of its two
levels. Fisher's LSD test is approprifdeplanned tests of a priori hypotheses

Factorial analysis of variance for a mixed design (crossover trial)

In a crossover study, this analysis of variancésdedh the effects of two factors: A, the
sequence of the treatments (a between-subjects)aahd B, the specific treatment (a within-
subjects factor comparing treatments X and Y, wikeaad Y may belifferent treatments, or a
treatment and placebo).

The results for factor A represent the effect ef sequence, which may be due to time-related
changes, such as growth, seasonal changes, oundtaditto the measurement, as well as to a
possible carry-over effect of the previous treathiietme "washout period" between the
treatments was insufficient. The "between-subjesUilt for factor A represents the effect of
the sequence without adjustment for the treatnzamt the "within-subjects" interaction result
for AB represents the effect of the sequence pemitid adjustment for the treatment (Diaz-
Oriarte 2002).

The result for factor B represents the variatidrtattable to the treatment, adjusting for the
effect of the sequence

The analysis is supplemented by the displayeén valuegfor each treatment in each
sequence) and their differences, and 90%, 95%98#aconfidence intervals for tlmeean
difference between treatmerfgljusting for the period effect).

A comparison is performed of the effects of the treatments when they are applied in the first
test period; significance is tested and 90%, 959@,%% confidence intervals are computed for
the difference between their effects. This congmarimay be helpfuf the results suggest a
carryover effect

Analyses of simple effects

The analyses of simple effects compare the levfeach factor in turn, at a given level of the
other factor.

These analyses may be useful if there is signifizaaraction between the factors
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Measures of magnitude of effect

Three measures of the magnitude of the effect -the strength of the association between the
independent variable (represented by the variomplkes) and the dependent variable — are
computed

Omega-square(?) is an estimate of the proportion of variabilifytioe dependent variable that
is associated with the two factors and with thetieriaction (Sheskin 2007: 1146). Two versions
are computed standard omega-squaredhich assesses the effect on total variabilitgl an
partial omega-squaredvhich is said to be more meaningful because bgitianot attributable

to the factor under consideration is eliminatedrfibe total variability. By Cohen's criteria, a
value of 0.1379 or more indicates a large effex,90.0588 or more (but less than 0.1379)
indicates a medium effect size, and 0.0099 or rtlmseless than 0.0588) indicates a small effect
size (Sheskin 2007:1149). A zero or negative valdeate absence of an association

Cohen's f indexSheskin 2007; 1149-1150) is a "standard deviaiistandardized means". By
Cohen's criteria, a value of 0.4 or more indicatésrge effect size, 0.25 or more (but less than
0.4) indicates a medium effect size, and 0.1 orenfout lesshan 0.25) indicates a small effect
size .

Cohen (1988) warns that the above criteria shoeldded only when there is no better basis for
evaluation

Heterogeneity of variances

The analysis of variance is based on assumed haraibgef the variances. The program
usually uses thBrown-Forsythe test for heterogeneity of varianeesich does not assume
normal distributions. If there are only two valuesach group, this test is not feasible, and it is
replaced byHartley's Fmax test

A low P value indicates that the variances in ttoaigs are not similar

It has been suggested that if there is signifibaterogeneity, a level lower than 0.05 should be
used when evaluating hypotheses based on the enalysariance (Sheskin 2007: 1144).

Unweighted-means procedure (for unequal sample size  s)

The unweighted-means procedure (Sheskin 2007: 1158; Keppel 1991: 288-291) for
analysing a factorial-design study replaces thieiht sample sizes of the groups with their
harmonic mean. The results are roughly equivatethdse of the standard procedure if the
differences in sample size are slight, but theybtased — th& values derived from the analysis
of variance tend to be raised, leading to the sstggethat P values of 0.025 should be required
if a 5% level of significance is desired (Keppep19288). The inaccuracy is less marked if
both factors have two levels (Maxwell 2004: 335).
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Because of the bias, a standard analysis is alborped, after equalizing the sample sizes by
deleting randomly-chosen subje@itsm the larger group or groups, thus converthrent to
smaller but still random samples; but this obvigugWers the power of the tests. These two
analyses may suffice for most purposes.

If the inequality of sample sizes is a reflectidrselection bias (e.g. due to a high mortality in
one group), neither analysis may be appropriate.

METHODS

Between-subjects factorial analysis of variance, an ~ d comparison of means

The method is described bipter alia) Sheskin (2007: 1122-1128, equations 24.1 - 7.27).

The means at different levels of a three-leveldaete compared Wyisher's LSD testSheskin 2007: 1134-1136)
and by theScheffé tesindTukey's HSD tegtising formulae derived from equations 27.38-2°a868 27.45
respectively). The HSD test uses critical valuws <.001, P<0.01, and P < 0.05 from Table B5af1998
Factorial analysis of variance for a mixed design

The method is described by Sheskin (2007: 116731172

Confidence intervals for mean values and for diffe rences

Confidence intervals for mean values are estimhyettie method described by Sheskin (2007: 115dhgu
equation 21.48

In a crossover study, the confidence interval fieriean difference between treatments is estinigtéioe method
described by Sheskin (2007: 174-176; equationsA2-727.81).

The comparison of treatments when they are appli¢ige first period usestaest for two independent samples
(Sheskin 2007: 429 and 1181); the confidence iaterfor the difference are estimated by Sheski'sigon
11.17.

Analyses of simple effects

The method is described by Sheskin (2007: 114131143

Measures of magnitude of effect

These measures are computed by equations 27.53-@@r'omegasquared), 27.57-27.59 (for the adjustedega
squared), and 21.45 (for Cohehiadex) of Sheskin (2007). Cohefiidex is not computed dmegasquared is
negative.

Tests for heterogeneity of variances

TheBrown-Forsythe tess described by Keppel (1991: 102-104) and Ske&®7: 910-912).

Hartley's Fmax testwhich is based on the ratio of the largest tostiallest group variance, is described by Sheskin
(2007: 1143-1144, and 907-908).
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Deletion of randomly-selected subjects

For this purpose the program uses a pseudo-randamber generator described by Wichman and Hill (3985
Extensive statistical tests have demonstratedtttissical soundness of this algorithm, which desieach number
in turn from three seed numbers (in the range @,86), which it modifies for subsequent use. iahitalues for
the seed numbers are generated by Delphi's intamittom-number procedures, namely RANDOMIZE, which
derives a preliminary seed from the system clook, RANDOM, which is used to generate three randomivers
from which the required seed numbers are compubedphi's RANDOM procedure is augmented by an aoloki
randomizing shuffle, using the algorithm of Baysl @urham, as described by Press et al. (1989: 2¥%-2

The formula for each selection is
truncRM) + 1
where Ris a random number in the range B< 1
M = the original number of subjects in the group

The same subject may be selected more than ontcprduriously-selected subjects are filtered out
Unweighted-means procedure

The unweighted-means procedure is described byk®h@07: 1153-1154) and Keppel (1991: 288-294, 2hd
543).
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P. SAMPLE SIZE FOR REGRESSION ANALYSIS

This module estimates the sample size required gdmple or multiple regression analysis,
using rules-of-thumb based on the number of ptedidi.e., independent variables) and the
expected strength of the association.

The program can report sample sizes for tests efvelR — thecoefficient of determination
(i.e., the square of the multiple correlation cméht) differs from zero, and of whether a
partial correlation coefficienfi.e., the correlation between a single prediand the
dependent variable, holding the other predictorstant) differs from zero.

The number of predictors must be entered, togetitarthe expected value & or the expected
value of the partial correlation coefficient, ath these expected values.

Results are presented not only for the enteredesadtR? or the partial correlation coefficient,
but for values that that have been suggested (Cb®@8) as indicative of small, medium, and
large effect sizes, and for a very large effeat.siz

The program uses simple rules-of-thumb to estimatémal sample sizes for tests with a power

of 80% and a significance level of 0.05. The rudes based on the expected strength of the
association as well as the number of predictord,aaa closer to sample sizes provided by power
analytic techniques than earlier rules-of-thumbeldasnly on the number of predictors, such as
the rule (Harris 1975) that the required sample 8250 more than the number of predictors, or
rules (Schmidt 1971) that it is 15 to 25 timestenber of predictors.

The choice of a power of 80% is based on the id&zhén 1988) that typically across the
behavioral sciences, a 4 to 1 ratio reflects thetive seriousness of a Type | error to a Type Il
error, so that iblpha= 0.05, the probability of a Type Il error sholiel set at 0..20.

The following values are used as indicative of affeize, both foilR* and for squared partial
correlation coefficients: 0.02 (small), 0.13 (med)u0.26 (large), and 0.50 (very large).

A rule suggested by Green (1991) is usedRorThe results agree moderately well with sample
sizes determined by power analytic methods. Foraraid effect sizes there are no discrepancies
exceeding 5% if there are up to 20 predictors. $toall effect sizes the rule is reasonably
accurate if there are few predictors, but is oweredes the required sample size if there are over
20 predictors. For a large effect size, the samjze is underestimated, but only slightly if there
are few predictors.

Rules suggested by Green (19191) and Maxwell (200@) used for partial correlation

coefficients. Their validity depends on the corielas between the predictors. Their
formulations and results are similar.
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Maxwell et al. (2008) point out that these sample sizes may peogpate if the purpose of the
study is to appraise the significance of findirtyg, may often underestimate or (sometimes)
overestimate the sample size required to provideige estimates of parameters (i.e., with
narrow confidence intervals).

Optionally, the program will inflate sample sizes dompensate for the probability that some
members of the selected samples will be lost,l=gause of failure to locate addresses, refusal
to participate, or missing data. This requires eonfrthe expected non-inclusion rate (%). This
inflation does of course NOT compensate for possielection bias

METHODS

The method used fd&®* (Green 1991: page 504) is:
Minimum sample size £/
where L = 6.4 + 1.681— 0.0517

m = no. of predictors

=R/ (1-R)

The formulae used forartial correlation coefficient (p) are:

Minimal sample size @ + m— 1 (Green 1991: page 507)

where a = 390, 53, or 24 fop values of .02, .13 and .26 respectively
a=8 /p/ (1 -p)] for other values op (page 508)

and

Minimal sample size = [7.85(1p)] / p + m— 1(Maxwell 2000: formula 9)

where m = number of predictors.

If a non-inclusion rate is entered, the prograntates sample sizes by multiplying the computed
sample sizes by
1/[1-N/100)]
whereN = non-inclusion ratéo
before rounding them up
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