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The fixed-effects (FE) meta-analytic confidence intervals for unstandardized and standardized
mean differences are based on an unrealistic assumption of effect-size homogeneity and
perform poorly when this assumption is violated. The random-effects (RE) meta-analytic
confidence intervals are based on an unrealistic assumption that the selected studies represent
a random sample from a large superpopulation of studies. The RE approach cannot be
justified in typical meta-analysis applications in which studies are nonrandomly selected.
New FE meta-analytic confidence intervals for unstandardized and standardized mean dif-
ferences are proposed that are easy to compute and perform properly under effect-size
heterogeneity and nonrandomly selected studies. The proposed meta-analytic confidence
intervals may be used to combine unstandardized or standardized mean differences from
studies having either independent samples or dependent samples and may also be used to
integrate results from previous studies into a new study. An alternative approach to assessing
effect-size heterogeneity is presented.
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Population means �1 and �2 may be estimated from a
study having two independent samples or two dependent
samples. In applications in which the metric of the depen-
dent variable is well understood, a confidence internal for
�1 � �2 will convey important information. In applications
in which the metric of the dependent variable is not well
understood, it may be more appropriate to use a standard-
ized difference between two population means of the form
(�1 � �2)/[(�1

2 � �2
2)/2]1/2, where �1

2 and �2
2 are population

variances (Cohen, 1988, p. 44). Both measures of effect size
are appropriate in studies having either independent samples
or dependent samples.

Confidence intervals for �1 � �2, for designs with indepen-
dent or dependent samples, can be found in many introductory
statistics texts. For designs with independent samples in which
the homoscedasticity assumption (i.e., �1

2 � �2
2) cannot be

justified, a confidence interval for �1 � �2 is obtained with
a Satterthwaite adjustment to the degrees of freedom (see,
e.g., Snedecor & Cochran, 1980, p. 97). Confidence inter-
vals for (�1 � �2)/[(�1

2 � �2
2)/2]1/2 that do not assume

homoscedasticity are given in Bonett (2008a).
Estimates of effect size for a particular dependent variable

are often assessed in several different studies. In study i,

assume that a random sample is obtained from a specific study
population and statistical inference is used to make some
statement about the unknown value of �i � (�i1 � �i2) or
�i � (�i1 � �i2)/[(�i1

2 � �i2
2 )/2]1/2. A more precise estimate

of the effect size might be obtained by combining effect-
size estimates from two or more studies, a practice referred
to as meta-analysis (Glass, 1976). Estimates with greater
precision have smaller standard errors and produce nar-
rower confidence intervals. The main purpose of averaging
effect-size estimates from several studies is to obtain an
estimate of the average effect size that is more precise than
an effect-size estimate from a single study. The confidence
interval for the average effect-size value will often be con-
siderably narrower, and hence more informative, than the
effect-size confidence interval obtained from a single study.
Cohen (1994, p. 1002) has suggested that one reason why
researchers are reluctant to report confidence interval results
for measures of effect size is that the confidence intervals
are often “embarrassingly large.” Meta-analysis is one way
to obtain more narrow confidence intervals. An increase in
external validity is an added benefit of averaging effect-size
estimates from multiple studies.

Bond, Wiitala, and Richard (2003) described a fixed-
effects (FE) meta-analytic confidence interval for an aver-
age unstandardized effect size, � � (�1 � �2 � . . . �
�m)/m. Hedges and Vevea (1998) described an FE meta-
analytic confidence interval for an average standardized
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effect size, � � (�1 � �2 � . . . � �m)/m. The FE methods
assume that the m studies have been deliberately selected
and that statistical inference applies only to the m study
populations represented in the m studies. The average effect
size, � or �, is a meaningful and interesting parameter to
estimate if the population effect sizes are not too disparate
across the m study population. The m sample sizes in an FE
meta-analysis are typically unequal, and it can be shown
that the classical weighted average method of estimating �
or � can be severely biased when the m population effect
sizes are not identical (see Appendix). For this reason,
Hunter and Schmidt (2000) and the National Research
Council (1992) have recommended that the classic FE
methods no longer be used.

Random-effects (RE) meta-analysis methods have been
proposed in an attempt to accommodate effect-size hetero-
geneity. Bond et al. (2003) described an RE meta-analysis
method for analyzing unstandardized mean differences.
Hedges and Vevea (1998) described an RE meta-analysis
method for analyzing standardized mean differences. RE
meta-analysis is fundamentally different from FE meta-
analysis. In an RE meta-analysis, the researcher must
clearly define a very large superpopulation of N study
populations from which m studies have been randomly
sampled. The set of unstandardized population effect sizes
in the superpopulation is �1, �2, . . . , �N, and the set of
standardized population effect sizes in the superpopulation
is �1, �2, . . . , �N. The N population effect sizes are not
assumed to be equal, and the researcher will want to obtain
interval estimates of both the mean and the standard devi-
ation of the N population effect sizes. The traditional inter-
val estimation methods for the mean and standard deviation
of the N population effect sizes assume that the m studies
are a random sample from a superpopulation of N studies
and that the N population effect sizes follow an approximate
normal distribution. To characterize the degree of effect-
size heterogeneity accurately, a narrow confidence interval
for the effect-size standard deviation is required, and a large
value of m may be needed to achieve an acceptably narrow
confidence interval. Furthermore, the traditional confidence
intervals for the effect-size standard deviation perform
poorly under a nonnormal superpopulation of effect sizes
(Viechtbauer, 2007).

The critical random sampling assumption of the RE
methods will almost never be satisfied in practice
(Hedges & Vevea, 1998), and Schulze (2004, p. 41)
warned that the random sampling assumption “is not
feasible in practice and may represent a critical point for
the application of RE models.” The random sampling
assumption in the RE methods cannot be taken lightly.
Without random sampling, statistical inference cannot be
used to generalize from the m study populations to the
superpopulation. Some researchers might argue that the
m study populations could be considered a random sam-

ple from some imaginary superpopulation. However, if
that were the case, then statistical inference to the imag-
inary superpopulation would have limited scientific
value, because the researcher may not be able to clearly
describe the characteristics of the superpopulation for
which the statistical results apply. A detailed description
of the population to which results apply is an essential
component of any scientific study.

Raudenbush (1994, p. 304) has argued that the unreal-
istic random sample assumption of RE meta-analysis
methods is not required from a Bayesian view that
“avoids the specification of any sampling mechanism as
a justification of the random effects model.” From a
Bayesian perspective, the mean and standard deviation of
the superpopulation of population effect sizes are viewed
as parameters of a prior distribution. The weakness of
this argument becomes clear when one tries to describe
the prior distribution in an effort to clearly specify the
target of statistical inference. Conceptually, this Bayesian
prior distribution is no different from the imaginary su-
perpopulation distribution of population effect sizes that
a meta-analyst might conjure up when using an RE
method to analyze a convenience sample, rather than a
true random sample, of m studies.

The above review of FE and RE meta-analysis methods is
disheartening and suggests that the multitude of studies that
apply the standard meta-analysis methods each year (Hunter
& Schmidt, 2004, p. 25) may be producing misleading
results. Bonett (2008b) recently proposed an alternative FE
meta-analysis method, using an unweighted average rather
than a weighted average, for combining Pearson, Spearman,
or partial correlation coefficients across multiple studies.
The method of unweighted averages for correlations is easy
to compute and performs properly under the typical condi-
tions of effect-size heterogeneity and nonrandomly selected
studies. The method of unweighted averages is applied here
for combining unstandardized mean differences or standard-
ized mean differences from multiple studies. The proposed
FE method is general and may be applied to studies that use
independent samples or dependent samples. Unlike the
methods of Hedges and Vevea (1998) and Bond et al.
(2003), the proposed FE method does not require the pop-
ulation variances to be equal within or across the m study
population.

Proposed Confidence Intervals

Let �̂i � �̂i1 � �̂i2 denote an estimator of �i and �̂i �
�̂i/[(�̂i1

2 � �̂i2
2 )/2]1/2 denote an estimator of �i obtained from

study i (i � 1 to m), where �̂ij is a sample mean and �̂ij
2 is

an unbiased sample variance for treatment j (j � 1, 2). The
following point estimator of � � m�1

¥i � 1
m �i is proposed,
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�� � m�1�
i�1

m

�̂i, (1)

and the following point estimator of � � m�1
¥i�1

m �i is
proposed,

�� � m�1�
i�1

m

bi�̂i, (2)

where bi is an approximate bias adjustment. Equations 1 and
2 are both unweighted averages and belong to the class of
analog estimates (Goldberger, 1991, p. 117).

When �̂i is estimated in a study with two independent
samples, we set bi � 1 � 3/[4(n1i � n2i) � 9], which was
originally proposed by Hedges (1981) for a similar measure
of effect size that assumes equal population variances. A
preliminary investigation found that the Hedges bias adjust-
ment also reduces the bias of �̂i. When �̂i is estimated in a
study with two dependent samples, there is no previous
work to suggest an appropriate biased adjustment. In a
preliminary investigation, it was found that that the bias of
�̂i in dependent samples depends on the magnitude of the
Pearson correlation between the ni paired observations and
that setting bi � [(ni � 2)/(ni � 1)]1/2 reduced the bias for
any correlation value. Note that the confidence intervals for
� proposed by Bonett (2008a) for independent or dependent
samples did not employ bias adjustments because the bias of
a single estimator of � is negligible unless the sample size is
very small. However, in a meta-analysis in which many
estimators of �i are combined or compared and the bias of
�̂i may vary considerably across studies because of un-
equal sample sizes, it is best to reduce the bias of each
estimator.

An estimate of the variance of �̂i is

var��̂i	 � �̂i1
2 /ni1 � �̂i2

2 /ni2 (3)

for studies that use independent samples of sizes ni1 and ni2

within study i (see, e.g., Snedecor & Cochran, 1980, p. 96).
For studies that use dependent samples, an estimate of the
variance of �̂i is

var��̂i	 � �̂di
2 /ni, (4)

where �̂di
2 is an estimated variance of the ni difference scores

in study i. Equations 3 and 4 do not assume equal population
variances within studies. Note that �̂d

2 � �̂1
2 � �̂2

2 �
2
̂�̂1�̂2 � n�̂2/t2, where t is the paired-samples t statistic and

̂ is the Pearson correlation of the paired observations. In
meta-analytic research, the analyst may have access to �̂d

2,
n�̂2/t2, or the sample correlation and variances depending on
how the results are reported in each study.

An estimate of the variance of �̂i is

var��̂i	 � ��̂i
2��̂i1

4 /dfi1 � �̂i2
4 /dfi2	/8�̂i

4

� ��̂i1
2 /dfi1 � �̂i2

2 /dfi2	/�̂i
2� (5)

for studies that use independent samples of sizes ni1 and ni2

within study i, where dfij � nij � 1 and �̂i � [(�̂i1
2 � �̂i2

2 )/
2]1/2. For studies that use dependent samples, an estimate of
the variance of �̂i is

var��̂i	 � ��̂i
2��̂i1

4 ��̂i2
4 �2
̂i

2�̂i1
2 �̂i2

2 	/8�̂i
4dfi � ��̂i1

2 � �̂i2
2

� 2
̂i�̂i1�̂i2	/�̂i
2dfi], (6)

where dfi � ni � 1. Equations 5 and 6 do not assume equal
population variances within studies and follow from the
results of Bonett (2008a). Although most studies that use
dependent samples will report sample means and sample
variances, the sample correlation needed in Equation 6 may
not be reported. The sample correlation in study i is equal to

̂i � [�̂i1

2 � �̂i2
2 � (dfi � 1)(�̂i1 � �̂i2)

2/ti
2]/(2�̂i1�̂i2), where

ti is the paired-samples t statistic in study i with dfi degrees
of freedom.

The following approximate 100(1 � 
)% Satterthwaite
confidence interval for � is proposed,

�� � t
/ 2;df�m�2�
i�1

m

var��̂i	�1/ 2

, (7)

where var(�̂i) is given by Equation 3 or 4 and t
/2;df is a
two-tailed critical value of a Student t distribution. For the
case of independent samples within studies,

df � ��
i�1

m �
j�1

2

�̂ij
2 �nij�2��

i�1

m �
j�1

2

�̂ij
4/�nij

3 � nij
2	, (8)

and for the case of dependent samples within studies,

df � ��
i�1

m

�̂di
2 �ni�2��

i�1

m

�̂di
4 /�ni

3 � ni
2	. (9)

The following approximate 100(1 � 
)% confidence
interval for � is proposed,

�� � z
/2�m�2�
i�1

m

bi
2 var��̂i	�1/ 2

, (10)

where var(�̂i) is given by Equation 5 or 6 and z
/2 is a
two-tailed critical z value. In the following section, the
performance of Equations 7 and 10 is compared with the FE
and RE methods of Bond et al. (2003) and Hedges and
Vevea (1998).

Meta-analysis attempts to reproduce the results that
would have been obtained if the raw data from all m studies
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had been available. Equations 7 and 10 possess the impor-
tant characteristic of exactly reproducing raw data results. In
contrast, FE meta-analysis recommended by Bond et al.
(2003) will reproduce raw data results from an m � 2
analysis of variance only if the two-way interaction is
assumed to be zero and the interaction sum of squares is
pooled with the error term (Olkin & Sampson, 1998).
Scheffé (1959, p. 126) described the use of no-interaction
analysis of variance models as a “common but questionable
practice” and explained why this practice should be
avoided. Equation 10 exactly reproduces the raw data re-
sults that would be obtained with the confidence interval
proposed by Bonett (2008a) in an m � 2 design with m
standardizers that are unique to each of the m levels. Note
also that Equation 7 may be expressed as a standard Satter-
thwaite confidence interval for a linear contrast of unstand-
ardized means (see, e.g., Maxwell & Delaney, 2004, pp.
300–301; Snedecor & Cochran, 1980, p. 228).

All the strengths and limitations of the Satterthwaite and
Bonett (2008b) confidence intervals for linear contrast of
means apply to Equations 7 and 10 in the context of a
meta-analysis. Specifically, the Satterthwaite confidence in-
terval performs well with highly unequal sample sizes and
highly unequal population variances. The Satterthwaite con-
fidence interval assumes that the response variable follows
an approximate normal distribution, but its robustness to a
violation of this assumption increases as the sample size per
group increases. With samples sizes of 30 or more per
group, the Satterthwaite confidence interval is remarkably
robust to degrees of nonnormality that are typically encoun-
tered in practice (Bonett & Price, 2002).

Equation 10 requires stronger assumptions than Equation
7. Although Bonett (2008a) demonstrated that the confi-
dence interval for standardized linear contrasts of means can
tolerate population variances that are highly unequal, these
standardized effects may not be meaningful measures of
effect size unless the population variances are at most
moderately unequal. With highly unequal population vari-
ances, an alternative standardizer recommended by Glass
(1976) based on a variance estimate from a single control
group or pretest condition may be more appropriate. If the
Glass standardizer is used in the meta-analysis, Equations 5
and 6 are replaced with the variance estimates for the Glass
standardizer given in Bonett (2008a). As explained in Bonett,
Equation 10 does not share the robustness to nonnormality
property of Equation 7, and increasing the sample size per
group does not mitigate the problem. Furthermore, and perhaps
more important, a meaningful interpretation of the population
standardized effect size requires the response variable to be at
most moderately nonnormal (Bonett, 2008a).

Equation 10 follows the tradition of averaging stan-
dardized effect sizes in which the effect size for study i
has been standardized with sample variances from study
i. Alternatively, one may obtain a confidence interval for

�/�m�1
¥i�1

m
¥j�1

2 �ij
2/2�1/ 2, in which the average unstandard-

ized effect is standardized with the variances from all m
studies. This confidence interval is a special case of the
confidence interval given by Bonett (2008a) and would be
preferred to Equation 10 in applications in which the pop-
ulation variances, both between and within studies, are at
most moderately unequal.

Given the known properties of Equations 7 and 10, Equa-
tion 10 should not be used unless the meta-analyst is convinced
that the response variable is at most moderately nonnormal,
and Equation 7 should not be used if the response variable is
believed to be highly nonnormal and the sample sizes per
group are very small. Evidence of approximate normality may
be obtained from large-sample estimates of skewness and
kurtosis reported in previous studies and not necessarily those
studies used in the meta-analysis. In meta-analytic studies,
evidence of nonnormality is often not provided by the re-
searchers of the original work, and Equation 7 may be pre-
ferred to Equation 10 when sufficient evidence of approximate
normality is lacking. Bond et al. (2003) provided additional
justification for preferring a meta-analysis of unstandardized
means over a meta-analysis of standardized means.

Modeling Effect-Size Heterogeneity

Bond et al. (2003) and Hedges and Vevea (1998) recom-
mended a test of H0: �1 � �2 � . . . � �m or H0: �1 � �2 �
. . . � �m to assess effect-size heterogeneity. Statistical tests of
these null hypotheses are routinely misused; specifically, fail-
ure to reject the null hypothesis does not imply homogeneity of
effect size, and rejection of the null hypothesis does not
imply that there are meaningfully large differences among
the population effect sizes (see, e.g., Bonett & Wright,
2007). Furthermore, tests of effect-size homogeneity are
incorrectly used to select between FE and RE models. It is
common, although inappropriate, to select an FE method if
the null hypothesis of homogeneity is not rejected and to
select an RE method if the null hypothesis of homogeneity
is rejected.

Although Equation 7 does not assume �1 � �2 � . . . �
�m and Equation 10 does not assume �1 � �2 � . . . � �m,
effect-size heterogeneity may be the result of differences in
certain population characteristics that may moderate the
effect sizes. For instance, differences in effect-size values
may be due to differences in population demographics (e.g.,
age, education, social status) or specific aspects of the study
(e.g., type of instructions, time limits, sex of experimenter).
The m effect-size estimators may be expressed as a linear
function of known population characteristics in the form of
a general linear model,

Y � X��ε, (11)

where Y is an m � 1 random vector with typical element �̂i

or bi�̂i, X is an m � q full-rank design matrix that codes
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quantitative or qualitative differences among the m study
populations, � is a q � 1 vector of unknown parameters,
and ε is an m � 1 vector of random sampling errors with
var(εi) equal to var(�̂i) or bi

2var(�̂i) depending on the defi-
nition of Y.

An ordinary least squares (OLS) estimator of � is

�̂ � �X�X	�1XY, (12)

with estimated covariance matrix

cov��̂	 � �X�X	�1X�VX�X�X	�1, (13)

where V is a diagonal matrix with var(εi) in the ith diagonal
element. The variance of �̂k is the kth diagonal element of
cov(�̂), which will be denoted as var(�̂k).

When modeling standardized mean differences, an ap-
proximate 100(1 � 
)% confidence interval for �k is

�̂k � z
/ 2�var��̂k	�
1/ 2, (14)

and when modeling unstandardized mean differences, an
approximate 100(1 � 
)% Satterthwaite confidence interval
for �k is

�̂k � t
/ 2;df�var��̂k	�
1/ 2, (15)

where 
 in Equations 14 and 15 may be replaced with 
/�
to obtain � simultaneous Bonferroni confidence intervals for
any � elements of �.

The value of df in Equation 15 depends on the type of
design within each of the m studies. Let C � (X�X)�1X�
with the kth row of C denoted as c. Let ci denote the ith
element of c. For dependent samples within studies

df � ��
i�1

m

ci�̂di
2 �ni�2��

i�1

m

ci
4�̂di

4 /�ni
3 � ni

2	, (16)

and for the case of independent samples within studies,

df � ��
i�1

m �
j�1

2

cij
2�̂ij

2 �nij�2��
i�1

m �
j�1

2

cij
4�̂ij

4/�nij
3 � nij

2	, (17)

where ci1 � ci and ci2 � �ci.
The above approach differs from the estimated weighted

least squares (EWLS) approach recommended by Hedges
and Olkin (1985, p. 170), in which the weights are ran-
dom variables. The EWLS estimator of � is �̃ �
(X�V�1X)�1X�V�1Y, where V is defined in Equation 13
and cov(�̃) � (X�V�1X)�1. The EWLS estimator will be
more efficient (i.e., have smaller variance) than the OLS
estimator in large samples (Judge, Griffiths, Hill, Lütkepohl,
& Lee, 1985, p. 170), and this fact has been the primary
justification for the exclusive use of EWLS in FE meta-

analysis. However, the performance of a confidence interval
will depend on the mean square error of the estimator. The
mean square error is defined as the sum of the squared
estimator bias and the estimator variance. When the model
(Equation 11) has not been perfectly specified (i.e., one or
more necessary predictor variables have been omitted from
the model), the EWLS estimator will be biased (see Appen-
dix), and its mean square error can be considerably larger
than the mean square error for the OLS estimator. Model
misspecification is the rule rather than the exception, and the
EWLS estimator may be difficult to justify in practice. If X
in Equation 11 is set equal to an m � 1 vector of ones, then
� will equal � or � depending on the definition of Y. Such
a model assumes that the m population effect sizes are equal
and effect-size heterogeneity represents a misspecification
of the model. It follows that the classic FE estimators of �
or � are EWLS estimators and will be more efficient but
also more biased than the OLS estimators proposed here
under effect-size heterogeneity when the expected values of
the weights in the EWLS estimator are not all equal. See
Bonett (2008b, Appendix B) for more details.

Note that �̂k may be expressed as c�Y, a linear function of
the m effect-size estimators. In some applications it will be
more convenient to specify the elements of c directly to
define an interesting linear contrast of effect sizes. For
instance, with m � 6 studies in which the first two studies
have been sampled from populations of college students and
the other four studies have been sampled from noncollege
populations, one might want to compute a confidence inter-
val for the linear contrasts (�1 � �2)/2 � (�3 � �4 � �5 �
�6)/4 or (�1 � �2)/2 � (�3 � �4 � �5 � �6)/4, which are
defined by the contrast coefficients c1 � 1/2, c2 � 1/2, c3 �
1/4, c4 �1/4, c5 � 1/4, and c6 � 1/4.

An approximate 100(1 � 
)% confidence interval for
¥i�1

m ci�i is

�
i�1

m

ci�̂i � z
/ 2�var��
i�1

m

ci�̂i��1/ 2

, (18)

where var(¥i�1
m ci�̂i) � ¥i�1

m ci
2 var��̂i	. An approximate 100(1 �


)% Satterthwaite confidence interval for ¥i�1
m ci�i is

�
i�1

m

ci�̂i � t
/2;df�var��
i�1

m

ci�̂i��1/ 2

, (19)

where var(¥i�1
m ci�̂i) � ¥i�1

m ci
2 var��̂i	 and 
 in Equations

18 and 19 may be replaced with 
/� to obtain � simulta-
neous Bonferroni confidence intervals for any � contrasts of
interest. The value of df in Equation 19 is given by Equa-
tions 16 and 17 for designs with dependent samples and
independent samples, respectively.
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Monte Carlo Studies

The Monte Carlo method was used to compare the per-
formance of Equations 7 and 10 with the competing meth-
ods of Bond et al. (2003) and Hedges and Vevea (1998).
The Hedges–Vevea approach is general and may be applied
to designs with independent or dependent samples. In con-
trast, the Bond–FE and Bond–RE methods were developed
only for designs with independent samples. The Monte
Carlo programs were written in GAUSS and executed on a
Pentium IV computer. The Monte Carlo studies simulated
the FE case in which the m studies cannot be assumed to be
randomly selected from a superpopulation of studies.

Unstandardized Mean Differences

For the parameter � � m�1
¥i � 1

m �i, the performance of
Equation 7 was compared with the Bond–FE and Bond–RE
methods under 2,000 patterns of sample sizes and popula-
tion effect sizes. This Monte Carlo study used homoscedas-
tic normal samples within studies to accommodate the as-
sumption of the Bond methods (recall that Equation 7 does
not require homoscedasticity within studies). The coverage
probabilities and confidence interval width were estimated
from 50,000 Monte Carlo trials within each of the 2,000
conditions. To simplify the presentation of results, the cov-
erage probability and confidence interval widths were av-
eraged over four sets of 250 conditions for m � 5 and also
for m � 10. The minimum coverage probability within each
set of 250 conditions is also reported. The minimum cov-
erage probability is perhaps the most important value be-
cause it shows how poorly a method can perform. In one of
the four sets of conditions, the m sample sizes ranged from
20 to 40, and the m population effect sizes ranged from 0.25
to 0.75. In another set of 250 conditions, the sample sizes
ranged from 20 to 40, but the population effect sizes were

more disparate and ranged from 0.05 to 0.95. Other condi-
tions used sample sizes that ranged from 40 to 80 across the
m studies. In each of the 2,000 conditions, the population
standard deviations ranged from 0.5 to 1.5 across the m
studies (the Bond–FE and Bond–RE methods do not assume
equal variances across studies).

The sample sizes, population effect sizes, and population
variances for each of the 1,000 conditions were randomly
generated from a uniform distribution within the specific
range of values. For instance, in one of the conditions for
m � 5, the computer-generated sample sizes might be [38
21 35 26 30], the computer-generated population effect
sizes might be [0.68 0.31 0.54 0.58 0.43], and the computer-
generated population standard deviations might be [1.2 0.7.
0.9 0.5 1.4]. After the computer-generated sample sizes and
effect sizes were determined for each of the 2,000 condi-
tions, a Monte Carlo study with 50,000 trials was conducted
for each condition. For each condition, the coverage prob-
ability and confidence interval width were estimated for
Equation 7 and Bond–FE and Bond–RE methods. The re-
sults for Equation 7 and the Bond methods for 1 � 
 � .95
are summarized in Table 1.

The best confidence interval method will have an average
coverage probability close to .95 and a minimum coverage
probability that is not too far below .95. If two methods
have similar average and minimum coverage probabilities,
then the method with the smallest average interval width is
preferred. It can be seen from Table 1 that the Bond–FE
method can have a coverage probability that is far below the
nominal .95 level, rendering this method unacceptable for
routine use. The Bond–RE method has better minimum
coverage probabilities than the Bond–FE method; however,
the average confidence interval width of the Bond–RE
method is considerably larger than the average width of
Equation 7.

Table 1
Performance Comparison of Three Meta-Analytic Confidence Intervals for Unstandardized Mean Differences: Independent
Samples Within Studies

Sample
size

Population effect
size

Average coverage Minimum coverage Average width

Eq. 7 Bond–FE Bond–RE Eq. 7 Bond–FE Bond–RE Eq. 7 Bond–FE Bond–RE

m � 5
10–40 0.25–0.75 .950 .933 .960 .947 .664 .916 .559 .468 .740

0.05–0.95 .950 .895 .973 .947 .285 .559 .559 .465 .906
20–80 0.25–0.75 .950 .915 .967 .947 .679 .900 .392 .321 .579

0.05–0.95 .950 .836 .984 .947 .151 .913 .391 .322 .784
m � 10

10–40 0.25–0.75 .950 .929 .963 .948 .753 .880 .392 .314 .425
0.05–0.95 .950 .868 .975 .947 .183 .864 .391 .316 .530

20–80 0.25–0.75 .950 .904 .970 .947 .541 .886 .278 .225 .340
0.05–0.95 .950 .824 .990 .947 .022 .918 .278 .226 .463

Note. Bond–FE is the fixed-effects method for unstandardized mean differences proposed by Bond et al. (2003), and Bond–RE is the random-effects
method for unstandardized mean differences proposed by Bond et al. (2003). Eq. � Equation.
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The results in Table 1 are consistent with the theoretical
and simulation results reported by Bonett (2008b) for the
case of Pearson correlations. The Bond–RE method is not
expected to perform properly when the m studies are not a
random sample from a large superpopulation of studies. The
results in Table 1 illustrate the poor performance of the
Bond–RE method when this method is inappropriately used
to accommodate unequal population effect sizes in nonran-
domly selected studies. If the sample sizes and population
variances are unequal within studies, Equation 7 continues
to perform properly, but the performance of the Bond
method will be worse than what is shown in Table 1. If the
sample sizes or population variances are more heteroge-
neous across studies than those examined here, then the
performance of the Bond methods will be worse than what
is shown in Table 1. Equation 7 continues to perform well
when the population variances and sample sizes within
studies are highly unequal, whereas the Bond–FE method
breaks down further under these conditions. Although not
shown in Table 1, it was found that the performance of
Equation 7 with dependent samples within studies exhibited
excellent performance characteristics that were nearly iden-
tical to those reported for Equation 7 in Table 1. Recall that
the Bond–FE and Bond–RE methods are appropriate only
for studies with independent samples.

Standardized Mean Differences

For the parameter � � m�1
¥i�1

m �i, the performance of
Equation 10 was compared with the FE and RE methods
proposed by Hedges and Vevea (1998) with either indepen-
dent or dependent samples within each study. Although
Hedges and Vevea illustrated their methods using the stan-
dardized mean difference and its variance proposed by
Hedges (1981), which assumes equal population variances
within each study, the Hedges–Vevea approach is general
and may be used with the standardized mean difference and
its variance recommended by Bonett (2008a), which does
not assume equal population variances with each study. The
standardized mean difference and its variance recommended
by Bonett were used in Equation 10 and the Hedges–Vevea
methods. Four thousand patterns of sample sizes and popu-
lation effect sizes were examined, with 2,000 patterns for
the case of independent samples and 2,000 patterns for the
case of dependent samples. The performance of Equation 10
and the Hedges–Vevea methods are invariant with respect
to heteroscedasticity across studies, and it was not necessary
to vary the population variances across the m studies. How-
ever, heterogeneity of population correlations across the m
studies in the case of dependent samples will affect the
performance of the Hedges–Vevea confidence intervals. In
each of the 2,000 conditions for a given value of m, the
population correlations were selected from a range of 0.5–0.8
across the m studies. Unlike the variance of an unstandard-

ized difference, the variance of the standardized difference
depends on the magnitude of the population effect size
within each study. For this reason, moderately disparate and
highly disparate ranges of population effect sizes were
examined for both small (�0.2 to 0.2 and �0.4 to 0.4) and
large (0.8 to 1.2 and 0.6 to 1.4) population effect sizes. The
Monte Carlo results for the case of independent samples
within studies are summarized in Table 2, and the Monte
Carlo results for the case of dependent samples within
studies are summarized in Table 3.

It can be seen from Tables 2 and 3 that the Hedges–Vevea
methods can have a coverage probability that is far below
the nominal .95 level. The average confidence interval
width was considerably larger for the Hedges–Vevea RE
methods than for Equation 10. The results in Tables 2 and
3 are also consistent with theoretical and simulation results
reported by Bonett (2008b) for the case of Pearson corre-
lations. If the sample sizes (or population correlations for
the case of dependent samples) are more heterogeneous
across studies than those examined here, then the perfor-
mance of the Hedges–Vevea methods will be worse than
what is shown in Table 1, whereas the excellent perfor-
mance of Equation 10 remains essentially unchanged.

Equations 14, 15, 18, and 19 are all special cases of the
general Satterthwaite or Bonett (2008a) confidence inter-
vals, which are known to have excellent performance char-
acteristics. The EWLS competitors to Equations 14 and 15
will exhibit poor performance, similar to the FE methods in
Tables 1–3, under realistic conditions in which the sample
sizes are unequal across studies and the linear model has not
been perfectly specified.

An Alternative View of Meta-Analysis

Meta-analysis has been used primarily as a way to
summarize the results of a large number of published
studies. These meta-analytic reviews typically attempt to
assimilate the results of as many studies as possible, despite
the fact that the studies may differ dramatically in the
quality of their sampling designs, research designs, or psy-
chometric properties of key variables. Eysenck (1978) de-
scribed this use of meta-analysis as “an exercise in mega-
silliness.” The view taken here is that meta-analysis is most
appropriately applied to a small number of carefully se-
lected studies of the highest quality with the primary goals
of obtaining accurate estimates of effect size and detecting
important moderator effects.

Meta-analysis should no longer be viewed only as a
method of secondary data analysis. The confidence intervals
proposed here (Equations 7, 10, 14, 15, 18, and 19) and in
Bonett (2008b) may also be applied in new studies that
integrate the results of previous studies. For instance, sup-
pose a recently published study reported that a new treat-
ment for anxiety was found to be superior to a standard
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treatment in a population of college women. A new study is
conducted by another researcher with the goal of determin-
ing whether this new treatment is also effective in a popu-
lation of college men. The researcher of the new study
might attempt to replicate and extend the results of the
published study using a stratified random sample of both
female and male participants. The current practice is simply
to cite the results of the published study and then to report
the results of the new study. An alternative approach would
be to combine the results of the published study with the
results of the new study. Before combining the results
(using Equation 7 or 10), the researcher would first assess
the degree of effect-size heterogeneity (using Equation 18
or 19) to determine whether the effect of treatment for
women has been replicated and to assess the magnitude of
the moderating effect of sex. If the effect of treatment for
women can be replicated in the new study and if the mod-
erating effect of sex is not too large, then Equation 7 or 10
could be used to describe the average effect of treatment
across the three study populations (i.e., the two female
populations and the one male population). Future studies
that investigate the effect of this new treatment for anxiety
in other types of populations or with modifications to the
new treatment would incorporate the results from all rele-
vant previous studies. With this approach, increasingly ac-
curate estimates of the treatment effect size will be obtained
as well as important information regarding possible moder-
ating effects of the treatment. With this alternative view of

meta-analysis, the fundamental process of the scientific
method will be more closely approximated by researchers
who incorporate prior empirical information into their stud-
ies, “add a modicum of new and better data to it, and
thereby advance toward an ever more profound, complete,
and accurate explanation of reality” (Hunt, 1997, p. 1).

Traditional meta-analysis has focused on combining stan-
dardized or unstandardized mean differences rather than
individual means. If meta-analysis is used to incorporate the
results of prior research into a new study, it will often be
necessary to combine individual means for a common treat-
ment condition from prior studies and combine the average
prior mean with an appropriate mean in the new study. For
instance, the means in the control condition from three
previous studies could be combined with the control group
mean of a new study that compares a treatment with a
control condition. The researcher could then compute con-
fidence intervals for (�1 � �2 � �3)/3 � �4 and (�1 �
�2 � �3 � �4)/4 � �5, where �1, �2, and �3 are the
population means under a control condition estimated from
the three previous studies, �4 is the population mean under
a control condition estimated from the new study, and �5 is
the population mean under the treatment condition esti-
mated from the new study. The first confidence interval
provides evidence of control group replication, and the
second confidence interval provides evidence of a treatment
effect. Confidence intervals for these linear contrasts of
population means are computed with the standard Satterth-

Table 2
Performance Comparison of Three Meta-Analytic Confidence Intervals for Standardized Mean Differences: Independent
Samples Within Studies

Sample
size

Population effect
size

Average coverage Minimum coverage Average width

Eq. 10 HV–FE HV–RE Eq. 10 HV–FE HV–RE Eq. 10 HV–FE HV–RE

m � 5
10–40 �0.20–0.20 .952 .953 .969 .949 .940 .960 .549 .510 .588

�0.40–0.40 .951 .951 .975 .949 .911 .953 .541 .508 .652
0.80–1.20 .951 .951 .966 .948 .923 .953 .577 .540 .620
0.60–1.40 .951 .943 .971 .948 .858 .942 .565 .545 .689

20–80 �0.20–0.20 .951 .949 .969 .948 .922 .955 .381 .359 .604
�0.40–0.40 .951 .940 .979 .948 .823 .938 .386 .363 .529

0.80–1.20 .951 .947 .967 .948 .898 .942 .405 .381 .454
0.60–1.40 .951 .937 .978 .948 .752 .940 .406 .382 .546

m � 10
10–40 �0.20–0.20 .952 .954 .968 .948 .927 .955 .387 .361 .405

�0.40–0.40 .952 .948 .978 .949 .838 .955 .384 .357 .455
0.80–1.20 .951 .947 .963 .949 .922 .949 .406 .378 .422
0.60–1.40 .951 .939 .972 .948 .838 .937 .409 .380 .472

20–80 �0.20–0.20 .951 .949 .970 .948 .902 .944 .270 .251 .296
�0.40–0.40 .951 .939 .987 .949 .849 .953 .271 .253 .375

0.80–1.20 .951 .945 .967 .949 .886 .948 .286 .266 .310
0.60–1.40 .951 .929 .983 .948 .784 .935 .287 .267 .386

Note. HV–FE is the fixed-effects method for standardized mean differences proposed by Hedges and Vevea (1998), and HV–RE is the random-effects
method for standardized mean differences proposed by Hedges and Vevea (1998). Eq. � Equation.
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waite confidence interval (see, e.g., Maxwell & Delaney,
2004, pp. 300–301; Snedecor & Cochran, 1980, p. 228).

Examples

Three examples, with hypothetical data, illustrate the
application of the meta-analytic confidence intervals pro-
posed here. The first example is a meta-analysis of four
two-group experiments. The second example is a meta-
analysis of five pretest–posttest studies. The third example
illustrates the use of meta-analysis to integrate the results of
previous studies into a new study.

Example 1

Four eyewitness identification studies assessed partici-
pants’ certainty in their selection of a target individual from
a photo lineup. In all four studies, participants viewed a

video in which the target individual could be seen. The four
studies used a variety of treatment conditions but had two
treatment conditions in common. In one common condition,
the participants were told that the target individual “will be”
in the photo lineup, and in the second common condition,
participants were told that the target individual “might be”
in the photo lineup. Two of the four studies used x � 5
photos in the lineup, and the other two studies used x � 7
photos in the lineup. All four studies sampled from study
populations of volunteer introductory psychology students.
The sample means and standard deviations from the four
studies are presented in Table 4. These sample means and
standard deviations were used to compute the standardized
effect sizes and their variances, which are also reported in
Table 4.

A confidence interval for a linear contrast of population
standardized effect sizes (�1 � �2)/2 � (�3 � �4)/2 will

Table 3
Performance Comparison of Three Meta-Analytic Confidence Intervals for Standardized Mean Differences: Dependent
Samples Within Studies

Sample
size

Population effect
size

Average coverage Minimum coverage Average width

Eq. 10 HV–FE HV–RE Eq. 10 HV–FE HV–RE Eq. 10 HV–FE HV–RE

m � 5
10–40 �0.20–0.20 .954 .925 .966 .951 .867 .939 .334 .289 .366

�0.40–0.40 .954 .917 .981 .950 .649 .916 .333 .290 .473
0.80–1.20 .949 .901 .951 .945 .757 .903 .400 .359 .435
0.60–1.40 .949 .843 .967 .944 .348 .883 .408 .362 .537

20–80 �0.20–0.20 .952 .931 .973 .949 .746 .919 .229 .204 .285
�0.40–0.40 .952 .885 .991 .949 .328 .908 .230 .206 .435

0.80–1.20 .950 .913 .965 .947 .665 .910 .280 .256 .334
0.60–1.40 .949 .834 .981 .946 .236 .904 .283 .256 .446

m � 10
10–40 �0.20–0.20 .954 .938 .970 .951 .866 .932 .235 .200 .249

�0.40–0.40 .954 .913 .990 .951 .676 .940 .238 .203 .342
0.80–1.20 .949 .860 .937 .946 .712 .869 .287 .254 .301
0.60–1.40 .949 .754 .967 .944 .309 .833 .288 .252 .377

20–80 �0.20–0.20 .952 .926 .981 .950 .678 .931 .161 .142 .202
�0.40–0.40 .952 .874 .998 .949 .302 .960 .162 .143 .313

0.80–1.20 .950 .887 .963 .946 .664 .903 .199 .180 .232
0.60–1.40 .950 .742 .990 .946 .196 .890 .202 .181 .334

Note. HV–FE is the fixed-effects method for standardized mean differences proposed by Hedges and Vevea (1998), and HV–RE is the random-effects
method for standardized mean differences proposed by Hedges and Vevea (1998). Eq. � Equation.

Table 4
Summary Information for Example 1

Study n1 n2 x �̂1 �̂2 �̂1 �̂2 �̂1 var(�̂1)

1 40 40 5 7.4 6.3 1.7 2.3 0.539 0.052
2 20 20 5 6.9 5.7 1.5 2.0 0.665 0.107
3 25 25 7 6.8 5.8 1.6 1.8 0.578 0.084
4 30 30 7 6.6 5.5 1.8 2.1 0.555 0.070

Note. n1, �̂1, and �̂1 are the sample size, sample mean, and sample standard deviation in the “will be” instruction condition; n2, �̂2, and �̂2 are the sample
size, sample mean, and sample standard deviation in the “might be” instruction condition; x is the number of photos in the lineup.
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provide information about the magnitude of the moderating
effect of the number of photos in the lineup. The point
estimate of this contrast is 0.036, with a standard error of
0.279. The 95% confidence interval for the contrast is
�0.51 to 0.58. This confidence includes zero but is too wide
to assess the magnitude of the moderating effect accurately.
Additional research is needed to obtain a more accurate
assessment of the moderating effect of the number of pho-
tos. The point estimate of � � (�1 � �2 � �3 � �4)/4 is
0.584, with a standard error of 0.140, indicating greater
certainty in the will-be than the might-be condition. The
95% confidence interval for � is 0.31 to 0.86, which could
be interpreted as a small to moderate effect of the type of
instruction on an eyewitness’s certainty of selecting the
target person from a photo lineup. This result applies to the
four study populations of introductory psychology students.

Example 2

Five published studies employed a pretest–posttest design
and reported the effect of relaxation therapy on hours of
migraine headaches per week. The response variable metric
(hours per week) is well understood, and unstandardized
effects will be analyzed. The number of weeks of relaxation
therapy (x) varied across studies and is a potentially inter-
esting moderator variable. All five studies sampled from
study populations of adults who responded to a newspaper
ad request for volunteers. The necessary sample statistics
(means, standard deviations, correlations) were extracted
from the five studies. These sample statistics were used to
compute the unstandardized effect sizes and their variances
for each study. The sample statistics and effect size infor-
mation are summarized in Table 5.

To assess the magnitude of the moderating effect of
relaxation therapy duration on the unstandardized effect
size, set the design matrix X in Equation 11 to a 5 � 2
matrix with ones in the first column and the values 2, 3, 3,
4, and 4 in the second column. The estimated population
slope is 0.85, with a standard error of 0.50 and degree of
freedom of 87.07. The 95% Satterthwaite confidence inter-
val for the population slope is �0.144 to 1.84. This interval
includes zero but may be too wide to conclude that the
moderating effects of therapy duration is absent, because if

the slope was as large as 1.84, some experts would consider
this to be a nontrivial clinical effect. Additional studies must
be included in another meta-analysis to obtain a more pre-
cise estimate of the population slope.

Given the inconclusive result regarding the moderating
effect of therapy duration, the average effect size in the five
study populations will be of interest. An estimate of � �
(�1 � �2 � . . . � �5)/5 is 10.7 hr per week, with a standard
error of 0.44 and degree of freedom of 83.08. The 95%
confidence interval for � is 9.85 to 11.60 and suggests that
2–4 weeks of relaxation therapy would decrease the mean
hours of migraine headaches per week by 9.85 to 11.60 in
the five study populations of adult volunteers.

Example 3

A researcher conducted a two-group experiment that com-
pared the effect of 100 mg of a new antidepressant drug with
a placebo in a study population of patients who had been
diagnosed with mild to moderate levels of depression. The
researcher used the Beck Depression Inventory (BDI-II) to
measure depression after treatment. The scale of the BDI-II
is well understood among clinicians, and the researcher
decided to analyze unstandardized effect sizes. The re-
searcher used the placebo group means and standard devi-
ations from three previously published that also sampled
from populations of patients with mild to moderate levels of
depression. These three previous studies compared a pla-
cebo condition with other treatment conditions that were not
relevant to the current study. The researcher obtained a
random sample of 80 patients with mild to moderate de-
pression and randomly assigned 20 patients to a placebo
condition and 60 patients to the 100-mg drug condition. The
results from the three previous studies and the new study
(Study 4) are given in the first four rows of Table 6.

The contrast (�1 � �2 � �3)/3 � �4 provides a placebo
replication check, and the contrast (�1 � �2 � �3 �
�4)/4 � �5 assesses the effect of the new drug, where �5 is
the population mean BDI-II score under a 100-mg drug
condition. Application of the standard 95% Satterthwaite
confidence interval for a linear contrast of means with a
Bonferroni adjustment (see, e.g., Maxwell & Delaney,
2004, pp. 300–301; Snedecor & Cochran, 1980, p. 228)

Table 5
Summary Information for Example 2

Study n x �̂1 �̂2 �̂1 �̂2 
̂ �̂1 var(�̂1)

1 45 2 20.1 10.4 9.3 7.8 .87 9.7 0.469
2 15 3 20.5 10.2 9.9 8.0 .92 10.3 1.085
3 20 3 19.3 8.5 10.1 8.4 .85 10.8 1.417
4 20 4 21.5 10.3 10.5 8.1 .90 11.2 1.139
5 30 4 19.4 7.8 9.8 8.7 .88 11.6 0.722

Note. n is the sample size, x is the number of weeks of relaxation therapy, and 
̂ is the sample Pearson correlation; �̂1 and �̂1 are the pretest mean and
standard deviation; �̂2 and �̂2 are the posttest mean and standard deviation.
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gives �2.84 to 2.64 for the first contrast and 8.13 to 11.12
for the second contrast. The confidence interval for the first
contrast includes zero and is sufficiently narrow to support
a claim of replication in the placebo condition.1 The confi-
dence interval for the second contrast provides evidence of
treatment effectiveness, and the researcher can state with
95% confidence that the mean BDI-II score in the study
population of depressed patients would be 8.13 to 11.12
lower if they had all received 100 mg of the new drug
instead of a placebo. If the researcher had followed current
practice and analyzed the data only from Study 4, the 95%
Satterthwaite confidence interval for �4 � �5 would be 7.25
to 12.15, which is wider than the meta-analytic result, and
the study would not have provided any evidence of placebo
replication.

Suppose the meta-analytic results of Studies 1–4 are
published and another researcher wanted to compare the
effectiveness of the new drug under both 50-mg and 100-mg
drug conditions. The second researcher obtained a random
sample of 110 patients with mild to moderate depression
and randomly assigned 30 patients to a placebo condition,
40 patients to a 50-mg condition, and 40 patients to a
100-mg condition. The results from the four previous stud-
ies and the new study (Study 5) are given in Table 6.

Confidence intervals for (�1 � �2 � �3 � �4)/4 � �6

and �5 � �8 provide evidence of placebo and 100-mg
replication, respectively, where �1, �2, �3, �4, and �6 are
the population mean BDI-II scores under the placebo con-
ditions of Studies 1–5 and �5 and �8 are the population
mean BDI-II scores under the 100-mg conditions of Studies
4 and 5. Confidence intervals for (�1 � �2 � �3 � �4 �
�6)/5 � �7 and (�1 � �2 � �3 � �4 � �6)/5 � (�5 �
�8)/2 compare a 50-mg treatment with a placebo and a
100-mg treatment with a placebo, respectively. Simulta-
neous (v � 4) 95% Satterthwaite confidence intervals are
�4.19 to 1.84 for the placebo replication and �1.67 to 2.66
for the 100-mg replication. Both intervals include zero and
are sufficiently narrow to support a claim of replication in
both the placebo and 100-mg treatment conditions. The
other two simultaneous 95% Satterthwaite confidence inter-
vals are 3.86 to 7.66 for the 50-mg versus placebo compar-

ison and 8.67 to 11.55 for the 100-mg versus placebo
comparison. The researcher can state with 95% confidence
that the mean BDI-II score in the study populations of
depressed patients would be 3.86 to 7.66 lower if they had
all received 50 mg of the new drug instead of a placebo and
8.67 to 11.55 lower if they had all received 100 mg of the
new drug instead of a placebo.

Future studies could extend this line of research in several
ways. In each study, the researcher would attempt to repli-
cate previous results and also extend or clarify the theory by
including additional levels of a particular factor or introduc-
ing new factors into the study. For instance, one future study
could examine four drug dosages, and another future study
could extend the results further with a 2 � 4 factorial
experiment using the same four drug dosages and a second
two-level factor that compares a drug-only treatment with a
drug plus cognitive behavioral therapy treatment. In each
study, the researcher attempts to replicate previous findings
and extend the theory in important new directions.

Conclusion

Equation 7 is robust to moderate nonnormality, and its
robustness to more extreme degrees of nonnormality in-
creases with larger sample sizes per study. Equation 10 is
not robust to nonnormality. When analyzing raw data, the
researcher can employ a wide variety of data transforma-
tions to reduce nonnormality, but the meta-analyst may not
have access to the raw data and must rely on diagnostic
information reported within each study to assess the plau-
sibility of the normality assumption.

If the response variable has a well-understood metric but
has a highly skewed distribution, a meta-analysis of medi-
ans would be preferred to Equation 7 or 10. The average
median difference is � � m�1

¥i�1
m ��i1 � �i2	, where �ij is

the population median under treatment j in study i. An
approximate 100(1 � 
)% confidence interval for � is

�̂ � z
/ 2�m�2�
i�1

m

�var��̂i1	 � var��̂i2	�	1/ 2

, (20)

where var(�̂ij) is given by Bonett and Price (2002) and
�̂ � m�1

¥i�1
m ��̂i1 � �̂i2	. However, var(�̂ij) is computed

1 Some researchers may want to make a distinction between
weak replication evidence in which the confidence interval in-
cludes zero but the confidence interval is wide and strong repli-
cation evidence in which the confidence interval suggests that the
replication contrast is small. Strong replication does not require the
confidence interval to include zero, but the lower or upper limit,
whichever is further from zero, must be close enough to zero to
suggest that the magnitude of population replication contrast is
arguably trivial or unimportant.

Table 6
Summary Information for Example 3

Study

Placebo 50 mg 100 mg

n �̂ �̂ n �̂ �̂ n �̂ �̂

1 60 21.1 5.1 — — — — — —
2 80 18.9 4.7 — — — — — —
3 50 22.4 5.6 — — — — — —
4 20 20.9 4.8 — — — 60 11.2 4.1
5 30 22.0 5.9 40 15.3 4.0 40 10.7 4.2

Note. n, �̂, and �̂ are the sample size, sample mean, and sample standard
deviation. Dashes indicate data not obtained.
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from the raw data rather than summary statistics, and there-
fore it is incumbent on the researchers of the original studies
to report �̂ij and var(�̂ij) when the response variable is
highly skewed. Equation 20 is a special case of the confi-
dence interval for a general linear function of medians given
by Bonett and Price.

If the response variable has a well-understood metric but
has an approximately symmetric and highly leptokurtic
(heavy-tailed) distribution, a meta-analysis of trimmed
means would be preferred to Equation 7 or 10. Wilcox
(2005, p. 290) described a confidence interval method for a
linear contrast of trimmed means. Trimmed means and their
variances must be computed from the raw data and cannot
be deduced from the sample means and variances that are
typically reported. Thus, a meta-analysis of trimmed means
is limited to a synthesis of m studies that have reported
trimmed means and their variances. When the response
variable distribution is symmetric, both the sample mean
and the sample trimmed mean estimate the mean of the
study population. A trimmed mean should be used with
caution when the response variable is skewed because the
sample trimmed mean then estimates the mean of a subset
of the study population, which leads to problems of inter-
pretation and a reduction in external validity.

The analytical expression for the bias of a weighted
average of correlations given by Bonett (2008b) may be
extended in an obvious way to the case of standardized or
unstandardized mean differences considered here. The an-
alytical results for estimator bias and the simulation results
presented here and in Bonett (2008b) provide additional
evidence of the unacceptable performance of the classic FE
methods under realistic conditions of effect-size and sam-
ple-size heterogeneity. These findings further support the
recommendations of the National Research Council (1992)
and Hunter and Schmidt (2000) to discontinue the use of the
classic FE methods.

The RE methods have been recommended as alternatives
to the FE methods because RE effects methods do not make
the unrealistic assumption of effect-size homogeneity
(Hunter & Schmidt, 2000), and current research in meta-
analysis methods appears to be focused on developing new
RE methods. However, the RE methods require an unreal-
istic assumption that the m studies have been randomly
sampled from a large and clearly defined superpopulation of
studies. The random sample assumption will be virtually
impossible to satisfy in the typical meta-analysis in which
studies are published sequentially over time with more
recent articles intentionally designed to be similar or dis-
similar to previous studies. Even if the random sample
assumption could be justified in certain applications, the
standard deviation of the distribution of population effect
sizes becomes a key parameter to estimate, and a very large
number of studies will be required to obtain a sufficiently
narrow confidence interval for the effect-size standard de-

viation in the superpopulation. Given the implausibility that
the m studies are a true random sample from a well-defined
superpopulation and the fundamental limitations of interval
estimation of the random effect-size standard deviation, RE
meta-analysis methods cannot be recommended for routine
use.

The new FE methods presented here and in Bonett
(2008b) do not assume effect-size homogeneity; nor do they
assume that the m studies have been randomly sampled
from a superpopulation of studies. The methods for assess-
ing effect-size heterogeneity presented here and in Bonett
have excellent performance characteristics and provide im-
portant information regarding the nature and magnitude of
effect-size heterogeneity. Shapiro (1994, p. 771) lamented
that current meta-analysis methods involve “computer mod-
els of bewildering complexity.” The meta-analysis methods
presented here and in Bonett are both conceptually and
computationally simple.

An alternative view of meta-analysis is proposed here,
consistent with the recommendation of Slavin (1986), in
which meta-analysis is applied to a small number of care-
fully selected and high-quality studies. The alternative view
also extends the use of meta-analysis as a general method-
ology for incorporating the results of previous research into
a new study. Adoption of this new methodology will require
researchers to radically change the way they design and
statistically analyze their studies. Incorporating the results
of previous studies into each new study provides a formal
mechanism for simultaneously replicating and extending
research findings and has the potential of reducing the
“chaos” (Hunt, 1997, pp. 1–19) that exemplifies current
research in behavioral, social, and medical research.
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Appendix

Bias of Weighted Least Squares (WLS) Estimators

Consider the linear model

Y � X� � W� � ε, (A1)

where the columns of X and W represent fixed predictors
of Y. Assume that cov(ε) � V and E(ε) � 0. The
assumption E(ε) � 0 implies E(Y) � X� � W�. For
simplicity of presentation, it will be assumed that V is a
diagonal matrix of known constants. In meta-analytic
applications, V is often a matrix of random variables that
are estimated from sample data. The results presented
here for the WLS estimator (V known) will apply to
estimated weighted least squares (EWLS) estimators (V
random) in large samples. Assume X�W � 0, that is, the
columns of W are orthogonal to the columns of X. This
assumption can be satisfied without altering the value of
� by replacing W in Equation A1 with the orthogonalized
predictors W � X(X�X)�1X�W.

Suppose that Equation A1 is the correct model and � is
estimated from the following misspecified model:

Y � X� � ε. (A2)

The WLS estimator of � is �̃ � (X�V�1X)�1X�V�1Y, and
its bias is equal to

E��̃ � �	 � �X�V�1X	�1X�V�1E�Y	 � �

� �X�V�1X	�1X�V�1�X� � W�	 � �

� �X�V�1X	�1X�V�1W�.

The bias will be zero if � � 0 (i.e., the model has actually
not been misspecified) or if X�V�1W � 0. Given X�W � 0,
X�V�1W will not generally equal a null matrix unless the
elements in V are equal. The elements of V are a function
of the sample sizes, which are typically unequal in meta-
analytic studies. The bias of the WLS estimator does not
vanish as the sample size is increased. Additional small-
sample bias may be introduced in EWLS estimators when V
is random. Unlike the WLS estimator, the OLS estimator
�̂ � (X�X)�1X�Y is unbiased:

E��̂ � �	 � �X�X	�1X�E�Y	 � �

� �X�X	�1X��X� � W�	 � �

� �X�X	�1X�W�

� 0.

It can be shown that when X in Equation A2 is an m � 1
vector of ones and Y contains effect-size estimators, the
meta-analytic FE estimators are EWLS estimators, and ef-
fect-size heterogeneity is a model misspecification. It is the
bias of the classic FE estimators that is responsible for the
poor performance of the FE confidence intervals in Tables
1–3.
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