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WHATIS is a WINPEPI program (Abramson 2004), pdrthe PEPI suite of computer
programs for epidemiologists. (“PEPI” is an acnonipr “Programs for
EPIldemiologists”.)

WHATISisa"ready reckoner” utility program, providing an expression evaluator
and calculatorsfor p-values (and their inverse), confidenceintervals, and time
spans. It has four modules.
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FINDING WHAT YOU WANT

FINDER.PDF (provided with this program) is an alphabeticaler that identifies the modules (in all
WinPepi programs) that deal with a specific procedur kind of study. It is called up by pressirjyd¥
clicking on “Finder” in any WinPepi program, or on the FINDER icondaran be printed for easy
reference.

WORDS OF CAUTION

This program offers more options than most uselisneed, and may display more results than areeuke
Ignore the options and results you don't require.




HOW TO USE WHATIS

WHATIS can be run in any version of Windows excéfitdows 3.

Choose a module, by clicking on its name in the top menu, anddwailthe on-screen instructians

Recalling results:

Click on“View” in the top menu to display the current sessiorevipus results

Pasting results:

Results shown on the screen are automatically ddpi¢he Windows clipboardrom which they can be
pasted into a Microsoft Word or other text filetla site of the cursor (usually by press8igft-Insertor
Ctrl-V. To ensure proper alignment of tabulated resul&parier or similar font should be used in the text
file. If the current session’s previous results arelkeddbyclicking on“View” ), text can be marked (drag
the mouse over it with button pressed) and comdtie clipboard (by pressir@trl-Insert or Ctrl-C) for
pasting elsewhere.

Adding comments:

Click on “Note” in the top menu if you wish to add explanatoryrcoents to be placed in the clipboard,
saved, or printed with the results.

Saving results:

By default, all results of Pepi-for-Windows progmuare saved in PEPL.TXT in the Winpepi folder, vath
warning if it exceeds 500K. Results also go to PB®RP (for display in the 'View' option); this filmay
be overwritten unless it is renamed on quitting WHZ. Click on “Saving” (in the top menu) to seeth
default procedure or to alter it, or to find a luatthat opens PEPI.TXT (which can also be accésged
clicking on “Results in the Winpepi portal).

[Results saved in earlier installations may be tbimC:\PEPI.TXT].

TXT files can be combined by usid@INTEXT, supplied with the Winpepi package.

Printing:

Click on "Print". If this fails, a simple solutias to paste the currently-shown results (whicheha
automatically been copied to the Windows clipboantt) a Microsoft Word or other text program, and
print from there. To ensure proper alignment ofitated results, a Courier or similar font shouldused
in the text file. Results can also be printed frome of the files in which they are automaticallyesd e.qg.
PEPILTXT.



A DO-IT-YOURSELF THREESOME

1. The WinPepi suite afomputer programs for epidemiologists, with theanmals. Can be downloadeg
free at www.brixtonhealth.com

2. “Research Methods in Community Medicine: Susydgpidemiological Research, Programme
Evaluation, Clinical Trials” (J.H. Abramson and Z.Abramson), sixth edition. John Wiley & Sons, 200

3. “Making Sense of Data: A Self-Instruction Mahaa the Interpretation of Epidemiological Data’HJ
Abramson and Z.H.Abramson), third edition. Oxfo@kford University Press 2001.

]

HOW TO OBTAIN PEPI PROGRAMS

All WINPEPI (PEPI-for-Windows) and other PEPI grams can be downloaded free. The latest vers
of WINPEPI programs — currently COMPARE2, DESCRIBHCETERA, LOGISTIC, PAIRSetc,
POISSON, and WHATIS — can be downloaded from wwixtbnhealth.com. The latest release of Vers
4 of PEPI, which contains over 40 DOS-based progrémhich can be used in Windows) can be
downloaded from www.sagebrushpress.com/pepibook.htm

COMPARE2, DESCRIBE, ETCETERA, LOGISTIC, PAIRSefQISSON, and WHATIS are distribute
with manuals (as computer files). A printed marigalvailable for the earlier DOS-based programs
(Abramson and Gahlinger 2001)

WINPEPI programs are provided with no liability to usersand without any warranties, whether
expressed or implied. They are copyrighted, but may be freely copied and distributed for personal
use; they may not be exploited commer cially without permission.
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CALCULATOR

CALCULATOR

This is anexpression evaluatpwhose special feature is that it can save upltealues
and 24 formulae, storing them in a disk file thatreates for this purpose, enabling
stored results, constants, and formulae to beleecahd used (in the same or a
subsequent session) by entering labels (a, b,teat.yepresent them. This avoids
repeated entry of the same numbers (e.g. populdéoominators), facilitates the
performance of calculations in stages (by savitgrmediate results for use in the next
stage), and permits recomputation of stored forejulaing new data.

Expressions
Enter the expression to be solved, e.g.:
1367+6755
Spaces are not permissible within expressions. d/sapitals is optional. Numbers can
optionally be entered in scientific notation,.eag 1.3E6 instead of 1300000, or 1.3E-4
instead of 0.00013.
Two or more expressions may be entered, separgtspdoes, e.g.:
sq(234.2) sq(638)
Optionally, alabel may be attached to any expression, to store tlwe & formula. If
a=sq(234.2) b=sq(638) c=sgrt(atb)
is entered, the three results are stored as adly;,aespectively, and the formula
sgrt(a+ b) is saved agdc. A list of stored values and formulae can be bhbugp by
clicking on “Memory”.
The number of decimal places displayed can be @tang
Any number of nested parentheses may be usedxdonme
sqrt(7x(43-(62/(7.4-sqr (1.44-0.5)))))
The values in the innermost parentheses are conhfitde and multiplication and

division are performed before addition and subtoactd+5*6-3*273/(8-1) is treated as
4+(5*6)-(3*(2"3)/7).



CALCULATOR

Symbols and functions

The following symbols may be used:

+ addition

- subtraction, or a negative value
*, X | multiplication

/ division

A

exponentiation; 2273 is 22 to the power of 3,
22-cubed; 227(1/3) is the cube root of 22; 22
1) is the reciprocal of 22, 1.&/22.

or

M-

factorial; this must follow the value to which it
refers

sqrt(45-22).

sq, sgr square
sort square root
In, log natural log
exp antilog of natural log
lg log to base 10
alg antilog (exponential of log to base 10)
abs absolute value
arctan arctangent
cos cosine
sin sine

tan = sin/cos
cot = 1/tan
arcsin(x) | = arctan(x/(sqrt(1-sqr(x)))
Sec = 1/cos
COSeC = 1/sin
arccos(x) | = arctan(sqrt(1-sqgr(x))/x)

The following functions may be used; they mustdilied by a value or expression in
parentheses, e.gq(12.1) or

Arctan, cos, and sin refer to radian$ £Ipi/180 radians). If other trigonometric functions
are needed, the formulae are:



CALCULATOR

Constants

Two constants may be used (in addition to thoses&tbelling values):

e 2.71828...; the base of natural logs
pi 3.14159...

Labels (for storage of values or formulae)

To store a value or formula in memory, all thatchbe done is to prefix a label. The

label may be any letter except or ‘x’, and must be prefixed to the value or formula,
with ‘=" and no spaces, e.g. (for a valle)1.334 or (for a formulal=In(4.3)x4. The
entered or computed value will then be “remembeteadil it is erased or the label is re-
allocated. The label can be used to represenaiine in subsequent expressions entered
on the same line or when WHATIS is used again, hérein the same computer session
or a later one.

Constants, such as population denominators focaleilation of rates, can be labelled
and stored for later use.

The use of labels avoids repeated entry of the satoe. For example, suppose you
wish to compute 95% and 99% confidence limits feale of 3.468, with a standard
error of 1.213, using the formulae

Lower 95% limit = 3.468 - (1.213 x 1.96)
Upper 95% limit = 3.468 + (1.213 x 1.96)
Lower 99% limit = 3.468 - (1.213 x 2.576)
Upper 99% limit = 3.468 + (1.213 x 2.576)

One way is to enter the four expressions in exdb#dyabove format:
3.468-1.213x1.96 3.468+1.213x1.96 3.468-1.213x2.576 3.468+1.213x2.576

(Note that "3.468-1.213x1.96" is equivalent to 6841.213x1.96)", because
multiplication is performed before addition.)

To avoid repeated entry of 3.468 and 1.213, lafgetpa andb) can be attached to these
two values, for use in subsequent formulae:

a=3.468 b=1.213 a-(b* 1.96) a+(b*1.96) a-(b*2.576) a+(b*2.576)

Labels can also be attached to formulae. The flarwan then be recalled and
recomputed on a subsequent occasion by putting f@nhof the label. In the above
example, the four formulae might be labelled fh,gand i:

a=3.468 b=1.213 f=a-(b* 1.96) g=a+(b* 1.96) h=a-(b* 2.576) i=a+(b* 2.576)



CALCULATOR

The computed values are then stored as f, g, n ahlde formulae are stored as @f, @g,
@h and @i. To compute the confidence intervals.$55 (standard error, 2.222) it is
enough to enter these two new values of a anddoinaoke formulae f, g, h, and i:
a=5.555 b=2.222 @f @g @h @i
The use of labels also permits complicated comjuisto be done in stages -
intermediate results can be labelled for use irssgbent stages of the calculation,
performed on the same line or by running the catoulagain. As a simple example of a
‘chain’ of formulae:
p=4 g=p*3 r=9g/2 s=sq(r)/2

The stored values will then be=4; g=12;r=6;s=18. In additionp*3 is saved agiq,
g/2 as@r, and sqg()/2 as@s.

When a formula is recomputed, so are all the vigagpecifically mentioned in it. After
entry of the above chain, subsequent entry of

p=2 @r

will changep to 2 and recompute bothandr (q is recomputed because it is mentioned
in formula @r), yieldingy=6 andr=3. But entry of

p=6 @s
will not recomputes correctly, because althouglis specifically mentioned in formula
@s, q is not (and the previous valuemfi.e., 12) will therefore be used. For safetysit
important to specify all the formulae in a chaire-

p=6 @q @r @s
This will change the value @f and correctly recomputg r, ands.

A label prefixed by @ cannot be used in an expoassi

P=8 @q/2 is wrong
P=8 @q g/2 is correct

A list of the stored values and formulae can be brought up by clicking on “Neyh.
Entry off= g= will erase the specific values f and g.
Factorial function

The factorialn! is the number of possible arrangementa wéms; e.qgif there are three
items @, b andc), 3! =6, i.e. &c, acb, bac, bca, cab andcba.



CALCULATOR

The program uses Brenner's algorithm (Ball 1978) 24 compute factorials for
numbers up to 275 and Stirling's approximation (iR@n and Boice 1982: 26) for larger
numbers. (We are grateful to Ray Simons for brigdsrenner's procedure to our
notice).

The program can compute factorials for positivegets up to 1,754. Factorials are also
displayed for fractional numbers; these may beflilalpgammafunctions are required, since
the factorial of any positive numbemay be taken as tigammafunction at pointxX + 1)
(Hoel 1984: 88; Abramowitz and Stegun 1970: 255).

Permutations and combinations

The program can compute permutations and combiratidhe total number of items in
the setis up to 1,754.

The number of possible subsets d@ems (ignoring their arrangement) drawn fromta se
of nitems is combyr); for example, ilnh = 3 andr = 2, there are comb(3,2) = 3 possible
subsetsq andb, a andc, b andc); comb,r) is the binomial coefficientr{'overr' or n
binomialr'). The number of possible arrangements of a stibfsdétems drawn from a
set ofn items is permy,r); for example, iln = 3 andr = 2, there are perm(3,2) = 6
possible arrangemen(ab, ac, ba, bc, ca andcb).

The formulae are:
perm(n,r) =n!/(n-r)!
comb(n,r) = perm(n,r) / r!



P-VALUE

P-VALUE

This module displays tharobability (P, p-valug corresponding to a given valueof
(the standard normal deviatg)chi-square oF.

It provides the one- and two-tail@dcorresponding to absolute valuezaindt, and one-
tailedP for values othi-square anér. For thez andt distributions, the program providgs
three p-values: one-tailed (the computed value) pfwo-tailed (obtained by doublirg
to a maximum of 1.0), and one-tailed (B)- The last value is of interest if the

association shown by the data is opposite in dorc¢b that specified in the alternative to
the null hypothesis.

The program also computas/erse probabilitiesi.e. the zt, chi-square, oF value
corresponding to a given p-value. To obtainZlwet value for a one-taileR, the p-
value should be multiplied by two before it is eate

The program also provides te@andard normal cumulative functi@orresponding to a
value of z.

The program can also calibrate a P value to contpet®8ayesiaminimum posterior
probability of the null hypothesis.

Minimum posterior probability of the null hypothesis (Bayes)

A P value is "the probability, under the assumptidbno effect (the null hypothesis), of
obtaining a result equal to or more extreme thaatwias actually observed” (Held
2010); i.e., it is the probability of obtaining dference (or a trend, or a departure from
zero, or a departure from homogeneity, etc., depgreh what effect was tested) that is
equal to or more extreme than what was actuallgmes. Bayesian statisticians claim
that a P value may be misleading because of ithtaipretation as the probability of the
null hypothesis being true (Hubbard and Bayarri®0and its consequent use as the
basis for rejection or non-rejection of the nulpbthesis

Instead, they suggest use of theimum posterior probability of the null hypothgsi
derived from the P value by use of a Bayes facd@mofdman 2001). This "calibration" of
the P value requires entry of the probability (ptmthe test) of the null hypothesis. The
effect of varying the prior probability can be exaed by repeating the procedure; this
repetition is recommended in order to see the effethe choice of a prior probability
and to determine robustness or sensitivity to tiwoe of priors (Berger and Sellke
1987). The higher the prior probability of the najfpothesis (i.e., the lower the prior
plausibility of an association), the higher will thee minimum posterior probability of the
null hypothesis, and the less convincing will be &vidence for the association.



P-VALUE

Reliance on the P value usually exaggerates tlieeee against the null hypothesis
(Berger and Sellke 1987, Hubbard and Lindsay 208&)iance on the minimum
posterior probability of the null hypothesis rathigan the P value provided by (for
example) statistical test comparing two proportions oesanay therefore be
particularly helpful when (as is often the case)tfinimum posterior probability exceeds
the P value. If the minimum posterior probabibifythe null hypothesis is large, the null
hypothesis will not be rejected. However, a smatlimum posterior probability does not
necessarily mean that the actual posterior proiabfithe null hypothesis is small
(Berger and Sellke 1987).

The program computes the minimum posterior proiigtiy the Sellke-Bayarri-Berger
procedure (Sellket al.2001), which Held (2010), who provides a nomoglased on
the procedure, calls "perhaps the simplest and mustive calibration”. Its use is
especially recommended if there is no explicitraldive to the null hypothesis (Sellké
al. 2001).

The program displays the minimal Bayes factor ~the minimal ratio (under certain
conditions) of the posterior (data-based) odd&efriull hypothesis to the prior odds.
The lower its value, the stronger is the evidergagrest the null hypothesis. The
following guidelines (Jeffreys 1961) are often used

<0.01: decisive support

0.032-0.010: very strong support

0.10-0.032: strong support

0.32-0.10: substantial support

1.00-0.32: not worth more than a bare mention

>1.00: less credible after than before the study

METHODS

Thenormal and t distributiorfunctions respectively are derived from FORTRAMtines by Hill (1973)
and Cooper (1968). The p-values coincide with saashdiable values closely, to within 0.00001 in gahe

Thechi-square distributiorfunction is based on formula 26.4.8 of Abramoveitel Stegum (1970). If
there is a single degree of freedom, the normalibigion function is employed. If the degreedreiedom
are greater than 60, the Wilson-Hilferty approximats used (Abramowitz and Stegum 1970: formula
26.4.17). The p-values coincide with standardeaflues to within 0.0001 in general.

TheF distributionfunction is derived from FORTRAN routines by Crtral. (1977) and Majumder and
Bhattacharjee (1973), and employs a function (‘Alga- the logarithm of thgammafunction) derived
from a FORTRAN routine by Pike and Hill (1966). elp-values coincide with standard table values to
within 0.001 in general.

Theinverse F distributionformulae are derived from 26.5.22 and 26.6.15 lofafnowitz and Stegum
(1970). Since this inverdedistribution function is less accurate than Ehdistribution function, its
accuracy is enhanced by adapting its results teetiod the latter function. After initial estimatiof F

from P, the corresponding p-value is back-estimated ffomnd the= value is increased or decreased until
its corresponding coincides with the entered p-value. Thealues coincide closely with tabulated
values. If the numerator degrees of freedom = Baauratd- value is calculated from thalistribution by
the formula

10



P-VALUE

F = ([P/2,DF2])*

where DF2 = denominator degrees of freedom (Diem 1970: 167).

Theinverse normal distributiofunction is derived from a FORTRAN routine by Odetd Evans (1974).
TheZ values approximate standard table values vergbtpto within 0.00001.

Theinverse t distributiorformula is given in section 26.7.5 of AbramowitmaStegum (1970). Thet
values coincide with standard tables to two deciotates for degrees of freedom greater tharP2=f.05

or more, and for degrees of freedom greater thénP7= 0.0001. The precision is decreased with smaller
p-values and increased with higher degrees of tneed

Theinverse chi-square distributidiormula is derived from a FORTRAN routine by Bastl Roberts
(1975) and employs a procedure to calculate thenptetegammaintegral as described by Bhattacharjee
(1970). The chi-square values generally coincidh the table values to three decimal places.

The standard normal cunul ative distribution functions use code published by
Graene West (2004)

Minimum posterior probability of the null hypothesis

The program uses the procedure suggested by $lde(2001), as summarized by Held (2010):

BF =-2.718P.In(P) if P < 1/ 2.718; otherwisd3F = 1
MPP=1/{1+1/[BF-Q)/(1-Q]}

where P =P value
Q = prior probability of the null hypothesis
BF = minimum Bayes factor
MPP = minimum posterior probability of the null hypotig

11
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C.I. (CONFIDENCE INTERVALS)

This module estimatenfidence intervalfor a variety of statistics:
1) a proportion

2) arisk, or a measure with a number-of-individudénominator
3) arate with a person-time denominator.

4) arisk ratio (ratio of measures with number+udividuals denominators)
5) a rate ratio (ratio of measures with person-tieeominators)

6) a difference between proportions (independetat)da

7) a difference between proportions (paired data)

8) a difference between rates (with person-timeodenators)

9) an odds ratio (independent samples)

10) an odds ratio (paired samples)

11) a mean, standard deviation, or variance

12) a Poisson variate

13) a ratio of two Poisson variates

14) a statistic whose C.I. can be estimated dydéaim its S.E.

15) a statistic whose C.I. can be estimated fraarS. of its log

It can also compute an approximatmfidence leveor values in the ranges at or above
or at or below, any chosen point; this point migat(say) the lowest rate ratio that a
study was designed to detect (hence providing atgute for power calculations after a
study's completion), or the highest rate ratio reégd as trivial

Confidence intervals

In many instances exact 90%, 95%, and 99% Fishadsexact mid-P intervals are
provided. Many statisticians recommend the usexaéemid-P intervals (Berry and
Armitage 1995).

1. Proportion

In most instances exact Fisher's and mid-P contidentervals are provided. If the
denominator is over 30,000 or (if the numerataeis) over 15,000, exact Fisher's and
approximate mid-P intervals are computed. In samtances only Fisher’s intervals are
computed.

If a numerator of 1 is entered, a second set didemce intervals is computed,
appropriate for use if this is the first succesg.(detection of a case) after a series of

12



CONFIDENCE INTERVALS

2. Arisk, or a measure with a number-of individuals denominator

This option is appropriate for a risk, prevaleraenulative incidence, or any other
measure with a number-of-individuals (not persome)i denominator.

In most instances exact Fisher's and mid-P contidentervals are provided. If the
denominator is over 30,000 or (if the numerataeis) over 15,000, exact Fisher’'s and
approximate mid-P intervals are computed. In samtances only Fisher’s intervals are
computed.

3. Arate with a person-time denominator

Exact confidence intervals are displayed if theee2® or fewer events, and approximate
intervals of there are 20 or more events. CohenYamd) (1994) point out that, unlike the
conservative Fisher’s intervals, the narrower mitiErvals do not guarantee the
nominal confidence interval in all instances, h#se authors suggest that the
discrepancies are of little practical importance.

4. Arisk ratio (ratio of measures with number-of-individuals denominators)

This option is appropriate for comparisons of rigkgvalences, cumulative incidences,
or any other measures with number-of-individuatst frerson-time) denominators.

5. A rate ratio (ratio of measures with person-time denominators)

Exact Fisher’'s and mid-P confidence intervals aowided.

6. A difference between proportions (independent data)

This option is appropriate for comparisons of rigler valences, cumulative incidences,
or any other measures with number-of-individuats (rerson-time) denominators

derived from independent (unpaired) samples.

Three sets of confidence intervals are computed.fifst uses the traditional method,
and is appropriate only if the samples are large dther two (using the Wilson score

7. A difference between proportions (paired data)

This option is appropriate for comparisons of datel proportions, i.e. comparisons
based on paired data.

Confidence intervals are computed by two methodke-traditional large-sample

procedure, and a procedure (based on Wilson’s sctaevals) that is appropriate for
small samples also, and is recommended by Newcamtéltman (2000).

13



CONFIDENCE INTERVALS

To compare the proportions of “Yes” in two matclsadnhples, the pairs must be
tabulated, and the numbers of “Yes-Yes”, “Yes-Ndlp-Yes”, and “No-No” mpairs

must be entered.

8. A difference between rates (with person-time denominators)

The standard error of the difference and the cenfié intervals are reported.

9. An odds ratio (independent samples)

Exact Fisher’'s and mid-P confidence intervals ampmuted.

Enter the numbers of “Yes” and “No” observationgach sample: for a comparison of
cases and controls, enter the numbers who are edosl unexposed to the factor under
study; in a study in which exposed and unexpoagatptes are compared, enter the
numbers with and without the outcome condition.

10. An odds ratio based on paired samples

Appropriate for an odds ratio based on (for exajnplmatched case-control study.
Exact Fisher’'s and mid-P confidence intervals ammuted.

Enter the numbers of pairs with discrepant findjregg. (in a case-control study) the
numbers of “case exposed, control not exposed™eask not exposed, control exposed”
pairs.

11. A mean, standard deviation, or variance

Confidence intervals are computed for the meangdstal deviation, and variance of a
distribution if the mean and sample size are edigogether with either the standard

deviation or the standard error of the mean.

To obtain confidence intervals for a mean onlys gufficient to enter it with its standard
error.

To obtain confidence intervals for a variance onlyly the variance and sample size are
required.

12. A Poisson variate

Appropriate for occurrences assumed to follow a8 distribution, e.g. the number of
new cases of a rare disease in a population.

Enter the number of “randomly occurring” events.

14
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13. A ratio of two Poisson variates

Appropriate for a ratio of two numbers of occurrenthat are assumed to follow a
Poisson distribution.

14. A statistic whose C.I. can be estimated directly from its S.E.
Appropriate if an approximately normal distributioan be assumed.

15. A statistic whose C.I. can be estimated directly from the S.E. of its log
Appropriate if an approximately lognormal distrilaut can be assumed.

Confidence levels for values above/below a specific point

The program computes an approximate confidencé feveneasurements at or below,
or at or above, a chosen specific point. The sadiegbint is included in both ranges — at
or above” and “at or below” — since the distribatis assumed to be continuous (Zar
1998: 74).The results are not probabilities Goodd&6v).

If the selected point is the measure (e.g. the ,a@dks or risk ratio or difference) that a
study was designed to detect (often referred tdelta”), this procedure may be a useful
substitute for power calculations after a studylbeen performed (Smith and Bates 1992,
1994), since retrospective power calculations leagaestionable validity (Zumbo and
Hubley 1998).

The selected point might also be the highest vala odds, rate or risk ratio or
difference, or other measure, that is regarded\aslt— a value referred to as “zeta” by
Feinstein (1998) or any other value.

The computation assumes a normal distribution ferca difference between rates) or a
lognormal distribution (e.g. for an odds, rateiskratio). It is prudent to regard the
results as approximations, both because of thisgstson and because the computation
assumes that the confidence interval entered isngfric around the point estimate and
that its width is a know multiple of the standardor.

Enter a 90%, 95% or 99% confidence interval forrtteasure, or a point estimate and
standard error. These values may be based onla samgple or on a set of strata or
studies. Crude values or adjusted ones (contrditinguspected confounders) can be
used.

Click on “Normal” if the statistic is a risk diffence or rate difference, and “Lognormal”
if it an odds, risk or rate ratio. The base oa (100, 100, etc, need not be entered.

15
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METHODS

Confidence intervals

1,2. Proportions and rates with number-of-individual denominators

Exact Fisher and mid-P binomial intervals are cote@y a procedure from XLIM (version SP2.5) by A.
Ray Simons.

If the denominator is over 30,000 or (if the nuneras zero) over 15,000, Fisher’s intervals aténested
by a method based on a relationship betweelfr thred binomial distributions (Brownlee 1965). This
provides estimates that are close enough to bededas exact. Zar’'s formulae 24.28 and 24.29 sed u
(Zar 1998: 526).

If the denominator is over 30,000 or (if the numeras zero) over 15,000, approximate mid-P intbrzae
computed by Vollset's formulae (Vollset 1993). Tihemulae for proportiorx/N are:

Lower limit forx = (LF[X] + LF[x+ 1])/ 2

Upper limit forx = (UF[X] + UF[x+ 1]) / 2
where LF andUF are the lower and upper Fisher’s limits.
Vollset found that this method, “proposed to prevah easily computed alternative to the mid-P vatler
has a level of conservativeness in between thefvadd uncorrected score method.” For large
denominators the intervals are almost equal tdrtleemid-P values.

For Vollset's procedurd,F[x] andUF[x] are computed by Zar's formulae 24.28 and 24.29 (R©98:

526), and_F[x + 1] andUF[x + 1] either by Zar's formulae or by Pratt’s apgroation to the exact method
(Blyth 1986). The Pratt method is suggested by3ét|lwho refers to these approximate mid-P interaal
“mean Pratt” intervals. The program uses Zar's falae for proportions with a numerator less than 50,
rates with a base of 10 or 100 and a numeratottiess50, rates with a base of 1,000 and a nunrdes®
than 100, rates with a base of 10,000 and a nuordests than 500, and rates with a base of 10,0600 o
more and a humerator less than 700. Pratt’s fastéinod is used in other instances, when it provides
identical results to Zar's method, at the levepadcision with which the program displays results.

The confidence intervals that are appropriateterfirst success after a series of failures aredas a
geometric distribution, using formula 1 of Georgel &lston (1993).

3. Rates with person-time denominators

Confidence intervals are computed for the numeratssuming that it has a Poisson distribution.

Exact Fisher's and mid-P confidence intervals aspldyed if there are 40 or fewer (for Fisher'spo or
fewer (for mid-P) events, using tabulated valuesifiPearson and Hartley (1966) and Cohen and Yang
(1994), for Fisher's and mid-P intervals respedyivén other instances. Approximate Fisher’'s and-m
confidence intervals are computed, using formulaeided by Rothman and Boice (1982, o. 29; formulae
17 and 18).

4. Risk ratios (ratios of measures with numberrafividuals denominators)

Estimated confidence intervals are computed byrtethod described by Morris and Gardner (2000: p. 58
using a log transformation.

5. Rate ratios (ratios of measures with person-tiferominators)
Exact confidence intervals are calculated by tnggthe ratio of the numerator of one rate to tha sfithe

numerators of both rates as a binomial parant&tand determining its confidence intervals by the
methods described above for proportions. To eséraaionfidence interval for the ratio of rate Rdte
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R2, the upper and lower confidence limitsPadire then substituted férin the formula

(P.D2) / [(1 —P).D]]
6. Differences between proportions (independerd)dat

Fleiss’s large-sample procedure uses formula 2f Heiss (1981). It is based on the normal disttiiou

The Wilson score procedures (Wilson 1927) are desdrby Newcombe (1998a) as methods 10 (without
continuity correction) and 11 (with continuity cection). Formulae provided by Newcombe and Altman
(2000: pp 49-50) are used for method 10. For mefiigdhe program computes the upper and lower
confidence limits for the two proportions by forraal1.26 and 1.27 of Fleiss (1981: p. 14), and gubss
them forL1, L2, Ul,and U2 in Newcombe’s formulae fdr andU (Newcombe 1998a). The computation
of Fleiss’s intervals is based arfthe standard normal deviate).

7. Differences between proportions (paired data)

The large-sample method is described by Fleissi(1f@8mulae 8.14 and 8.15, p. 117). The methoddase
on Wilson’s score intervals is described by Newcerabd Altman (2000, pp 52-54). The two methods are
described by Newcombe (1998b) as Methods 2 and 10.

8. Differences between rates (with person-time denators)

Approximate confidence intervals are calculatedhgyformulae provided by Rothman and Greenland
(1998. p. 239).

9. Odds ratios (independent samples)

Exact Fisher’'s and mid-P intervals are computedrbgfficient algorithm for calculating the coef@aits of
the conditional distribution (Martin and Austin 199using code from David O. Martin’s public-domain
EXACTBB program.

The logit method is described by Morris and Gard@600, pp. 60-62).

10. Odds ratios based on paired samples

The numbers of pairs with discrepant findingsindb, are treated as Poisson variates. Intervals far the
ratio are estimated by regardiag (a + b) as a binomial parameter (Ederer and Mantel 187#jtage and
Berry 2002: p. 157) and computing its confidenderivals. Ifa + b does not exceed 50, exact mid-P and
Fisher’s intervals are computed for this proportiotherwise Zar's formulae 24.28 and 24.29 are ((Zad
1998: p. 526), substitutingfor X (the numerator of the proportion) aad b for N (the denominator). The
required confidence limits atel / (1 —L1) andL2/ (1 —L2), wherelL1 andL?2 are the confidence limits of
al/(a+h).

11. Means, standard deviations, variances

The confidence interval for a mean is computedduirag or subtracting SE, wherd is the upper
(alphal2)th quantile of the distribution withN-1 degrees of freedom. If the sample sidgi§ not entered
but the standard error of the mean is, the norisalildution is used.

The estimation of confidence intervals for the dand deviatiorSDand the varianc8DF of a distribution
is described by Zar (1998, pp 110-111).
The confidence limits for the variance &X1andA/X2, and those for the standard deviation are the
square roots o&A/X1 andA/X2, where
A=~VSDN-1)
X1, X2= the chi-square values, Mt—1 degrees of freedom, corresponding to respective
probabilities of 0.95 and 0.05 for the 90% intey¥ad75 and 0.025 for the 95% interval, and
0.995 and 0.005 for the 99% interval.
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12. Poisson variates

Exact Fisher's and mid-P confidence intervals aspldyed if there are 20 or fewer events, usinglztied
values from Pearson and Hartley (1966) and Cohdrivang (1994), for Fisher's and mid-P intervals
respectively.

Approximate Fisher's and mid-P intervals are coreguf there are more than 20 events, using formulae
provided by Rothman and Boice (1982, p. 29, forradl@ and 18).

13. Ratios of Poisson variates

Intervals for the ratio of Poisson variatasp, are estimated by regardiag/ (a + b)as a binomial
parameter (Ederer and Mantel 1974, Armitage andyB802, p. 157) and computing its confidence
intervals. Ifa + b does not exceed 50, exact Fisher's and mid-Pvialeare computed for this proportion;
otherwise Zar’'s formulae 24.28 and 24.29 are ugad 1998, p. 526), substitutirggfor X (the numerator
of the proportion) and + b for N (the denominator). The required confidence liraitsL1 /(1 —L1) and
L2/(1 —L2). WhereL1 andL2 are the confidence limits af(a + b).

14. Statistic whose C.I. can be calculated fronsits.

Confidence intervals are estimated by adding otraabngz.SE to the statistic, whewds the standard
normal deviate representing the uppEplial2)th quantile of the normal distribution. For a 98%terval
(alpha= 0.05), for examplez = 1.96.

15. Statistic whose C.I. can be calculated fromSte. of its log.

Confidence intervals are estimated by adding otraabngz.SE to the log of the statistic, wherés the
standard normal deviate representing the upgdphé&/22)th quantile of the normal distribution and SEhie
standard error of the log of the statistic; andhttaking antilogs. For a 95% intervalgha= 0.05), for
examplez = 1.96.

Confidence level for values above/below a specific point

The procedure is described by Smith and Bates (19%@ confidence level is the one-tailed P value
associated with the standard normal devigtedlculated by subtracting the point estimate ftbm
selected point, and dividing this difference by stendard error. If a confidence interval is erderes mid-
point (on a normal or lognormal scale, as appro@yiis used as the point estimate for this purptiee;
standard error is derived from the confidence irgker the width of a 95% interval, for exampletdken to
be (2 x 1.96) times the standard error.
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TIMESPAN

This module calculates the elapsed time betweercalendar dates. It may be used for
computing ages, exposure periods, follow-up perisdsrival periods, gestational ages,
etc. Leap years and the variable number of daympeath are taken into account..

“From” and “To” dates must be entered. “Today” caplace either date. If only the year
is entered, the date allocated by the programlysiiu If only the year and month are
entered, the 5day of the month is allocated. Use a “minus” digna B.C. date.

The module can also calculate the dates at a ggaifumber of months, weeks, or days
before and after a given date(entered as the “Faate®).

Julian day numberare displayed. These are serial numbers giveaya, étarting with
Jan f' 4713 B.C. Their computation takes account of gearmade in the calendar
system.

The module may also be used to determine the déneoieek on a given date, by
entering a “From” datand “0” in the “Compute period of” box.

METHOD

The program determines the difference betweenuh&nDay numbers (Press et al. 1989, p. 11) ofwloe
dates.

Intervals expressed in years and months are rouoideldwnwards to two decimal places and one decima
place respectively; the mean lengths of a yeamamicth are taken as 365.25 and 30.4375 days
respectively. The interval in weeks is the intelivadlays, divided by 7 and rounded off downwardsrte
decimal place.
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