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programs for epidemiologists. (“PEPI” is an acnonfpr “Programs for EPIdemiologists”.)

PAIRSetc provides procedures for use in comparisonsf paired and other matched
observations, appraising their differences and agement. The “etc” in its name

indicates its ability to deal with matched sets lager than pairs. It may be used for analyses
and meta-analyses of cross-sectional, cohort @-castrol studies, and trials, and in reliability
studies. It can analyse stratified data. Theee3drmodules to choose from.
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HOW TO USE WINPEPI: an ABC

A. Obtain the latest version

The latest set of WINPEPI programs and manualdeaiownloaded free from www.brixtonhealth.com.

B. Install

Runwinpepisetup.exelhis will put the programs and manuals in a foldeyour choice (replacing any
previous versions in that folder) and will plac&/éNPEPI portal (a “WINPEPI” icon) on your desktdpmay
be convenient to pin the Portal to the Start merthe Taskbar.

If you downloadedvinpepifiles.zipyou will have to copy its contents to a folderyotir choice, and manually
put a shortcut tavinpepi.exeon your desktop.

C. Use the WINPEPI Portal and find the procedure yo u want

There are seven WINPEPI programs: DESCRIBE (&scdptive epidemiology) COMPARERo compare
two independent groups or samples), PAIRSetccitopare matched observations). LOGISTIC and
POISSON (for multiple logistic and Poisson regressi WHATIS (various utilities, including a caleuor),

and ETCETERA (miscellaneous procedures). Each prodras a number of modules (over 120 in all), @dch
which offers a number of statistical procedures.

Open the WINPEPI Portal, which provides accesdl tih@ programs and manuals, and to WINPEPI’s Finde
which is an alphabetical index to the statistimalcedures. The Portal also provides access tblisped
overview of the programs and their learning/teagigotential, and to the web-site offering the latession of
WINPEPI. Among other options, it provides a magnij glass, for users with poor vision or small rihors.
The Finder can also be accessed (in any WINPERJrano) by pressing F9 or clicking on “Winpepi”.

If you know what program and module are requirgmbrothe program by clicking on it in the Portal.
Otherwise, search the Finder for the procedurergquire. The Finder will tell you what moduleuse.

THE ESSENTIAL REQUIREMENT IS THAT YOU SHOULD KNOW W HAT YOU WANT.

If you open the Finder and search fultiple linear regressioty for example, you will be directed to
ETCETERA J, i.e. to module J of ETCETERA . You \Webthen open ETCETERA and click on J.

You may be offered alternatives. Forequivalence test for proportionfor example, the FINDER will say
“COMPARE2 A, PAIRSetc A", i.e., either module A GBOMPARE2 or module A of PAIRSetc. If the
observations are independent, COMPARE?2 is appriapiifathey are paired, PAIRSetc is appropriate.

You may have to open the programs to find preciadigt each module offers. For example, a search for
“Diagnostic tests, accuracy”ofvill direct you to “DESCRIBE L1, L4, L5, PAIR&c D1, D2, D3”. When
you open DESCRIBE, clicking on “L” will reveal thatodule L1 refers to “Yes/No” tests, and L4 andtb5
tests with a range of results. In PAIRSetc, modDigsD2 and D3 (respectively) are appropriate for
comparing normally-, log-normally-, or non-normadlistributed results with a gold standard.

It is unwise to use a statistical procedure whosgse one does not understand. This manual cannot sup
this knowledge, and it is certainly no substitutedr the basic understanding of statistics and
epidemiological thinking that is essential for thevise choice of methods and the correct interpretatn of
their results.




D. Open the WINPEPI program and select a module
Open the selected program, via the Portal or iskiol on its icon or name in Explorer.

You will generally be presented with a menu, frofick you should make a selection. Some optionsimeay
offered in the horizontal menu at the top of theripg screen.

A data-entry screen will then appear. You may lie@s$o make a further choice before entering tha,dand
various options may be offered At each stage, Isiimstructions are provided (in yellow); pop-uptsi may
be shown. Additional help may be obtained by pregEil or clicking on “Help” in the top menu. Forther

information, the program’s manual can be accesgetlidking on “Manual” in the top menu.

E. Enter the data

Two of the programs can read data files. But intriregtances, data must be entered at the keybograsted
from a text file or spreadsheet. This usually reggiprior counting and summarization, either magualby
using statistical software that processes primatg.d

Manual entry of data is usually easy. If entries are requiredifferent boxes, pressirignter or Tab after
entering a number will generally take you to thetdmx; and pressingscapewill clear the entry. If several
entries are required in the same box, pEageror Spaceafter each entry.

Pasting data: If the data are available in a text file (created,example, by Notepad or Microsoft Word) or a
spreadsheet, they can be copied to the Windowlsadifg [usually by pressirgtrl-Insert or Ctrl-C], and then
pasted into a data-entry box [usually by pres§hift-Insertor Ctrl-V]. This can simplify data entry in boxes
that require a number of entries (in rows or colgimrAlso, data can be copied from a data-entsydoad

pasted to a text file for future re-use; first, g@€trl-A to mark it for copying.] The following instructisrcan

be accessed by pressing F2 (in any WINPEPI progoamljcking on“Help — Pasting”.

Precautions:
e The data must be pasted into the box as a singk bdnd not piecemeal.
e There must be no missing values (e.g., empty oelisspreadsheet).
e The data must be in the format required in the dth spaces between the numbers; exact alignment

of the

columns is not necessary. For examp 4566 1
20 3 132
53 11 44

< If a defined number of rows is required, this numiest be entered first, e.g. in the “Number of
categories” box.

+ If a column of row numbers is shown on the leftZletc.), ensure that the”1” is visible beforetjvas

e The cursor must be in the top left corner of the Wwben the “paste” keys are pressed.

F. Run the program

G. Select the results you need

Do not be confused by the multiplicity of resu¥&u can scroll down until you find the results yoeed; and
ignore everything else. If you want an odds ratid @s confidence intervals, you can ignore alkeottesults.

WINPEPI programs offer more options than most usgiever need, and will usually display mor
results than are needd&NORE THE OPTIONS AND RESULTS YOU DON'T REQUIRE .

[97]




On the other hand, you may find some of the otbsults helpful.

Very often, the program will provide alternatiests and measures of effect, often with confidémesvals
estimated by alternative methods. If there is disagent between the results, you may find apprgadvice
in the manual, which describes the procedureslaid uses and limitations, with literature referesic

H. (Maybe) continue the analysis

After getting the first results, it may be decidedtontinue the analysis. It may, for example, éeided to
repeat the analysis (by clicking on “Repeat”) arakenchanges in the data or the options. Afteroperdince of
a logistic regression analysis, options are offéoedhe use of the logistic coefficients to congatprobability,
risk ratio, etc.

If stratified dat are entered, clicking on “Next stratum” permitgg of another stratum, and clicking on “All
strata” provides a combined analysis of all thatatrSimilarly, aneta-analysi€an be performed by entering a
table for each study as a separate stratum, andotiessing “All strata”. (If summary data (e.gkrrauos) are
available for each study, a series of tables immetied; module | of COMPARE2 might then be used.)

I. Saving the results

By default, all results (except graphs) are autaraby saved irpepi.txtin the Winpepi folder, with a warning
if its size exceeds 500K. This file can be accessthe Portal. The default procedure can be vitare
changed by clicking on “Saving” in the top menusthlso provides accesspepi.txt Optionally, graphs can
be saved as BMP files.

Results produced during the current session aoesalged (temporarily) ipepi.tnp, which can be viewed by
clicking on “View” in the top menu.

The results of a single analysis can be saved fiewafile) by clicking on “Print or save” or “Priht

J. Adding comments
Click on “Note” (in the top menu) to add a notehe previously-shown results, for saving with thsults in

pepi.txt

K. Printing the results

The results of an analysis can be printed by dligkin “Print or save” or “Print”. Graphs can binfed at low
or high resolution. Also, selected results can tirgt¢ed frompepi.txt

L. Pasting the results to a text file

All results shown on the screen are automaticalfyied to the Windows clipboard, from which they ¢en
pasted into a Microsoft Word or other text filegfarably for display in a Courier or similar fot, ensure
proper alignment of tabulated results). Optionajlgphs can be copied to the clipboard, replaaiyg @sults.
that are there.



Notes

The programs are 32-bit applications, written viislphi 5, and will run in any version of Microsdiindows
(including Windows 7), except Windows 3. They ¢&nrun from a portable device such as a USB flaiste J

The manuals that accompany the programs requii@Fareader, such as Adobe Acrobat or Foxit Reader.

The programs and manuals refer to dichotomoushiasaas “Yes-No” variables, and to interval- oiaacale
variables as “numerical”.

P-values derived fromzandt functions are generally correct to five decimalgaels, those based ohi-square,
to four decimal places, and those based offthmction to three decimal places.

WINPEPI does not adhere strictly to the conventidiedinitions of ‘risk” (ratios with count denominators.
e.g. prevalence) antfate” (ratios with person-time denominators, engcidence density), except when the
distinction is important. Risks may be referredsorates when this is unlikely to cause confusion.

A DO-IT-YOURSELF THREESOME

1. PLANNING A STUDY : “Research Methods in Community Medicine: Suryé&idemiological Research,
Programme Evaluation, Clinical Trials” (J.H. Abraammsand Z.H. Abramson), sixth edition, 2008. Johhewi
& Sons.

2. ANALYSING THE FINDINGS : The WinPepi suite ofomputer programs for epidemiologists, with theif
manuals. Can be downloaded free fremvw.brixtonhealth.co

3. INTERPRETING THE RESULTS : “Making Sense of Data: A Self-Instruction Manoal the
Interpretation of Epidemiological Data” (J.H. Abraom and Z.H.Abramson), third edition, 2001. Oxford:
Oxford University Press.
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HOW TO USE PAIRSETC

PAIRSetc's MODULES : A GUIDE

PAIRSetc provides procedures for use in comparisbpsired and other matched
observations, appraising their differences andeagesmt. The “etc” in its name
indicates its ability to deal with matched setgéarthan pairs.

Modules A to D comparepaired observationss
 Module A deals withH'Yes-No" (dichotomous) variables
« Modules B and Cdeal with variables witlthree or more categorig® for nominal categories ar@l
for ordered categories.
* Module D deabwith numerical (interval-scale or ratio-scale) variabl@dodule D1 for normally-
distributed variablesModule D2 for log-normally distributed variables, aiMbdule D2 if normality
is not assumed).

Modules E to | analysdarger matched setwith the same number of observations per set):
e Modules E and Ffor "Yes-No" variablegModule E for case-control studies using multiple matched
controls, andModule F for other studies).
¢ Module G for nominal or ordinal-category variabte

* Modules H and | for numerical (interval-scale or ratio-scale) variabl¢Module H for comparisons
of two groups or methods, aiMbdule | for comparisons of 3 or more .matched samples or
replicates).

Modules J to M analyse matched sets of observations varying @ siz
* Modules J and K for"Yes-No" variablegModule J for case-control studiewith varying numbers of
matched controls, afdodule K to computekapp3.
¢ Modules L and M deal withnumerical (interval-scale or ratio-scale) variabl@dodule L for
comparisons of two matched grougdsfdule L1] or two methods of measuremehtddule L2], and
Module M for comparisons of different-sized sets of repkcaieasurements).

Modules Misl to Mis3 (accessed by clicking on “Misclass” in the top memppraise the possible effect
of misclassification o a paired 2 x 2 table.

Modules P1 to P3accessed by clicking on “Power” in the top meestjmate thgpowerof various tests.

Modules S1 to Staccessed by clicking on “Sample size” in the tagnn) estimate theample sizes
required for various tests.

Kappais computed bodules A, B, C, E, G, J,and K
Replicate numerical observatioase compared bylodules D, I, and K
Methods of measuring a numerical variable compared by Modulé€, H, and L2

The options include:

Analysis of incompletely paired data (in ModulesAd D1)

Analysis of crossover trial (in Module A)

Measures of predictive accuracy (in Module A)

Reconstruction of paired 2x2 table from odds rati®-value (in Module A).
Assessment of intrarater and interrater agreeeModules A2 and 12)
Kappafor binocular data (in Module B)

Regression to the mean (assessment and adjustiineiiydule D6).
Analysis of clustered data (in Modules A and D1)

Measures of disagreement (in Module 11).



A. PAIRS (“YES-NO”)

A. PAIRED OBSERVATIONS:
“YES-NO” (DICHOTOMOUS) VARIABLE

This module is appropriate for the analysis ofg@iobservations (in different subjects or
same subject), where the dependent variable ish@@imy ("yes-no™). It appraises
differences and agreement between the two setssafreations . It can analyse matched-
control trials and matched case-control studiefrbeafter studies, and other comparison
paired subjects or observations, such as compar@dmusbands and wives, and diagnos
made by two different observers or proceduresarnthandle clustered and stratified data
and data collected bgverse sampling An option is offered for theeconstructiorof the
paired 2x2 table (based orParalue or odds ratio), for use in incompletely need studies.

The numbers of pairs with each combination of figgdi are entered in a 2 x 2 table in whi
A and B are the paired sets of observations, aad"§efers to the presence of the diseast
other characteristic under study; in a case-costrady, “yes” usually refers to exposure tg
risk factor or protective factor. Numbers of paire entered, not numbers of observatior
An option is offered for the entry of supplementanpaired observations.

The controls in a case-control study or trial, #r@lunexposed in a cohort study should
designated “B”. To test farquivalencethe bounds of “equivalence” must be defined, by
specifying the largest difference that is to lgarded as negligible (e.g. 0.05).

If the data are stratifiedenter each stratum in turn. Foeta-analysesenter each study as
separate stratum. If there alastersof paired observations that may not be independent
(e.g. various pairs of observations of the samsqgueror by the same observer), enter eag

cluster as a separate stratum. Click on “All strathenever combined results are required.

For each table, the program providests for the differencebetween the paired
observations, test of equivalencgoptional), theodds ratio (with a low-bias estimator), th
proportions (of “yes”) and their difference andratio, therelative difference the
approximateetrachoric correlation coefficient, thenumber needed to avoid one event
(for studies that contrast exposure and nonexpdswdactor or treatmen@ftributable or
prevented fractions for paired case-control studiekgppa, percentage agreemen and
related resultsGwet's AC1, Brennan and Prediger's G-index, Sco#'Pi coefficient,
Peirce'sl coefficient, and Martin and Femia’s delta-based masures of agreementand a
measure of thdistinguishability of categories A number of procedures are provided for
the analysis bincompletely paired data Optionally,measures of predictive accuracyin
either direction) are displayed. Fsiratified data the program provides overall tests for th
difference, heterogeneitgsts and measureshe overalbdds ratio, andkappa and related
results. Four sets of tests and measures are providedustered data A test and
confidence intervals for the odds ratio are proditte studies usingverse sampling

Optionally, this module can analyzemssover trial with a "yes-no" outcome, comparing

the

s of
pS
|

e

two treatments, A and B, applied in sequence tes#mee subjects, after random allocation of

the subjects to an AB (Treatment A first) or BAd&atment B first) group. Each group mu
be entered as a separate stratum. The program oesrtpaproportions of "yes" for the
different treatments and sequences, and prowdds ratios tests for a carryover effet,

st

McNemar, Mainland-Gart, andPrescott tests and thenumber needed to treat.




A. PAIRS (“YES-NO”)

Tests for the difference between paired observation s

For each table, and (if stratified data are en)di@dthe combined (pooled) data, the
program provides Fisher’'s and mid-P exact testegsrthe user aborts their computation or
numbers are very large), McNemar tests (with artbaut a continuity correction), and a
modified Wald test for differences between A and Bui (2001b) recommends use of the
McNemar test, uncorrected for continuity, rathemtlrisher's exact test, which (like the
corrected McNemar test) "can be quite conservanghence lose much efficiency”. The
uncorrected McNemar test is more powerful, andgoeré well even when the number of
discordant pairs is as low as 6. The modified Wedd (May and Johnson 1997) is said to be
valid in most data situations, and to be as powerfunore powerful than the McNemar test
in small to moderate samples.

Heterogeneity tests and measures

For stratified data (i.e., a series of tables),gtogram providebeterogeneity testhat
compare the odds ratios in the different stratd,thekappavalues in the different strata.
These permit appraisal of the modifying effectha stratifying variable. The greater the
similarity, the higher the P-value. The tests $thdne interpreted with caution, since their
power is low; if the result is significant at th®b level, the hypothesis of homogeneity can
be rejected; but “a high p-value ... does not stiat/the measure is uniform, it only means
that heterogeneity ... was not detected by thé @sthman and Greenland 1998: 276); the
larger the strata, the more valid the test.

The program also provides tweeasures of heterogeneity andl-squared(Higgins and
Thompson 2002), with their approximate 95% intesvaAnH value of less than 1.2
suggests absence of noteworthy heterogeneity, ahargalue exceeding 1.5 suggests its
presence, even if the heterogeneity test is naifgignt. I-squaredexpresses the proportion
of variation that can be attributed to heterogen@it a meta-analysis, to interstudy variation)
rather than to sampling error; a value greater 8@% may be considered substantial
heterogeneity (Higgins and Green 2006).

Estimates of the supposed common underlying vditieecodds ratio okappaare of
questionable value if the findings in the variotrata are very disparate. If the results are
not uniform, explorations of possible causes - &gociations with study design or quality
or with the sizes or other characteristics of timgles - may be revealing

Test of equivalence

The program offers an equivalence test for the gmtagms of “yes” in two matched samples.
This test may be appropriate if no statisticalyngicant difference has been found, e.g. in
“negative trials” that compare a new treatment \athestablished standard treatment, where
there may be a reason to prefer the new treatrhims iat least as effective as the standard
treatment.

To use the test, the bounds of “equivalence” masidfined by specifying the largest
difference between proportions (e.g., 0.05) th#&b ise regarded as negligible.

Two hypotheses are tested: these are the hypottiegedbkere is more than a specified
“negligible” difference in a specific direction -ei (a) that the first proportion is (more than

9



A. PAIRS (“YES-NO”)

negligibly) larger than the second proportion, émdhat the second proportion is (more
than negligibly) larger than the first proportiort both tests yield significant results, both
these hypotheses are rejected, and the resultg thgilboth the one-sided differences are
negligible - that is, the proportions are equivaldhonly one test is significant, this
indicates that one proportion is at least as hgyfi.a., “not inferior t0”) the other. The larger
of the two P values is displayed as the P valu¢hi®equivalence test (Let al. 2002).

Non-significant results may be attributable to dreample size.
Odds ratio

The odds ratio is computed with its exact Fishemd mid-P confidence intervals, unless
numbers are very large or the computation is inpged by the user, in which case Poisson-
based confidence intervals are substituted. Jevel-bias estimator of the odds ratio
(Jewell 1984) is shown. (Alternative confidenceimals are computed for studies using
inverse sampling: see below.)

If stratified data are entered, a pooled odds iatemmputed for the combined data, with
exact Fisher's and mid-P confidence intervals asdém-based confidence intervals.

Proportions, difference between proportions, ratio of proportions

Theproportionsof “yes” observations in the two samples, thesabte difference, and their
ratio are displayed, all with their 90%, 95%, a®§®confidence intervals.

For the difference between proportions, the progiésplays intervals based on the score
method (Newcombe and Altman (2000: 52), and impadiald intervals (Agresti and Min
2005).

For theratio of proportions Wald, Wilson, and Wilson-cc (continuity-correctadtervals

are provided; these intervals are very similargsslthe sample is very small. The Wilson
intervals are as good as or better than the Wadahals, according to a simulation study by
Bonett and Price (2006), who regard the continadsrected intervals as attractive because,
although they tend to be wider than other intervalsir coverage probability cannot drop
too far below the specified level of confidence.

Relative difference

The program computes the relative difference betvwiee proportions, with its confidence
intervals. This measure (Fleissal.2003: 379-380) is defined as the difference betvibe
numbers of “yes” responses in the samples, divijetthe number of controls with “no”
responses in sample B. It may be useful in théysisaof clinical trials in which a group
receiving a new treatment (entered as sample égngpared with a control group receiving
a standard treatment (sample B). If “yes™ indesad favourable response to treatment, the
relative difference is a measure of the relatieeaf the new treatment, based on the
assumption that the new treatment can benefit thiolye patients who fail to improve under
the standard treatment. It is the proportion dfjects who are expected to respond to the
new treatment, among those who fail to respontiecstandard treatment (Lui 2004: 56).

10



A. PAIRS (“YES-NO”)

Incompletely paired data

Optionally, the difference between proportions bartested or its confidence intervals
estimated even if pairing is incomplete , i.e.dfree observations are paired and others are
unpaired, for example because of refusals, recgrelirors, or drop-outs.

The procedure described by Tang et al. (2009)lid a'missingness” is random and not
influenced by membership of set A or B or by theigaf the “yes-no” variable; computer
simulations show that if the sample is small oadae sparse, the confidence interval may
be unduly narrow and the confidence level may bevbéhe specified level.

Other procedures (the ,ZZ,, and 2 tests) are appropriate if “missingness” is inflceah

either by membership of set A or B or by the vallithe “yes-no” variable. These tests are
described by Choi and Stablein (1988), who reconimese of the Ztest (based on unpaired
observations only) if there are few pairs and mamyaired observations, or of the t8st

(the McNemar test, based on paired observationg drthere are many pairs and neither
set, or only one set, has many unpaired obsengtarof the Ztest (based on both paired
and unpaired observations) if there are many paidsboth sets have many unpaired
observations. The procedure described by BlanBaidnd (undated) is also performed, as
an alternative to Z this provides confidence intervals for the diffeserbetween the
proportions, as well as a significance test.

A modified McNemar test, in which fictional pairneatare allotted to unpaired observations
in such a way as to reduce the contrast betweeprtiportions, is offered for use if
“missingness” is influenced both by membershipetfA or B and by the “yes-no” variable.
This is the Z test of Choi and Stablein (1988). It is very comagve, and of limited value. It
should be used only if the number of unpaired olzgems is extremely small in comparison
with the number of pairs.

Tests are provided for comparing the paired anduweg observations with respect to their
proportions of “yes”, and to the magnitude of thitedences between sets A and B.

Tetrachoric correlation coefficient

An approximate tetrachoric correlation coefficientomputed, providing an estimate of
what the correlation would be if the distributiomsre not dichotomised, assuming an
underlying distribution that is continuous and apgmately normal. The program
computes an approximate coefficient, with its 958nfcdence interval. The computation is
not performed if there is a zero cell or undue @meess of the marginal totals (see
Methods).

Number needed to avoid one event

The program reports the number of individuals wieoreeeded in the group with a lower rate
in order to avoid a single case, with its approxarb% confidence interval. These results
apply to studies that compare the proportions sésdof disease, etc.) in paired subjects
exposed and not exposed to a risk or protectivierfac treatment, and to two-period
crossover trials.
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In a clinical trial the number needed has beereddhe “number needed to treat™ or
“number needed to treat (benefit)” (Altman 1998&), the number of patients who must be
treated in order to prevent one event (Sinclair Bratken 1994, Feinstein 1995). In an
observational study of a supposed cause of disgasdicates the number of people whose
exposure must be prevented in order to preventwaet (assuming that the findings reflect
a cause-effect relationship and that the caustifand its effect are modifiable).

The number is the reciprocal of the risk differeraned the 95% confidence limits for the
number needed in a group to avoid one case arec¢iprocals of the 95% confidence limits
for the risk difference. Since the confidencernvééfor the rate difference may straddle
zero, the confidence interval for the number neddexvoid one case may straddle infinity.
A confidence interval of 5.5 to -2.2 is reported“&s5 to infinity (in the one group), then up
to 2.2 in the other group”.

Attributable or prevented fractions

Attributable and prevented fractions in the expomed in the population are computed, with
their confidence intervals. These are appropf@tease-control studies where the cases are
randomly selected and the disease is rare. Cordedmtervals based on large-sample
standard errors are provided; they should be usidcaution if numbers are small.

The computation of the fractions and their standgrdrs is based on the methods described
by Kuritz and Landis (1987, formulae 4 to 9). Hétattributable fraction AF is negative the
cases and controls are reversed for the purposesygjutation, and the calculated
attributable fraction is reported as the preveiaction PF. If a lower confidence limit for

an AF is negative, the equivalent PF is displayeparentheses.

The confidence intervals of the attributable arelvpnted fractions in the exposed are
computed by Kuritz and Landis's formulae 10 and The confidence intervals of these
fractions in the population are generally basetherguadratic-equation method proposed by
Lui (2001a, method 5). If the odds ratio is 4 arenor 0.25 or less, however, or the
proportion of cases who are exposed is 50% or nuseejs instead made of logit-
transformed estimators, as recommended by Lui @0®&thod 3).

Kappa, percentage agreement , and related results

Kappais generally used to measure the agreement betwectyes”“no” ratings (by
different observers or tests, or by the same oksenv different occasions) of the same
individuals. In addition to this use as a measdmreliability, it may be used to measure
concordance in other situations where paired sasrgrke compared (Fleiss al. 2003: 618-
619). In a matched case-control study or matcloedral trial, kappamay serve as an
indication of the effectiveness of a matching pcaoe — it indicates the extent to which the
findings in matched pairs are more similar thadifigs in individuals from different pairs
(Fleisset al. 2003: 618).

Kappa like other measures of agreement, reflects theeagent concerning specific subjects
by specific raters, and can be generalized to adaiogroup only if the subjects are
representative of the broader group. As a meaduneer-rater reliability, its value depends
on the choice of raters. Uses and misusdsppain epidemiology are discussed by (among
others) Sim and Wright (2005), MacLure and Will@®87), Thompson and Walter (1988a,
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1988b), Kraemer and Bloch (1988), Bloch and Kraefh®89), and Feinstein and Cicchettit
(1990). Note thakappafor binocular ratings by two observers is offebgdmnodule B of this
program.

The probability of chance agreement is taken ictmant in the calculation éappa A

value of 1 indicates perfect agreement (aftemafig for this probability of chance
agreement) between ratings; 0 indicates no agrdeotieer than what can be attributed to
chance, and a negative value indicates less thamcelagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellenteagent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAledess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40—0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991). These levedy bve taken into account in the
appraisal of confidence intervals, e.g. by seeihgther the lower confidence limit lies
above 0.40 (Basu and Basu 1995).

A one-tailed test is done, indicating whetkappais significantly higher than zero. kappa
is 0.4 or more, a second test is done, indicatihgtiaer it is significantly higher than 0.4; and
if it is 0.6 or more, a third test is done, indingtwhether it is significantly higher than 0.6.

Confidence intervals are estimated both from thaddrd error and by a goodness-of-fit
approach (Donner and Eliasziw 1992). The latt@rirals are more accurate than those
based on the standard error, especially in smailpsess; if any of the expected frequencies is
<1, the intervals are labelled as approximate.

Paradoxical values &@appa— inconsistency with the apparent agreement —aoneyr
because of bias (systematic one-sided variationd®at two ratings, i.e. “different
calibration” of the observers or tests, expressed thfference between their frequencies of
“yes” responses) or because of a skewed “yes”-thstribution (inequality between the
prevalences of “yes” and “no”) (semg, Feinstein and Cicchetti 1989 and Gwet 2010: 30-
34). As an indication of bias, the program displByrt'sbias indexByrt et al. 1993; the
McNemar test appraises the significance of this.bias indicators of imbalance between
prevalences of “yes” and “no”, it displays Byrpsevalence inde&and anndex of asymmetry
in agreementLantz and Nebenzahl 1996). It also displays Lamid Nebenzahl'midex of
asymmetry in disagreemenAll four of these indices range from 0 to 100%high bias
index tends to elevateppa and a high prevalence index tends to decreagpa

Two adjusted values dappa— BAK (bias-adjustekappg and PABAK prevalence-
adjusted bias-adjustekhppg — are computed (Bydt al. 1993 )to provide an indication of
the above effects drappa.These adjusted values are conditional on the obdgrgrcentage
agreement. BAK is the value tHappawould take if there were no bias; it is equivalent
Scott'spi coefficient of agreement (Scott 1955). Lkappavalues are likely to be affected
by such bias. PABAK is the value thatppawould take if, in addition, the prevalence of
each category (as expressed by the mean of theatess' totals for the category) was equal.
PABAK may be useful in appraising agreement whenpiercentage agreement is high and
kappais paradoxically low; it approximates to the highpossibl&kappaif the percentage
agreement is above about 50% (Lantz and Neben28B)) 1 PABAK is callekappanor by
Lantz and Nebenzahl (1996), and is equivalent tawédl's RE (random error) coefficient of
agreement (Maxwell 1977) and Bennett's S coefftqiBennett et al. 1954). It should be
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noted that simulation studies have suggested thBAR may substantially overestimate
agreement (Hoehler 2000).

The program also displays theaximum attainabl&appaconsistent with the marginal totals,

Thepercentage agreemerstreported. This is the percentage of individwaho are placed

in the same category by both ratings. Unkiappa.,it is not corrected for chance agreement.
Its significance is tested, using a one-sideddksite null hypothesis that agreement is not
more than might be expected by chance. Jéreentage of positive agreeméRpog and
percentage of negative agreem@pneg (Cicchetti and Feinsteib990) are also shown,

with their 95% confidence intervals. The perceatafjpositive agreement is the percentage
of “yes” ratings that are paralleled by a “yes’imgtby the other observer or test, among all
“yes” ratings; and the percentage of negativeeagent is the percentage of “no” ratings that
are paralleled by a “no” rating by the other obseir test, among all “no” ratings. An
imbalance between these two percentages may béeoést; the program reports the
difference between them, with its 95% confidenderial. Cicchetti and Feinstein
recommend that, because of its sometimes paradogats kappashould always be
accompanied bi?posandPneg.Three alternative methods are used to estimate 95%
confidence intervals for the indices of positivel aregative agreement and the difference
between them. Samsa’s method (Samsa 1996) is bagbé assumption (not always true)
that the two observers or tests have a similareeeylto rate subjects as “yes” or “no” (i.e.,
that they are “similarly calibrated”). According assimulation study (Graham and Bull
1998), its intervals tend to be too wide. The paogalso applies two alternative procedures
proposed by Graham and Bulldaltamethod, which performs adequately if the sample siz
is 200 or more, and a Bayesian method, which ismecended if there are under 200 paired
observations.

In clinical practice, the percentage of positiveeggnent (i.e, concordant positive ratings as a
percentage of all positive ratings) representptbbability that, if a subject has been given a
positive rating by a typical observer, anotheragbbbserver will concur. Similarly, the
proportion of negative agreement expresses theapiiity of concurrence with a negative
rating (Samsa 1996). The program displays sepprat&bilities that a second rating will
agree with a first “yes” or “no” rating, dependiag whether rating A or B is made first.

The program also displays two indices of agreemmegtjested by Chamberlanhal. (1975):
the proportionate positive agreementy(g) indexand theproportionate negative agreement
(Ppna) index. The proportionate positive agreement index is #regntage of individuals
with concordant “yes” ratings, among all individsiaith at least one “yes” rating; and the
proportionate negative agreement index is the pérge of individuals with concordant
“no” ratings, among all individuals with at leaste“no” rating.

Approximate 95% confidence intervals for the measwf positive and negative agreement
are estimated by three methods. Samsa’s methoasgSa996) is based on the assumption
(not always true) that the two observers or teat®la similar tendency to rate subjects as
“yes” or “no” (i.e., that they are “similarly caliated”); according to a simulation study
(Graham and Bull 1998), its intervals tend to bewide. Thedeltamethod described by
Graham and Bull (1998) performs adequately if tra@le size is 200 or more. The Bayesian
method is recommended if there are under 200 palvsdrvations.

14



A. PAIRS (“YES-NO”)

If stratified dataare entered (e.g. observations of individualsfiiei@nt age groups), the
heterogeneity of theappavalues in the different strata is tested, measnirbgterogeneity
(see above) are provided, three estimates of tamtbkappaare computed, with their
confidence intervals, and overall values of thepetage agreement and of the percentage
agreement for each category are reported. Theshtghate of the overdilappais precision-
based; it is produced by weighting e&elppaby the inverse of its variance (Fleetsal

2003: 607). The second uses the methods of Da@mteKlar (1996); computation of the
overall kappa is based on the common correlatiodain@n which the expected responses
for each pair of observations are based on theathy@evalence of the two possible
responses). The associated heterogeneity testi{\appraises compatibility of the stratum-
specific estimates with the overlippg and estimation of confidence intervals are based
a goodness-of-fit approach, which has been shownawde satisfactory confidence
intervals for combined samples with as few as Ffjesiis (Donner and Eliasziw 1992). The
third estimate is obtained by weighting ttegpavalues by the sizes of the samples in the
strata. A simulation study suggests that thigédguable to the precision-based method if
kappais not zero (Barlovet al 1991).

Gwet's AC ; statistic

The AC1 statistic is, lik&kappa a chance-corrected measure of the extent of isgnete
between raters (Gwet 2002a, 2002b, 2008, 2018)mdtin difference frorkappais that it
bases the probability of agreement-by-chance ontbel hard-to-classify subjects, using a
model that in effect estimates their number. AC4 I@en recommended for use instead of
kappaon the grounds that its estimate of the probatilitchance agreement is more
appropriate, and that it is less influenced byedéhces in the propensity to give positive
ratings and by differences in the prevalences@fésponse categories. It is hence more
robust, avoiding paradoxical results. Monte Cantougation has demonstrated that it is less
biased and has a smaller variance tkegppa the G-index, or thpi coefficient (Gwet 2008).
But along with recommendations that it is prefeedblkappa(e.g.Lombardet al.2004;
Stegmann and Lucking 2005; Haletyal 2008), Blood and Spratt (2007) warn that “...the
AC1 and AC2 statistics ... remain infants in theistaal world ... as is always the case
with new statistics, caution should be exercisetth@ir use and further examination should
occur before they are adopted as the standard™.

The program calculates AC1's standard error and 98%, and 99% confidence intervals
on the assumption that the subjects are a randomplsaf an infinitely large population. If
the sample is drawn from a defined target populatiod the sampling fraction is known, the
correct standard error can be computed/E&E* x (1 -f)], where SE is the reported standard
error and is the sampling fraction, e.g. 0.1 (1 in 10).

Other chance-corrected measures of agreement

The G-index or Brennan-Prediger coefficient (Brennan and igexdl981, Gwet 2010: 38) is
a simple coefficient that bases the chance-prolbabil agreement only on the number of
response categories. The program calculates timel€¢s standard error and 90%, 95%, and
99% confidence intervals on the assumption thastitgects are a random sample of an
infinitely large population. If the sample is drafvom a defined target population and the
sampling fraction is known, the correct standardreran be computed a$[SE* x (1 -f)],
where SE is the reported standard errorfaadhe sampling fraction, e.g. 0.1 (1 in 10).
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Scott'spi coefficient(Scott 1955, Gwet 2010: 21) differs frdappain that it is based on
marginal probabilities (the probabilities that leaesponse category will be selected) that are
common to both raters, not those that are spdoifeach rater (Gwet 2010: 38), The program
calculates th@i coefficients standard error and 90%, 95%, and 99% confiderieevals on

the assumption that the subjects are a random savhph infinitely large population. If the
sample is drawn from a defined target populaticchtiie sampling fraction is known, the
correct standard error can be computed/4SE? x (1 -f)], where SE is the reported standard
error andf is the sampling fraction, e.g. 0.1 (1 in 10).

As an alternative tkappa the program also reports a modified versioReifce's i
coefficien (Peirce 1884). This coefficient is based on axtare model” that assumes that a
proportion of cases are "obvious" and classifiedemtly (using one of the pairs of marginal
values as a "gold standard"), whereas others ambifmous" and classified randomly
("guessed"). The modifieddcoefficient suggested by Abar and Loken (2010uf® as a
measure of reliability in 2x2 tables (e.g. to congpavo raters) is the average of two
coefficients, one taking the row margins as fixaat] one taking the column margins as
fixed. Computer simulations indicate that the miedif coefficient anckappagenerally
provide similar estimates of chance-corrected bditg, but thatkappatends to be
downwardly biased when "guessing" tendencies dferent for the two ratings, e.qg. if one
rater tends to choose "yes" in ambiguous casethanather tends to choose "no".

Martin and Femia's delta-based measures of agreement

These measures of agreement are Wdq@pa,chance-corrected. They have been proposed as
alternatives t&appa(Martin and Femia 2004, 2008) that are fre&agipas limitations. The
program estimates the "overall index", which is¢hance-corrected number of "A:yes-
B:yes" and "A:no-B:no" pairs, expressed as a peagenof all pairs) - i.e., it is a chance-
corrected index analogous to the percentage agreéeraad its two component "agreement”
indices, namely the chance-corrected percentaggreEments with respect to "yes"
responses (A:"yes"-B:"yes" pairs, as a percenthgdl pairs), and the chance-corrected
percentage of agreements with respect to "no" resgso('A:"no"-B:"no" pairs, as a
percentage of all pairs). It also provides measafehe raters' "consistency” with respect to
"yes" responses and "no"responses respectivelse ke chance-corrected indices
analogous to the percentages of positive and nvegagjreement (Ppos and Pneg). The
measures are asymptotic estimators. Negativeaadi@y be regarded as zero.
Approximate standard errors are calculated.

The estimator of total agreement may sometimesbeptive, providing a non-zero value
when there is no agreement (Martin and Femia 20083 may be suspected if it is similar
to either of the agreement indices and "the malgi@m@ unbalanced in the same direction”
(e.g., the column 1 total exceeds the column 2,tatal the row 1 total exceeds the row 2
total). A warning message is displayed if theslationdition applies.

Measures of predictive accuracy

As an option, the program provides a number of omeasof predictive accuracy in both
directions (using variable A as a predictor of &hle B, and using B as a predictor of A).
Besides th@ercentage agreeme(the “proportion correct”) anklappa(which in this
context may be termed tleidke skill scorer theDoolittle skill scorefeferring mainly to
skill in weather forecasting), which are descrilabdve, these include Goodman and

16



A. PAIRS (“YES-NO”)

Kruskal’slambdg Peirce’si coefficient( which isYouden’s indeand may also be termed
Peirce’s skill scorethetrue skill statisticthe Hansen-Kuipers skill scoréhe Hansen-
Kuipers discriminantpr theKuipers performance indexhecritical success indefalso
called theratio of verification or thethreat scorg, theGilbert skill scoreand Yule’'sQ (the
odds ratio skill score The pros and cons of the various measures aresdisgun especial
detail in publications on weather forecasting, saslolliffe and Stephenson (2003).

Kappais the proportion of correct forecasts, after elmting those forecasts that would have
been correct purely due to chance.

Goodman and Kruskalleambda(Goodman and Kristal 1954, Siegel and Castellar8198
298-303) is a coefficient of forecasting efficigribat expresses the capacity of one variable
to "predict” another. It is a "proportional redoctof error” index, i.e., an assessment of the
proportion of incorrect predictions that can bevented if information about the predictor
variable is available. Lambda ranges from O @ ¢ime variable is of no help in predicting
the other) to 1 (if the one variable perfectly sfies the categories of the other). Its value is
influenced by the relative sizes of the groups #natcompared.

Peirce’si coefficient(Peirce 1884) can be interpreted as the accuoacyds” outcomes
plus the accuracy for “no”outcomes. It answersghestion: “How well did the forecast
separate the ‘yes’ outcomes from the ‘no’ outcdines

Thecritical success indeis the proportion of correct forecasts of a “yeatcome, when
correct forecasts of a “no” outcome are completgtpred.

The Gilbert skill scordas a modification of the critical success scorgresgsing the
proportion of correct forecasts of a “yes” outcowteen allowing for the number of correct
forecasts that would have been obtained by charsieg a formula that does not ignore the
correct forecasts of a “no” outcome).

Yule’s Q,which is based on the odds ratio and is not infte€erby the incidence of “yes”
outcomes, has been recommended as a powerful wagtofg the association between
forecasts and observations (Stephenson 2000).

Distinguishability of categories

A measure of thdistinguishability of the categorid®arroch and McCloud 1986) is
computed. This may be useful in a methodologitadysin which the matched observations
represent separate ratings. The measure rargesl®0% if there are no disagreements, to
zero if disagreements outnumber agreements.

Inverse sampling

Inverse sampling refers to the addition of pairthtosample until a prespecified number of
pairs with a specific combination of attributes bagn found. The computation is based on
the assumption that it is the number of pairs &ithA: “no”, B: “yes” combination that was
specified in advance (the two sets of observatstiesild be labelled accordingly when
entering the findings). This method of samplingpgropriate only if subjects are accrued
sequentially and their attributes can be determrapaily
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The program provides an appropriate test for tfierdnce between the observations, and
exact 90%, 95%, and 99ébnfidence intervals for thedds ratio

Clustered data

Some studies are based on clusters of paired “y@8"ebservations that may not be
independent, e.g. pairs of observations of the garson, or by the same observer. The
study might, for example, be a clinical trial oétbffects of treatment applied to the eyes of
patients with early signs of cataract, based oorkeedfter appraisals of visual acuity
(“impaired” or “normal”). Since a person's two symay be similar, the findings may not be
independent, and a simple McNemar test based gooibled data might yield a spuriously
high level of significance. Clustering may damly occur in a study in which paired
observations are made on multiple teeth belongirigg same person, or on multiple blood
or tissue samples, or in a study in which differ@pgervers of the same subject participate.
In such studies the data comprise clusters ofaglabservations, one cluster per subject or
per observer. Clusters may contain different nusf@ne or more) of pairs of observations.

To analyse clustered data, all that is required enter each cluster as a separate stratum.
When the combined strata are analysed, the effettistering is appraised and allowed for.

Four procedures are provided for this purpose:ghiescribed by Eliasziw and Donner
(1991), by Obuchowski (1998), and by Durkalskal (2003), and a modification of the
Obuchowski test, proposed by Yaetgal (2010).. The Eliasziw-Donner procedure adjusts
the McNemar test and estimates adjusted confideterrals for the odds ratio. The
adjusted McNemar chi-square differs from the unsteydi McNemar chi-square only if at
least one cluster contains two or more discrepains pf observations, the Obuchowski and
Durkalski procedures provide significance tests amjdsted confidence intervals for the
difference between the proportions of “yes” resgsnsa the sets of paired observations, and
the modified Obuchowski procedure provides a sgamice test.

The relative value of the four tests varies inatiéint circumstances. The Obuchowski test is
slightly less powerful than the Eliasziw-Donnett&3buchowski 1998), and is more
powerful than the Durkalski test if cluster sizevésy variable (Durkalski et al. 2003). On
the basis of computer simulations, Yaigl (2010) conclude that their modified
Obuchowski test is the most powerful, the origi@aluchowski test is the most conservative,
and the performance of Durkalski's test varies betwthe original and modified

Obuchowski tests. They recommend use of the mad@leuchowski test if the clusters are
of equal size. If the clusters differ in size,jtmecommend use of Durkalski's test if the
number of clusters is small (below 50), and the ifreti Obuchowski test if there is a large
number of dusters.

Crossover trial

The crossover study must have a “yes-no” outconhere“yes” may, in different studies,
indicate "success", e.g. reduction of a symptona patient’s preference for a treatment, or
“failure”, e.g. occurrence of a symptom. It comgaxeo treatments, A and B (one of which
might be a placebo) that are applied in sequentigetesame subjects, with (if necessary) an
intervening “washout” period sufficiently long temove the effects of the first treatment.
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Subjects are randomly allocated to groups thaiveceeatment A first (AB sequence) or
second (BA sequence).

The program computes tipeoportions of “yes” resultgor the two treatments, separately for
the first and second periods, with significancetgdor the differences between the
treatments. The proportions among “informativeljsats are computed as well as those
among all subjects, “informative” subjects beinfried as those who have different
outcomes to the two treatments. Significance tsts compare the proportions of “ yes”
results for the two treatments (among “informatigebjects and among all subjects) among
subjects in the AB (Treatment A first) and BA (Tureant B first) groups. Multiple testing is
not taken into account.

Odds ratioscomparing the two treatments with respect to tbéds in favour of a “yes”
result are computed separately for the AB-sequandeBA-sequence groups, as well as for
the pooled data.

The relative effects of the two treatments are aigpd not only by the tests of the
differences between proportions, but alsavigNemar, Mainland-GartandPrescott tests.
McNemar tests, which are based on the findingsnfofmative” subjects, are performed
separately for the AB and BA sequences, as wdbirathe combined data. The Mainland-
Gart test is based on the findings in the “inforiredtsubjects in both periods. It is based on
a 2 x 2 table formed by removing the noninformasuejects. Prescott’s test is a test for
linear trend of the A:B relationship in a continggmable that includes the noninformative
subjects as a middle group; it may be misleadimyirhbers are very small (Armitageal.
2002: 505).

The results of these tests are valid only if tripusace of the treatments does not
substantially affect the outcomes. This requiagequate washout periods. Unless these
were adequate, the findings may be distorted. Gluése occurrence of a period effect (e.g.,
a carry-over effect whereby the first treatmenéeti the outcome in the second period) may
be provided by comparisons of the proportions sfngsults (and their differences) in the
two periods (i.e., in the AB and BA sequences), laytests for a period effect (see below).
According to Freeman (1989) and Senn (2002),median tests for a period effect may be
misleading.

If a period effect is suspected, the usual recona@ion is to base the assessment solely on
the first-period findings, i.e. to disregard the@ad period and treat the trial as a simple
parallel-group comparison. But even if there immycover effect, recourse to the first-period
comparison may not always be necessary. It isebedffective treatment that is more likely
to be influenced (in the second period) by a cakrgr effect of the other treatment. In a trial
in which a high proportion of yes results pointghie success of the treatment, it may
therefore be sufficient to concentrate on the ineatt with a lower proportion of yes results
in the first period, and base the assessment saellge first-period findings only if this
treatments proportion of yes resultssgbstantially higher in the second period tharme t
first (Cleophas et al. 2009). Calculations sugtfest tests for the treatment effect remain
powerful even if there is a substantial carryoviéea, so that a possible carryover effect can
be ignored if the findings point to a significargdtment effect (Cleophas et al. 2009).

Two tests that point to a possible period (e.gyeaver) effect are performed: (a) a test for a
discrepancy between the AB and BA groups in theapprtions of yes-yes and no-no results
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(Armitage and Hill 1982); it has been suggested tharitical level of P < 0.1 should be used
for this test, rather than P <0.05 (Nagelkerkd.e1286); and (b) the Armitage-Hills test for
treatment-by-period interaction (Armitage and Hil&82), which is similar to the Prescott
test. These tests assume valid randomization afubpects.

The program reports threimber needed to treat order to avoid a single "yes" result (if

"yes" indicates failure) or to produce a single"yesult (if "yes" indicates success), with its
approximate 95% confidence interval, based oné¢parmste data for each sequence, and then
on the pooled data. The number needed is theroeal of the risk difference, and its 95%
confidence limits are the reciprocals of the 95%fictence limits for the risk difference.

Since the confidence interval for the rate diffeemay straddle zero, the confidence

interval for the number needed may straddle infinA confidence interval of 5.5 to -2.2 is
reported as "5.5 to infinity (in the one groupen up to 2.2 in the other group".

Reconstruction of 2x2 table

An option is offered for the reconstruction of fhered 2x2 table, based on an odds ratio or a
two-tailed P value (and the proportions of "yés'the two groups). This may be helpful in
meta-analyses of studies with incompletely repodata. The reconstructed table is then
analysed in the usual way by this module.

The procedure is described by Hirji and Fagerl&@d.{), who deal not only with the
reconstruction of the table, but with the calcwaatof confidence intervals for the risk
difference, the risk ratio, and the odds ratio.ylpeint out that since the table can often be
reconstructed by using the odds ratio, use oPthialue will rarely, if at all, be necessary.

The results cannot be regarded as exact, sincatbeagfluenced by the accuracy of the
entered odds ratio or P value, by rounding-offl @ha P-value is used) by which
significance test yielded the P value. Howeverrji hnd Fagerland say that if the P-value is
known to two significant digits, the results ardfisiently accurate. They give an example
showing that P-values ranging from 0.015 to 0.@G#4of which might be entered as 0.02)
can produce 95% C.I.s ranging from 1.04-18.06 32-1L.8.68 - changes which, they say, are
"neither dramatic nor practically meaningful". Thegommend use of their methods
provided there are more than 50 pairs and theatataot too skewed or sparse.

METHODS

Tests for the difference between paired observation s

The Fisher's and mid-P exact tests use an efficiyutrithm for calculating the coefficients of tbenditional
distribution (Martin and Austin 1991, 1996), usitmde from David O. Martin's public-domain EXACTBB
program. The McNemar tests use formulae 4.3 ahd#Siegel and Castellan (1988: 43). The formalatlie
modified Wald test (May and Johnson 1997) is

chi-sq=b-c)?/[(b+c+1)—p—-c)® /n]|
where b andc are the numbers of discrepant pairs

n = total number of pairs

Heterogeneity tests and measures
The test for the heterogeneity of odds ratios ffedint strata is based on a multiple-sample gosshoé fit test
(Sokal and Rohlf 1981: 711-716; Zar 1996: 471-448ing log-likelihood chi-squares (without correcis for

continuity) in each stratum; 0.0000001 is addeckdts with frequencies of zero. The tests areggfmydness of
fit with an equal distribution of pairs with disg@ncies in different directions.
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The test for the heterogeneitylafppavalues is based on the method of Donner and KR9§).

Themeasures of heterogene(ttiggins and Thompson 2002) afeandl-squared H is computed by Higgins
and Thompson's formula 6, and increased to 1 (@tidig absence of heterogeneity) if it less thai\ test-
based interval is computed by Method IHsquaredand its 95% interval are computed fréimusing formula
10.

Test of equivalence

The program uses a test based on restricted maxlikelihood estimation (RMLE), without a continuity
correction. This method, described by Nam (198@$, been evaluated and recommended bgtal (2002),
who explain how to replace the standard errorhénbiasic formulae (formulae 4 and 5) with RMLE-lshse
values.

Odds ratio

The odds ratio id/C or ¢/b, whereb andc are the numbers of discrepant pairs. The low-gsisnator of the
odds ratio (Jewell 19845 b/ (c+ ) or c/ (b + 1).

Confidence intervals for odds ratios are estimatetteating the two values as Poisson variates, thitir ratio
(the odds ratio) distributed binomially (Morris a@érdner 2000: 65) Exact probabilities and caarfick
intervals are computed with an efficient algoritfoncalculating the coefficients of the conditiomtigtribution
(Martin and Austin 1991, 1996), using code from [da®. Martin's public-domain EXACTBB program.

Proportions, difference between proportions, ratio of proportions

Confidence intervals for thgroportions (of “yes”) are computed by the method describgtbwcombe and
Altman (2000: 46-47). Confidence intervals for tliference between proportioase computed by the score
method with a continuity correction, as recommenioietlewcombe and Altman (2000: 52), which is method
(10) of Newcombe (1998b), and by the improved Wa&thod (“Wald + 2") recommended by Agresti and Min
(2005: formula 2, with N set at 2).

The Wald confidence intervals for thetio of proportiors are based on formulae 16-2 and 16-3 of Rothman
and Greenland (1998); also formula 1 of BonettRride (2006). The Wilson and Wilson-cc intervais a
described by Bonett and Price (2006); PAIRSetc asemdaptation of the Gauss code provided by these
authors.

Incompletely paired data

Forincompletely paired datahe confidence intervals of the difference betwpmportions are computed by
the asymptotic method described by Tabtgl (2009: formulae 1 and 2), calculating the weigtgs / (n + my)
andn/ (n + my,), as suggested by Choi and Stablein (1982). Afingrto supplementary explanations provided
by Ling A (personal communication),rify is zero the term in formula 1 that hasas its denominator is
ignored, and; (required in formula 2) is set at zeromif is zero the term in formula 1 with, as its
denominator is ignored, an is set at zero; if the computed standard erraeis, the whole calculation is
repeated after substituting an adjustment consfa® for a zero number of discrepant pairs (thegi

direction); in Table V of Tangt al (2009), the correct C.I. by this method is (1590), and not (--/796, -
0.071) as misprinted. (Ling A, personal communaati

The Z, Z,, Z;, and Z tests are described by Choi and Stablein (12&)ses a weighted combination of Z
(the result for unpaired observations) andtie result for paired observations). In computimg weighting
factor used in the calculation of,£ach pair is counted as two observations.

For Z7, missing observations are replaced by fietigesults, in such a way as to reduce the cdriiedsreen
the proportions. For example, if the number ofy&s”, B: “no” pairs o) exceeds the number of A: “no”, B:
“yes” pairs (1), missing observations are changed to “yes” ifkhewn result for A is “no”, and to “no” if the
known result for B is “yes”; whereasnf; exceedsy, missing observations are changed to “no” if thewn
result for A is “yes”, or to “yes” if the known salt for B is “no”. The adjusted proportions arpoged, and a
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McNemar test is performed: )

chi-sq. (1 d.f.) 10— No1)” / (N1o+ Noy)
If the adjustments produce a reversal in the doaatf the relationship betweem, andny,, the adjusted
proportions are not reported, and P is reportell as

The procedure described by Bland and Butland (@uas performed only if there is at least one inggha
observation in each set. The procedure uses wgighterages of the differences (between propoitions
observed in the paired and unpaired data. Therengprints in the formulae for the varianceshafsie
differences: in each formula, the “plus” sign betwéhe two terms is misprinted as a “minus” signe T
comparison of paired and unpaired observationasgd on these variance formulae.

Relative difference

The relative difference is calculated by formulalB3of Fleisset al. (2003: 379), and its confidence intervals
by the log-transformation method described by [(2004: 57: formula 3.22).

Number needed to avoid one event

The number is the reciprocal of the risk differerened the 95% confidence limits for the number eeed a
group to avoid one case are the reciprocals d®H% confidence limits. The program uses the method
described by Walter (2001) for a crossover desiti eéiscrete data (formulae 2 and 3).

Tetrachoric correlation coefficient

The formula used (Edwards and Edwards 1984) is
(OR)IM _ 1) / ORJIM _ 1)

where OR=ad/bc
aandd = numbers of concordant pairs
b andc = numbers of discordant pairs

This simple method, which was used by Stata uetiéntly, provides an approximation that is accdptab
many situations ( Digby 1983, referring to an alhidentical formula [with % instead of pi/4] ) biktat can be
very inaccurate (Uebersax (2000). V. Wiggins hef Stata Corporation, in a reply cited by Guntred Hofler
(2006), says that the approximation works well wirenmarginals in both directions are above 10%.
PAIRSetc does not display the coefficient unlegs¢hndition is met, and there are no zero celis. A
approximate 95% confidence interval is estimatedfa large-sample estimate of the standard erited(by
Digby (1983).

Attributable and prevented fractions

The computation of the fractions and their standardrs is based on the methods of Kuritz and lsafi®87,
formulae 4 to 9). If the attributable fraction Ad=negative the cases and controls are reversetdqrurposes
of computation, and the calculated attributabletfoen is reported as the prevented fraction PR Itfwer
confidence limit for an AF is negative, the equaralPF is displayed (and vice versa), using theaditeie
PF=1-1/(1-AF)
AF=1+1/(PF-1)
The confidence intervals of the attributable arglvpnted fractions in the exposed are computed igA<and
Landis's formulae 10 and 11. The confidence imtlsrof these fractions in the population are gdlyebased
on the quadratic-equation method proposed by L@012, method 5); their computation is sometimes
prevented by a need to calculate the square ranefjative value. If the odds ratio is 4 or nmre.25 or
less, however, or the proportion of cases who gpesed is 50% or more, use is instead made of logit
transformed estimators, as recommended by Lui @0@&thod 3).

Kappa and related results
The basic formulae are provided by Fledssl 2003: chapter 18)Kappais calculated by formula 18.12. For

tests of the null hypothesis thetppais zero(formulae 18.14 and 18.35), the standard errorgfounderlying
zero value okappd is calculated by formula 18.13. For tests efligpothesis thatappahas an underlying
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value other than zero, and for confidence interthaks standard error appropriate for non-zero \wisie
calculated by formula 18.15.

Confidence intervalare estimated by two methods: by using the staneiaor (if the upper confidence limit
exceeds 1, it is reduced to 1), and by the goodofefisapproach explained by Donner and EliaszZ®92),
which uses a model in which the expected frequsnaiiéyes”-"yes", "yes"-"no", and "no"-"no" obsetims
are computed from the overall prevalence of "yesponses.

Bias is appraised by the McNemar chi-square test ébove) .

Indices of asymmetry in agreement and disagreearentalculated (as percentages) by formulae prduige
Lantz and Nebenzahl (1996), who refer to them die@s of symmetry. The index of asymmetry in agrest

is ja—d]|/(a+d) x 10Q whereaandd are the numbers of nondiscrepant pairs, anchthexiof asymmetry
in disagreement igo —c| / (0 + ¢) X 100 whereb andc are the numbers of discrepant pairs. Biaes

indexis [o —c| /N x 10Q and theprevalence indeis [a—d| / N X 10Q whereN is the sample size (Byet
al. 1993)

BAK (bias-adjusted kappaand PABAK prevalence-adjusted bias-adjusted kappse computed by the
methods described by Byat al (1993).

In the combined analysis of several samples ofasttiae estimate of the supposeinmon or overall valuef
kappais calculated in three ways: by computing a waighhean, using the inverse of the variance of each
kappaas its weight (Fleisst al 2003: formula 18.21); by the methods of Donnet Ktar (1996), which use
the common correlation model (the expected regggoftg each pair of observations are based onviagalb
prevalence of the two possible responses); anadimpuating a weighted mean, using the size of tredstr as
the weight. The confidence intervals of the comrkappa are estimated by formula 18.23 of Fletssl
(2003) and by the goodness-of-fit approach of Doane Klar (1996).

Theheterogeneityests are based on formula 18.22 of Fletssl (2003) and the goodness-of-fit approach of
Donner and Klar (1996). The measures of heteragelrteliggins and Thompson 2002) are described abov

Thepercentage agreemeist (a +d) / n,
where a = “yes-yes” pairs
b = “yes-no” pairs
C = “no-yes” pairs
d = “no-no” pairs
n=a+b+c+d

Significance is tested by a binomial test compatirggtotal number of complete agreements with thabver
expected by chance (Sheskin 2007: 729-730).

If stratified data are entered, the overall valokthe percentage agreement are based on the paatiagdthis is
equivalent to weighting the stratum-specific valbgsample sizes.

The percentage of positive agreemen2&/ (2a + b + ¢)), and the percentage of negative agreement is
2d / (2d + b + ). Three alternative methods are used to estin&e @nfidence intervals for these indices:
Samsa's method anléltaand Bayesian methods. Samsa’s procedure (Sa&883 it based on a variance
calculated asP(1 —P) / g, whereP is the index and is the number of subjects rated in the same wayney
of the raters or tests; e.g.., for subjects ratexi,"g = (b + d) or (c + d). Since either ratertest may be
chosen for this purpose, the method will yield thifferent confidence intervals if calibration istndentical.
PAIRSETC therefore uses the mean of these twonaltiee numbers (rounded off downwards).

Thedeltaand Bayesian methods are described by Graham ah¢1B98).

These three methods are also used to estimate @bfildence intervals for the difference between the
percentages of positive agreeme?pd9 and negative agreememreg. The estimates are
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(Ppos—Pneg * 1.96/[(var(Ppo9 + var(feg)] using variance estimates obtained by Samsa’s method

and (Ppos—Pneg + 1.96/var(Ppos— Pneg by the method of Grahaand Bull, who provide a

formula for var(Ppos — Pneg). The interval basethe Samsa variances must be regarded as veryxapate
since, as pointed out by Graham and Bull, it igadhe covariance betwe®posandPneg.The Bayesian
estimates (see below) are based on a Monte Caxtegure. In the output, the difference is expresspos -
Pnegif Pposis larger, andsPneg - Ppo# Pnegis larger.

TheBayesian intervalgfor Ppos, Pne@nd their difference) are estimated by Monte Cprtedures in which
5000 samples are generated, using the algoritheepted in Appendix A of Graham and Bull (1998) hvah
almost noninformative" prior distribution of 0.2% éach cell. The 95% interval estimates are obddirten the
2.5th and 97.5th percentiles of the simulated idistions. The beta variates are generated by ighgoBB or
BC(depending on the relative sizes of the adjus&fidvalues) of Cheng (1978). The random numbees! by
these procedures are generated by a pseudo-randobengenerator described by Wichman and Hill (3985
which derives each number in turn from three seedbers (in the range 1 — 30,000) which it modifaas
subsequent use. The initial seed numbers areaeddsy Delphi's inbuilt random-number procedures:
RANDOMIZE, which derives a preliminary seed frone thystem clock, and Delphi's RANDOM procedure
(which generates three random numbers from whiehli@ghjuired seed numbers are computed), supplethente
by an additional randomizing shuffle, using thgoaithm of Bays and Durham, as described by Peeas
(1989: 215-217). The Bayesian procedure may yigthtty different results each time it is repeated.

Theproportionate positive agreement indexdproportionate negative agreement indexd their confidence
intervals are computed by the formraham and Bull 1998)

P/(2-P),
where P = (%age of positive or negative agreement or itgeloor upper confidence limit 100.

Gwet’'s AC ; statistic

Gwet's AC1 is calculated by formula 4.1 of GwetX @061), and its variance by formula 5.7 of Gw2010:
94). The program calculates AC1's standard errdherassumption that the subjects are a randomlsarhan
infinitely large population. If the sample is drafvtom a defined target population and the samdiliagtion is
known, the correct standard error can be compute[SE? x (1 -f)], where SE is the reported standard
error and is the sampling fraction, e.g. 0.1 (1 in 10).

Other chance-corrected measures of agreement

Brennan and PredigeGindexis calculated by formula 2.18 of Gwet (2010: 38)d its variance by Gwet's
formula 5.10). The program calculates the G-indsteadard error on the assumption that the subgeeta
random sample of an infinitely large populationthié sample is drawn from a defined target popatatind the
sampling fraction is known, the correct standardrezan be computed a{SE2 x (1 -f)], where SE is the
reported standard error ahi$ the sampling fraction, e.g. 0.1 (1 in 10).

Scott'spi coefficien is calculated by formula 2.6 of Gwet (2010: 24nd its variance by Gwet'’s formula 5.8
The program calculates the standard errgui @in the assumption that the subjects are a randaomls of an
infinitely large population. If the sample is drafrom a defined target population and the samdiagtion is
known, the correct standard error can be compugelt{ 8E2 x (1 -f)], where SE is the reported standard error
andf is the sampling fraction, e.g. 0.1 (1 in 10).

The formula for the modifie®eirce’s i coefficien{Abar and Loken 2010) is
0.5{(ad- bc) / [(a + c)(b + d)] + (ad - bo) / [(a + b)(c + d)]}
where a b
¢ d represent the four cells of the 2x2 table.

Martin and Femia's delta-based measures of agreemen  t
Formulae for the asymptotic estimators for charmeected overall agreement (the overall index), for

agreement with respect to "yes" and "no" resporaa$for consistency, and for their variances paowided
by Martin and Femia (2008: Table 6). Before comfiota 1 is added to each of the cells in the 2talite, to
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improve the performance of the estimators. Issumed that the total sample size is fixed in ackwabut not
the row or column marginal totals.

Measures of predictive accuracy

The formulae fofambda(Goodman and Kristal 1954, Siegel and Castell@81fbrmulae 9.37 and 9.39) are:
lambda= (SumCelll- maxR / (n - maxR if variable A is the predictor;
lambda= (SumCell 2 maxQ / (n - maxC) if variable B is the predictor,
where SumCelll= (the larger ohandc) + (the larger ob andd)
SumCell2= (the larger oh andb) + (the larger o€ andd)
MaxR= the larger of the two row totals, i.ea,€ b) or (c + d)
MaxC = the larger of the two column totals, i.&@+c) or (b +d)
a, b, c, andl are the frequencies in the 2x2 table:

A

Yes No
B Yes a b
No c d

n=a+b+c+d
The standard error éddmbda(on which its approximate 95% confidence inteigdlased) is calculated by
formulae 9.38 and 9.40 of Siegel and Castellan&)L98the lower limit is less than 0, it is takas O; if the
upper limit is above 1, it is taken as 1.

Proportion correct = (a+d)/n
Its confidence interval is estimated by Wilson'thod, recommended by Newcombe and Altman (2000: 46
47).

Kappamay be calculated aPC-B/(1-B
where PC= proportion correct
E=[@+c)/rd[(a+b)/q+[b+d)/n[[(c+d)/n]
oras 2&d-bg/[(act+c)(c+d)+ (a+ b)(b+d)
The standard error used for estimating 95% conéidentervals fokappais calculated by formulae 18.15 to
18.18 of Fleis®t al (2003).

Peirce’s i coefficient = (ad — bc) / [(a + ¢)(b HH

The formulae for its standard error and confidenterval (as Youden's index) are provided by You@Es50)
and cited by Salmi (1986). They is appropriatdé tyes” outcomes and the “no” outcomes are at B@sand
if the index is not very close to zero or one.

Thecritical success indeisa/ (a +b + ¢

TheGilbert skill scores@—-BF/(a+b+c—-H
where F=[(a+b)(a+c)]/n

Yule’s Qis computed, after adding 0.1 to each cell fregyeby the formula
(@d-bg/(@d + bg

Its 95% confidence interval is estimated, if ildue is > -1 and < 1, by formula 11 of Bonett anidd>(2007)
Distinguishability of categories
This measure is computed by the method describdabbypch and McLeod (1986).
Inverse sampling
The difference between the observations is tesgegtieoformula (Lui 1996) :
chi-square (1 d.f.) 2(- c)* / 2¢

where b=A:“yes”, B: “no”
c=A:"“no”, B: "yes”
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Exact confidence intervals for the odds ratio ammputed by formula 5.58 of Lui (2004: 112).
Clustered data

TheEliasziw-Donner procedur® adjust for the presence of clusters of nonedeent paired observations
estimates a weighted average within-cluster intigectorrelation coefficientho, using information on both
concordant and discordant pairs, by the methodsrithes! in Section 4 of the paper by Eliasziw andhiber
(1991). The program reports the valuehad.r (Rhocannot be computed if the clusters contain onky on
discrepant pair of observations, and the proceidutteen not performed). Using the methods described
Section 2 of the paper, a correction factor forMeNemar test is then computed (the program divitles
McNemar chi-square by this factor). An adjustedarece is computed for the prevalence of discrejgann
one directionp / (b+Q. Confidence intervals are estimated for thissakence, and converted to adjusted
confidence intervals for the pooled odds ratio.t'Romputed” is reported if a computational diffiguils
encountered.

The Obuchowski procedurr comparing correlated proportions in clustedath uses formula 6 of
Obuchowski (1998) to compute a chi-square tessstatfor this purpose the estimator of the vaceuof the
difference between the proportions of “yes” resjgsria the sets of paired observations is compuwddrimula
4, after substituting the pooled (mean) proporfmrthe specific proportions in formula 2, and aghg the
covariance estimator computed by formula 3 with gravided by formula 7. A 95% confidence interfa
the difference between proportions is based owdhiance estimator in formula 2; the square rodhisf
variance is displayed as the standard error ofliffierence.

The formula for thenodified Obuchowski tes provided by Yangt al (2010), and appears just before their
formula 1.

Theprocedure described by Durkalski et €2003) for the analysis of clustered matched-gata computes
chi-square by formula 15. The test is not perfatnfi¢he clusters contain only one discrepant péair
observations, since it then yields the same resulhe unadjusted McNemar test. A 95% confidenesvial for
the difference between proportions (formula 18)ased on the variance estimator in formula 17sthere
root of this variance is displayed as the stanéarar of the difference.

The Obuchowski and Durkalski procedures are desgriviefly by McCarthy (2007).

Crossover trial

Differences between proportisrare tested by formula 3.15 of Fleidsal. (2003).

TheMcNemar testsise a continuity correction (Siegel and Castelld88 , formula 15.2).

The Mainland-Gart tesuses formula 10.46 of Fleiss (2002).

Prescott’s tests a Cochran-Armitage trend test (Armitagfeal. 2002, equation 15.1), appliedtoa2 x 3
contingency table showing, for each of the two sege groups, the number of subjects with “yes” Aoand
“no” for B, the number with the same responsesifand B, and the number with “no” for A and “yesiB.
Thetests for a carry-over effeare described by Armitage and Hills (1982) ehasquare test for the
discrepancy between the AB and BA groups in theipprtions of “yes-yes” and “no-no” results (Hiisd
Armitage 1979), and the Armitage-Hills test (Arngigaand Hills 1982), which is a trend test appledt2 x 3
contingency table showing, for each of the two sege groups, the numbers of subjects with “yesamal’
“no-yes” results, with an intermediate categorytfar subjects with (pooled) “yes-yes” and “no-mesults.
The number needed to avoid/produce a single "ya&siltr is the reciprocal of the risk differenced dime 95%
confidence limits for the number needed in a grimugvoid one case are the reciprocals of the 958kidence

limits for the risk difference. The program usies method described by Walter (2001) for a crossdesign
with discrete data (formulae 2 and 3).
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Reconstruction of 2x2 table

Optionally, use can be made of an odds ratio @matailed P-value. If an odds ratio is entered,ttige is
constructed by employment of the formulae in roef 3able 4 of Hirji and Fagerland (2011). If as&lue is
entered, the formulae in row 1 are used.
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A2. CONCURRENT ASSESSMENT OF INTERRATER AND
INTRARATER RELIABILITY ("YES-NO" VARIABLE)

This module assessederrater and intrarater reliability in a study that compares "yes-
no" ratings of the same subjects made by two ragash of whom rate each subject twice.
The "raters" may be different observers, differaesuring instruments, or different
methods or conditions of measurement.

The four ratings of each subject are required.

The program provides threeeasures of agreemef@quivalent tckappg: one inter-rater
reliability and (for each rater) a measure of irater reliability, with its standard error.

Measures of reliability

Themeasures of reliabilitywhich are equivalent tkappg are computed by the method
described by Shoukri and Donner (2001), who corecthdt the use of two ratings of each
subject (instead of one) may allow fewer subjentse included in studies of interrater
reliability, with no net loss in efficiency.

This procedure may also be appropriate in studresravthere have to be two ratings by each
rater, as in a study of the presence of some lesitre eyes, or in studies of twins.

METHOD

The computation is based on a nested beta-binanudel. The interrater reliability is computed byrfula 8
of Shoukri and Donner (2001), the intrarater reliads by formulae 10 and 11, and their varianbgdormula
12.
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B. PAIRED OBSERVATIONS:
THREE OR MORE CATEGORIES, NOT ORDERED

This module is appropriate for the analysis of g@iobservations (in different subjects or the
same subject) where the dependent variable is @aabstale one (i.e., with categories that
are not ordered). It appraises differences anelemgent between the two sets of
observations. It can be used to analyse matchetletdrials and case-control studies,
before-after studies, and other comparisons oegaubjects or observations, such as
comparisons of husbands and wives, and diagnodbe sime individuals by two different
observers or diagnostic techniques.

The number of categories must be entered, andttigemumbers of pairs with each
combination of findings are entered ik & k table in which the paired sets of observations
are arbitrarily designated A and B. The numbesand sequence of the categories is
arbitrary, except that if there is a referencegatg it should be given the highest number.
Numbers of pairs are entered, not numbers of obens.

=

If the data are stratifiedenter each stratum in turn; fmeta-analyseenter each study as @
separate stratum. Click on “All strata” whenevemdined results are required.

For each table, the program providests for the differencebetween the two sets of
observatior(extended McNemar test, Stuart-Maxwell yesthowing the sources of
disagreement (if there are up to seven categoaad)computesdds ratios and related
tests kappa and related results and a measure of tlkstinguishability of categories.

For stratified data the program provides over#dists for the difference(based on the
pooled data) anklappa and related results.

The module also provides an option for toenparison of binocular data(i.e. findings
concerning the presence of an abnormality or adtteébute in both eyes) reported by two
raters. Agreement between the raters is expresskappacoefficients, and McNemar tests
assess the difference between the raters, theatitfe between the eyes, and rater-eye
interaction.

Tests for the difference between paired observation s

For each table, the program providesended McNemar tests for off-diagonal symmety an
the Stuart-Maxwell test for marginal heterogenditgtratified data are entered, extended
McNemar tests are done on the combined (pooled) dat

Theextended McNemar (“symmetry”) teq8owker's test for off-diagonal symmetry) tests
the symmetry of the findings; e.fpr categories 1 and 2 (and similarly for eacleotair of
categories) it tests whether the probability thatabservation will be in category 1 in one set
of observations and in category 2 in the secotideisame as the probability of the reverse
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combination, namely category 2 in the first set eatégory 1 in the second. Ordinary
(Pearson's) and log-likelihood chi-squares are eteth Comparisons of zero cells do not
contribute to the chi-square. If there are compassof zero cells, alternative P values are
shown, based on different degrees of freedom, natheltotal number of pairs compared
(Bowker 1948) and this total number reduced bynilmaber of zero-cell comparisons
(Hoeniget al 1995, Evans and Hoenig 1998).

As a guide to the sources of disagreement (Maxi¥@3iD), the contribution that each pair of
categories makes to a significant McNemar chi-sg(r< 0.05) is reported (if there are up
to seven categories).

The Stuart-Maxwell testor marginal heterogeneity tests the hypothesisttieprobabilities

of the various categories are the same in the éi observations (are the totals of the
columns the same as the totals of the rows?) péefec categories that manifest significant
differences can be pin-pointed (see “Odds ratiakratated tests”, below).

The results of the extended McNemar and Stuart-Md@ests cannot be expected to be the
same, except that symmetry implies marginal homeigye(but not vice versa).

Odds ratios and related tests

The program provides odds ratios based on theasirtetween each pair of categories (if
there are up to 10 categories). If the odds fz&ed on the contrast between two categories,
e.g. 1 and 2 (displayed as “1:2") is above 1, thésns that the odds in favour of 1 rather
than 2 are higher in sample A than in sample B.

The consistency of these odds ratios based on @latetegories is tested. For example, if
the odds ratio for category 1 versus category®0dsand the odds ratio for category 2 versus
category 3 is 4.0, the odds ratio for categoryrswe category 3 would be expected to be
12.0. Inconsistency with such expectations suggbst the odds ratios may be modified by
the matching variables (Pike, Casagrande, and Sifitb). A low P value is indicative of
inconsistency.

Maximum-likelihood estimates of mutually consistedts ratios based on the contrast
between each pair of categories are computece #sgnates are not very meaningful if the
test points to mutual inconsistency.

The program also computes odds ratios based omparson of each category with all

other categories combined, and does McNemar @stggraise their significance; alternative
P-values are provided for tests of hypotheses flatad before and after seeing the results. If
the Stuart-Maxwell test shows significant disagreetnthese odds ratios and tests pinpoint
the specific disagreements (i.e., about specitiegmies) that are responsible.

Confidence intervals are displayed for odds ratmsrasting each category with the
reference category (the category with the highatgory number), assuming mutual
consistency.
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Kappa and related results

The program computes an ovetdppavalue (for the complete set of categories), and a
separat&appavalue for each category. In each instance, aaites test is done, indicating
whetherkappais significantly higher than zero.Kkappais 0.4 or more, a second test is done,
indicating whether it is significantly higher th@mt; and if it is 0.6 or more, a third test is
done, indicating whether it is significantly highbban 0.6. Confidence intervals kappa

are estimated from its standard error.

Paradoxical values &appamay occur because of bias (systematic one-sideatioa
between two ratings) — indicated by the extendedli®dfisar test (see above) — or a skewed
distribution (inequality between the prevalencethefcategories in the two samples). Two
adjusted values of the overall kappa — BAiag-adjustekappg and PABAK prevalence-
adjusted bias-adjustekhppg — are therefore computed (Bgttal. 1993. These adjusted
values are conditional on the observed percentgigement. BAK is the value thighppa
would take if there were no systematic one-sidethtian between the ratings; it is
equivalent to Scottjgi coefficient of agreement (Scott 1955). Lkappavalues are likely to
be affected by such bias. PABAK is the value Kagtpawould take if, in addition, the
prevalence of each category (as expressed by the of¢he two raters' totals for the
category) was equal. PABAK may be useful in afgongi agreement when the percentage
agreement is high ankdppais paradoxically low; it approximates to the highpossible
kappaif the percentage agreement is above about 50%i4lzand Nebenzahl 1996).
PABAK is calledkappanor by Lantz and Nebenzahl (1996), and is equivaeiMaxwell's
RE (random error) coefficient of agreement (Maxw@V'T) and Bennett's S coefficient
(Bennett et al. 1954). It should be noted thauition studies have suggested that PABAK
may substantially overestimate agreement (Hoel@ieo R

The program also displays theaximum attainableverall kappaconsistent with the
marginal totals, i.e. consistent with the obsenes@! of bias.

Kappais generally used to measure the agreement betweeratings (by different
observers or tests, or by the same observer cereiiff occasions) of the same individuals.
In addition to this use as a measure of relighilitmay be used to measure concordance in
other situations where paired samples are com{gtesset al. 2003: 617-618). In a
matched case-control study or matched-control kggpamay serve as an indication of the
effectiveness of a matching procedure — it inde#te extent to which the findings in
matched pairs are more similar than findings invigials from different pairs (Fleist al
2003: 618).Kappa like other measures of agreement, reflects theeagent concerning
specific subjects by specific raters, and can Inegdized to a broader group only if the
subjects are representative of the broader gros@ Measure of inter-rater reliability, its
value is determined by the selection of raterssldsel misuses éfppain epidemiology are
discussed by (among others) Sim and Wright (20@agLure and Willett (1987),
Thompson and Walter (1988a, 1988b) Kraemer andB3(©988), and Gwet (2010: 30-34)

The probability of chance agreement is taken iotmant in the calculation dappa A

value of 1 indicates perfect agreement (aftemalig for this probability of chance
agreement) between ratings; 0 indicates no agretentieer than what can be attributed to
chance, and a negative value indicates less themcehagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellenteagent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAaess’s 0.40-0.74 group into 0.60—
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0.74: good; and 0.40-0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991).

Thepercentage agreemerstalso shown. This is the percentage of indiaisuvho are

placed in the same category by both ratings, anlik@kapp3 it is not corrected for chance
agreement. In a study in which the same indivislaa¢ rated by two observers, this is the
percentage of subjects who are placed in the sategary by both raters). Its significance

is tested, using a one-sided test of the null Hygss that agreement is not more than might
be expected by chance. The percentage agreenadsd ishown separately for each category
(if there are up to six categories), together whipercentage of positive agreemantd the
percentage of negative agreemertte percentage of positive agreement is the ptage of
“yes” ratings (for a specific category) that aregtleled by a “yes” rating by the other
observer or test, among all “yes” ratings for ttategory; and the percentage of negative
agreement is the percentage of “no” ratings (fspecific category) that are paralleled by a
“no” rating by the other observer or test, amondral” ratings for that category. In clinical
practice, the percentage of agreement for a speatiing represents the probability that, if a
subject has been given that rating by a typicaénkes, another typical observer will concur.

If stratified dataare entered (e.g. observations of individualsfiiei@nt age groups), the
heterogeneity of the overall kappa values in tffieidint strata is tested, measures of
heterogeneity (see above) are provided, two estsraitthe overall kappa are computed,
with their confidence intervals. The first estimat the overall kappa is precision-based; it
is produced by weighting each kappa by the invefsts variance (Fleisst al. 2003: 602). The
second estimate is obtained by weighting the kajphses by the sizes of the samples in the
strata. A simulation study suggests that thigédguable to the precision-based method if
kappa is not zero (Barlow et al. 1991). A heteragty test is done, and supplemented by
two measures of heterogeneity, H and I-squaredgirsgand Thompson 2002), with their
approximate 95% intervals. An H value of less th&hsuggests absence of noteworthy
heterogeneity, whereas a value exceeding 1.5 sisg¢epresence, even if the heterogeneity
test is not significant. I-squared expresses thpgrtion of variation that can be attributed to
heterogeneity (in a meta-analysis, to interstudiatian) rather than to sampling error; a
value greater than 50% may be considered subdtheterogeneity (Higgins and Green
2006). Overall values of the percentage agreearenteported. These are based on the
pooled data; this is equivalent to weighting thratsim-specific values by sample sizes.

Other measures of chance agreement

The AC1 statisticis, like kappa a chance-corrected measure of the extent of iagnee
between raters (Gwet 2002a, 2002b, 2008, 2018)mdtin difference frorkappais that it
bases the probability of agreement-by-chance ontbel hard-to-classify subjects, using a
model that in effect estimates their number. AC4 I@en recommended for use instead of
kappa on the grounds that its estimate of the fibtyaof chance agreement is more
appropriate, and that it is less influenced byedéhces in the propensity to give positive
ratings and differences in the prevalences oféspanse categories. It is hence more robust,
avoiding paradoxical results. Monte Carlo simulati@s demonstrated that it is less biased
and has a smaller variance thappa the G-index, or thpi coefficient (Gwet 2008). But
along with recommendations that it is preferablkappa(e.g.Lombardet al.2004;
Stegmann and Lucking 2005; Haletyal 2008), Blood and Spratt (2007) warn that “...the
AC1 and AC2 statistics ... remain infants in theistaal world ... as is always the case
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with new statistics, caution should be exercisetthéir use and further examination should
occur before they are adopted as the standard™.

The program calculates AC1's standard error and 98%, and 99% confidence intervals
on the assumption that the subjects are a randomplsaf an infinitely large population. If
the sample is drawn from a defined target poputatiod the sampling fraction is known, the
correct standard error can be computed &E° x (1 -f)], where SE is the reported standard
error and is the sampling fraction, e.g. 0.1 (1 in 10).

The Gindex or Brennan-Prediger coefficient (Brennan and igexdl981, Gwet 2010: 38) is
a simple coefficient that bases the chance-prolbabil agreement only on the number of
response categories. The program calculates timel€¢s standard error and 90%, 95%, and
99% confidence intervals on the assumption thastitgects are a random sample of an
infinitely large population. If the sample is drafvom a defined target population and the
sampling fraction is known, the correct standardrezan be computed a§SE? x (1 -f)],
where SE is the reported standard errorfaadhe sampling fraction, e.g. 0.1 (1 in 10).

Scott'spi coefficient(Scott 1955, Gwet 2010: 21) differs frd@ppain that it is based on
marginal probabilities (the probabilities that leaesponse category will be selected) that are
common to both raters, not those that are spdoifeach rater (Gwet 2010: 38) The program
calculates thei coefficient’s standard error and 90%, 95%, and @@8¥didence intervals on
the assumption that the subjects are a random savhph infinitely large population. If the
sample is drawn from a defined target populatichtiie sampling fraction is known, the
correct standard error can be computed EE* x (1 -f)], where SE is the reported standard
error and is the sampling fraction, e.g. 0.1 (1 in 10).

Comparison of binocular data

This option compares two raters' reports of binacfihdings - that is, their findings
concerning the presence of an abnormality or d§es-no" attribute in both eyes of the
same subjects. Account is taken of the positiveetation generally present between
observations made in fellow eyes (Oden 1991). Thequure may also be used (with
appropriate construal of the terms "right eye" daft eye") in comparisons of two raters'
observations of other paired bodily structuresnatudies where a first-eye/second-eye
grouping is more relevant than a right/left growgpin

The option requires the entry of the raters' figdim the two eyes of the same subjects, in a
4x4 cross-tabulation showing (for each rater) thibers of subjects with a positive finding
in both eyes, in the right eye only, in the lefe@nly, and in neither eye.

Kappa is computed for each eye separately, anthéopooled data on both eyes. Confidence
intervals (90%, 95%, and 99%) are estimated fok#ppa values, and (where appropriate)
significance tests are performed, comparing kapfaprvespecified values of 0.4 and 0.6.
The confidence intervals are appropriate if thedamare large.

Modified McNemar tests (Schouten 1993) assessitfezahce between the raters, the
difference between the eyes, and rater-eye interact
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Distinguishability of categories

A measure of the distinguishability of pairs ofeggdries is computed. This may be useful in
a methodological study in which the matched obt&ma represent separate ratings. The
value is 100% if there are no disagreements, aralizdisagreements outnumber
agreements. An average distinguishability indeceported, as well as the distinguishability
of each pair of categories.

METHODS

Tests for the difference between paired observation s

Theextended McNemar (‘symmetry’) téstdescribed by Bowker (1948), Everitt (1977: 116) and Zar

(1998: formula 9.22). There akfk-1)/2 degrees of freedom (wheke= number of categories). Corresponding
cells that both have zero values are omitted fivencalculation of this chi-square, and if theresareh
comparisons an alternative P is computed, aftaraied the degrees of freedom by the number of zelo-

comparisongHoeniget al. 1995, Evans and Hoenig 1998).

The contributions that a specific pair of categefieandj) makes to a significant chi-square (P < 0.05) are
computed by formula 6 of Maxwell (1970):

chi-square =r; - ny) / (ny + 1y)
where n; = the number in the cell in coluniof row j

n; = the number in the cell in columiof row |
In McNemar tests for single categories, the degoéé®edom are defined &s1 (wherek = number of
categories) for testing posteriorihypotheses (Fleist al 2003: 382).

The Stuart-Maxwell chi-square teqiStuart 1955, Maxwell 1970) is performed if thare up to 20 categories.
It is computed by a matrix operation (Flegtsal 2003: 381-383; Everitt 1977: 115-116. The testasdone if
any cell is the only non-zero cell both in its aoluand in its row, unless there are only 3 categoin which
case the category with perfect agreement is odnitten the calculation of chi-square and, as suggelsy
Uebersax (2006), P is based both on 1 degreeeddra and (for a more conservative test) on 2 degrke
freedom. To avoid computational problems in extreitgtions, some zero divisors are replaced b§ano1.

Odds ratios and related tests

If there is a zero observed frequency of pairsiyeell, adjusted odds ratios are computed, byrapdi5 in
each cell.

The test for the consistency of odds ratios betvpagrs of categories, the maximum-likelihood estioraof
mutually consistent odds ratios, and the estimaifazonfidence intervals are described by Pike agesnde
and Smith (1975).

Kappa and related results

The basic formulae are provided by Flaessl (2003: chapter 18). Kappa for single categaai®s for the

total distribution ¢verall kappd are calculated by formulae 18.10 to 18.12. Esetstof the null hypothesis that
kappais zero(formulae 18.14 and 18.35), the standard errorgfounderlying zero value &bpp3g is

calculated by formula 18.13. For tests of thedtlgpsis thakappahas an underlying value other than zero,
and for confidence intervals, the standard errpr@priate for non-zero values is calculated by fdaa 18.15

to 18.18. Confidence intervals are estimated frloenstandard error (if the upper confidence limiezds 1, it

is reduced to 1).

Bias is appraised by the extended McNemar (symmtgsy (see above). BAKias-adjusted kappaand

PABAK (prevalence-adjusted bias-adjusted kapaee computed by the methods described by &yat
(1993).
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In the combined analysis of several samples otasttiae estimate of the supposEanmon or overall valuef
kappais calculated in two ways: by computing a weighteehn, using the inverse of the variance of each
kappaas its weight (Fleisst al. 2003: formula 1.21); and by computing a weighteghn, using the size of the
stratum as the weight. The confidence intervathefcommon kappa are estimated by formula 18. RBeids
et al. (2003).

Theheterogeneity tess based on formula 18.22 of Fleetsal (2003). Theneasures of heterogeneity
(Higgins and Thompson 2002) afeandl-squared H is computed by Higgins and Thompson's formulan@, a
increased to 1 (indicating absence of heterogeniéityess than 1. A test-based interval is canegl by
Method Ill. I-squaredand its 95% interval are computed fréinusing formula 10.

The significance of thpercentage agreemeris tested by a binomial test comparing the totmhber of
complete agreements with the number expected hyceh@heskin 2007: 729-730).

Some computations are omitted if division by zerother problems are encountered. In some instazego
values are changed to 0.00001 to permit computation

Other chance-corrected measures of association

Gwet's AC1is calculated by formula 4.1 of Gwet (2010: 6X)d éts variance by formula 5.7 of Gwet (2010:
94). The program calculates AC1's standard errdherassumption that the subjects are a randomlsarhan
infinitely large population. If the sample is drafrom a defined target population and the samdiagtion is
known, the correct standard error can be compued[SE? X (1 -f)], where SE is the reported standard
error andf is the sampling fraction, e.g. 0.1 (1 in 10).

Brennan and PredigeGindexis calculated by formula 2.18 of Gwet (2010: 38)d its variance by formula
5.10 of Gwet (2010: 95). The program calculatesGhadex's standard error on the assumption tkeat th
subjects are a random sample of an infinitely lgrgulation. If the sample is drawn from a defitadet
population and the sampling fraction is known, ¢herect standard error can be computed as

v [SE2 X (1 -f)], where SE is the reported standard error anthkisampling fraction, e.g. 0.1 (1 in 10).
Scott'spi coefficientis calculated by formula 2.6 of Gwet (2010: 21).
Comparison of binocular data

Single-ey&kappaestimates and their standard errors are compytétebmethods described by Flegtsal.
(2003: chapter 18)Kappais calculated by formula 18.12. For tests ofghely hypotheses thihppa
exceeds 0.4 or 0.6 (formula 13.19), and for canfa intervals (formula 18.20), the standard exppropriate
for non-zero values is calculated by formula 18.15

The pooled kappastimate is computed from a 2x2 table containfregstums of the single-eye observed
frequencies, and the sums of the single-eye exppdatquencies (Schouten 1993, Table llic), usirgitda
18.12 of Fleiss (2003). As pointed out by Schoutieis,kappais identical to the weightekappacomputed
from the original 4x4 cross-tabulation (Table §jng weights of 1 for complete agreement on bo#sg§.5
for agreement on only one eye, and 0 for disagraemeboth eyes. The large-sample nonzero stareteodis
computed from this 4x4 table, using the method idesd by Fleis®t al. (1969) for weightedappa(formulae
15 to 21), with the above weights. This standardrés used for tests of the study hypotheseskhappa
exceeds 0.4 or 0.6 (Fleissal. 2003, formula 18.19), and for estimating confickeintervals (formula 18.20).

The modified McNemar tests use the formula

chi-square = fi| - 0.25% / B
whereM andB are computed from the original 4x4 table by théhoe described by Schouten (1993: 2212 and
2213). For the comparison of ratelkéjs derived from the weights in Schouten's Table, I¥hdB from the
squares of these weights. For the comparison o, 8)é derived from the weights in Table V, aBdrom the
squares of these weights. For the test of ratefrggeaction M is derived from the weights in Table VI, aBd
from the squares of these weights.

35



B. PAIRS (CATEGORIES NOT ORDERED)

Distinguishability of categories

This measure is computed by the method describé2hbypch and McLeod (1986), using maximum-likelidoo
estimates (without assuming quasi-symmetry) in fdan21b (Shoukri 2000).
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C. PAIRED OBSERVATIONS:
THREE OR MORE ORDERED CATEGORIES

This module is appropriate for the analysis of g@diobservations (in different subjects or the

same subject) where the dependent variable has dhmaore categories that fall into a
sequence. It appraises differences and agreeratmeén the two sets of observations. It
can be used to analyse matched-control trials asé-control studies, before-after studies

and other comparisons of paired subjects or obgBensg such as comparisons of husbands

and wives, and diagnoses of the same individuatsvbydifferent observers or diagnostic
techniques.

The number of categories must be entered, andttigemumbers of pairs with each
combination of findings are entered ik & k table in which the paired sets of observation

are arbitrarily designated A and B. The categamnest be entered in the correct sequence; if

there is a reference category it should be giverntghest number. Numbers of pairs are
entered, not numbers of observationsor8sof 1, 2, 3, etc. are allotted to the categories
use in computing a weightd@ppg, but these default scores can optionally be chang
numbers that are believed to better express thawelcloseness of the categories.

If the data are stratifiedenter each stratum in turn; fmeta-analyseenter each study as @
separate stratum. Click on “All strata” whenevemdined results are required.

For each table, the program providests for the differencebetween the two sets of
observation , including tests appropriate for oederategories (Mann-Whitney test, Fleiss

=

Everitt test, Wilcoxon signed-rank test, permutatiest) and tests that ignore the sequenge of

the categories (extended McNemar test, Stuart-Mbutest), and computesdds ratios and
related tests kappa and related results Gwet's AC2 coefficient, other measures of
agreement (Brennan and Prediger's G-index and'Seotioefficient).a measure of the
distinguishability of categories,andrank correlation coefficients and other measures of
ordinal association.

For stratified data the program provides over#dists for the difference aheterogeneity
test, ageneralizedodds ratio, andkappa and related results.

Tests for the difference between paired observation s

The Mann-Whitney test, Fleiss-Everitt test for thoedered categories, Wilcoxon signed-

rank test, and permutation test take account ofdlggience of the categories, whereas the

extended McNemar test and Stuart-Maxwell test igribeir sequence.

The Mann-Whitney test for paired dafAgresti 1984: 208-209) is a large-sample test that

compares the frequencies in two sets of pairedreasens; if the data are arranged in the
format of a square contingency table these arentrginal distributions. A two-tailed
P-value is shown, labelled as “approximate” if thare under 50 pairs of observations. If

stratified data are entered, the test is also dorthe combined data, after weighting the test
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statistics in the strata in three different wayesqually, by the sample sizes in the strata, and
by the square roots of the sample sizes — as wellsample test on the pooled data.

TheFleiss-Everitt testwhich is done if there are three categoriess tebiether in one set of
observations there tend to be more values at cthefethe scale and fewer at the other,
compared with the other set of observations (Fletisd 2003: 382-384). If stratified data
are entered, the test is also done on the comigpeded) data.

TheWilcoxon signed-ranks teg$iegel and Castellan 1988: 87-95) tests whetleentedian
discrepancy between paired observations is zelis.dbne only if the differences between
each pair of adjacent categories can be assuntezl@équal, that is, if the scores allotted to
adjacent categories are equally spaced. Thestagipropriate if the differences between
paired observations are an acceptable basis fhingithe differences in the characteristic
that is measured.

Thepermutation tesfior matched pairgSiegel and Castellan 1988: 95-100 is appropfate
interval-scale variables, and is therefore dong trthe scores allotted to adjacent categories
are equally spaced. It is not done if there areentttan 20 pairs. The test provides exact P-
values; one-tailed P-values are displayed if P tlfe one-tailed value is doubled to provide
a two-tailed value.

Theextended McNemar (“symmetry”) teq8owker's test for off-diagonal symmetry) tests
the symmetry of the findings; e.fpr categories 1 and 2 (and similarly for eacleotair of
categories) it tests whether the probability thatabservation will be in category 1 in one set
of observations and in category 2 in the secotideisame as the probability of the reverse
combination, namely category 2 in the first set eaiégory 1 in the second. Ordinary
(Pearson's) and log-likelihood chi-squares are ecdetp The test is equivalent to the test for
goodness of fit with a symmetry model described\gyesti (1984: 202). If stratified data
are entered, the test is also done on the comlgpmeded) data. Comparisons of zero cells do
not contribute to the chi-square. If there are cangns of zero cells, alternative P values
are shown, based on different degrees of freedamely the total number of pairs compared
(Bowker 1948) and this total number reduced bynilmaber of zero-cell comparisons
(Hoeniget al 1995, Evans and Hoenig 1998).

As a guide to the sources of disagreement (Maxi@3iD), the contribution that each pair of
categories makes to a significant McNemar chi-sg(r< 0.05) is reported (if there are up
to seven categories).

The Stuart-Maxwell testor marginal heterogeneity tests the hypothesisttieprobabilities

of the various categories are the same in the et observations (are the totals of the
columns the same as the totals of the rows?) péefec categories that manifest significant
differences can be pin-pointed (see “Odds ratiakralated tests”, below).

The results of the extended McNemar and Stuart-Md@ests cannot be expected to be the
same, except that symmetry implies marginal homeige(but not vice versa).

Heterogeneity test

If stratified data are entered, goodness of fihvaitsymmetry model is tested twice, once
using the pooled data, and once using the sunmeajdbdness-of-fit chi-squares in the
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separate strata. The difference between the twdrggss-of-fit chi-squares is an indication of
the effect of the stratifier variable(s), and isplayed as a heterogeneity test. The result
should be interpreted with caution, since testehlmsv power. The symmetry model is based
on the assumption that the probability of discrémeirs in which the case is in category 1
and the control in category 2 is the same as thlegtility of pairs in which the case is in
category 2 and the control in category 1 (and sirtyiffor other pairs of categories); i.e. the
odds ratio (as generally computed for paired data)(Agresti 1984: 202).

The heterogeneity dfappavalues is also tested (see below).
Odds ratios and related tests

Thegeneralized odds ratior GOR (the odds ratio for ordinal data) is digpth This is the
odds in favour of a higher score in one sample thdhe other, i.e. the ratio of pairs with a
higher score in one sample to pairs with a higheresin the other sample. It is assumed that
this odds ratio is the same for each pair of categgAgresti 1984: 203). The ratios in both
directions are displayed, with their 90%, 95% af#3onfidence intervals. If stratified

data are entered, the assumed common values GiQReare displayed (with their 96%
confidence intervals); these are weighted averafjfee stratum-specific GOR values, and
are of questionable value is there is marked hgésraity.

The program provides odds ratios based on theasirtetween each pair of categories (if
there are up to 10 categories). If the odds fz&ed on the contrast between two categories,
e.g. 1 and 2 (displayed as “1:2") is above 1, thésans that the odds in favour of 1 rather
than 2 are higher in sample A than in sample B.

The consistency of these odds ratios based on qfatestegories is tested. For example, if
the odds ratio for category 1 versus category®0dsand the odds ratio for category 2 versus
category 3 is 4.0, the odds ratio for categoryrswe category 3 would be expected to be
12.0. Inconsistency with such expectations suggbst the odds ratios may be modified by
the matching variables (Pike, Casagrande, and Sifith). A low P value is indicative of
inconsistency.

Maximum-likelihood estimates of mutually consistedts ratios based on the contrast
between each pair of categories are computece g&snates are not very meaningful if the
test points to mutual inconsistency.

The program also computes odds ratios based omparson of each category with all
other categories combined, and does McNemar wstggraise their significance; alternative
P-values are provided for tests of hypotheses fated before and after seeing the results.

Confidence intervals are displayed for odds ratmsrasting each category with the
reference category (the category with the highatgory number), assuming mutual
consistency.

Kappa and related results
As measures of the agreement between the matcisedvations, the program provides two

weighted kappastimategwhich take account of the sequence of the caiegjolan
ordinaryoverall kappa(for the complete set of categories, but ignothmgsequence), and (if
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there are up to six categories) separate kapp@v&br each category. In each instance, a
one-tailed test is done, indicating whether kagggggnificantly higher than zero. If kappa is
0.4 or more, a second test is done, indicating ket is significantly higher than 0.4; and if
it is 0.6 or more, a third test is done, indicatwigether it is significantly higher than 0.6.
Confidence intervals are estimated from the stahdawor.

In the computation of weighted kappa, the weighegieach pair of observations depends on
the size of the difference between the categoni@gich the pair-mates fall. Default scores
of 1, 2, 3, etc. are allotted to the categoriestits purpose; but these scores can optionally
be changed to numbers that are believed to befpeess the relative closeness of the
categories. Two weighting schemes are used — |ler@duquadratic (Sim and Wright 2005).
Either may be chosen; but since the results disteidy reports should specify the method
used. The linear weights are proportional to tke sif the difference between scores,
whereas the quadratic weights are proportionaiécstjuare of the difference. If there are 4
categories, the linear weight is 0.67 if the défere between scores is 1, 0.33 if itis 2, and 0
if it is 3. Quadratically-weightellappavalues tend to increase with the number of categor
whereas linearly-weighted values are less seng@uenner and Kliebsch 1996).

Paradoxical values &appamay occur because of bias (systematic one-sideatioa
between two ratings) — indicated by the extendedi®dfisar test (see above) — or a skewed
distribution (inequality between the prevalencethefcategories in the two samples). An
adjusted value of the overall kappa —PABAifgvalence-adjusted bias-adjustemppg — is
therefore computed (Byet al. 1993. This adjusted value is conditional on the observed
percentage agreement. BAK is the value Kagjpawould take if there were no systematic
one-sided variation between the ratings; it is egjent to Scott'pi coefficient of agreement
(Scott 1955). Lovkappavalues are likely to be affected by such bias.BRK is the value
thatkappawould take if there were no systematic one-sidathtion between the ratings
and, in addition, the prevalence of each categms\ekpressed by the mean of the two raters'
totals for the category) was equal. PABAK may beful in appraising agreement when the
percentage agreement is high &agpais paradoxically low; it approximates to the highe
possiblekappaif the percentage agreement is above about 50#i{laand Nebenzahl 1996).
PABAK is calledkappanor by Lantz and Nebenzahl (1996), and is equivaeiMaxwell's

RE (random error) coefficient of agreement (Maxw@Vl'T) and BennettS coefficient
(Bennettet al. 1954). It should be noted that simulation stsdiiave suggested that PABAK
may substantially overestimate agreement (Hoel®@ieo R

The program also displays theaximum attainableverall kappaconsistent with the
marginal totals, i.e. consistent with the obsenes@! of bias.

Kappais generally used to measure the agreement betweeratings (by different
observers or tests, or by the same observer cereiiff occasions) of the same individuals.
In addition to this use as a measure of relighilitmay be used to measure concordance in
other situations where paired samples are com{atesset al 2003: 617-618). In a
matched case-control study or matched-control kggpamay serve as an indication of the
effectiveness of a matching procedure — it inde#te extent to which the findings in
matched pairs are more similar than findings invigials from different pairs (Fleist al
2003: 617-618).

Kappa like other measures of agreement, reflects theeagent concerning specific subjects
by specific raters, and can be generalized to adaogroup only if the subjects are
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representative of the broader group. As a meaduneer-rater reliability, its value depends
on the choice of raters. Uses and misusésppain epidemiology are discussed by (among
others) Sim and Wright (2005), MacLure and Will@®87), Thompson and Walter (1988a,
1988b), Kraemer and Bloch (1988), Bloch and Krae(h®89) and Gwet (2010).

The probability of chance agreement is taken iotmant in the calculation dappa A

value of 1 indicates perfect agreement (aftemalig for this probability of chance
agreement) between ratings; 0 indicates no agreteptieer than what can be attributed to
chance, and a negative value indicates less thamcehagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellenteagent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAeéess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40-0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991). These lewedy be taken into account in the
appraisal of confidence intervals, e.g. by seeihgther the lower confidence limit lies
above 0.40 (Basu and Basu 1995).

Thepercentage agreemeistalso shown. This is the percentage of indiaisuho are

placed in the same category by both ratings, anlik@kapp3 it is not corrected for chance
agreement. In a study in which the same indivislaa¢ rated by two observers, this is the
percentage of subjects who are placed in the sategary by both raters). Its significance

is tested, using a one-sided test of the null Hygss that agreement is not more than might
be expected by chance. The percentage agreenadsd ishown separately for each category
(if there are up to six categories), together whipercentage of positive agreemantd the
percentage of negative agreemertte percentage of positive agreement is the ptage of
“yes” ratings (for a specific category) that aregtleled by a “yes” rating by the other
observer or test, among all “yes” ratings for ttetegory; and the percentage of negative
agreement is the percentage of “no” ratings (fspecific category) that are paralleled by a
“no” rating by the other observer or test, amondral” ratings for that category. In clinical
practice, the percentage of agreement for a speatiing represents the probability that, if a
subject has been given that rating by a typicaénkes, another typical observer will concur.

If stratified dataare entered (e.g. observations of individualsfiiei@nt age groups), the
heterogeneity of the overall kappa values in tffieidint strata is tested, measures of
heterogeneity (see above) are provided, and tvwmaists of the overall kappa are computed,
with their confidence intervals. The first estimat the overall kappa is precision-based; it
is produced by weighting each kappa by the invefsis variance (Fleisst al 2003: 602).

The second estimate is obtained by weighting tipp&aalues by the sizes of the samples in
the strata. A simulation study suggests thatithigeferable to the precision-based method if
kappa is not zero (Barloet al. 1991). A heterogeneity test is done, and suppiged by

two measures of heterogenettyandl-squared(Higgins and Thompson 2002), with their
approximate 95% intervals. Athvalue of less than 1.2 suggests absence of natewor
heterogeneity, whereas a value exceeding 1.5 sisg¢epresence, even if the heterogeneity
test is not significantl-squaredexpresses the proportion of variation that caatbéuted

to heterogeneity (in a meta-analysis, to intersteatyation) rather than to sampling error; a
value greater than 50% may be considered subdtheteErogeneity (Higgins and Green
2006). Overall values of the percentage agreearenteported. These are based on the
pooled data; this is equivalent to weighting thratsim-specific values by sample sizes.
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Gwet's AC2

The AC2 statistic is, like weightddippa a chance-corrected measure of the extent of
agreement between raters concerning an ordered setponse categories (Gwet 2010: 76-
78, 80-81). Itis a weighted version of the ACAtistic, treating various kinds of
disagreement as partial agreements. The programasshat the successive categories are
equally spaced, with scores of 1, 2,3 etc. A quadveeight is assigned to each pair of
scores, reflecting the degree of agreement. Ita diierence fromkappais that it bases the
probability of agreement-by-chance on only theilfested) hard-to-classify subjects using a
model that estimates their number.

Distinguishability of categories

A measure of the distinguishability of pairs ofeggdries is computed. This may be useful in
a methodological study in which the matched obt&ma represent separate ratings. The
value is 100% if there are no disagreements, aralizdisagreements outnumber
agreements. An average distinguishability indexeorted, as well as the distinguishability
of each pair of categories.

Rank correlation coefficients and other measures of ordinal association

Kendall's and Spearman's rank correlation coefftsi¢au bandrho, respectively) are
computed (with their standard errors and 95% cemité intervals). These have different
numerical values but are similar in their abilibydetect associations (Siegel and Castellan
1988: 251). The other measures of ordinal assoni#ttat are provided are Goodman and
Kruskal'sgammaand Somers' asymmetii; which may be regarded as measures of how
effectively the order of a pair of observationshaigéspect to one observation can be
predicted from their order with respect to the otbieservation (see Hildebrand, Laing, and
Rosenthal 1977). The Someby'statistics are appropriate when one of the obfensis
clearly the dependent one, e.g. one that comesitatiene; SomerdDxy is appropriate when
A is dependent, andyx when B is dependent.

Tau, Kruskal'sgamma and Somer® depend on a comparison of the ranks of the paired
observations. All possible pairs are taken intmaat in the computation ¢du, whereas
pairs that tie are disregarded in the calculatiogamnma and pairs that tie with respect to
one (the independent) observation are omitted tf@rcomputation of Somei3. Tauis the
geometric average @ixy andDyx.

METHODS

Maximum categories = 60 [50 for kappal].

Tests for the difference between paired observation s

The Mann-Whitney test for paired daimdescribed by Agresti (1984: 208-209). If stied data are entered,
the results of the tests in the strata are combiyestouffer's method (Stouffet al 1949: 5; DeMets 1987),
based on weighted averages of the test resulteisttata, using three different sets of weightséHfeZ values
—weighting them equally, by the sample sizes éndtnata, and by the square roots of the sampdse.sik
simple test is also done on the combined (poolath.d

TheFleiss-Everitt testor ordered categories is described by Fletsal (2003: 382-384).
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TheWilcoxon signed-ranks tesses the formula provided by Siegel and Cast¢llaB8: 92, formula 5.5), but
allowing for the effect of ties on the variancerbplacing the denominator (as suggested by Sp898: 53

and Mehta and Patel 1991 7-10)%Z(R5 | 4), whereR = the rank of the difference between paired
observations. Nondiscrepant pairs are ignoredhelfe are fewer than 20 pairs, significance iga@ppd by
using critical levels for one-tailed P = .05, .04®l, .005, .0025, and .0005 (derived from Siegdl @astellan
1988: Table H; and Zar 1998: Table B.12).

The permutation tesis explained by Siegel and Castellan (1988: 95100

Theextended McNemar teistdescribed by Bowker (1948), Everitt (1977: 116) and Zar (1998: formula

9.22). There ark(k-1)/2 degrees of freedom (wheke= number of categories). Corresponding cells biodit
have zero values are omitted from the calculatiathie chi-square, and if there are such compasison
alternative P is computed, after reducing the degyo freedom by the number of zero-cell compasgson
(Hoeniget al. 1995, Evans and Hoenig 1998).
The contributions that specific pairs of categoreske to a significant chi-square (P < 0.05) arapated by
formula 6 of Maxwell (1970):

chi-square =r; - ny)* / (ny + 1)
where n; = the number in the cell in colummf row j

n;i = the number in the cell in coluniof row i
In McNemar tests for single categories, the degoéé®edom are defined &s1 (wherek = number of
categories) for testing posteriorihypotheses (Fleist al 2003: 382).

The Stuart-Maxwell chi-square teqtStuart 1955, Maxwell 1970) is performed if thare up to 20 categories.
It is computed by a matrix operation (Flegtsal 2003: 381-383; Everitt 1977: 115-116. The testasdone if
any cell is the only non-zero cell both in its aoluand in its row, unless there are only 3 categoin which
case the category with perfect agreement is odnitten the calculation of chi-square and, as suggelsy
Uebersax (2006), P is based both on 1 degreeeddra and (for a more conservative test) on 2 degrte
freedom. To avoid computational problems in extreitigations, some zero divisors are replaced byGDO1.

Heterogeneity test

The tests for goodness of fit with a symmetry mpdelwhich the heterogeneity test is based, areritbes! by
Agresti (1984: 202).

Odds ratios and related tests

Thegeneralized odds ratjavhich is Agresti's.” (Agresti 1980), is computed by the formula proddbsy Lui
(2004: 126), and its 95% confidence interval byltdgarithmic-transformation method of formula 6 (14
2004: 127). For stratified data, the assumed comvatue of the GOR is the exponent of a weighteztaye
of the logs of the GOR values in the strata, an®%% confidence interval is computed from thenesstidd
variance of this weighted average (Agresti 1980: 63

If there is a zero observed frequency of pairaweell, 0.5 is added in each cell.

The test for the consistency of odds ratios betvpears of categories, the maximume-likelihood estioraof
mutually consistent odds ratios, and the estimadfaconfidence intervals are described by Pike aGeende
and Smith (1975).

Kappa and related results

The basic formulae are provided by Flaessl (2003: chapter 18). Kappa for single categaai®s for the
total distribution ¢verall kappa are calculated by formulae 18.10 to 18.12,arijhted kappéy formulae
18.27 to 18.29, using linear or quadratic weightsear weights are calculated by a formula (18 2iggested
by Cicchetti and Allison (1971), namely (for eaddtl;
1-il=jl/ k—1)

wherei andj are the scores of the row and column categories

k is the number of categories
The formula for quadratic weights (18.30) is

1-|-jf/ (k=1y
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For tests of the null hypothesis that kappa is gkmonulae 18.14 and 18.35), the standard errargffo
underlying zero value of kappa) is calculated bynigla 18.13. For tests of the hypothesis thapkdmas an
underlying value other than zero, and for confideimtervals, the standard error appropriate forzreno
values is calculated by formulae 18.15 to 18.18nffdence intervals are estimated from the standenat (if
the upper confidence limit exceeds 1, it is reducet).

Bias is appraised by the extended McNemar (symmntsy (see above), and BAKigs-adjusted kappaand
PABAK (prevalence-adjusted bias-adjusted kappgthe methods described by Bgttal (1993).

In the combined analysis of several samples ofasttiae estimate of the supposenmon or overall valuef
kappais calculated in two ways: by computing a weightezhn, using the inverse of the variance of each
kappaas its weight (Fleisst al 2003: formula 18.21); and by computing a weightezhn, using the size of the
stratum as the weight. The confidence intervakhefcommon kappa are estimated by formula 18. FBeaiés

et al (2003)

Theheterogeneity tess based on formula 18.22 of Fleetsal (2003). Thenmeasures of heterogeneity
(Higgins and Thompson 2002) dteandl-squared H is computed by Higgins and Thompson's formulan@, a
increased to 1 (indicating absence of heterogeniéityess than 1. A test-based interval is canegl by
Method Ill. I-squaredand its 95% interval are computed fréinusing formula 10.

The significance of thpercentage agreemeisttested by a binomial test comparing the totahber of
complete agreements with the number expected hyceh@heskin 2007: 729-730).

Some computations are omitted if division by zerother problems are encountered. In some inssazeso
values are changed to 0.00001 to permit computation

Gwet's AC2
Gwet's AC2 is calculated by formula 4.17 of GweiQ: 77).
Distinguishability of categories

This measure is computed by the method describéabbyoch and McLeod (1986), using maximum-likelidoo
estimates (without assuming quasi-symmetry) in fdan21b (Shoukri 2000).

Rank correlation coefficients and other measures o f ordinal association

The computation dfau, gamma and Somer® is based o1$, the difference between the numbers of
concordant and discordant pairs, as explained mgd&ik(1970: 45-46) and Agresti (1984: 157-159).

The formula fotau makes allowance for tied observations (Siegel@astellan 1988: 249, formula 9.10). If
the number of pairs N > 30, the significancesad tested by a large-sample method whase Agresti (1984:
180) suggests if the numbers of concordant anedisait pairs both exceed 100. If this conditionds met
the program reports P as approximate. The forisula

Z=(S-CO)/VV
where V =variance of S, making allowance for tied raftkendall 1970: formula 4.3)

As recommended by Kendall (1970:54-58)C = lunless one variable has only two values and ther dtas
tied ranks, in which case

CC=[(2N-T--T.) / Intervals] /2
where  Intervals = the number of different rankstf@ non-dichotomous variable, minus one

Trand T, = ties involving the first and last ranks (respeasy) of the non-dichotomous variable

Gammais calculated by a formula provided by Siegel @adtellan (1988: 292, formula 9.32). If N > 3@ th
significance test fo& (see above) is used as a tesiglmmma

SomersDxy andDyx are calculated by Siegel and Castellan's fornfuks and 9.42 (1988: 304-305).

Significance is tested by a Z test (Siegel andellast 1988: 309, formula 9.47), based on the vagan
computed by Siegel and Castellan's formula 9.45.
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Spearman'sho is computed by a formula that takes account oftisaks (Siegel and Castellan 1988: 241,
formula 9.7). Itis not calculated if numbers e large for the program to handle. A large-sampl

approximation is displayed as the S.Ertud, namely~/[1 / (N — 1)](Hollander and Wolfe 1999, formula

8.72). The t-test for the significancerbb (Siegel and Castellan 1988: 243, footnote), ukBid> 30, is based
on the null variance. An approximate 95% configeimterval (Zar 1996: 398) is estimated if N isdtmore
andrho is 0.9 or less, based on the Fishgansformation

z=0.5In[(1 +rho) / (1- rho)]
The confidence limits forho {Fieller, Hartley and Pearson (1957, 1961) are

exp[2 £ 1.965E) - 1] / exp[2¢ - 1.965E3 + 1]

where SEz=+[1.06 / (N - 3)].
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D1. PAIRED NUMERICAL OBSERVATIONS
(NORMAL DISTRIBUTION)

This module is appropriate for the analysis of g@iunumerical observations (in different
subjects or the same subject) where a normal ldigioin is assumed. It appraises differen
and agreement between the two sets of observatlbnan be used to analyse matched-
control trials and case-control studies, beforeraftudies, reliability studies, comparisons

measurement methods, and other comparisons ofipailgects or observations. An option

is offered for deriving confidence intervals foettifference between means from the P-
value, for use in meta-analyses of incompletelyriga studies.

The observations entered may be measurementsradpmibjects, e.g. matched cases ang

controls, or repeated measurements in the samecssibjEach pair of matched observatio
(labelled "A" and "B") can be entered in a sepalae, or pairs with the same values can
entered together, with their frequency; up to 5084 may be entered. Replicated
measurements can be entered in any order, unlésanth“B” represent defined
instruments, observers, times, conditions, etcoption is offered for the entry of
supplementary unpaired observations.

If the data are stratifiedenter each stratum in turn. Click on “All stratghenever
combined results are required. In a study of séetusters with paired observations in
each cluster, enter each cluster as a separatenstrand then click on "All strata" for a
combined analysis.

In a clinical trial or cohort study that uses pdit&seline and follow-up measurements to
compare the changes in two groups, enter each g®agseparate stratum and then click
“All strata” for a comparison usingnalysis of covarianceand for estimates of thmumber
needed to treat

The program provides@mparison of the paired observationsificluding tests for
differences, namely the Bradley-Blackwood testd8hi's paired-test, and Pitman's test),
measures of agreemen(fcorrelation coefficient and population correlatimefficient, six
intraclass correlation coefficients, Lin’s concanda correlation coefficient, repeatability
coefficients, the standard error of measuremeatwithin-subject coefficient of variation,
the confidence interval for the “true value” copending to an observed measurement,

Spearman-Brown coefficients of reliability, St Lant's correlation coefficient, 95% limits of

agreement , and the association between the absbiierence and the mean value), a
measure of disagreement, partiabmega-squared andANOVA tables. Measures of the
similarity or dissimilarity of the distribution®SR andABC) are provided. Optionally,
equivalence testzan be performed.

Cces

of

15
be

If stratified dataare entered, the paired one-tailéests in the separate strata are combined,

and theheterogeneityf the P-values in the strata is tested.
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Comparison of the paired observations

The program displays means, standard deviationstandard errors for the two sets of
observations, and the mean difference betweenlbereations, with its standard deviation,
standard error and 90%, 95% and 99% confidencevaite It also provides linear
regression coefficients, with their standard errors

The tests for differences are the Bradley-Blackwtasd, which simultaneously tests the
means and variances (Bradley and Blackwood 198@k&4994), Student's pairédest,
which compares the means, and Pitman's test (Pit®39) for the equality of variances.
Two-tailed P-values are displayed.

Since the pairettest is based on the assumption that the diffeseace normally distributed
(Zar 1998: 1634, Armitage et al . 2002: 103) tests for normality are performed - the
Lilliefors test (Lilliefors 1967) and (if at leag0 pairs are entered) the D'Agostino-Pearson
test (D'Agostino and Pearson 1973) . The Lilliefest examines the deviation of the
cumulative frequency from the standard normal cativg distribution; the result is reported
as P <0.01 or P < 0.05 or P<0.10 or P<0.15, >®.P<0.2, >0.15; or P>0.2. The
D'Agostini-Pearson test is based on tests for skewand kurtosis. Thetest is sensitive to
violation of the homogeneity of variance assumptitrthis assumption is violated. a
conservative test may be used, e.g. by employing 0.01 inste&d0& as a critical value
(Sheskin 2007: 755).

If stratified dataare entered, the paired one-taileests in the separate strata are combined
by Stouffer's method (Stouffer et al. 1949, p. BgMets 1987) to produce overall one-tailed
tests that control for the stratifying variabl&hree different sets of weights are used for
this purpose — weighting the test results equbihthe sample sizes in the strata, and by the
square roots of the sample sizes. In additionhéterogeneityf the P-values in the strata is
tested.

Measures of agreement

The measures of agreement have special relevarstedies of reliability, comparisons of
measurement methods, and the clinical applicatiotneasurements.

A simple correlation coefficient, intraclass coatén coefficients, and Lin’s concordance
correlation coefficient are computed in all instesic

If the paired observations are positively corralatbe program also provides measures that
may be useful if A and B are replicate measurements they denote two different methods
of measurement. The measures for use in studiepbfate measurements are repeatability
coefficients, the standard error of measuremeiak tla@ confidence interval for the “true
value” corresponding to an observed measurememt. nfeasures that are appropriate in
comparisons of measurement methods are St Laucent&ation coefficient (for use if one

of the methods is regarded as a “gold standardd),2%% limits of agreement. The program
displays the correlation coefficient between theddlte difference and the mean of A and B,
and the linear regression of the difference omtkean.

The simplecorrelation coefficients seldom helpful in comparisons of methods of
measurement (Bland and Altman 1995a; Altman 1901:402), since at best it points to an
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association between the measurements, and do&dIraiw closely they agree; moreover,
its value tends to be high if the subjects arg ddferent, and low if they are similar. The
program also reports thpopulation correlation coefficienthe coefficient of determination
(the square of the simple correlation coefficieat)d theadjusted coefficient of
determination(the square of the population correlation coeffitie

Intraclass correlation coefficientsvhich are appropriate for interval-scale datdaih
assumed normal distribution, are measures of agneetiat express the correlation (in terms
of absolute agreement) between measurements witlividuals or sets of matched
individuals. Six intraclass correlation coeffici€lCC) values are computed (Shrout and
Fleiss 1979), with their 95% confidence intervals.

Each ICC is appropriate in a different situatiga) The values with the rubric “two-way
model with fixed raters” are appropriate in studid¢gere the matched observations in each
set represent various “unique” raters, and no @mfees are made about other raters; “raters”
denote the various observers, treatments, methaztnditions of observation, matched
individuals, or (in a reliability study of a questinaire or other scale) questions or other
scale items, that were studied. Two such ICCpereided. The first, which Shrout and
Fleiss refer to as model 3.1, uses a single meaasunteas the unit of analysis, and the second
(model 3,k) uses an average measurement. (bMIh&XC values reported as “two-way
model with random raters” are appropriate if thensawere randomly selected from a larger
population of raters and it is proposed to geneedlie findings to this larger population. If
analysis is based on a single measurement, tmsael 2,1; if it based on an average
measurement, it is model 2,k. (c) The third p&iGL values, entitled “one-way random
model”, is appropriate in methodological or othteidses where the measurements are
replications by the same observer or using the sastieiment, and the order in which they
are entered does not matter (this does not apphetother ICC values).. They apply to the
use of a single measurement (model 1,1) — e.duies to determine the reliability of a
single measurement — or to an average measuremedel 1,k) — e.g. in studies to
determine the reliability of an average measurement

The maximum value of an ICC is 1; the lower lingitain indeterminate negative value. As a
rule of thumb, it has been suggested that ICC gadbeve 0.75 should be regarded as
evidence of excellent, and values above 0.4 agpealof good, reliability (Shoukri and
Pause 1999: 27).

In the appraisal of replicated measurements a @Way express variability of the
characteristic measured, as well as low reliabdftyneasurement; this is especially
important if measurements were conducted at difteimes. The usefulness of the ICC in
comparisons of two methods of measurement (Bar®iod1Lee 1992) is constrained by
these and other limitations (Muller and Buttner498land and Altman 1995a).

Theconcordance correlation coefficierst computed with its 95% confidence interval.
Suggested by Lin (1989) as an improved measutieeafeproducibility of measurements, its
use is appropriate in comparisons where the twergbss (or measurement methods) are
selected “at random” to represent all observersn@asurement methods) to whom the
assessed consistency relates; whereas if theyiaed™- e.g. in a comparison of two kinds
of measuring instrument — it is more appropriatade the intraclass correlation coefficient
(Mueller and Buettner 1994). It has been tenttisaggested that a Lin coefficient of >0.99
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indicates almost perfect agreement, 0.95-0.99 anbat agreement, 0.90-0.95 moderate
agreement, and <0.90 poor agreement (NIWA 2009).Hisherz transformation of the
coefficient is displayed, with its standard erffor, use if the findings are to be compared
with those in a different set of paired observagidifor this purpose, the standard error of the
difference between twbtransformations is the square root of the sunheif tvariances).

The value of any correlation coefficient, includibig's concordance coefficient, is affected
by therange of valuesncluded in the analysis (Lin and Chinchilli 1997the wider the

range, the stronger the correlation - and this khoe taken into account when coefficients
are appraised or coefficients based on differemipsas are compared. The program
therefore reports this range (the range of the me&paired values).

Thecoefficients of repeatabilitgxpress the expectation (with 95% confidencehef t
maximum size of the absolute difference betweeredasbservations. Two coefficients are
provided, with their approximate confidence intésvarhe first (Bland and Altman 1986;
Chinn 1990) is valid if there is no bias (no syssimdifference between the observations),
i.e. if the mean difference between observatiozeis; this may not be so if the
measurement process alters the quantity or if kedge of the first measurement affects the
second. The second coefficient controls for afgcebf bias; it is based on the residual
within-subjects sum-of-squares, after removal efltbtween-ratings component.

Thestandard error of measuremeffileiss 1986: 11) —.also called the “technicaberr
(Kahn and Sempos 1989: 239-242) or “the SE of daindd score” (Guilford and Fruchter
1986: 413) —is an index of reliability that exmes variation between observers and other
causes of differences between repeated observatianaid in its interpretation, its ratios to
the standard deviation among persons and to tha wadae are displayed.

The program computes an approximate 3%s#fidence interval for the “true value”
corresponding to an observed measurement or the aféao or three measurements.
These should be used with caution, since they ass$hiat the width of the confidence
interval is independent of the magnitude of theigglGuilford and Fruchter 1986: 413).

Thewithin-subject coefficient of variatios an indication of the extent to which the
measurement error varies according to the magniabtittee measurement (Bland and Altman
1996b). Using this coefficient, the program pr@gdormulae for the approximate 95%
confidence interval for the “true value” correspmdto an observed measurement.

St Laurent's gold-standard correlation coefficiesa measure of criterion validity — it is a
measure of the agreement between a measuremeat‘galtl standard” (St Laurent 1998).
Two values are displayed, with their approximat&3tsnfidence intervals, taking A or B in
turn as the “gold standard”. The procedure assuhaghe “gold- standard” measurements
and the differences between the two sets of measnts are normally distributed.

The95% limits of agreemeriBland and Altman 1995a, 1995b, 1999; Altman 18-

400) answer the question, “given a measuremenhbyntethod, how far might this be from

a measurement by the other method?” These deradaheabounds of the range that, with a
95% probability, includes the difference betweemgE measurements of the same subject by
the two methods. The 95% confidence intervalfefiimits of agreement are estimated (the
limits of agreement may be very imprecise if thegke is small).
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Use of the 95% limits of agreement assumes thadiffexences are reasonably constant
throughout the range of measurement. To checlagsamption, the program displays the
coefficient of correlation between the absolutéedénce and the meant the two values,

and theregression of the difference on the medime correlation and regression coefficients
may be expected to be zero if the mean differenddlze scatter of differences do not
change with increasing values. If the differeand the mean are correlated, it may be
appropriate to repeat the computation after logsi@mation of the measurements, since the
difference between log-transformed values may hahge with increasing values. (To do
this, click on “Repeat”, then on “Lognormal distition assumed”, and then on “Run”.)

Considerable inconsistencies may occur betweelintiits of agreement and the ICC in the
interpretation of agreement, and Costa-Saeat@d. (2011) suggest that these methods should
be used in tandem.

Even when one of the methods of measurement igvane and the other is an accepted
standard, it is preferable to examine the relatignbetween the difference and the mean
value rather than the relationship between theufice and the standard measurement,
which (as shown by Bland and Altman 1995b) is kel be misleading.

Spearman-Brown coefficients of reliabilpyovide estimates of the effect of using the means
of replicated observations. They predict whatrtiability would be if two, three, four, or
five replications were averaged.

Clustered data

In order to effectively remove the correlation asated with data clustering (which may
appreciably affect the test results) the prograas @sWilcoxon signed-ranks test, applied to
the cluster means. The limitations of this simpktimod (Galbraith et al. 2010) are that the
same weight is given to large and small clusterd,that the nonuse of individual
observations may reduce power; computer simulatondirm this slight loss of power
compared with other, more elaborate, tests that ¢hkstering into account. The procedure
may not be appropriate if there are very few chsste

Test for correlation when data are missing

This optional procedure (Parzenal.2010) tests the null hypothesis that there is no
correlation between two numerical variables, whtgusting for missing data. It uses
whatever unpaired values (i.e., values with mispiaigmates) have been entered (missing
values being indicated by an “x”), as well as theaqx values. The test makes no
assumptions about the distribution of the values. $aid to be appropriate if (a) the
probability that a value is missing ("missingness‘gompletely random, or (b) if
"missingness” depends on the observed data butmibie missing values. In the latter
instance the test is stated to be unbiased, utddte based solely on the complete pairs,
which "can potentially yield misleading inference§he test is said to have high power to
detect a linear correlation or a nonlinear monatarénd.

The test statistioca) is displayed, with the corresponding P valuer deanparison, the
result of a parallel test based solely on compdaies - the correlation statistic proposed by
Mantel (1963) (which can be correct only if "migpiess” is completely random) - is
displayed. A difference between the test staistigygests that "missingness” is not
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completely random. The program also displays thermwalues of the variables in the
complete and incomplete pairs, to permit an apakaispossible bias and a decision on
whether to use this procedure incorporating thenmalete pairs.

Measure of disagreement

Themeasure of disagreemdmttween two sets of matched numerical observapooosed
by Costa-Santost al. (2010) is based on the differences between threghabservations, in
relation to the magnitude of the larger value i piir. It is applicable to ratio-scale
variables (i.e., those where a zero value indicaltsgnce of the attribute) with positive
values. The measure ranges from 0 (no disagreemeeht)strong disagreement).

Optionally, a 95% confidence interval is estimdi@dthe measure of disagreement, using a
bootstrap procedure. This procedure can producegdelay.

Partial omega-squared

Partialomegasquared ) is an effect-size index that expresses the ptigwoof the
variability of the dependent variable that is assed with variability on the levels of the
independent variable, without taking between-subjadability into account(Sheskin 2007:
762).

By Cohen's criteria, an omega-squared of 0.1378are indicates a large effect size, 0.0588
or more (but less than 0.1379) indicates a mediffectesize, and 0.0099 or more (but less
than 0.0578) indicates a small effect size (She3@Dbv: 763). Cohen (1988) warns that these
criteria should be used only when there is no bétsis for evaluation.

Equivalence tests

Optionally, the equivalence of the paired measurdgsiis tested, using the procedure
described by Yi et al. (2007). This requires ewofrthe bounds of “equivalence”, i.e., the
largest difference between measurements thatie tegarded as negligible or ‘acceptable’.
The tests are based on a comparison of the witlbfest variance with this specified
difference (and also with this difference muligaliby 0.5, 0.75, 1.5, or 2). A P value under
0.05 implies good agreement (negligible variatian,equivalence) at a 5% significance
level.

Comparison of distributions

The proportion of similar respons€®SR also called th©C or overlap coefficientand the
area between curvgABC, also called thdissimilarity inde¥ are measures of the similarity
or dissimilarity (respectively) of two distributisr{Giacoletti and Heyse 2011, Mizuno et al.
2005; Rom and Hwang 1996). Differences betweerufreqgy curves reflect differences both
in location (means) and in scale (variances).

The PSR measures the degree of overlap of two bilapalistributions. It ranges from 0%,
indicating completely disjoint distributions, to@%, indicating a complete overlap. It has
been suggested that a PSR around 70% is a reasamgétion for equivalence in clinical
studies (Rom and Hwang 1996).
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The ABC is a measure of the degree of separatiwea® two distributions. Differences
between frequency curves reflect differences ihesgariance) as well as in location (mean).
The PSR and ABC are related (PSR =1 - ABC/2).

The estimators are applicable to normal distrimgiwith similar or different means and
variances, although computer simulations have shtven the validity of the procedures is
highest if the distributions are normal and vaces are equal (Mizuno et al. 2005).

These measures have been suggested as aids iarcgnp of the results of two treatments.
including crossover studies (Rom and Hwang 1998]),ia examining the discriminatory
capacity of tests (Giacoletti and Heyse 2011.)

The PSR and ABC values are not reported if eitkeeeds 100%, which indicates that the
procedures are inappropriate for this comparisarhably because the two distributions are
almost or completely discrepant - i.e. with vetildior no overlap..

ANOVA tables

If the paired observations are positively corralatn analysis of variance (ANOVA) table
for the linear regression between the differende/&en the two ratings and the mean of the
two ratings is displayed.

In all instances, a two-way mixed model ANOVA taldalisplayed, showing between-
subjects, within-subjects and between-ratings sefrsguares. (The P-values based~on
tests in the ANOVA tables are one-tailed.)

Analysis of covariance

In studies that use paired baseline and follow-epsarements ("before” and "after” data) to
compare the changes in two groups, as in clinf@bstand cohort studies, differences
between the initial findings in the two groups ncaynplicate interpretation of the findings.
Analysis of covariance (which treats the followaglue as the dependent variable and the
baseline value as a covariate - in effect adjustangh subject's follow-up measurement for
his or her baseline measurement) is recommendgakcim studies, although a simple
comparison of the changes in the two groups issomable alternative if there is no baseline
imbalance and there is a high correlation fsay0.8) between baseline and follow-up
measurements (Vickers and Altman 2001). The usmalysis of covariance avoids the
effects of regression to the mean (the tendensylbjects with initially low values to show a
rise, and those with initially high values to shawirop).

The procedure assumes that the slopes in the oupgrexpressing the regressions of
"after" values on "before" values) are paralldlhese slopes are therefore compared, and if
the slope coefficients differ significantly (P <08) analysis of covariance is deemed
inappropriate, and is not performed . Heteroggmeith respect to deviations from the
regression lines in the two groups is also testedingle adjusted (pooled) slope coefficient
iIs computed for the analysis of covariance. Tlg@m reports the difference between the
"after" values in the two groups, for any givenfdse" value, i.e. controlling for the "before”
value. It tests the significance of this differepnand provides its standard error and 90%,
95%, and 99% confidence intervals. In additionusteéd mean "after” values are computed
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for both groups, based on the arbitrary assumphkiahthe overall mean of "before" values is
the mean "before" value in each group.

Number needed to treat

If the results of a randomized clinical trial basedbefore-after measurements are entered
(with the results in the treatment group in Stratuand those of the control group in Stratum
2), together with the magnitude of the change fiitsuwor as a percentage) that is defined as
indicating successful treatment (the MID, or miniin@portant change), the number needed
to treat is computed, with its approximate 95% wmmrice interval. Depending on the
purpose of the trial, this is the number of induats who are needed in the treatment group
in order to avoid a single case or other harmfeingvor to produce a beneficial result. If the
results of a cohort study are entered, the nunsbiérei number needed (in the group entered
as Stratum 1) to avoid or produce one minimal irtgrdrchange.

Three methods are used. The first method dichotesrtize results as "successful” or not
successful”, and calculates the proportions ofess®s in the treatment and control groups.
The second method uses a "better”, "worse" orlieeibetter nor worse" trichotomy in order
to estimate the proportions in each group who aeerauccessful. In each instance the
difference between the two proportions is reporéed its reciprocal is the number needed to
treat. Approximate 95% confidence intervals fa&r tumber needed to treat are computed
from the confidence intervals of the proportionsliess the latter straddle zero, which would
mean a confidence interval straddling infinity foe number needed to treat. The third
method is based on the differences in a contingoake. This is a sensitivity analysis,
making a series of calculations of the number ne@¢ddéreat, using different values for the
assumed correlation (in a crossover study) betwesibject's results when in the treatment
and control groups.

Confidence intervals derived from P- value

An option is offered for deriving confidence intals for the difference between means from
the P-value, for use in meta-analyses of incomiyiegported studies., using the procedure
described by Hirji and Fagerland (2011). If fx@alue was based on a paired t test, the
nuber of pairs must be entereed.

METHODS

To avoid computational problems in extreme situsjaero divisors are replaced by 0.000001.
At least three pairs of observations must be edtere

Comparison of the paired observations

Formulae for the Bradley-Blackwood test, Studguaiisedt-test, and Pitman's test are provided by Bartko
(1994). Linear regression methods are explainedl inasic statistics textbooks.

If stratified dataare entered, the results of the one-tailédsts in the strata ammbined by Stouffer's method
(Stoufferet al 1949: 5; DeMets 1987), based on weighted averaigibez values computed for each test by
transforming its one-tailed P-value to the corresjilog normal score (Hedges and Olkin 1985: 39)re&h
different sets of weights are used — weighting zthalues equally, by the sample sizes in the steatd by the
square roots of the sample sizes. In additioretarbgeneity test is performed, comparing the Besin the
strata (Wolf 1986: 45). The heterogeneity tessWelf's formula:
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chi-squareK - 1 d.f.) =Y(z - MeanZyf
where k= number of strata,

z =z value in stratum

MeanZ = meanz value.

Tests for normality

The Lilliefors test for normality (Lilliefors 1967% explained by Sprent (1993: 77-78); it usesctiitical values
provided in Table IV. The D'Agostino-Pearson festnormality (D'Agostino 1986, D'Agostino and Psam
1973) uses formula 6.19 of Zar (1998).

Measures of agreement

The significance test for tteorrelation coefficientses Hotelling's modifiedtransformation (Sokal anidohlf
1981: 583-587) if N < 30.

The formula for thgopulation correlation coefficien{Abdi and Williams 2010) is
W1-[1-R)*(N-1)/(N-2)}
where R = correlation coefficient

N — number of paired observations
Thecoefficient of determinatiois R?, and theadjustedtoefficient of determinatiois the square of the
population correlation coefficient.

The following formulae (Shrout and Fleiss 1979) ased for the six intraclass correlation coeffitsenShrout-
Fleiss ICC models 1,1 and 1,k are computed frameaway random effects model ANOVA, models 2,1 and
2,k from a two-way random effects model ANOVA, anddels 3,1 and 3,k from a two-way mixed effects
model ANOVA.
ICC model 1,1 = (MSB — MSW) / [MSB + (k — 1)MSW]
ICC model 1,k = (MSB — MSW) / MSB
ICC model 2,1 = (MSB — MSE) / [MSB + (k — 1)MSE #MSJ — MSE) / N]
ICC model 2,k = (MSB — MSE) / [MSB + (MSJ — MSHE]
ICC model 3,1 = (MSB - MSE) / [MSB + (k - 1)MSE]
ICC model 3,k = (MSB — MSE) / MSB
where MSB = between-subjects mean square

MSE = residual within-subjects mean square

MSW = within-subjects mean square

N = number of subjects

k = number of observations in matched set
Formulae for confidence intervals for the six IC@duals are provided by McGraw and Wong (1996a and
1996b) in their Table 7, where they are referreds®¢CC(1) and ICC(Kk) for Case 1, and ICC(A,1) and
ICC(A,K) for Cases 2 and 3. The formulae (exchpsé for models 2,1 and 2,k) are set out in @eient
code by Steinley and Wood (2000). Linear interpolais used to estimate F values that are basetwon
integer degrees of freedom (and 1 d.f. is subsetitfior <1 d.f.) in the computation of confidencteimals for
models 2,1 and 2,k; the latter results may dsfeghtly from those provided by SPSS, which hasdien-
integer degrees of freedom differently.

Intraclass correlation coefficients are not comgutehe correlation coefficient is 1 or —1. ICQsdicative of
the reliability of the mean of two ratings are shown if they fall outside the (-1,+1) range..

The Spearman-Brown prediction formu(&leiss 1986: 14-15: formula 1.30 ) for relialyil{R) is
R=Nr/[1+ (N-1)]

where N = number of replicates that are averaged
r = intraclass correlation coefficient (model 1,1)

Fleiss’s formula 1.31 is used to estimate the nurobeeplicates required to obtain a reliability@¥5 or 0.8:
N=PQ-r)/[r(1-P)]

where P =0.750r0.8
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Theconcordance correlation coefficieist computed by formula 19.76 of Zar (1998: 40@)h n substituted
for (n— 1) in the denominator, and its 95% confidenteriral is based on variance formula 2 of Lin (19&%)
corrected by Lin (2000). [Version 1.14 and eaniersions of PAIRSetc used Zar's formulae, whigidy
slightly different results.] The confidence intahis not computed if the correlation coefficiesitli or —1 or if
its estimation requires division by zero.

The formulae for the tweepeatability coefficientéBland and Altman 1986; Chinn 1990) are
1.96V(>D?/ N) or
1.96V(2.SSW / N)
and (controlling for any effect of bias)
1.96V[2.SSE / (N - 1)]
where D = difference between paired observations
N = number of pairs
SSW = within-subjects sum-of-squares
SSE = residual within-subjects sum-of-squaresl(elieg the between-ratings component).
Approximate 95% confidence intervals are obtaingdubstituting confidence limits for SSW and SSE,
estimated by the method described by Zar (1998dta 7.16), in the above formulae.

The formula for thestandard error of measureme8Em is provided by Kahn and Sempos (1989: 24&m &
also the square root of the within-subjects meamasgshown in the ANOVA table (Fleiss 1986: 11)eTh
formula for the SD among persons is also providedd&hn and Sempos (1989: 241).

The 95%confidence intervals for the “true valuare estimated from the SD of the differences betwealues,
by the method described by Peaal (1994); tha-distribution is used in the computation.

Thewithin-subject coefficient of variatiofwSCV is computed by the root mean square procedureided by
Bland (2006). This yields a result that is simtiabut not identical with the logarithmic methoelsdribed by
Bland and Altman (1996b). The approximate 95% amfce interval for the “true value” correspondiagt
measurement of X is from X divided by (188D to X multiplied by (1.96SD),

where GSD = geometric standard deviation (#WSCV+ 1Y

St Laurent's gold-standard correlation coeffici¢Bt Laurent 1998) is computed by the formula
Ry=V{1/[2B(1/R)- 1] + 1}

where B = regression coefficient (slope) of theragjmate measurement on the gold-standard measateme
R. = concordance correlation coefficient.

An approximate 95% confidence limit is compute@ddatordance with St Laurent's Proposition 1.

The95% limits of agreemerfChinn 1991, Bland and Altman 1999) are
D - 1.96(SD)and
D + 1.96(SD).
The 95% confidence limits for the limits of agreemareestimated by the methods described by Bland and
Altman (1986, 1999).
The Spearman-Brown prediction formuf&Vikipedia) is
Nr/[1+ (N - 1)]
where N = number of replicates that are averaged
r = intraclass correlation coefficient.

This application of the Spearman-Brown formula waggested by its use by Solomon (2004).

Comparison of distributions
If the two variance are not equal, PAS is compigébrmula 2 of Rom and Hwang (1996)
If they are equal, PSR is computed by formula &iafcoletti and Heyse (2011)/

ABC is derived from PSR, using Giacoletti and Heyé®mula 4.
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Clustered data

If clustered data are entered, a Wilcoxon signedtsdest based on the cluster means is employés Lishas
the formula provided by Siegel and Castellan (1988:formula 5.5), but allowing for the effect &g on the
variance by replacing the denominator (as suggédstetprent 1993: 53 and Mehta and Patel 1991: 1¢0)

\/Z[S] / 4), where§ = the square of the rank of the difference betwssred observations. Nondiscrepant
pairs are ignored. If there are fewer than 20spaignificance is appraised by using critical Is¥er one-

tailed P = .05, .025, .01, .005, .0025, and .0@@5iyed from Siegel and Castellan 1988: Table H; Zar

1998: Table B.12). If the sample is larger a ndrapgroximation is used, with allowance made festi

Test for correlation when data are missing

The test statistioca), which is regarded as a chi-square statistic with degree of freedom, is calculated by
formula 7 of Parzeet al (2010) The variance (the denominator in the fdahis estimated by the bootstrap
procedure described by Parzral. The correlation statistic proposed by Mantel ()963alculated from
Pearson's correlation coefficient by formula 4 afZenet al.

The bootstrap procedure uses 2000 random samplesheisame number of pairs (complete and incomplet
as the original sample, each sample drawn (witlacgment) from the values in the original sample T
variance required for the test is derived fromakmates of covariance (under the null hypothési#)e 2000
bootstrap samples (formula 9).

The random sampling in this bootstrap procedurs aggseudo-random number generator described by
Wichman and Hill (1985), which derives each numhbedurn from three seed numbers that it modifigs fo
subsequent use. Initial values for the seed nusrdrergenerated by Delphi's inbuilt random-number
procedures, namely RANDOMIZE, using the systemigland RANDOM, which generates three random
numbers from which the required seed numbers arpuoted. Delphi's RANDOM procedure is augmented by
an additional randomizing shuffle, using the altion of Bays and Durham, as described by Petss (1989:
215-217). The formula for each selectiodrisgncRM) + 1
where Ris a random number in the range &< 1

M = the number of candidates.

Measure of disagreement

The formula for this measure (Costa-Sambal. 2010) is
> Li /n

where L;=log{[& - bi| / max&,b;)] + 1}.log(2)
a; andby; are the observations in pair

n = the number of pairs of observations
If g andb; are equall; is taken as 0.

The measure is not computed if ar b; is negative. The maximum number of sets of matciesedrvations
is 500.

The confidence interval is obtained by a bootsfayzedure, using the basic percentile method (Ef@81,
Efron and Gong 1983) as described by Sheskin (2882-536). The approximate 95% limits are the (B.5)
and (97.5)th percentiles of the distribution of theasures of disagreement (computed by the abotre®d)dn
1000 random samples of the same size as the drggimple, each drawn (with replacement) from tHae&in
the original sample. Because of resampling, répastof the procedure may yield slightly differeasults.

The random sampling in this bootstrap procedurs aggseudo-random number generator described by
Wichman and Hill (1985), which derives each numhbeurn from three seed numbers that it modifigs fo
subsequent use. Initial values for the seed nusrdrergenerated by Delphi's inbuilt random-number
procedures, namely RANDOMIZE, using the systemigland RANDOM, which generates three random
numbers from which the required seed numbers arpuoted. Delphi's RANDOM procedure is augmented by
an additional randomizing shuffle, using the aljon of Bays and Durham, as described by Peess (1989:
215-217). The formula for each selection is

trunc(RM) + 1
where R is arandom number intherange 0 <R <1
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M = the number of candidates.
Tests of equivalence

The method is described by ¥i al (2008).
Chi-square SSW (D? x 1.96 x 1.96 x 2)
where SSWE within-subject variance (based on ANOVA)
D = maximum acceptable difference
The P value for the test is 1 minus the P valuecated with this chi-square, wititk-1) degrees of freedom,
where n=no. of sets of paired measurements
k = no. of repeated measurements (i.e., 2)

Comparison of distributions

If the two variance are not equal, PAS is compigébrmula 2 of Rom and Hwang (1996)

If they are equal, PSR is computed by formula &iafcoletti and Heyse (2011)/

ABC is derived from PSR, using Giacoletti and Hey$éermula 4.

Partial omega-squared

This is calculated by equation 17.10 of Sheskir®{20

ANOVA tables

The ANOVA tables are explained by Bartko (1994).

Analysis of covariance

The method of calculation is explained in detaildmmitageet al 2002: 332-335) and by Ferguson (1966: 332-
339). Attest (Armitageet al 2002: formula 11.20) is used to compare the tepescoefficients, and the
pooled slope coefficient is computed by formula2B1.

Heterogeneity with respect to deviations from tbgression lines in the two groups is tested (Stwdend
Cochran 1980: 386) by applying a two-tailedest to the ratio of the residual mean squarestabidual sums
of squares are computed by formula 7.6 of Armiteigal. (2002: 292). The standard deviation about regrass
(the square root of the residual mean squarepisrted for each group.

The difference between the "after" values at arglieefore"” value is computed by formula 11.32 ofmitage

et al (2002); its variance is calculated by formula3Bland used in a t test (formula 11.35) and fdmeging
confidence intervals. Adjusted mean "after" valasscomputed for both groups, based on the asmmthat

the observed overall "before" mean applies to lgothips (formula 11.36).

Analysis of covariance is not done if the slopefficients in the two groups differ significantlyr @ the
"before" or "after" values are invariant in eitlggoup.

Number needed to treat

The method using a dichotomy is described by W##801: section 3.2). The method using a trichgtisn
described by Guyatt et al. (1998); approximate icemfce intervals are estimated by a method anaogothat
of Walter(2001: formula 3). The method using attarous scale is described by Walter (2001: secti@i. If
this method yields a number needed to treat exngeldO, it is reported as ">100".

Confidence intervals derived from P- value

If the number of pairs is entered, the programmssuthat the P-value was based on a paired otestwise, a
z test is assumed.

Formulae for deriving confidence intervals for thiference between means both for t tests and fests. are
provided by Hirji and Fagerland (2011).
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D2. PAIRED NUMERICAL OBSERVATIONS
(LOGNORMAL DISTRIBUTION)

This module is appropriate for the analysis of g@iunumerical observations (in different
subjects or the same subject) that have a lognatis@ibution (such as, for example,

bronchial responsiveness, recovery times after ddiginistrations, or the domestic houser

dust allergen level). It appraises differences agr@ement between the two sets of
observations It can be used to analyse matchetletdrials and case-control studies,
before-after studies, reliability studies, compamis of measurement methods, and other
comparisons of paired subjects or observations.

It may be useful in reliability studies of a norigadistributed variable, if the simple
difference between the observations under comparsstound to increase with the level of
the measurement. In such instances, the differleatveeen the logs of the observations (i.
the ratio of the measurements) may be found t@asonably constant throughout the rang
of measurement, facilitating estimation of the agrent between measurements.

Computations are based on the logarithms of theegathat are entered, which may be
measurements in paired subjects or repeated measni®in the same subjects. Each pa
of matched observations (labelled "A" and "B") denentered in a separate line, or pairs
with the same values can be entered together theih frequency; up to 500 lines may be
entered.

If the data are stratifiedenter each stratum in turn. Click on “All stratehenever
combined results are required.

In a clinical trial or cohort study that uses pdit®seline and follow-up measurements to
compare the changes in two groups, enter each g®agseparate stratum and then click
“All strata” for a comparison usingnalysis of covariance

The program provides@mparison of the paired log-transformed observatios,

including the Bradley-Blackwood test, Student's¢xi-test, and Pitman's test, and
measures of agreement between the log-transformetservations(correlation
coefficient, intraclass correlation coefficientnls concordance correlation coefficient,
repeatability coefficients, the standard error elsurement, the confidence interval for th
“true value” corresponding to an observed measunén$t Laurent's correlation coefficient
95% limits of agreement, and the association betvtee difference and the mean value

If stratified dataare entered, the paired one-tailéests in the separate strata are combine
and theheterogeneityf the P-values in the strata is tested.

je

=

[1°)

xd’

Comparison of the paired log-transformed observatio ns
The program displays the ratio of the paired valugth its confidence intervals.

The tests for differences between the log-transéorwbservations are the Bradley-
Blackwood test, which simultaneously tests the meard variances (Bradley and
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Blackwood 1989; Bartko 1994), Student's pairedt;t@hich compares the means, and
Pitman's test for the equality of variances. Taitet P values are displayed.

If stratified dataare entered, the paired one-tailéests in the separate strata are combined
by Stouffer's method (Stouffer et al. 1949, p. B&Mets 1987) to produce overall one-tailed
tests that control for the stratifying variabléhree different sets of weights are used for
this purpose — weighting the test results equbihthe sample sizes in the strata, and by the
square roots of the sample sizes. In additionhé&terogeneityf the P-values in the strata is
tested.

Measures of agreement between the log-transformed o bservations

The measures of agreement have special relevarstedies of reliability, comparisons of
measurement methods, and the clinical applicatiotneasurements.

A simple correlation coefficient, the intraclassretation coefficient, and Lin’s concordance
correlation coefficient are computed in all instesic

If the paired observations are positively corralatbe program also provides measures that
may be useful if A and B are replicate measurements they denote two different methods
of measurement. The measures for use in studiepbfate measurements are repeatability
coefficients, the standard error of measuremeiak tla@ confidence interval for the “true
value” corresponding to an observed measurememt. nfeasures that are appropriate in
comparisons of measurement methods are St Laucent&ation coefficient (for use if one

of the methods is regarded as a “gold standardd),2%% limits of agreement. The program
displays the correlation coefficient between therand mean of A and B.

The simplecorrelation coefficients seldom helpful in comparisons of methods of
measurement (Bland and Altman 1995a; Altman 1901:402), since at best it points to an
association between the (log-transformed) measuresnand does not tell how closely they
agree.

Theintraclass correlation coefficierftCC) is a measure of agreement that expresses the
correlation between measurements within individoalgairs of matched individuals. It
ranges from -1 to +1, zero indicating no agreemdtie ICC is displayed with its
significance level and 95% confidence interval.e TGC is affected by the degree of
variation among the subjects, and may be misle&adiay if the subjects are very similar, or
if differences between paired observations areelagtptive to the differences between
subjects (Bartko 1994). In the appraisal of reggted measurements a low coefficient may
express variability of the characteristic measuasdyell as low reliability of measurement;
this is especially important if measurements weredacted at different times. The
usefulness of the ICC in comparisons of two mettaddaeasurement (Bartko 1994; Lee
1992) is constrained by these and other limitat(®hsller and Buttner 1994; Bland and
Altman 1995a).

Theconcordance correlation coefficierst computed with its 95% confidence interval.
Suggested by Lin (1989) as an improved measuteeofeproducibility of measurements, its
use is appropriate in comparisons where the twerobss (or measurement methods) are
selected “at random” to represent all observersn@asurement methods) to whom the

assessed consistency relates; whereas if theyiaed™- e.g. in a comparison of two kinds
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of measuring instrument — it is more appropriatade the intraclass correlation coefficient
(Mueller and Buettner 1994). It has been tenttisaggested that a Lin coefficient of >0.99
indicates almost perfect agreement, 0.95-0.99 anbat agreement, 0.90-0.95 moderate
agreement, and <0.90 poor agreement (NIWA 2009).Hisherz transformation of the
coefficient is displayed, with its standard erffor, use if the findings are to be compared
with those in a different set of paired observagidifor this purpose, the standard error of the
difference between twbtransformations is the square root of the sunheif tvariances).

Thecoefficients of repeatabilitgxpress the expectation (with 95% confidencehef t
maximum size of the absolute difference betweeregalog-transformed measurements
(i.e., for the ratio of paired measurements). Twefficients are provided, with their
approximate confidence intervals. The first (Blamdl Altman 1986; Chinn 1990) is valid if
there is no bias (no systematic difference betvieembservations), i.e. if the mean
difference is zero; this may not be so if the mearment process alters the quantity or if
knowledge of the first measurement affects therscd he second coefficient controls for
any effect of bias; it is based on the residuahinisubjects sum-of-squares, after removal of
the between-ratings component.

Thestandard error of measuremeffileiss 1986: 11) —.also called the “technicaberr
(Kahn and Sempos 1989: 239-242) or “the SE of daindd score” (Guilford and Fruchter
1986: 413) —is an index of reliability that exmes variation between observers and other
causes of differences between repeated observatidresstandard error of measurement is
expressed in logarithmic units.

The program computes an approximate 3%s#fidence interval for the “true value”
corresponding to an observed measurement. Thiddsbe used with caution, since it
assumes that the width of the confidence intesraldependent of the magnitude of the
value (Guilford and Fruchter 1986: 413).

St Laurent's gold-standard correlation coefficiesia measure of criterion validity — it is a
measure of the agreement between a measuremeat‘galtl standard” (St Laurent 1998).
Two values are displayed, with their approximat&smnfidence intervals, taking A or B in
turn as the “gold standard”. The procedure assuhatshe “gold- standard” measurements
and the differences between the two sets of (lagsfiormed) measurements are normally
distributed.

The95% limits of agreemeriBland and Altman 1995a, 1995b; Altman 1991: 390)4
answer the question, “given a measurement by ornleatiehow far might this be from a
measurement by the other method?” These demahsat®unds of the range that, with a
95% probability, includes the difference betweegti@nsformed measurements of the same
subject by the two methods (i.e., the ratio ofrtfeasurements). The 95% confidence
intervals of the limits of agreement are estimdtkd limits of agreement may be very
imprecise if the sample is small).

Use of the 95% limits of agreement assumes thadiffexences are reasonably constant
throughout the range of measurement. To checlagsamption, the program displays the
coefficient of correlation between the differenod ghe mearf the two log-transformed
values, and theegression of the difference on the medime correlation and regression
coefficients may be expected to be zero if the niifierence and the scatter of differences
do not change with increasing values.
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Considerable inconsistencies may occur betweelintiits of agreement and the ICC in the
interpretation of agreement, and Costa-Saat@d. (2011) suggest that these methods should
be used in tandem.

Even when one of the methods of measurement isvabne and the other is an accepted
standard, it is preferable to examine the relatignbetween the difference and the mean
value rather than the relationship between thewdiffce and the standard measurement,
which (as shown by Bland and Altman 1995b) is kel be misleading.

Analysis of covariance

In studies that use paired baseline and follow-epsurements ("before" and "after" data) to
compare the changes in two groups, as in clinf@bktand cohort studies, differences
between the initial findings in the two groups ncaynplicate interpretation of the findings.
Analysis of covariance (which treats the followaglue as the dependent variable and the
baseline value as a covariate - in effect adjustangh subject's follow-up measurement for
his or her baseline measurement) is recommendaacim studies, although a simple
comparison of the changes in the two groups isisomable alternative if there is no baseline
imbalance and there is a high correlation {say0.8) between baseline and follow-up
measurements (Vickers and Altman 2001). The usmalfysis of covariance avoids the
effects of regression to the mean (the tendensybjects with initially low values to show

a rise, and those with initially high values to wtedrop).

The procedure assumes that the slopes in the oupgrexpressing the regressions of
"after" values on "before" values) are parallehe3e slopes are therefore compared, and if
the slope coefficients differ significantly (P <06) analysis of covariance is deemed
inappropriate, and is not performed . Heteroggmeith respect to deviations from the
regression lines in the two groups is also testedingle adjusted (pooled) slope coefficient
is computed for the analysis of covariance. Tlg@m reports the difference between the
log "after" values in the two groups, for any givéefore" value, i.e. controlling for the
"before” value. It tests the significance of ttiigerence, and provides its standard error.
Since this is a difference between logs of two &gJuts antilog is the ratio of the two values.
The program therefore reports the ratio of theefdfvalues in the two groups, for any given
“before” value, with 90%, 95%, and 99% confidentieivals for the ratio.

METHODS

If zero values are encountered, 1 is added tcaélies before log-transforming them. Logs to basar&Qused.
To avoid computational problems in extreme situsjaeroes are sometimes changed to 0.0000001 or
0.000001.

At least three pairs of observations must be edtere

Comparison of the paired log-transformed observatio ns

Formulae for the Bradley-Blackwood test, Studgraiisedt-test, and Pitman's test are provided by Bartko
(1994). Linear regression methods are explainedl inasic statistics textbooks.

If stratified dataare entered, the results of the one-tailedsts in the strata aswmbined by Stouffer's method
(Stoufferet al 1949: 5; DeMets 1987), based on weighted averaigibez values computed for each test by
transforming its one-tailed P-value to the corresjilog normal score (Hedges and Olkin 1985: 39)re&h
different sets of weights are used — weighting zthalues equally, by the sample sizes in the steaid by the
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square roots ofthe sample sizes. In addition, a heterogenedtyisgperformed, comparing the P-values in the
strata (Wolf 1986: 45). The heterogeneity tessWelf's formula:

chi-squareK - 1 d.f.) =Y (z - MeanZzyf
where k= number of strata,

z =z value in stratum

MeanZ = meanz value.

Measures of agreement between the log-transformed o bservations

The significance test for tteorrelation coefficientises Hotelling's modifiedtransformation (Sokal aridohlf
1981: 583-587) if N < 30.

The following coefficients are computed only if tbarrelation coefficient is positive.

Theintraclass correlation coefficierthat is computed is a mixed model ICC for two fixatings, assuming a
two-way mixed analysis of variance model (Bartk@4p

Theconcordance correlation coefficieist computed by formula 19.76 of Zar (1998: 40@)h n substituted
for (n— 1) in the denominator, and its 95% confidenteriral is based on variance formula 2 of Lin (19&%)
corrected by Lin (2000). [Version 1.14 and eaniersions of PAIRSetc used Zar's formulae, whigidy
slightly different results.] The confidence intakhis not computed if the correlation coefficiestlior -1, or if
its estimation requires division by zero.

The formulae for the tweepeatability coefficientéBland and Altman 1986; Chinn 1990) are
1.96V(>D?/ N) or
1.96V(2.SSW / N)

and (controlling for any effect of bias)

1.96V[2.SSE / (N - 1)]
where D = difference between paired observations

N = number of pairs

SSW = within-subjects sum-of-squares

SSE = residual within-subjects sum-of-squaresl(elieg the between-ratings component).
Approximate confidence intervals are obtained Hysstuting confidence limits for SSW and SSE, eated
by the method described by Zar (1998: formula 7.it6)he above formulae.

The formula for thestandard error of measureme8Em is provided by Kahn and Sempos (1989: 24@m &
also the square root of the within-subjects meamasgshown in the ANOVA table (Fleiss 1986: 11)eTh
formula for the SD among persons is also providedd&hn and Sempos (1989: 241).

The 95%confidence interval for the “true valugs estimated from the SD of the differences betw(gag-
transformed) values, by the method described byd&ed (1994); the-distribution is used in the computation.

St Laurent's gold-standard correlation coeffici¢8t Laurent 1998) is computed by the formula

Ry=V{1/[2B(1/Ry)- 1] + 1}

where B =regression coefficient (slope) of theragjmate measurement on the gold-standard measateme
R. = concordance correlation coefficient.
An approximate 95% confidence limit is compute@ddatordance with St Laurent's Proposition 1.

The95% limits of agreemerfChinn 1991) are
D - 1.96(SD)and
D + 1.96(SD).
The 95% confidence limits for the limits of agreem¢Bland and Altman 1986; Altman 1991: 422-423) ar
estimated by subtracting and addiri§E. In these formulae,
D = mean of the differences (Value 1 minus Value 2)
SD = standard deviation of the differences
SE =V[SD?/ N) + ¢2.SD’/ 2N)], which reduces to SB[2 + ] / V(2N)
t = the value in thé distribution corresponding to a two-tailed P d®with (N - 1) degrees of freedom
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N = number of pairs
Analysis of covariance

The method of calculation is explained in detaildypnitageet al 2002: 332-335) and by Ferguson (1966: 332-
339). Attest (Armitageet al 2002: formula 11.20) is used to compare the tapescoefficients, and the
pooled slope coefficient is computed by formula2B1.

Heterogeneity with respect to deviations from tgression lines in the two groups is tested (Scwdend
Cochrane 1980: 386) by applying a two-taifetest to the ratio of the residual mean squarestakidual sums
of squares are computed by formula 7.6 of Armiteigal. (2002: 292). The standard deviation about regress
(the square root of the residual mean squarepisrted for each group.

The difference between the "after" values at argl\m=fore"” value is computed by formula 11.32 ofmitage
et al. (2002); its variance is calculated by formula3la®d used in a t test (formula 11.35) and fonesing
confidence intervals. Adjusted mean "after" valaescomputed for both groups, based on the asaamtpat
the observed overall "before" mean applies to otlups (formula 11.36).

Analysis of covariance is not done if the slopefiicients in the two groups differ significantlyr @ the
"before" or "after" values are invariant in eittyzoup.
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D3. PAIRED NUMERICAL OBSERVATIONS
(NORMALITY NOT ASSUMED)

This module is appropriate for the analysis of g@iunumerical observations (in different
individuals or the same individual), where a ndrroalognormal distribution is not
assumed. It appraises differences and agreememed&ethe two sets of observations It can
be used to analyse matched-control trials and castel studies, before-after studies,
reliability studies, comparisons of measurementhiogs, and other comparisons of paired
subjects or observations.

The observations entered may be measurementsredpibjects, e.g. matched cases and
controls, or replicated measurements in the saineas. Each pair of matched

observations (labelled "A" and "B") can be entdred separate line, or pairs with the same
values can be entered together, with their frequamzto 500 lines may be entered.

If the data are stratifiedenter each stratum in turn. Click on “All stratehenever
combined results are required.

The program provides@mparison of the paired observationsincluding nonparametric
tests (permutation test, sign test, Wilcoxon sigreetks tests, Hollander's test for bivariate
symmetry), the median difference between the tWwoes the median ratio of the two values
in the population, and the proportion with highalues in one set of observations (with their
95% confidence intervalsieasures of agreemenfconcordance correlation coefficient,
95% limits of agreement for untransformed and leg$formed data, and an accuracy
estimator for screening/diagnostic testaneasure of disagreementnonparametric
regression analysigincludingmonotonic regression) andrank correlation coefficients
and other measures of association

If stratified dataare entered, the paired one-tailed Wilcoxon sigaeds tests in the
separate strata are combined, anchéterogeneityf the P-values in the strata is tested. In a
study of severatlusters with paired observations in each cluster, eraeheluster as a
separate stratum, and then click on "All strata"d@ombined analysis.

Comparison of the paired observations

The program displays the median and mean valuig®itwo sets of observations, and the
median differencbetween the two values in the population, wittapgproximate 95%
confidence intervals. In a matched-control triabefore-after study, the median difference

is an estimator of the treatment effect. On tisiagption that the data come from
distributions that are identical except in the magte of the values, these results express the
difference between the population means, as wehasifference between the population
medians.

Themedian ratioof the two values in the population, with its appmate confidence 95%
confidence interval, is estimated in the same \&figr log-transforming the observations.
The results that are displayed are the exponeriteeahedian difference computed from log-
transformed values and its confidence limits.
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Theproportion with a higher value in one sgtvalues is displayed, with its approximate
95% confidence interval.

Thepermutation (randomization) tekir paired replicates is performed only if the raenof
pairs (N) is 25 or less. It may be slow, sinaeguires processing of'possibilities, i.e.
33,554,432 if N = 25; optionally, the procedure bamborted. The test is appropriate for
interval-scale variables. It assumes that the idiffee between paired observations is a
measure of the difference in the characteristitithmeasured; no assumptions are made
about normality or other characteristics of therthation. Exact one-tailed P-values are
displayed if P < 0.05; the one-tailed value is dedland shown as a two-tailed value.

TheWilcoxon signed-ranks teg$iegel and Castellan 1988: 87-95) tests whetlieentedian
discrepancy between paired observations is zelis.appropriate if the differences between
paired observations are an acceptable basis fhingithe differences in the characteristic
that is measured. The test is based on the assumtipat the distribution of intra-pair
differences is symmetric around their median; ig tondition is not met some statisticians
suggest transformation of the data in order to eobaymmetry (Altman 1991: 204). The
program provides a skewness index (0% = completenetry, 100% = extreme asymmetry
in either direction) and (if there are no zero egative values) repeats the test, using log-
transformed values, which may reduce asymmetry.

If stratified dataare entered, the one-tailed Wilcoxon signed-raegts in the separate strata
are combined by Stouffer's method (Stoutéeral 1949, p. 45; DeMets 1987) to produce
overall one-tailed tests that control for the dyatg variables. Three different sets of
weights are used for this purpose — weightingteélseresults equally, by the sample sizes in
the strata, and by the square roots of the sangds.sIn addition, thaeterogeneityf the
P-values in the strata is tested.

Hollander's test for bivariate symmetfgxchangeability) tests the null hypothesis trzatqul
numerical observations are interchangeable; fomgka, in a before-after trial using the
same subjects, that there is no treatment effemitgirder and Wolfe 1999: 94-104). Itis
sensitive to differences between the paired obsensand in their dispersion. The program
uses a large-sample approximation (Hollander antfeNl®99: 96-97) to determine the P
value; the results should be used with cautiohefdgample is small. A low P indicates that
the paired observations are not interchangeable.

The sign tesis based on the direction, not the magnitude, efifferences between the
paired observations. [If the numbers of pairs wlifferences in each direction are known,
they can be entered in module A of the DESCRIBE@m. ]

Measures of agreement

Lin's concordance correlation coefficie(itin 1989 and 2000) is computed, with its 95%
confidence interval. This is appropriate for ajgire the similarity between paired
measurements of the same subjects, with the asoroparing two observers or
measurement methods or appraising the reprodugibflia single method. The value ranges
from 1 (complete agreement) to -1 (complete disagent). The results should be regarded
as approximate; although computer simulations Istiesvn that the coefficient is robust and
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can cope with samples from non-normal distributifiis 1989); it is based on an
assumption of normality. It has been tentativelygasted that a Lin coefficient of >0.99
indicates almost perfect agreement, 0.95-0.99 anbat agreement, 0.90-0.95 moderate
agreement, and <0.90 poor agreement (NIWA 2009).

The value of any correlation coefficient, includibig's concordance coefficient, is affected
by therange of valuesncluded in the analysis (Lin and Chinchilli 1997he wider the
range, the stronger the correlation - and this khoe taken into account when coefficients
are appraised or coefficients based on differemipdas are compared. The program
therefore reports this range (the range of the me&paired values).

The 95% limits of agreemeriBland and Altman 1995a, 1995b; Altman 1991: 390)4are
appropriate when paired measurements of the sabjectsihave been entered in order to
compare two observers or methods of measuremdd.limits of agreement express the
range that, with approximately 95% probability,lutes the difference between single
measurements of the same subject by the two obrsesvenethods, answering the question,
“given a measurement by one observer or method,fapomight this be from a measurement
by the other observer or method?” The limits areeliable if the sample is small, and are
not displayed if under 20 pairs of observationseartered. Their confidence intervals should
be regarded as rough approximations. The limiesgoéement method assumes that the
differences are reasonably constant throughoutathge of measurement. As a check on this
assumption, the program displays Kendall's ranketation coefficienttau by see below) for
the difference and the mean of the two valuess Ttay be expected to be zero if the mean
difference and the scatter of differences do nange with increasing values. Even when
one of the methods of measurement is a new onéhamather is an accepted standard, it is
preferable to examine the relationship betweerifierence and the mean value rather than
the relationship between the difference and thedstal measurement, which (as shown by
Bland and Altman 1995b) is likely to be misleading.

Approximate 95% limits of agreement are also comgdior the ratio of the two
measurements, together with Kendall's rank coroglatoefficient for the relationship
between the ratio and the geometric mean of thevbliees. This computation is based on
log- transformed data, and is not done if therezare or negative observations.

A nonparametri@ccuracy estimatois computed, for use in comparisons of
screening/diagnostic test results with ordereddeggthndard” ratings. It estimates the
probability that the test will correctly rank theembers of a random pair of subjects (chance
expectation = 50%).

Measure of disagreement

The measure of disagreement between two sets chethumerical observations proposed
by Costa-Santost al (2010) is based on the differences between tinegpabservations, in
relation to the magnitude of the larger value i piir. It is applicable to ratio-scale
variables (i.e., those where a zero value indicalbsgnce of the attribute) that have positive
values. The measure is applied to the untransforrakebs. It ranges from 0 (no
disagreement) to 1 (strong disagreement).

Optionally, a 95% confidence interval is estimdi@dthe measure of disagreement, using a
bootstrap procedure. This procedure can producegdelay.
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Clustered data

In order to effectively remove the correlation asated with data clustering (which may
appreciably affect the test results) the prograes @sWilcoxon signed-ranks test, applied to
the cluster medians. The limitations of this simplethod, like those of a test using the
cluster means (Galbrai#tt al 2010), are that the same weight is given to largesmall
clusters, and that the nonuse of individual obgema may reduce power; computer
simulations confirm this slight loss of power comgzhwith other, more elaborate, tests that
take clustering into account. The procedure mayeappropriate if there are very few
clusters.

In addition, a Wilcoxon signed-ranks test is parfed in each cluster, the results are
combined (using alternative sets of weights), &edheterogeneity of the P-values in the
various strata is tested.

Nonparametric regression analysis

The nonparametric regression analysis procedurglvassumes interval-scale
measurements) has the advantage of robustnessdisa@epant “outlier” observations have
a reduced effect. Estimators of the intercefii{@) and slopelfetg coefficients in the
population are computed, with 90, 95, and 99% damite intervals for the latter
coefficients. Computation may be slow for largempbkes and can be aborted by the user.
Computation is aborted if the samples are too l&rgéhe program to handle.

Three alternative ways of estimatibgtaare used, depending on the total number of pairs
and the number of discrepant values. Two estimaiftalphaare computed, and both are
shown if they differ. The first estimator is recor@nded if it cannot be assumed that
deviations from the regression line are symmetremadl the second is recommended if the
symmetry assumption is tenable.

Monotonic regression analysis a form of nonparametric regression analysiexfiresses
the linear relationship between the ranks of themd B variables. Normality is not assumed.
The regression equation has the form
Rank of B ;alpha+ betgrank of A).
The closer the relationship is to monotonicity, theser the absolute value lodtais to 1.

Rank correlation coefficients and other measures of association

Kendall's and Spearman's rank correlation coefftsi¢gau bandrho [wtih its standard
error], respectively) are computed. These haveraifit numerical values but are similar in
their ability to detect associations (Siegel andt€lian 1988: 251).

Goodman and Kruskalgammaand Somers' asymmetric D may be regarded as nesasiu
how effectively the rank of a pair of observatiovith respect to one observation can be
predicted from their rank with respect to the otbleservation (see Hildebrand, Laing, and
Rosenthal 1977). THe statistics are appropriate when one of the obsensis clearly the
dependent one, e.g. one that comes later in drgjs appropriate when A is dependent,
andDyxwhen B is dependent.
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Tau, Kruskal'sgamma and Somer® depend on a comparison of the ranks of the paired
observations. All possible pairs are taken intmaat in the computation ¢du, whereas
pairs that tie are disregarded in the calculatiogammma and pairs that tie with respect to
one (the independent) observation are omitted tf@rcomputation of Somei3. Tauis the
geometric average @ixy andDyx.

A conservative (“outside”) 95% confidence interigéstimated fotau For small samples
this estimate may be inordinately wide

METHODS

If zero values are encountered, 1 is added toa#ies before log-transforming them. At least tipaies of
observations must be entered.

Comparison of the paired observations

The estimation of thmedian differencand its confidence intervals is described by Casti@nd Gardner
(2000). For 25 or fewer pairs, the program usigalvalues provided in Table 18.6 of Altmanal (2000);
for larger samples, it uses the formula provided€haynpbell and Gardner (2000: 42).

The median ratiof the two values in the population is estimatethe same way, after log-transforming the
observations. The results that are displayedrerexponents of the median difference computed fogm
transformed values) and its confidence limits.

A confidence interval for thproportion that has higher valués one set is based on the binomial sign test for
two dependent samples (Sheskin 2007: 813); itpsaauiate if the sample is not small (since thecpdure
uses a normal approximation).

The permutation test assumes that under the nptthesis the differences between paired obsensatiom
equally likely to be positive or negative. Takiegch of these possibilities for each pair, the efithe
differences is computed for each possible comhnaif findings. The P-value is the proportioniuége
outcomes that are as extreme as, or more extraanettie outcome in the actual observations. Theeature
is explained by Siegel and Castellan (1988: 95-100)

TheWilcoxon signed-ranks teases the formula provided by Siegel and Castéllag8: 92, formula 5.5), but
allowing for the effect of ties on the variancerbplacing the denominator (as suggested by Sp898:53
and Mehta and Patel 1991: 7-10)\}y{Si] / 4), where Si = the square of the rank ofdiféerence between
paired observations. Nondiscrepant pairs are @ghoif there are fewer than 20 pairs, significaiscappraised
by using critical levels for one-tailed P = .05250.01, .005, .0025, and .0005 (derived from Siagd
Castellan 1988: Table H; and Zar 1998: Table B.1R)he sample is larger a normal approximationsed,
with allowance made for ties

The formula for theskewness inddaz

abs[(H—=M) - (M—=H)]/(H-L)
where M is the median of the observed intra-pdfedénces

H is their top decile

L is their lowest decile.
The deciles are determined by the methods expldigeZar (1998: 26-27). Pairs with no discrepasneie
taken into account in the computation of the medi#ierence and the skewness index, but not in the
significance test.

If stratified dataare entered, the one-tailed Wilcoxon signed-raegss in the separate strata are combined by
averaging their signezlvalues (Stouffeet al 1949, p. 45; DeMets 1987). Three different séiseights are
used for this purpose — weighting the test regdtsally, by the sample sizes in the strata, anthégquare
roots of the sample sizes. In addition, a hetareigg test is performed, comparing the P-valugbénstrata,
using the formula (Wolf 1986: 45):

chi-squarek - 1 d.f.) =)(Zi - MeanZf
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where k= number of strata,
Z, = zvalue in stratumi
MeanZ = meanz value.

Hollander'stest for bivariate symmetig described by Hollander and Wolfe (1999: 94-104)

Thesign testis an exact binomial test with a binomial probipibf 0.5 (Siegel and Castellan 1988: 80-83;
formula 4.2).

Measures of agreement

Theconcordance correlation coefficieist computed by formula 19.76 of Zar (1998: 40@)h n substituted
for (n— 1) in the denominator, and its 95% confidenteriral is based on variance formula 2 of Lin (19&%)
corrected by Lin (2000). [Version 1.14 and eaniersions of PAIRSetc used Zar's formulae, whigidy
slightly different results.] The confidence intafis not computed if the correlation coefficiéntl or -1, or if
its estimation requires division by zero.

Approximate95% limits of agreemerre computed by a nonparametric procedure descoip&land and
Altman 1999. They are determined by excluding tveel and upper 2.5% of the observed distribution of
differences. Their confidence intervals are bamedonfidence intervals for the relevant quantji@ampbell
and Gardner 2000: 39). They should be regardedugsh approximations, both because the method of
computing confidence intervals for the quantilesuases a normal distribution, and because when one
confidence limit (lower or upper) falls outside thieserved range of differences, it is arbitrarilyged at the
same distance from the point estimate as the othdidence limit. The 95% limits of agreement tloe ratio
of the two measurements are computed in the sameusing log-transformed data.

The nonparametri@ccuracy estimatois based oformula 1 of Obuchowslet al. (2004), but with a
modification to allow for tied observations. Thendminator in the formulay(n — 1), is reduced by,
where T =3[ ti(t— 1)]

ti = number of subjects with a specific constellatioh findings
The estimator is not computed if both sets of olz@®ns show no variation.

Measure of disagreement

The formula for this measure (Costa-Santos et(HI0Ris
Zl—i /In
where L;=log{[a - bi| / max&,b)] + 1}.log(2)
a, andb, are the observations in pair
n = the number of pairs of observations
If g andb; are equall; is taken as 0.

The measure is not computed if aqgr bi is negative, or if there are over 500 sets of hedmbservations.

The confidence interval is obtained by a bootsfayzedure, using the basic percentile method (Ef@si,
Efron and Gong 1983) as described by Sheskin (2882-536). The approximate 95% limits are the (B.5)
and (97.5)th percentiles of the distribution of theasures of disagreement (computed by the abotr®d)an
1000 random samples of the same size as the drigingle, each drawn (with replacement) from tHaaain
the original sample. Because of resampling, rapestof the procedure may yield slightly differeasults.

The random sampling in this bootstrap procedurs aggseudo-random number generator described by
Wichman and Hill (1985), which derives each numheurn from three seed numbers that it modifigs fo
subsequent use. Initial values for the seed nusrdoergenerated by Delphi's inbuilt random-number
procedures, namely RANDOMIZE, using the systemicland RANDOM, which generates three random
numbers from which the required seed numbers arpuated. Delphi's RANDOM procedure is augmented by
an additional randomizing shuffle, using the altion of Bays and Durham, as described by Press €t389:
215-217). The formula for each selection is

trunc(RM) + 1

where R is arandom number intherange 0 <R <1

M = the number of candidates.
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D3. PAIRED NUMERICAL OBSERVATIONS (NORMALITY NOT ASSUMED)

Clustered data

If clustered data are entered, a Wilcoxon signedtsdest based on the cluster medians is empldyes.uses
the formula provided by Siegel and Castellan (1988:formula 5.5), but allowing for the effect &g on the
variance by replacing the denominator (as suggédstetprent 1993: 53 and Mehta and Patel 1991: 1¢0)

\/Z[S] / 4), where§ = the square of the rank of the difference betwssred observations. Nondiscrepant
pairs are ignored. If there are fewer than 20spaignificance is appraised by using critical Is¥er one-

tailed P = .05, .025, .01, .005, .0025, and .0@@5iyed from Siegel and Castellan 1988: Table H; Zar

1998: Table B.12). If the sample is larger a ndrapgroximation is used, with allowance made festi

The one-tailed Wilcoxon signed-ranks tests in #ygasate clusters are combined by Stouffer’'s mefBtaliffer
et al. 1949, p. 45; DeMets 1987) to produce overall @iled tests. Three alternative sets of weightsuaed
for this purpose — weighting the test results #guay the cluster sizes, and by the square robthe cluster
sizes.

The heterogeneity test comparing the P-valuesarsttata uses the formula (Wolf 1986: 45):
chi-squareK - 1 d.f.) =Y (z - MeanZyf

where k= number of strata,
z =z value in stratum
MeanZ = meanz value.

Nonparametric regression analysis

The nonparametric regression analysis procedueedescribed by Daniel (1995: 622-625), Sprent (1293-
202) and Sen (1968).

Three alternative ways of estimatibgta(the slope coefficient) are used, depending ordta number of
pairs and the number of discrepant values. lfou@Qt pairs of observations are entered, Theillmasbr (Theil
1950) is computed by a method described by Spi@®3; 195-198). If more than 30 pairs are entebet's
method (Sen 1968) is used when possible. The nogannot cope with Sen's method if there are thare
146 pairs of observations with different valueshaf independent variable, and it then employs ttheeviated
Theil method (Sprent 1993: 198-202), which usegstematic sample of the data. For the Sprent and
abbreviated Theil methods, which (unlike Sen's ma@tlassume distinct values of the independent biarighe
program treats tied observations as if they wetademtical by imputing differences of (alternajey000001
or -0.000001.

The point estimate dfeta(b) is the median value &, where b = (y; - Vi) / (X - X) for each pair of values
of the independent variabk(x; andx;) and the corresponding values of the dependeiahiay (y; andy;).
Using Sprent's method; is calculated for all of the N(N-1)/2 possible rgadf values; zero values ofx;) are
changed to 0.000001 or -0.000001 (alternately)Sdn's procedurg; is calculated only if§-x;) is not zero. In
the abbreviated Theil procedure the N pairs of okad®ns are arranged with the values of the inddpat
variable in a monotonically rising sequence, arches the first N/2 pairs is then linked with thaipsituated
N/2 positions further along the arrdy;is computed only for these linked observationsp z&lues of X-x;) are
changed to 0.000001 or -0.000001.

Confidence intervals fdsetaare obtained from an array of valuedpfn order of increasing magnitude. Sen's
method (Sen 1968) uses critical values provided layge-sample formula based on a variance estimate
corrected for ties, and Sprent's method (Spren8:1999-202) uses critical values based on thecatitialue for
Kendall's tau for significance at nominal 10%, %#¢ 1% levels in two-tailed tests, obtained froeg8l and
Castellan (1988: 363, TableRII) and Sprent (19%l& IX). Approximate confidence intervals ardreated
in a similar way in the abbreviated Theil procedusng critical values based on formula 2.3 ineé®p(1993:
34).

Two estimators of thalpha coefficient are computed (Dietz 1989; Daniel 19883-624). The first is the
median of they; - b.x]) terms for the N pairs of observations, and theosd (Daniel 1995: 623-624) is the
median of the averages of the+(b.x) terms calculated for each of the pairwise contimna of observations.
The second estimator afpha is not calculated if the abbreviated Theil procedsrused.

Themonotonic regressioanalysis uses formulae 1-3 of Conover (1999: 244).
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D3. PAIRED NUMERICAL OBSERVATIONS (NORMALITY NOT ASSUMED)

Rank correlation coefficients and other measures of association

The computation afau, gamma and Somer® is based o1$, the difference between the numbers of
concordant and discordant pairs, as explained &k (1970: 45-46) and Agresti (1984: 157-159).

The formula fotau makes allowance for tied observations (Siegel@astellan 1988: 249, formula 9.10). If
the number of pairs N > 30, the significancesad tested by a large-sample method whase Agresti (1984:
180) suggests if the numbers of concordant anedisait pairs both exceed 100. If this conditionds met
the program reports P as approximate. The forisula

Z=(S-CQO)/VV
where V =variance of S, making allowance for tied ratkendall 1970: formula 4.3)
As recommended by Kendall (1970:54-58)C = lunless one variable has only two values and ther dtas
tied ranks, in which case
CC=[(2N-T=-T.) / Intervals] /2
where Intervals = the number of different rankstfar non-dichotomous variable, minus one
Trand T, = ties involving the first and last ranks (respeasy) of the non-dichotomous variable

A conservative ("outside") 95% confidence intengatstimated forau, using formula 4.12 of Kendall (1970:
64).

Gammais calculated by a formula provided by Siegel &adtellan (1988: 292, formula 9.32). If N > 3@ th
significance test foB (see above) is used as a tesigimmma

SomersDxy andDyx are calculated by Siegel and Castellan's fornulkés and 9.42 (1988: 304-305).
Significance is tested by a Z test (Siegel anddllast 1988: 309, formula 9.47), based on the vagan
computed by Siegel and Castellan's formula 9.45.

Spearman'sho is computed by a formula that takes account ofiiaks (Siegel and Castellan 1988: 241,
formula 9.7). Itis not calculated if numbers e large for the program to handle. A large-sampl

approximation is displayed as the S.Ertud, namely~/[1 / (N — 1)](Hollander and Wolfe 1999, formula
8.72). Thet-test for the significance oho (Siegel and Castellan 1988: 243, footnote), ukBid> 30, is based
on the null variance. An approximate 95% configeimterval (Zar 1998: 392) is estimated if N isdtOmore
andrho is 0.9 or less, based on the Fishgansformation

z=0.5In[(1 +rho) / (1- rho)]
The confidence limits forho {Fieller, Hartley and Pearson (1957, 1961) are

exp[2 £ 1.965E) - 1] / exp[2¢- 1.965E3 + 1]
where SEz=+[1.06 / (N - 3)].

If there are 30 or fewer pairs, the significancéaofis appraised by using critical levels for oneddiP = 0.05,
0.025, 0.01, and 0.005 (Siegel and Castellan 18&8Bles RI and RII), and the significancerlod by using
critical levels for one-tailed P = 0.05, 0.025,1).0.005, and 0.001 (Siegel and Castellan 1988leT@h If N

> 30, a Z test is used ftau andgamma and a-test forrho. The Z test is appropriate for large samples,Rnd
is reported as "approximate" if criteria suggedtgd\gresti (1984: 180) are not met.
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D4. ANALYSIS OF PAIRED SURVIVAL DATA

This module is appropriate for the analysis ofisrand follow-up surveys that study paired
survival data, e.g. in paired individuals or in th® eyes of the same subjects.

A survival time (“time to event”) is the numbertohe units (usually days or months) from
the start of observation until the occurrence specified end-point event (such as death, the
onset of a disease or complication, recovery fraisaase, or return to work) or (if the event
has not occurred) until withdrawal from observatidrhe main reasons for withdrawal, or
censoring are loss of contact, circumstances that diceteowal from the study, and
conclusion of the study.

Each pair of survival times (A and B) may be erdeseparately, or (if specific paired values
occur more than once) the paired values can beeehtgth their frequency.

Censored survival times are entered by appendifhge’g .by entering “37+”. Up to 500
pairs of survival times may be entered

To obtain results that are relevant to specifiequr that are of interest, these periods can|be
entered (e.g., 24 months, to obtain informatiooual2-year survival).

The program provides a Kaplan-Meier life-table gsial for each group of observations
(cumulative survival proportions with their 95% confidence intervalsiedian and mean
survival times, and thancidence rateof the event)comparisons ofsurvival proportions,
thehazard ratio (with 95% confidence intervals), thieends in the early and later periods
of follow-up, andtests comparing the survival distributions Prentice-Wilcoxon and
Gehan tes)s

Cumulative survival proportions

For each group of observations, the cumulativeigakyproportions (expressed as
percentages) at each survival time entered ama&®d by the Kaplan-Meier procedure.
Cumulative survival proportions are also computadahy survival times that have been
specified as of special interest, with their apprate 95% confidence intervals; these are
large-sample limits, and Rothman and Greenland§1289-90) recommend their use only if
at least five events were observed and there deasttfive survivors under observation at
the time of the calculation; a warning is displayetiese conditions are not met.

The step-by-step survival proportions that are ntegygoprovide raw data for the construction
of survival curves, consisting of horizontal linggh vertical steps whenever the survival
proportion changes.

Median and mean survival times

Where possible, median and mean survival timesegr@rted for each group of observations.
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D4. PAIRED SURVIVAL DATA

Whether survival times are censored or not, theiameslrvival time is defined as the time at
which the cumulative survival probability dropsi0% or below. An approximate standard
error and 95% confidence interval are reportedseéh@lues may be inaccurate if the sample
is small (Machin and Gardner 2000: 97)..

If the survival probability is not precisely 50%the reported median survival time, an
alternative median is also reported, based ondiméerpolation between the times straddling
the 50% mark.

The program also computes the median survival érpected if the distribution is
exponential; if this is very different from the @pged median, the assumption of
exponentiality can be rejected..

The mean survival time is displayed, with its 958fftdence interval. If there are censored
survival times, these values are estimates.

Incidence rate of the event

The average rate of events and its confidenceviaiteare estimated from the mean survival
time and its confidence limits. If any survivahies are censored, the rate is an estimate.

Comparisons of survival proportions

For specific survival times that have been speatifie being of special interest, the program
displays the difference between the survival propos in the two groups of observations,
and the ratio of these proportions, with their agpnate 95% confidence intervals. The
confidence intervals should be used with cautidhefsurvival times were selectad
posteriori after examination of the data (Altman 1991: 376).

Hazard ratio

The hazard ratio, which is similar to a relativakriexpresses the relative survival experience
of the two groups. The program also displays t@idaes (in each group of observations) on
which the hazard ratio is based — the number oérvlesl events and the “extent of exposure”
or “expected events”, and their ratio.

Trends in the early and later periods of follow-up

As a simple indication of possible time-relatedeténces between the survival distributions,
the program summarizes the change in the cumulstixgval proportion in each group of
observations, in the early and later segmentseofdtiow-up period (usually using the
median survival period for Group A as the cuttiraap). The change is expressed as the
drop in the survival percentage.

Comparison of the changes may point to trendsditeadifferent in the two groups or time
periods. Differences in trend in the two periodsyrbe obscured in the overall results.

73



D4. PAIRED SURVIVAL DATA

Number needed to avoid one event

For use in studies in which the events are avogldbk program reports the number of
individuals who are needed in the group with a &rgpurvival time, in order to avoid a
single case.

Tests comparing the survival distributions

Two tests are performed: the Prentice-Wilcoxon {ieésentice 1978) and the Gehan test
(Gehan 1965). Both tests allow for censored olagiems. One-tailed and two-tailed P
values are shown.

When data are heavily censored, great differenae®gist between the results of the two
tests (O’Brien and Fleming 1987).

Computer simulations indicate that the Prenticeedkbn test is more powerful in most
situations, but the Gehan test may be more powgtiu survival times follow an
exponential distribution (Woolson and O’Gorman 1092

METHODS

Cumulative survival proportions

Cumulative survival proportions are estimated keyKlaplan-Meier technique (Kaplan and Meier 1958;
Armitageet al 2002: 575-576; Machin and Gardner 2000: 94-96).

95% confidence intervals for survival proportionsecific selected times are computed from thienastd
variance of the logit of the proportion, using Greeod’s formula (Rothman and Greenland 1998: 28p-9

Median and mean survival times

Themedian survival timés defined as the time at which the cumulativevisat probability drops to 50% or
below. Its approximate standard error and 95%idente interval are computed by the formulae prediby
Machin and Gardner (2000: 97-98), based on thevaltimes at which the survival probabilities reamr
cross the 45% and 55% levels, or if these protiagsilare equal, the 40% and 60% levels. The éffesample
size required for the calculation is the total skngize minus the number censored before the mediaival
time (Machin and Gardner (2000: 94). If the saniplemall, the results are unreliable.

If the survival probability is not precisely 50%the reported median survival time, an alternatieglian is
also reported, based on linear interpolation betvike times straddling the 50% mark (Selvin 1996t)3

The median survival time expected if the distribatis exponential is the sum of the survival tifeksether
censored or not) divided by the number of evertiman 1991: 385).

Themeansurvival time and its confidence intervals are computed in th@lusay if no survival times are
censored. Otherwise, a nonparametric estimateeofiiean is computed, based on formula 11.29 ofrSelv
(1996: 371); its standard error is computed by fdami1.31 and used for interval estimation; fos {hiirpose,
the longest survival time is treated as uncensaresh if it is censored.

A mean/median survival time is also computed, bagethe assumption that the distribution is exptinén
(Selvin 1996, formula 11.19; Altman 1991: 385)s dtandard error is computed by Selvin's formul2@.1
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Incidence rate of the event

Since (in a closed population) an incidence rathaéseciprocal of the average time until occuresatthe
event (Rothman 1986: 29; Morrison 1979), the rexgpls of the mean survival time (or the estimatihef
mean survival time) and its confidence limits asedias estimates of the average rate of eventi¢sand
confidence limits.

Comparisons of survival proportions

For comparisons of survival proportions, the estiomaof the variances and confidence intervalsef t
differences and ratios is described by RothmanG@meenland (1998, 291-292). Formulae 16-15 and@laré&
used, based on. the estimated variances of ths lofgihe proportions (Rothman and Greenland 1pp&89-
90). The proportions are treated as independent.

Ratio of median survival times

The computation of a confidence interval for thigoraf the median survival times in the two grognon
1986), on the assumption that the survival time®ten exponential distribution, is described byrh (1991:
384-385). The median survival times used for phigpose are those at which the cumulative survival
probability drops to 50% or below.

Hazard ratio

The program computes the Pike hazard ratio estinfBtke 1972).

Trends in the early and later periods of follow-up

Changes in the survival percentage in each grogbsdrvations are reported, in the early and [aeipds of
follow-up. The cutting-point used for this purpasdased on the median survival period for Grou if
this median is not reached, on the point at whiehdumulative survival proportion drops to 60%heTongest

survival time entered determines the end of ther fla¢riod. Where possible, the interval defined3ooup A is
applied to Group B also. Linear interpolation $£d where necessary.

Number needed to avoid one event

The number of individuals who are needed in thegeith a longer survival time in order to avoidilagle case is
computed from the difference between survival priiges and its estimated variance (Altman and Aswoled 999),

Tests comparing survival distributions
The Prentice-Wilcoxon and Gehan tests are donedardance with the detailed procedures set out bglgén

and O'Gorman (1992). For the Prentice-Wilcoxoh tésedeltavalue for each pair of survival times is
multiplied by the frequency of the combinationitils more than 1.
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D5. ASSESSMENT OF REGRESSION TO THE MEAN

This module assesses the effect of regressioretm#an (RTM), for use in studies in which
subjects selected because of their extreme vahigls ¢r low) are measured again later to
appraise change Once known, the expected chamge® dRITM can be compared with the
change actually observed, to see to what extent Rdivexplain the observed difference.

The procedure assumes a normal or lognormal disipitp.

The cut-point used for selecting subjects for isu in the sample must be entered, together
with the mean value and S.D. in the population fwnich they were drawn. Optionally (t
allow for aging or a secular change), the poputaticean and S.D. at the time of the second
measurement can be added. If the distributioogadrmal, the required entries are the log
of the cut-point, and means and S.D.s of log-t@amnséd values.

O

The program computes thegression-to-the-mean effect.e. (if the distribution is normal)
the expected difference between the mean baselthenaan second value or (if the
distribution is lognormal) the expected ratio of thean second value to the mean baseline
value. The computed baseline mean is also disp)dgecomparison with the observed
baseline mean (a discrepancy suggests a skewetutisin).

Regression-to-the-mean effect

If there is of random variation, the second measerd in a follow-up study of subjects
selected because of their extreme values will advwagd to be less extreme than the first. In
trials, RTM effects may be confused with treatmamnplacebo effects (Barnedt al. 2005,
Morton and Torgerson 2005).

Regression towards the mean depends not only arutpeint used to determine inclusion in
the sample and on the distribution (mean and $n0Qhe population, but also on the
correlation (in the population) between repeatedsueements of the same individuals. The
expected changes due to RTM are therefore displayadable that lists alternative values,
depending on the correlation coefficient (rangiragf 0.025 to 0.975). Choice of an
appropriate coefficient requires external data dbrrelation usually becomes attenuated as
the interval between measurements increases. hbetesterol values, correlation coefficients
of 0.7 or higher have been reported for measuresriakén a year apart (Yudkin and Stratton
1996).

A method sometimes used to reduce the effect oéssgn towards the mean is to determine
the subject's inclusion in the study sample noudigig a single baseline measurement, but
by using the mean of two or more baseline measuremeThe table therefore displays
alternative RTM values, for 1, 2, 3, or 4 basehmsasurements. Use of more than 4
measurements brings little benefit (Yudkin and t&ira1996).

If a second population mean and S.D. are not eshtédne computation assumes that there is
no change in the population distribution.
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METHOD

The program estimates the effect of regressiohdartean by the formula provided by Davis (1976mide 3);
also Yudkin and Stratton (1996) and Barmtal (2005). It uses a modification that allows fartenge in the
population values between the two measurementiessibed by Chinn and Heller (1981). It also uses
modifications that are appropriate if the baseliakie is the mean of 2, 3, or 4 measurements, ssided by
Davis (1976) and Yudkin and Stratton (1996).

If a lognormal distribution is assumed, the compareis based on the logs that are entered. THhe Bffect
that is displayed, namely the ratio of the lateam the baseline mean, is the antilog of the RFfglct
computed from the logs (Bland and Altman 1996a).

Some values may not be calculated, or the whollysieanay be skipped, if the cut-point is excedsive
extreme.

The computed baseline mean that is reported islb@ssingle baseline measurements (Davis 1976:Ularg).
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D6. ADJUSTMENT FOR REGRESSION TO THE MEAN

This module providesignificance tests that adjust for the effect of rgression to the
mean (Mee-Chua tests), for use in studies in which ectigj selected because of their
extreme values (high or low) are measured agaén tatappraise change.

Either individual data or summary data (sample,sizeans and standard deviations) may pe
entered. If the mean in the population from whioh $ample was drawn is not known, or if
the correlation between the two sets of measuresiemiot known, the program provides a
sensitivity analysis, computing P values for a widdety of scenarios.

If the population mean is not known, the prograsoakports théowest possible adjusted
P valueand the population mean to which it applies, &eddnge of population meandor
which the test would be significant, using the agted Mee-Chua procedures proposed by
Ostermanret al (2008).

If individual data are entered paired t test(not controlling for the regression-to-the-mean
effect) is also performed, for comparison with #t®ve test.

Regression-to-the-mean effect

If there is random variation, the second measurémemfollow-up study of subjects
selected because of their extreme values will adwagd to be less extreme than the first. In
uncontrolled or inadequately controlled trialsstheégression-to-the-mean (RTM) effect may
be confused with a treatment or placebo effectr{Bet al 2005, Morton and Torgerson
2005). The degree of regression towards the megaendes on the criterion used to determine
inclusion in the sample and on the distributiongmand S.D.) in the population from which
the sample was drawn, and finds expression indghelation between repeated
measurements of the same individuals.

A test proposed by Mee and Chua (1991) is used. t€st, which is based on a linear
regression model, requires information on the medne in the population and the
correlation between the two sets of values. Thentey be regarded as a replacement,
removing the RTM effect, for a pairédest. It assumes that distributions are norrhal t
there was no change in the population mean andidetieen the times of the two
measurements, that the correlation is constanttbeewhole range of values, and that effects
are additive.

This test has been formulated more simply by Ostamat al. (2008), who extend it to a
situation where the population mean is unknowrsumggesting that it be used systematically
over a range of reasonable means, and by providigulae to determine tHewest

possible adjusted P valwnd the population mean that would give rise i® lthwest P

value, and theange of population meatrior which the test would be significant.

If the population mean is not available, the pragraports the lowest possible P value and
the population mean associated with this P valoe tihe range of population means that
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D6. ADJUSTMENT FOR REGRESSION TO THE MEAN

would be associated with a significant test re@udt, with a P value less than 0.025 in a one-
sided Mee-Chua test of the null hypothesis versuatarnative in the direction of the
observed difference between the means of the tigo$@alues). The program also applies
the test to 11 hypothetical situations, using akéve evenly-spaced population means
ranging from half to double the mean of the fiest &f measurements.

If the correlation coefficient is not available tihbe population mean is, the test is performed
nine times, using alternative correlation coefi¢geof 0.9, 0.8, ... 0.1.

If neither the population mean nor the correlatioefficient is available the test is performed
99 times (nine postulated correlation coefficiemtish eleven evenly-spaced population
means). For each value of the correlation coefiicithe lowest possible adjusted P value
and the associated population mean are reporteeelhas the range of population medor
which the test would be significant.

When appraising the findings, postulated populat@ans that are not plausible should be
ignored. Also, it should be kept in mind that resgien to the mean can contribute to the
difference between the means only if the populath@an is below the first mean (if the
second mean is lower than the first), or abovditeemean (if the second mean is higher
than the first).

Scrutiny of the results to determine the plaugipdif scenarios that show significant results
may permit judgments on the possibility of a trbarge, and facilitate “separating the wheat
from the chaff in situations when one has to imetrghe results of uncontrolled studies”
(Ostermanret al, 2008).

METHOD

The formula used for thglee-Chua teds equation 4 of Ostermaet al. (2008), with the covariancs,{y)
replaced bys;s,, wherer is the correlation coefficient arglands, are the standard deviations of the two
samples. Théowest possible adjusted P valisederived from theé value computed by equation 7 (with- 2
degrees of freedom), and the associated populatéam by equation 6.

Therange of population mearisr which the test would be significant is estinthtey a method proposed and
explained by Ostermaat al.,using the following formulae (Luedtke R, personaintnunication) which
because of their length were not printed in thapgr. The formulae providg andy,, which represent the
points (along a spectrum of possible populationmagthat separate significant one-sided test ie§ulteither
direction) from nonsignificant resultg, andY, are the two sets of measurements. The program asdiat the
population mean cannot be less than 0.
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. ADJUSTMENT FOR REGRESSION TO THE MEAN

w20ss  the 97.5% quantile of the t - distribution with n -2 degrees of freedomr

The formula for thepaired t testvill be found in most statistics textbooks, e.gtrddn (1991), p. 191.

If individual measurements are entered, the maxirpammissible number of pairs is 800.
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E. COMPARISON OF SUBJECTS WITH TWO OR MORE
MATCHED CONTROLS (*YES-NO” VARIABLE)

This module is appropriate for the analysis of eas&rol studies, clinical trials and cohort
studies in which each index subject (each casesrarpntal subject, or individual exposed
to a risk or protective factor) has a fixed num@20) of individually matched controls, and
the dependent variable is dichotomous (“yes-naf), ‘es” = exposure to a risk factor (in
case-control study), the success of a treatmetihegpresence of a disease (in a cohort
study). It compares the findings in the index satg and their matched controls.

154

The program refers to index subjects as “case&® riumber of controls per case must be
entered. Then each set of matched observationsecantered in a separate line, or sets with
the same findings can be entered together, with filegjuency. The required entries for each
pattern of findings are 0 (“*n0”) or 1 (“yes”) fdne “case”, and the number of matched
controls with “yes”.

If the data are stratifiedenter each stratum in turn. Click on “All stratehenever
combined results are required.

The program providetests for the differencebetween the “cases” and their controls (exact
Fisher's and mid-P tests, Mantel-Haenszel testy¥éalter's test for binary data), tbdds
ratio (maximume-likelihood and Mantel-Haenszel estimatasylkappa.

If stratified dataare entered, the Walter’s tests in the separattasire combined, the
heterogeneityf the P-values in the strata is tested, and anathkappais computed .

Tests for the difference

The program provides exact Fisher's and mid-P,tdsdMantel-Haenszel test, and Walter's
test for binary data (with and without a continwtyrrection).

If stratified dataare entered, the Walter's tests in the separaita ¢tontinuity-corrected) are
combined by averaging thevalues (Stouffeet al 1949: 45; DeMets 1987) and computing
an overall P that controls for the stratifying @dnles. P-values are computed in three ways,
weighting the strata by different methods: weightinem equally, by sample sizes (the
number of pairs), and by the square roots of thepsasizes. In addition, a test is done for
theheterogeneityf the P-values in the strata (Wolf 1986: 45).

Odds ratio

Maximum-likelihood and Mantel-Haenszel estimatethe odds ratio are computed, with
exact (Fisher's and mid-P) and approximate confidémtervals. In occasional extreme
instances, computational problems prevent the tisgawt methods for the calculation of
confidence intervals for the odds ratio. Approxienabnfidence intervals for the maximum-
likelihood estimate of the odds ratio are showryanéxact intervals are not computed.

Jewell'slow-bias estimator of the odds ratfdewell 1984) is also displayed. This serves to
draw attention to the tendency for the odds ratia sample, especially a small one, to
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overestimate the true odds ratio in the populatepmesented. A disadvantage of the
estimator is that it is affected by the directidrtomputation; its value when the number of
case: “yes”, control: “no” pairs is the numeratbthee ratio is not the reciprocal of its value
when this number is the denominator.

Kappa

The program computdsppa which expresses the agreement among all the\aig®Ts in

the matched sets, and may serve to express tlatiedfeess of the matching procedure, since
it indicates the extent to which the findings intaieed sets are more similar than findings in
individuals from different sets.

The probability of chance agreement is taken ictmant in the calculation éappa A

value of 1 indicates perfect agreement (aftemafig for this probability of chance
agreement) between ratings; 0 indicates no agrdeotieer than what can be attributed to
chance, and a negative value indicates less thamcetagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellentegent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAldess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40—0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991).

If stratified data are entered, averall kappaweighted by sample sizes) is computed.

METHODS

The program can cater for up to 20 controls pee.cas
Tests for the difference

The computation oéxact probabilitiesises an efficient algorithm for calculating theffizsients of the
conditional distribution (Martin and Austin 1991996), using code from David O. Martin's public-dema
EXACTBB program.

The Mantel-Haenszethi-square test for matched observations is desdiy Rothman (1986: 262-263:
formulae 13-15 and 13-18).

The formula foWalter's tesfor binary data is formula 2 in Walter (1980); focontinuity-corrected test, 0.5 is
subtracted from the absolute value of the numerator

If stratified dataare entered, the Walter's tests in the separaita gtontinuity-corrected) are combined by
averaging theirz values (Stouffeet al 1949, p. 45; DeMets 1987). Three different sétweights are used for
this purpose — weighting the test results equbihythe sample sizes in the strata, and by thersqoats of the
sample sizes. In addition, a heterogeneity tgstiformed, comparing the P-values in the stratimguthe
formula (Wolf 1986: 45):

chi-squarek - 1 d.f.) =)(Zi - MeanZ§
where k= number of strata,

Z, = zvalue in stratumi
MeanZ = meanz value.
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Odds ratio

Rothman (1986) explains the computation of maxintilealthood (pp 254-255, 257-258) and Mantel-Haehsze
point estimates (pp 256, 258: formulae 13-7 an®)18f the odds ratio and their approximate confagen
intervals (pp 268-270: formulae 13-37 and 13-38, ppm 273-275). The computation of exact interusiss an
efficient algorithm for calculating the coefficisndf the conditional distribution (Martin and Austi991,

1996), using code from David O. Martin's public-domEXACTBB program.

Thelow-bias estimator of the odds rat®computed by Jewell's formula (Jewell 1984: 43d)ether the
number of controls per case is fixed or variabfehere is one control per case the estimator is

b/(c + 1),
where b= number of “case Yes, control No” pairs

¢ = number of “case No, control Yes” pairs.

Kappa
Kappa is calculated by formulae 18.10 to 18.12lefsBet al (2003). To test the null hypothesis by dividing

kappa by its standard error, the standard errorafficunderlying zero value of kappa) is calculdigdormula
18.13. The hypothesis that agreement is betterdhance is tested by formula 18.14 or 18.35.

If stratified dataare entered, aoverall kappa(weighted by sample sizes) is computed.
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F. COMPARISON OF THREE OR MORE MATCHED
SAMPLES (*YES-NO” VARIABLE)

This module compares the findings in 3 to 10 rela@mples (each observation being
matched with an observation in each other sampgheyevthe dependent variable is
dichotomous (“yes-n0”). The data may be sets seolations in matched individuals, or
separate sets of observations in the same indilgiddde 3 to10 samples can, but need not,
lie in an ordered sequence (e.g. in a trial conmgadifferent doses).

The program may be used, for example, to analy$i@iaal trial in which matched subjects
receive 3 to10 different treatments, or one in Whaach subject receives 3 to10 different

treatments, or one in which each subject recelvesame treatment under 3 t010 different
conditions, or an observational study comparingcimed subjects who have different degrees
of exposure to a risk, or are measured under diftedlefined circumstances, or are appraised
by different clinicians or interviewed by differeinterviewers, or a study in which the samg
individuals are observed under different specitiedditions, or at various specified times, |or
are asked different specified questions.

If the samples lie in an ordered sequence, theyldha®e numbered accordingly. If there is|a
reference group, it should be entered as sampléhé.pattern of findings in the members of
the matched set must be entered, using 0 for “nd”lafor “yes” (e.g., “0” for the

observation in sample 1, “1” for the matched obagown in sample 2, “0” for the matched
observation in sample 3, etc. Matched sets cantezed individually, or sets with the same
pattern of findings can be entered together, vidirtfrequency.

If the data are stratifiedenter each stratum in turn. Click on “All stratehenever
combined results are required.

The program providetests comparing the matched sampleg€ochran’Q test, Page’s test
for trend), pairwise (multiple) comparisons of genplespdds ratios andkappa.

If stratified dataare entered, the Cochran Q tests and Page tabts separate strata are
combined and thketerogeneitpf the P-values in the strata is tested.

Tests comparing the matched samples

Cochran's Q testwhich is an extension of the McNemar test forahat pairs, tests the null
hypothesis that the probability of a “yes” resalthe same in each sample, against the
alternative that the relative probabilities in thierent samples are consistent for all sets of
related observations; that is, if in one set tlabpbility of “yes” is larger in sample 1 than in
sample 2, this is so in all sets. With three saspk small numbers (Tate and Brown 1970)
a P-value that is near a borderline of significastoeuld be treated with caution; the program
provides a warning.

Page's tesis appropriate if the samples fall into an ordeseduence. It is a test for the
presence of a monotonic trend (Page 1963, SiegeCastellan 1988: 184-188). The testis
conservative when applied to dichotomous data,Usecaf the large number of ties
(Hollander and Wolfe 1999, p. 292).
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If stratified dataare entered, the Cochran Q tests and Page tahts separate strata are
combined by Stouffer’'s method (Stouffgral 1949, p. 45; DeMets 1987) to produce overall
tests that control for the stratifying variabl&hree different sets of weights are used for this
purpose — weighting the test results equallyheysample sizes in the strata, and by the
square roots of the sample sizes. In additionhé&terogeneityf the P-values in the strata is
tested.

Pairwise comparisons

The proportion of “yes” observations in each sanpleompared with the proportion of
“yes” observations in each other sample. For eaamparison, the program displays the
proportions and their difference (with a 95% coefide interval for the difference), and
performs a significance test. Alternative P val(te®-tailed) are displayed — one that is
appropriate if there was anpriori hypothesis, and one that takes multiple testibtg in
account and is appropriate if the comparison waplamned. Since the confidence intervals
and significance tests are based on different piwres, they do not completely correspond,
especially if the number of observations is small.

Odds ratios
Odds ratios comparing each possible pair of sangrkesalculated.
Kappa

The program computdsppa which expresses the agreement among all the\aig®Ts in

the matched sets, and may serve to express tlatiedfeess of the matching procedure, since
it indicates the extent to which the findings intaieed sets are more similar than findings in
individuals from different sets (Fleig$ al 2003: 617-618).

The probability of chance agreement is taken ictmant in the calculation éappa A

value of 1 indicates perfect agreement (aftemafig for this probability of chance
agreement) between ratings; 0 indicates no agrdeotiger than what can be attributed to
chance, and a negative value indicates less thamcetagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellentegent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAldess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40—0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991).

METHODS

Tests comparing the matched samples

Cochran's Q tesk described by Siegel and Castellan (1986: 14);10aniel (1978: 241-244) and Zar (1998:
268-270).

Page's tesis described by Siegel and Castellan (1988: 18)-18large-sample approximation (formula 7.10)

is used, since the available tables of criticaligalfor small numbers are inappropriate in thegmes of many
ties (Hollander and Wolfe 1999: 291-292.
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If stratified dataare entered, the Cochr@ntests in the separate strata are combined bygingrtheir z values
(Stoufferet al 1949, p. 45; DeMets 1987). Three different sétseights are used for this purpose — weighting
the test results equally, by the sample sizesdrstrata, and by the square roots of the samps.si&lso,
heterogeneity test is performed, comparing thelRegain the strata, using the formula (Wolf 1986}):4
chi-squarek - 1 d.f.) =>(Z - Mean2?
where k= number of strata,
Z,=zvalue in stratum i
MeanZ= meare value.
The Page tests for trend are combined in the saagelwt using the signedvalues provided by the tests, and
without excluding sets that exhibit no differenbegsween their members. The Page tests are noticedif
there are 12 or fewer sets in any stratum, or Zewer sets if the dependent variable has 3 caiegor

Pairwise comparisons

A 95% confidence interval between the proportiohy/es” responses in two samples is estimated by th
method described by Bi (2006: formula 5.1.4):
Lower limit =Py — Py - Z* V{[ Py + P2 — P1o— (P — P2)?] / N}
Upper limit =Py — P, + z* V{[ Py + P, — 2P12— (P1 —P2)7] / N}
where P, andP, = the proportions of “yes” observations in the tespective samples
P.,= the proportion with “yes” observations in bothtlé respective samples
N = number of subjects (i.e., number of sets of hedoobservations)
z* = thez value corresponding to a P valueatfha* (i.e., the uppealpha*point of the standard
normal distribution)
alpha® = 0.5 * [1 — (1 -alpha)']
alpha= 0.05 for a 95% confidence interval
¢ = the total possible number of pairwise compassok(k — 1) / 2
N = number of sets of matched observations (e.gbeumf subjects)
k = number of matched samples

McNemar testsire used to test the significance of the diffeednetween the samples. Two-tailed P values are
displayed. To compensate for the multiple testargalternative (Bonferroni-adjusted) P value (i;x@@tiplied
by c) is also provided.

Odds ratios

For each pair of samples, the odds ratio is thebauraf matched pairs that have “yes” for the faaple and
“no” for the second, divided by the number with *rior the first sample and "yes” for the second.

Kappa

Kappaand its standard error are calculated by formu&80 and 18.53 of Fleigt al (2003).
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G1. COMPUTE KAPPA FOR 3 OR MORE RATINGS
(NOMINAL DATA)

This module appraises the agreement between aricedber (3 or more) of matched
observations with respect to a variable with 2-a@gories. It might be used to measure the
agreement between 3 or more ratings of the sannadndls, e.g. by different

observers or tests, or between ratings made byatime observer on different occasions.

The numbers of rating& € 3 or more) and the number of categories (2-1@trhe entered.
The findings in the set of ratings are then entdogantering the number of ratings falling
into each category (these should add ug t&ach set of ratings can be entered separately, ,
or sets with the same pattern of findings can ltered together, with their frequency.
The program provides the overképpa, andkappavalues for individual categories.

If stratified data are entered, an overall valukagpais computed.

Kappa

The overalkappais computed, with its standard error and signifcearKappavalues are
also reported for individual categories, with tr@gnificance; but these test results should be
treated with caution, since they are not based mmléple-comparison procedure.

If stratified dataare entered, an overall valuekafppa weighted by sample size, is
computed.

The probability of chance agreement is taken ictmant in the calculation éappa A

value of 1 indicates perfect agreement (aftemafig for this probability of chance
agreement) between ratings; 0 indicates no agrdeotiger than what can be attributed to
chance, and a negative value indicates less thamcetagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellenteagent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAldess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40-0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991).

METHODS

Kappa

Kappaand its standard error are calculated by formu#&&1 and 18.53 of Fleigt al (2003).
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G2. COMPUTE WEIGHTED KAPPA FOR 3 OR MORE
RATINGS (ORDINAL DATA)

This module appraises the agreement between arivedber (3 or more) of matched
observations with respect to a variable with 3 orerordered categories. It might be used to
measure the agreement between 3 or more ratirthe shme subjects, e.g. by different
observers or tests, or between ratings made byatime observer on different occasions.

The numbers of rating& € 3—10) or more) and the number of categories@Biust be
entered. The categories chosen by the varioussraterthen entered - either the ratings foi
each subject seprately, or the ratings for eacbfsgibjects with an identical set of ratings
(with their frequency).

The program provides theeighted kappsand theanalysis of variancen which it is based.
A simple (unweighted) kappa is also displayed.

Weighted kappa

Weightedkappameasures the agreement between independentoatatsngs, using a set of
ordered categories. [‘Raters” and “ratings” aredusgnonymously in this module.]
Cognisance is taken not only of complete agreemmeitgeen ratings, but also of partial
agreements, each combination of categories beusn@ weight based on their closeness.
Scores of 1, 2, 3, etc. are allotted to the categdor this purpose (which assumes that the
categories are more or less equally spaced alang sanension), and the weight given to
each pair of observations depends on the sizeeadliBolute difference between the scores of
the categories in which the pair-mates fall. Corngpéggreement between two ratings is given
a score of 1, and in other instances a quadratightieg scheme is used; with weights that
are inversely proportional to the square of théedéhce. between the two scores (Fleiss

al. 2003, formula 18.30). If there are 4 categories,weight is 0.89 if the difference

between scores is 1, 0.56 if it is 2, and 0 i§i8i Quadratically-weightekhppavalues tend

to increase with the number of categories (BreanerKliebsch 1996).

The value okappais derived from amnalysis of variancesince quadratically weighted
kappa is equivalent to the intraclass correlatimefficient provided by such an analysis
(Fleiss and Cohen 1973, Beetal.2008). The program displays the analysis of vagan
This method supplies the same result as more @lsboomputer-intensive methods.
Different methods yield somewhat different P valtggdests of the difference &ppafrom
zero (Berryet al.2008),

The program also displays thenple (unweighted) kapptreating the categories as nominal
— either there is agreement between the two ra{swse = 1) or there is not (score = 0).

Essenitially, both these versionskafppaare in general agreement with the basic formula
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(PO-PQ) / (1 —PC), wherePO s the proportion of interrater agreement &dlis the
proportion of agreement expected on the basisariadalone. A large sample sidg (is
required. As a rough rule of thumiN ¢ 1) /N should be close to 1.0 (Cicchetdtial. 2006).

The probability of chance agreement is taken ictmant in the calculation éappa A

value of 1 indicates perfect agreement (aftemafig for this probability of chance
agreement) between ratings; 0 indicates no agrdeotiger than what can be attributed to
chance, and a negative value indicates less thamcetagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellenteagent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAledess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40—0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991).

Methods

Weighted kappa

Kappais computed from an analysis of variance (Betrgl 2008): formula 7):

Kappa= ICC = (MSs — MSuxs) / [MSgs + (M — 1)MSuxs + (M(MSw) / (N — 1)
where ICC = intraclass correlation coefficient

M = number of raters

N = number of subjects

MSgS = between-subjects mean square

MSy = between-raters mean square

MSuixs = residual mean square (raters x subjects intergct

The approximate P value is based on
F=MSs/ MSyuxs with N — 1 and (M — 1)(N — 1) degrees of freedom

Simple kappa

Kappaand its standard error are calculated by formu&8&1 and 18.53 of Fleigs al (2003).
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G3. APPRAISAL OF AGREEMENT BETWEEN 3 OR MORE
RANKINGS

This module appraises the agreement between threere (up to 20) rankings of 3—9

alternative choices, expressing the judgments 803aters. The available choices may be
(for example) different diagnoses or treatmenksesE analyses may be useful in studies of
reliability and as a basis for decision-making loase the raters’ preferences.

Each rater’s ranking must be entered, by allocamgdex letter (‘A’, ‘B’, ‘C’, etc.) to each
of the available choices, and entering the indéere in a sequence expressing the rater’s
preference. Ties are not acceptable.

As indicators of the raters’ agreement on spectfigices, the program reports each choicg’s
median rank, and thegreement coefficient @Riffenburgh and Johnstone 2009) for each
choice. As indicators of the raters’ overall agreatit compute&endall’s coefficient of
concordanceand &'top-down” coefficient of concordance

Agreement coefficient A

This coefficient (Riffenburgh and Johnstone 208%)ased on the absolute differences
between the ranks that different raters ascril@egiven choice, and the choice’s median
rank. It generally ranges from O (the level of agnent expected by chance) to 1 (perfect
agreement); a negative value indicates less agradimn might be expected by chance. A
P value is displayed.

If the top choice (according to the median ranles & significant coefficient, this may be
regarded as justifying its acceptance as the fatsrsmmendation.

Coefficients of concordance

Kendall’s coefficient of concordanespresses the association between sets of ranKihgs.
coefficient ranges from 0 (no agreement) to 1 (detepagreement). The coefficient’s
significance is reported, using tabulated criticales if the sample is small and a chi-square
testif it is large.

The“top-down” coefficient of concordamc(Zar 1998: 449-450) gives emphasis to high-
ranking (preferred) choices. Its significance gared.

METHODS
Agreement coefficient A

This coefficient is computed by formula 7 of Rifflergh and Johnstone (2009), who provide tabulati¢idat
values for P = 0.05 and P = 0.10 (tables 3 antaBed on analyses of all possible permutations.
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Coefficients of concordance

The formula folKendall's coefficient of concordaads provided byifter aliog Zar (1998: formula 20.67).
Critical values for P = 0.05 and P = 0.01 (for dmamples) are provided bySiegel and Castellan§198ble
T); harmonic interpolation is used where necessamg. chi-square test (for larger samples) usesSayl
Castellan;s formula 9.19.

The formula for thetbp-down” coefficient of concordards provided by Zar (1998: formula 20.67) ; the
corresponding chi-square test uses formula 20.79.
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H. COMPARISON OF TWO GROUPS OR TWO MEASURES
(FIXED NUMBER OF MATCHED NUMERICAL
OBSERVATIONS)

This module compares two sets (designated “cases"a@ntrols”) of matched numerical
observations. It can be used to compare two greupdex subjects with matched controls
in a case-control study, cohort study, or triak+wa measurement methods.

For a comparison of groups, each matched set musiio between 3 and 11 observations
all., comprising a fixed number of “cases” (1 taahd a fixed number of “controls” (1 to
10). The matched sets of observations must beeshiredividually, after entering the
numbers of cases and controls per set. Up to 5380rsxy be ent@red.

For a comparison of measurement methods (A anddBlgl-sized sets of replicate
measurements by the two methods are required (Byt@ach method). The two methods
may be applied to the same subjects or to diffesebjects. The program terms the
measurements by method A as “cases”, and thosesthyooh B as “controls”. After entering
the numbers of “cases” and “controls” per set (nermslwhich must be identical), the
measurements of each subject by method A mustteeeenin a separate line, followed (in
the same line) by the measurements (of the samelifierent subject) using method B.

The results relevant to a comparison of groupshaeetests(Rosner's and Waltdf's tests and
a paired-test) for the difference between the mean valapgroximate confidence intervals

for thedifference between the mean valuesndbetween-sets and within-sets variances

The results relevant to a comparison of measureneciude 5% repeatability
coefficientandANOVA table for each method; th@5% limits of agreementbetween the
methods and theelationship between the difference and the mean e (appropriate if
the two methods were applied to the same subjetdf;-testsfor the difference between
the methods, for the effect of repeated measuresnand for interaction, and a repeated-
measureANOVA tables value (appropriate if the two methods were applied téedent
subjects).

n

D

Tests

Rosner's tesk a generalization of the pairetkest that takes account of within-sets and

between-sets variability (Rosner 1982). If singldax subjects are compared with controls, it

appraises the significance of the differences betvikeir values. If two groups of
observations are compared, it appraises the differbetween the mean values in the two
groups. Two P-values may be displayed. If scselhmeay be regarded as the bounds of th
true P-value. The true P-value depends on thaéwelaagnitude of the within-sets and
between-sets variabilities (see below), as expthbyean on-screen message. The test
sometimes presents technical difficulties, andwstted.
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Walter's tes{Walter 1980) tests the significance of the measeecontrol difference
weighted by the numbers of cases and controlseiséth Rosner (1982) points out that
(unlike his test) Walter's test assumes zero betwgets variability, and may therefore
provide a misleadingly low P-value if there is rhiloetween-sets variability.

Thepaired t-testiests the significance of the unweighted mearedifice between the case
and control means within each matched set. Rq4882) points out that (unlike his test)
the paired test assumes zero within-sets variability, and thayefore provide a
misleadingly low P-value if there is much withinsegariability.

If the numbers of cases and controls (assumed tloeoeumbers of replications by two
methods of measurement) are eqbaiestsare performed for the difference between the two
methods, for differences between repeated measutsmand for interaction - i.e. for a
difference between the methods in the uniformigidbility) of repeated measurements.
Each of the latter two tests is done three timeghout adjustment, and with two
adjustments. The adjusted tests are Fleiss’s r@ypmation 3”, which is not appropriate in
all situations, and his “Approximation 4”, whichvalid in all situations but may be
extremely conservative (Fleiss 1985: 227). Thedtstare appropriate only if the two
methods of measurement were applied to differelnjests.

Difference between the mean values

The program displays the mean case-control diftereamd its standard error, computed
separately by the Rosner and Walter procedure$oanohweighted data, with approximate
90%, 95%, and 99% confidence intervals.

Between-sets and within-sets variances

The between-sets variance computed by Rosner'squoe (Rosner 1982) is reported. This
represents the variation between matched setghanalithin-sets variance represents the
variation within either the case or the controlupdor a specific matched set. The ratio of
the two variances is an indication of the valuenottiple matching. If the between-sets
variance is much larger than the within-sets vaeamultiple matching brings little benefit
(Rosner 1982; Lee and Wilkens 1994).

95% repeatability coefficient

If the numbers of cases and controls (assumed tiodbeumbers of replications by two
methods of measurement) are equal, the 95% repldgtabefficient is computed for each
method. This expresses the expectation (with 958tidence) of the maximum size of the
absolute difference between two observations usiagame method.

95% limits of agreement

If the numbers of cases and controls (assumed tloeoeumbers of replications by two
methods of measurement) are equal, the 95% lirhagm@ement are computed. These
(which are appropriate only if the two methods @asurement were applied to the same
subjects) answer the question, “given a measurebyeome method, how far might this be
from a measurement by the other method?” They d=ateathe bounds of the range that,
with a 95% probability, includes the differencevibetn single measurements of the same
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subject by the two methods. The 95% confidencawals of the limits of agreement are
estimated (the limits of agreement may be very euge if the sample is small).

Use of the 95% limits of agreement assumes thaliffesrences are reasonably constant
throughout the range of measurement. To checkadsgamption, the program displays
Spearman’soefficient of correlation between the differenoe she mean levefalso
appropriate only if the two methods of measurenagare applied to the same subjectEhe
correlation coefficient may be expected to be zietftte mean difference does not change
with increasing values. Even when one of the putlof measurement is a new one and the
other is an accepted standard, it is preferabéxamnine the relationship between the
difference and the mean value rather than thewakttip between the difference and the
standard measurement, which (as shown by Bland\inthn 1995Db) is likely to be
misleading.

ANOVA tables

If the numbers of cases and controls (assumed tloeoeumbers of replications by two
methods of measurement) are equal, a one-way AN@W is displayed for each method,
showing the between-subjects and within-subjeatspoments of variance, as well as a
repeated-measurement ANOVA for the combined ddeasg-1986: 220-228), which is
appropriate only if the two methods of measurennaare applied to different subjects.

METHODS

The two groups of observations are referred tacasés” and “controls”.
Tests

Rosner's tegtRosner 1982) is a generalization of the pafris$t that takes account of within-sets and between
sets variability. It adjusts and appraises thaiB@ance of the mean within-set difference. Téstsometimes
presents technical difficulties, since it requities computation of maximum-likelihood estimatesalyiterative
procedure that may fail to find an appropriate {{da=) root. If this difficulty is encountered (uslly because

of marked within-set variability) an appropriatessage is displayed.

In Rosner’s procedure the within-pairing varialiig calculated by Rosner's formula 2.2 (Rosner).98nd
maximum likelihood estimates of the between-pairiagability and the adjusted mean case-contréédihce
are then computed by an iterative process, usmgdh Wijnsgaarden-Dekker-Brent root-solver (Pedsa.
1989: 283-286). The adjustment takes accounteohtimbers of cases and controls per set, using thei
reciprocals. Significance is appraised by Rosifiertaula 2.3, using alternative degrees of freeddran
referring the test statistitagnbdg to thet-distribution, namefN - 2Rand R - 1(where N = number of
subjects and R = number of matched sets). Thisigeeswtwo P-values (both of which are shown if tbéer
appreciably), which may be regarded as the bouhttedrue P-value. The true value depends omelative
magnitude of the within-sets and between-sets iitias.

Walter’s testuses formula 2.4 of Rosner (1982). This pernpidieation of the test to situations where there
are matched sets with two or more cases.

Thepaired t-tests calculated by the usual formula (see, e.g.iB8dl991: 65, formula 2.51), except that in each
matched set the two values (of case and contreljepiaced by the means (of cases, if there is thareone
case, and of controls, if there is more than omegrot).

TheF-testsare based on a repeated-measurement ANOVA (sis ERB86: 220-228). The adjustments,
which Fleiss calls Approximations 3 and 4, invoblenges to the degrees of freedom (Fleiss 1988: 22
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formulae 8.9 and 8,10); the changed degrees addreeare rounded off to the nearest whole numbéis T
ANOVA is not done if the number of measurementsegfor different subjects.

Difference between the mean values

In Rosner's procedure (see above), the adjusted oas&-control difference is computed by weightirey
difference in each matched set by

1/{B+W.[(1/N1)+ (1/N2)]}
where

B = between-sets variance

W = within-sets variance

N1 and N2 = numbers of cases and controls in the se

In Walter’'s procedure, the difference in each maticbet is weighted by
1/[(1/N1)+ (1/N2)]

95% repeatability coefficient

The computation of the coefficient of repeatabilgyexplained by Bland and Altman (1999: 149).
95% limits of agreement
The 95% limits of agreement and their confidencerirals are computed by the method explained bgndsl

and Altman (1999; section 5.1: formulae 5.3 arid3, using within-subject mean squares based emay
analyses of variance for the two methods (Guilfand Fruchter 1986: 234-5: formulae 13.15 and 13.16)
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1. COMPARISON OF 3 TO 10 SAMPLES OR REPLICATES
(FIXED NUMBER OF MATCHED NUMERICAL
OBSERVATIONS)

This module is for use in studies based on depérsd@nples of numerical (ordinal or
interval-scale) observations. It can appraisdititengs in 3 t010 related samples (each
member of which is matched with members of all o#@nples), or 3 to 10 sets of
measurements of each subject. It may be usedx&ong@e, to analyse a trial in which
matched subjects receive 3 to 10 different treatsp@m one in which each subject receive
to 10 different treatments, or the same treatmedeu3 to 10 different conditions, or an
observational study comparing matched subjectshave different degrees of exposure tg
risk factor or are measured under different defioaditions or by different observers, or
study in which the same individuals are observatkudifferent specified conditions or at
various specified times, or are asked differentiieel questions.

The module can be used in reliability studies malv each subject’'s measurements are
replicated 3 to 10 times, either using the saménatgtor using 3 to 10 different observers
methods of measurement.

If the samples lie (or are assumed to lie) in atemd sequence, they should be arranged
accordingly. If there is a reference group, itidddoe entered as the first sample (A). In
reliability studies, replicates may be enteredny aerder, unless they represent fixed
instruments, observers, times, conditions, etc.

Each set of related observations must be entepadately (up to 500 sets). For 30 or fewe
sets, the program reports the mean of each sétijwitstandard deviation and coefficient @
variation. If a normal distribution is not assumeahks can be entered instead of the

measurements, e.g. 1 3 2 instead of 6.1 1dr @orties) 1 4 2.5 2.5instead of 6.1 11
9 9 (giving tied observations the mean of the sahley would have if they differed slightly).

The program appraises tdgferencesbetween the samples and providesasures of effect
andmeasures of agreemdranddisagreement Some of the procedures am@nparametric,
and are applicable to all numerical dakiedman’s two-way analysis of variance by rank
Quade’s testor non parametric two-way analysis of variancenparametric pairwise
comparisons, Kendall's concordance coefficiamig Spearman’s correlation coefficient
Others argparametric,and are applicable only to interval-scale daté &it assumed norma
distribution*: analysis of variance, F-testand othelpairwise comparisons; omega-square
eta-squared, and Fisher’s F index; intraclass ctat®n coefficients, repeatability
coefficientand Spearman-Brown coefficients of reliabilignd (optionallyXests for
equivalenceThe parametric procedures are not appropriaenks are entered.

For stratified data enter each stratum in turn, and click on “Albs&” for combined results.
If stratified data are entered, the Friedman argkRests in the separate strata are combin
and theheterogeneityf the P-values in the strata is tested.

* [As pointed out by Altman (1991: 330), it maytrize the raw data, but the residual values (aftewang for
the effects of sample membership and matchedhembership), that should be normally distributed.
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Analysis of variance

A one-way analysis of variance (single-factor witBubjects ANOVA) is performed. The
analysis assumes that the subjects were selectddmdy from the population they
represent, that distributions are normal, andttitata in the various samples have similar
variances and covariances. A significant resulbisdio a significant difference between the
means of at least two of the populations repregdmgahe samples.

Comparison of samples

TheF test which is appropriate for interval-scale data vathassumed normal distribution,
test the null hypothesis that there is no diffeeesamong the mean values of the various
samples. It is based on the analysis of variahcgnificant result points to a significant
difference between the means of at least two optdprilations represented by the samples.
An adjusted F-test is also performed, using a hsuahservative method described by
Geisser and Greenhouse (1958) as an extensior ofshlts of Box (1954). This result is
appropriate if the homogeneity of variances andadawnces is in doubt, but it “may be too
conservative”.

In addition,Friedman's two-way analysis of variance by ra(&®gel and Castellan 1986:
174-183; Zar 1998: 263-267) is performed. Thisneatension of the sign test, and is
applicable to all numerical data. It tests thd hypothesis that the values in the different
samples represent the same population median,sagla@alternative that at least two of the
samples have different mediauade’s testor non parametric two-way analysis of
variance(Quade 1979, Conover 1999: 373-30), which is aaresibn of the Wilcoxon
signed-rank test, is also performed. The Quadaniagtbe more powerful for a small
number of related values, while the Friedman test be more powerful when the number of
related values is five or more.

Assuming a normal distribution, the program prositigo sets of 90%, 95%, and 99%
confidence intervals for the meaheach sample. The first set is based on thenattd
variance in the specific sample, and the secon@eth has narrower intervals) is based on
the within-samples variance, on the assumptiontbieasamples have similar variances
(Sheskin 2007: 1052-1053). The program also pes/td/o sets of 90%, 95%, and 99%
confidence intervals for the differenbbetween each pair of sample means, one usingrisishe
LSD procedure and one using the Scheffé proce@ireskin 2007: 1034-1035).

The pairwise comparisongesting the differences between all sample méassuming a
normal distribution), use Fisher’'s LSD procedurd #re Scheffé procedure (which is more
conservative). Nonparametric pairwise tests (appleto all numerical data) are based on
the Friedman procedure, and are done only if thexRran test reveals a significant
difference (P < 0.05) between samples; the mediaaach set of matched observations is
displayed, with (if the number of observationstiteast 10) the interquartile range.

The multiple-comparison tests include a set of canispns of each sample mean with that of
Sample A. The Dunnett procedure (Dunnett 1964¥%e for this purpose.

Optionally,equivalence testsre performed, testing the equivalence of the ineatc
measurements by the procedure described by Yi €G@07). This requires entry of the
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bounds of “equivalence”, i.e., the largest differetetween measurements that is to be

regarded as negligible or ‘acceptable’. The tastsbased on a comparison of the within-
subject variance with this specified differencexd@lso with this difference multiplied by
0.5,0.75, 1.5, 0r 2). A P value under 0.05liespgood agreement (negligible variation,
l.e. equivalence) at a 5% significance level/

If stratified dataare entered, the results of the Friedman anabfseariance in the separate
strata are combined by Stouffer's method (Stowdfeal 1949, p. 45; DeMets 1987) to
produce overall P-values that control for the giialg variables. Three different sets of
weights are used for this purpose — weightingteélseresults equally, by the sample sizes in
the strata, and by the square roots of the sang@s.sIn addition, thbeterogeneityf the P-
values in the strata is tested.

Trend of the samples

Page’s test for a monotonic treifi@age 1963, Siegel and Castellan 1988: 184-188) is
applicable to all numerical data. For the tedidaneaningful, the samples should be entered
in the sequence to be tested. The test mighexample, be a way of appraising the dose-
response relationship in a trial in which differeioses are given to different matched
samples or to the same individuals at differeneim

Measures of effect

Four measures of the magnitude of the effect -the.strength of the association between
the independent variable (represented by the vagamples) and the dependent variable —
are computed

Omegasquaredd?) is an estimate of the proportion of variabilifytioe dependent variable
that is associated with variability in the indepentdvariable, i.e. with differences between
the samples (Sheskin 2007: 1049-1050). By Coheitésia, a value of 0.1379 or more
indicates a large effect size, 0.0588 or more lgsd than 0.1379) indicates a medium effect
size, and 0.0099 or more (but less than 0.05883ates ssmall effect size (Sheskin
2007:1051). Cohen (1988) warns that these crigdrauld be used onlyhen there is no
better basis for evaluation. A zero or negativeigahdicate absence of an association The
program computes two versionsarhegasquared -standard omega-squargarhich
assesses the effect on total variability, padial omega-squaredvhich is said to be more
meaningful because it eliminates subject variabiitm the total variability (Sheskin 2007:
1050).

Eta-squared?) is an alternative estimate of the proportion arfiability of the dependent
variablethat is associated with differences between thgkzsn The program computes an
adjusted eta-squared (Sheskin 2007: 1072), whiddsted overestimate the relationship
between the independent and dependent variables.

Cohen's f indexSheskin 2007; 918) is a "standard deviation aiddadized means". By
Cohen's criteria, a value of 0.4 or more indicatéarge effect size, 0.25 or more (but less
than 0.4) indicates a medium effect size, and Orhare (but less than 0.25) indicates a
small effect size (Sheskin 2007: 1051).
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Measures of agreement

Kendall's coefficient of concordan{ehich varies between 0 and 1) is based on thesrah
the observations within each related set, and sgspeethe degree of similarity of their
ranking in different samples.

Theaverage Spearman's coefficient of rank correlabetween all possible pairs of
rankings can vary from -1k¢ 1) to 1, wher& is the number of matched observations in a
set.

Intraclass correlation coefficientsvhich are appropriate for interval-scale datdaih
assumed normal distribution, are measures of agneetiat express the correlation (in terms
of absolute agreement) between measurements wittividuals or sets of matched
individuals. Six intraclass correlation coeffici€lCC) values are computed (Shrout and
Fleiss 1979), with their 95% confidence intervals.

Each ICC is appropriate in a different situatiga) The values with the rubric “two-way
model with fixed raters” are appropriate in studidgere the matched observations in each
set represent various “unique” raters, and no @mfees are made about other raters; “raters”
denote the various observers, treatments, methaztnditions of observation, matched
individuals, or (in a reliability study of a questinaire or other scale) questions or other
scale items, that were studied. Two such ICCpereided. The first, which Shrout and
Fleiss refer to as model 3.1, uses a single meaasunteas the unit of analysis, and the second
(model 3,k) uses an average measurement. (bMIh&XC values reported as “two-way
model with random raters” are appropriate if thensawere randomly selected from a larger
population of raters and it is proposed to geneedle findings to this larger population. If
analysis is based on a single measurement, tmsael 2,1; if it based on an average
measurement, it is model 2,k. (c) The third p&iGL values, entitled “one-way random
model”, is appropriate in methodological or othteidses where the measurements are
replications by the same observer or using the sastieiment, and the order in which they
are entered does not matter (this does not apphetother ICC values).. They apply to the
use of a single measurement (model 1,1) — e.duies to determine the reliability of a
single measurement — or to an average measuremedel 1,k) — e.g. in studies to
determine the reliability of an average measurement

The maximum value of an ICC is 1; the lower lingitain indeterminate negative value. As a
rule of thumb, it has been suggested that ICC gadb®ve 0.75 should be regarded as
evidence of excellent, and values above 0.4 agpealof good, reliability (Shoukri and
Pausel999: 27).

In the appraisal of replicated measurements a @Wray express variability of the
characteristic measured, as well as low reliabdftyneasurement; this is especially
important if measurements were conducted at difteimes.

The coefficient of repeatabilitis applicable if replicate measurements were edieand is
appropriate for interval-scale data with an assunwchal distribution. It expresses the
expectation (with 95% confidence) for the maximuee ©f the absolute difference between
a pair of observations, assuming that repeatalslisymilar at all magnitudes. Approximate
confidence intervals are estimated for the coeffiti
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Spearman-Brown coefficients of reliabilpyovide estimates of the effect of using the means
of replicated observations. They predict whatrtiability would be if two, three, four, or
five replications were averaged.

Measure of disagreement

The degree of disagreement between each pair gdfleans appraised by use of the measure
of disagreement between two sets of matched nuat@fiservations proposed by Costa-
Cantoset al (2010), which is based on the differences betvibe paired observations, in
relation to the magnitude of the larger value i piir. It is applicable to ratio-scale
variables (i.e., those where a zero value indicalbsgnce of the attribute) that have positive
values. The measure ranges from 0 (no disagreemeeht)strong disagreement).

Optionally, 95% confidence intervals are estimdtedhe measures of disagreement, using
a bootstrap procedure (see Sheskin 2007: 532-a8&h may cause a delay in the
calculation if the sets of matched observationdage or numerous. If the delay is too
long, the procedure can be aborted by clickinghaen‘Stop” button.

METHODS

Analysis of variance
The method is described by (Zar 1998, 255-260) endetail, by Sheskin (2007: 1025-1031 and 1056).
Comparison of samples

TheF testis based on the analysis of variance (Zar 1998;280). Geisser and Greenhouse’s alternativegest i
described by Sheskin (2007: 1045).

In Friedman's two-way analysis of variance by ra(®eggel and Castellan 1986: 174-183; Zar 1998:2%83),
the program uses criteria for P < 0.05, 0.01, af@Dlisted by Zar (1998: Table B.14) if there arer 4
samples with less than 16 values in each, or 5san@ples with less than 11 values in each. Otkerwi
significance is appraised by use of the Friedmatissic, which has an approximately chi-squareritistion
unless numbers are small. Also, use is made of BmdrDavenport'’s (Iman and Davenport 1980), which is
generally more powerful (Zar 1998: 264). The folafior Iman and Davenportsis provided by Sprent
(1993: 145) and Zar (1998: formula 12.47), with Nand k - 1)(N - 1) degrees of freedom. If the rankings i
the sets are identicdt, has a value of infinity, and

P=(1/N)k-1),
where N = number of samples

k = number of sets.

In Quade’s testor non parametric two-way analysis of varian€au@ade 1979, Conover 1999: 373-30)
significance is appraised by using thelistribution, which approximates the exact disttibn of the test
statistic. The F approximation becomes closer antimber of sets of related measurements increases.

In Page’s trend teqSiegel and Castellan 1988: 184-188), Page'sttdtiis calculated by formula 7.7, add
by formula 7.10. A one-tailed P-value is computeaked on the normal distribution; but if numbeessanall,
(3 groups with < 21 observations in each, or 44ugs with < 13), the Page statidtitcs compared with
critical values for P < 0.05, P < 0.01, and P 0Q.(Siegel and Castellan 1988: 354-355, Table N).

The parametric multiple comparison testsat compare the mean of sample A with all otlaenge means use
the , Dunnett procedure (Zar 1998, 217-218; Duritf#i4). The results are appraised in relatiorritecal
values of the&Q distribution (Zar 1998, Tables B6 and B7), andremorted as P < 0.01, P < 0.05, or not
significant (P > 0.05). The parametric pairwisdgdbat compare each sample with every other sanggle
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formulae that solv& by equations derived from equations 24.17 (for &ishLSD test) and 24.18 (for the
Scheffé test) of Sheskin (2007: 1034), after stiisig the observed difference between mean€far

Thenon parametric multiple comparison teate described byiegel and Castellan (1988: 180-183); the
comparisons with sample A use critical valuesier 0.05 and 0.01 derived from Siegel and Cast¢l11888:
321, Table Aiii), and the pairwise comparisons tt@hpare each sample with every other sample iits&atr
levels for P < 0.05, P < 0.01, and P < 0.001.

If stratified dataare entered, the results of the Friedman anabyfsegriance in the separate strata @sebined
by averaging theiz values (Stouffeet al 1949, p. 45; DeMets 1987). Three different sétseights are used
for this purpose — weighting the test results #guay the sample sizes in the strata, and bysthere roots of
the sample sizes. In addition, a heterogeneityiggmerformed, comparing the P-values in the atnasing the
formula (Wolf 1986: 45):

chi-squarek - 1 d.f.) =)(Zi - MeanZ§
where k= number of strata,

Z, = zvalue in stratumi

MeanZ = meaiz value.
The Page tests for trend are combined in the saagelwt using the signedivalues provided by the tests, and
without excluding sets that exhibit no differenbegsween their members. The Page tests are noticedif
there are 12 or fewer sets in any stratum, or Z&wer sets if the dependent variable has 3 caiegor

Tests of equivalence

The method is described by ¥t al (2007).

Chi-square SSW (D? x 1.96 x 1.96 x 2)
where SSWE within-subject variance (based on ANOVA)
D = maximum acceptable difference
The P value for the test is 1 minus the P valueaated with this chi-square, wititk-1) degrees of freedom,
where n=no. of sets of paired measurements &mdno. of repeated measurements (e.g. 3)

Measures of effect

These measures are computed by equations 24.2&4futardomegasquared), 24.28 (for partiamega
squared), and 24.40 (for the adjusttasquared), of Sheskin (2007). Cohdntedex (Sheskin 2007: 1051)is
not computed ibmegasquared is negative.

Measures of agreement

Kendall's coefficient of concordanéederived from the Friedman statistic by formiia51 of Zar (1998). Its
significance is tested by computing chi-squareng$ébrmula 9.19 of Siegel and Castellan 1988: 268lgss
there are under 21 matched sets and under 8 sawhles use is made of the critical values in Tabte
Siegel and Castellan 1988: 365).

Theaverage Spearman's coefficient of rank correlatietween all possible pairs of rankings is derifreth
Kendall's coefficient of concordance (Siegel andt€iian 1988: 262).

The following formulae (Shrout and Fleiss 1979) ased for the six intraclass correlation coeffitsenShrout-
Fleiss ICC models 1,1 and 1,k are computed frameaway random effects model ANOVA, models 2,1 and
2,k from a two-way random effects model ANOVA, anddels 3,1 and 3,k from a two-way mixed effects
model ANOVA.

ICC model 1,1 = (MSB — MSW) / [MSB + (k — 1)MSW]

ICC model 1,k = (MSB — MSW) / MSB

ICC model 2,1 = (MSB — MSE) / [MSB + (k — 1) MSEMSJ — MSE) / N]
ICC model 2,k = (MSB — MSE) / [MSB + (MSJ — MSHY}

ICC model 3,1 = (MSB - MSE) / [MSB + (k - 1)MSE]

ICC model 3,k = (MSB — MSE) / MSB

where MSB = between-subjects mean square
MSE = residual within-subjects mean square
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MSW = within-subjects mean square

N = number of subjects

k = number of observations in matched set
Formulae for confidence intervals for the six IC@duals are provided by McGraw and Wong (1996a and
1996b) in their Table 7, where they are referreds¢CC(1) and ICC(k) for Case 1, and ICC(A,1) and
ICC(AK) for Cases 2 and 3, The formulae (exchpse for models 2,1 and 2,k) are set out in &euient
code by Steinley and Wood (2000). Linear interpolais used to estimate F values that are basetwon
integer degrees of freedom (and 1 d.f. is substitébr <1 d.f.) in the computation of confidencteiwals for
models 2,1 and 2,k; the latter results may difeghtly from those provided by SPSS, which handies-
integer degrees of freedom differently.

The Spearman-Brown prediction formu(&leiss 1986: 14-15: formula 1.3 ) for reliabil{#y) is
R=Nr/[1+ (N-1)]

where N = number of replicates that are averaged
r = intraclass correlation coefficient (model 1,1)

This application of the Spearman-Brown formula waggested by its use by Solomon (2004).

Fleiss’s formula 1.31 is used to estimate the nurobeeplicates required to obtain a reliability@¥5 or 0.8:
N=P@-r)/[r(1 —P)],where P=0.750r 0.8

The computation of theoefficient of repeatabilitis explained by Bland and Altman (1999: 149).
Approximate confidence intervals are obtained Hyssituting confidence limits for the within-samples
variance, estimated by the method described by1Q88: formula 7.16), in the formulae.

Measure of disagreement

The formula for this measure (Costa-Sambal. 2010) is
Zl—i /n

where L; = log{[a - bi| / maxé,bi)] + 1}.log(2)
or (equivalently); = l0g2{[|a; - bj| / max@,by)] + 1}
a; andbj are the observations in pair

n = the number of pairs of observations
If g andb; are equall; is taken as 0.

The measure is not computed if ayr b; is negative, or if there are over 500 sets of hedmbservations.

The confidence interval is obtained by a bootsfayzedure, using the basic percentile method (Ef@81,
Efron and Gong 1983) as described by Sheskin (2882-536). The approximate 95% limits are the (B.5)
and (97.5)th percentiles of the distribution of theasures of disagreement (computed by the abotr®d)an
1000 random samples of the same size as the drigingle, each drawn (with replacement) from tHaaain
the original sample. Because of resampling, rapestof the procedure may yield slightly differeasults.

The random sampling in this bootstrap procedurs aggseudo-random number generator described by
Wichman and Hill (1985), which derives each numhbedurn from three seed numbers that it modifigs fo
subsequent use. Initial values for the seed nusrdoergenerated by Delphi's inbuilt random-number
procedures, namely RANDOMIZE, using the systemicland RANDOM, which generates three random
numbers from which the required seed numbers arpuated. Delphi's RANDOM procedure is augmented by
an additional randomizing shuffle, using the aljon of Bays and Durham, as described by Peess (1989:
215-217). The formula for each selection is

trunc(RM) + 1
where R is a random number inthe range 0 <R <1

M = the number of candidates.
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2. ASSESSMENT OF INTERRATER AND INTRARATER
RELIABILITY

This module assesses interrater and intraratabrkty in a study that compares replicated
independent ratings (a fixed number of intervalescamerical measurements) of the same
subjects made by each of two or more raters. Tdters" may be different observers,
different measuring instruments, or different methor conditions of measurement. They
may be specific raters of interest, e.g. two déferinstruments ("fixed raters"), or they may
represent a larger population of raters ("randaerss).

The required entries are the number of raters ntineber of ratings of each subject by each
rater), and the observations. The total numbeatoigs of each subject cannot exceed 12|

The program computesliability coefficients (intraclass correlation coefficientgor
random and fixed raters (with their approximatefictamce uintervals and with significance
tests), confidence intervals for tHéference between reliability coefficients various
measures of thetandard error of measurementand theminimum significant change,and
coefficients of interrater agreement and variabiliy. Theanalyses of variancen which
the results are based are displayed.

Reliability coefficients

Interrater reliability (the variability among the raters) aimtkarater reliability (the

variability within the raters) are expressed ibyraclass correlation coefficientsSeparate
results are provided feandom ratergfor use if the results are to be generalizedhero
raters) and fofixed raters(where the results apply only to the raters thextevstudied).
Interrater reliability is reported for random aiixktl raters, and intrarater reliability for
random raters and (for use if the raters are fixedgach separate rater. The program uses
the procedures described by Eliaseial (1994), in which, in order to enhance precision,
each individual measurement contributes to thenagton of both interrater and intrarater
coefficients.

Lower confidence limits are reported, at three wharfce levels: the 90% two-sided
confidence limit (which is equivalent to the 95%eesided confidence limit), the 95% two-
sided confidence limit (which is equivalent to 8&5% one-sided confidence limit), and the
99% two-sided confidence limit (which is equivalémthe 99.5% one-sided confidence
limit). Upper confidence limits are reported facé of the above coefficients; for some data
sets, the computation yields anomalous upper lifaitshe intrarater ICC for random raters,
and these are then not reported.

Haberet al (2005) have pointed out that the interrater bélitg coefficient measures the
total rater-related variability, and is influendeglbetween-subjects variability. If there are
substantial differences between subjects the coefiti may be close to 1 even when there
are important differences between observers.

103



2. INTERRATER AND INTRARATER RELIABILITY

One-tailedsignificance testare performed, testing the null hypothesis thatl@C is below
or equal to a selected minimum level of reliabitht is considered acceptable, against the
alternative that the ICC is greater than this mummievel (Eliasziwet al. 1994). A low P
value rejects the null hypothesis, and suggestdtibameasurements have an acceptable
level of reliability. The test is approximatelywdgalent to a comparison with the
corresponding 100(&kpha)% one-sided lower confidence limit. The testsapplied to the
interrater ICC (for random or fixed raters) andte intrarater ICC for each rater.

Landis and Koch (1977) have suggested the followritgria for the ICC: 0.0-0.20, slight
reliability; 0.21-0.40, fair; 0.41-0.60, moderade$1—-0.80, substantial; and 0.81-1.00,
almost perfect reliability.

If ratings by two raters are entered, the progratmates 90%, 95%, and 99%
confidence intervals are estimated for the diffeesbetween their intrarater reliability
coefficients, based on the confidence intervalhese coefficients.

Standard error of measurement

The standard error of measurement (SEM) hoedisurement errtywhich has comparable
meaning to a standard deviation, summarizes thabibity among or within the raters'
measurements. It is calculated separately ferrater and intrarater comparisons, and
different values are reported for random raters(f&® if the results are to be generalized to
other raters) and for fixed raters (where the tesaapply only to the raters that were studied).
The values that are displayed are the interrat®ét 8 random raters, the interrater SEM for
fixed raters, the intrarater SEM for random ratarg] (for use if the raters are fixed) an
intrarater SEM for each rater. The interrater Stakks account of the variability within
raters' measurements as well as the variabilityrgnnaters' measurements (Eliaseital.
1994).

The SEM may be used forsggnificance testo appraise whether there has been a real
change in a subject's rating, in excess of intermat intrarater variability (Eliasziwt al
1994). This is done by dividing the observed dealny (1.414 x SEM) and comparing the
result ¢) with critical values of the standard normal dizition; for example, iz exceeds
1.96, P is under 0.05. If the same rater made ibe&asurements, the SEM to be used for
this purpose is the intrarater SEM for that ratéthere were different raters, an interrater
SEM (for random or fixed raters) is appropriate.

Minimum significant change

As a simple aid to the appraisal of changes ifjestd ratings, the observed change can be
compared with the "minimum significant change"thié observed change exceeds this
minimum significant change, it is fairly certairatha real change has occurred (Eliasziw

al. 1994). Various values are provided for the munin significant change, depending on
whether the ratings were made by the same ratey different raters (fixed or random) and
whether alpha is set at 0.05 or 0.01.

The minimum significant change may be referredsta aepeatability coefficientexpressing

the expectation (with 95% or 99% confidence) ofrtieximum size of the absolute
difference between paired observations.
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2. INTERRATER AND INTRARATER RELIABILITY

Coefficients of interrater agreement and variabilit vy

Coefficients of individual agreemefit|As) are computed if two raters (observers or
methods) are compared. They are based on the e&uagnts, for each subject, between two
fixed raters, in comparison with the disagreemeéetsveen replicated observations by the
same rater). An acceptably high coefficient (e@alue close to 1 or above 1) indicates that
the raters can be regarded as interchangeablegpéacing one by the other does not
substantially increase the disagreement betweesureraents made on the same subject.
These coefficients should be used only if the ewtlintrarater agreement are acceptable,
since intrarater disagreements are the standahdwtiich the between-rater disagreements
are compared (Barnhaet al. 2007, Haber and Barnhart 2008, feaal.2010). Separate
coefficients of individual agreement are computsaked respectively on the assumptions
that one or other of the observers or methodsgela standard", or that neither is a "gold
standard".

Using the CIAs, a lower limit of 0.8 for "acceptabbhgreement has been suggested; this
indicates that the disagreement between the rdé&s not exceed the disagreement between
replicated observations (by the same rater) by rti@e 25%. In comparisons of the effects
of two drugs on the same subjects (i.e. if “methiddand B are drugs A and B), the U.S.
Food and Drug Administration uses an individuaEgjoivalence criterion (IBC) that can be
derived from the CIA by the formula IBC = [2(1 —-A}] / CIA (Barnhartet al 2007), and it
recommends an upper limit of 2.495 for declarirdjvidual bioequivalence (Food and Drug
Administration 2001). This is equivalent to a loviearit of 0.445 for the CIA.

If there are the same number of replicated obsensa{up to 6) by each of two observers (or
methods),the program also computesatipisted coefficient of individual equivaler{ge
using a permutation-based nonparametric procedutte jts 90%, 95%, and 99% confidence
intervals (Paret al.2011b). The suggested criterion is that a valug®br more indicates
good agreement between the observers. The proggestlue absolute difference between
observations as its measure of disagreement;y#at the square of the difference, the CIEA
would in this instance be the same as the ClAhdfinterobserver difference is smaller than
the intra-observer differences the CIEA may be sdyédiased (M Haber, personal
communication), and a warning is then displayedn@ater simulations indicate that this
coefficient is robust, and relatively little affedtby the degree of between-subject variability
(whereas the interrater concordance coefficierdgea be inflated when there is much
between-subject variability) (Pat al. 2011a).

Large-sample confidence intervals are provided.

The wefficient of interobserver variabilit§CIV), an index proposed by Habedral. (2005),

is the ratio of the interrater component of valigpto the total (between and within) rater-
related variability. Its maximum is 1, and it ke same value for random and for fixed
raters. Unlike the intraclass correlation coeffiti it is not influenced by between-subjects
variability. Its significance is reported (nullpgthesis: coefficient = 0). A negative value
may (like a zero value) be interpreted as maxirgeg@ment, since it means that the
interobserver variability is smaller than woulddogected if the raters agreed perfectly
(Haber MJ, personal communication, 2005).

The program also displays theefficient of interobserver agreeméwhich is 1 -CIV) and
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2. INTERRATER AND INTRARATER RELIABILITY

its significance (null hypothesis: coefficient = If)there are two observers, this coefficient is
equivalent to th€lA where there is no "gold standard".

The coefficient of excess observer variabiliiyhich is 1 / (1 -CIV), is the ratio of the total
observer variability to the variability that woubg expected if the raters agreed perfectly. Its
maximum is infinity. A value of 1 (or a value umdg if theCIV is negative) indicates that
there is no excess variability due to true diffeesbetween the raters.

METHODS

Ratings may be entered for up to 900 subjects.

The computation ohtraclass correlation coefficientshestandard error of measuremeraind theminimum
significant changés described in detail by Eliaszist al (1994). Formulae for the intraclass correlation
coefficients are on pp. 779-780, for the confidelesels on pp. 781-782, for the one-taikignificance testen
pp. 785 and 786, and for the standard error of oreasent on p. 783. The minimum significant chaisge
Z.\/(Z).SEM(using the appropriate SEM), where 1.96 (foralpha= 0.05) or 2.576 (foalpha= 0.01). The
formulae are also provided by Hayetal. (2007)

Confidence intervals for the intrarater coefficefur specific fixed raters are estimated by threnfda for
model ICC(1) provided by McGraw and Wong (1996abl€&’), and set out in a convenient code by Stginle
and Wood (2000).

If one of the degrees of freedom féiis not an integer, it is rounded off to the netirgteger. If it is below 1, it
is changed to 1.

The computation of the coefficient of interobservariability (CIV) and its derivatives is describby Haber
et al (2005). Formula 6.2, which provides the sanmm@enrical result as formula 3.2, is used to estirtfage

CIV. Thecoefficient of interobserver agreemestl - CIV,and thecoefficient oexcess observer variability
is1/ (1 - CIV). The significance test is described on pp. 78-79.

Coefficients of individual agreemeate computed by the methods described by HabeBarnthart 2008.

For each subject, the mean squared deviation (M®BYeen all pairs of observations (comparing the tw
raters, A and B) is computed. These values areaktieraged over all subjects, to provide an ové&D(A,B).
Corresponding average values for the overall witater MSDs, namely MSD(A,A") and MSD(B,B'), are
obtained by doubling the within-subject (residuaBan squares provided by the analyses of variamdexéd
raters.

If neither A nor B is a gold standard, CIA = [MSD@8) + MSD(B,B") / 2] / MSD(A,B).

If Ais a gold standard, CIA = MSD(A,A") / MSD(A)B

If B is a gold standard, CIA = MSD(B,B") / MSD(A.B

Theadjusted coefficient of individual equivalendglEA) is computed by the formulae provided by Raal
(2011b). The computation is based on the meanhsteviations between observations (MAD); if géne
instead based on mean squared deviations (MSDgo#féicient would (in this instance, where theretde
same number of replicated observations for eachrebg be equivalent to the CIA with no gold stantid@an
et al2011a: Appendix C1).

Confidence intervals for the difference between imtrarater coefficients are computed by the MOVER
(method of variance estimates recovery) technigaelescribed and tested by Ramasundarahettie(2009),
using their formulae 8 and 9.

Repeated-measure analyses of variance are perf¢ganmitageet al. 2002: 244-246: Example 9.2). The
between-raters-within-subjects sum of squares (faegktimating the CIV) is the sum of the betweater and
interaction sums of squares (Haleéal 2005). The observed mean squares are calcutated same way for
random raters and fixed raters, but the expecteahraquares and estimated variance componentslanéated
differently (Eliasziwet al 1994: Tables 2 and 3).
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2. INTERRATER AND INTRARATER RELIABILITY

The procedure assumes that the subject and réetseind the interrater and intrarater randonrgtiave a
normal distribution.
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J. VARYING NUMBERS OF MATCHED CONTROLS (“YES-NO” VARIABLE)

J. COMPARISON OF SUBJECTS WITH VARYING
NUMBERS OF MATCHED CONTROLS (“YES-NO”
VARIABLE)

This module is appropriate for the analysis of eas&rol studies, clinical trials and cohort
studies in which each index subject (each casesrewpntal subject, or individual exposed
to a risk or protective factor) has a variable namli-20) of individually matched controls,
and the dependent variable is dichotomous (“ye3;m0{. “yes” = exposure to a risk factor|
(in a case-control study), the success of a treatme the presence of a disease (in a cohort
study). It compares the findings in the index satg and their matched controls.

The program refers to index subjects as “caseathEet of matched observations can be
entered in a separate line, or sets with the samda@s can be entered together, with their|
frequency. The required entries for each pattéfmdings are 0 (“no”) or 1 (“yes”) for the
“case”, the number of matched controls with “yesid the number of matched controls
with “no”.

If the data are stratifiedenter each stratum in turn. Click on “All stratehenever
combined results are required.

The program providetgests Mantel-Haenszel test, Walter's test for binary YJateeodds
ratio (maximume-likelihood and Mantel-Haenszel estimatgth their confidence intervals,
and a low-bias estimate), akdppa.

If stratified dataare entered, an overall Mantel-Haenszel testn ditne results of the
Walter’s tests in the separate strata are combthetieterogeneityf the P-values in the
strata is tested, and an ovekalppais computed.

Tests

The program performs a Mantel-Haenszel test (witlozontinuity correction) and Walter's
test for binary data (with and without a continwtyrrection).

If stratified dataare entered, an overall Mantel-Haenszel testne dand the Walter's tests
in the separate strata (continuity-corrected) arelined by averaging theirvalues
(Stoufferet al. 1949: 45; DeMets 1987) and computing an over#tia® controls for the
stratifying variables. P-values are computed red¢hways, weighting the strata by different
methods: weighting them equally, by sample siZ&s ifumber of pairs), and by the square
roots of the sample sizes. In addition, a tesbrsedor theheterogeneityf the P-values in
the strata (Wolf 1986: 45).

Odds ratio
Maximum-likelihoochnd Mantel-Haenszel estimate$the odds ratio and their 90%, 95%,

and 99% confidence intervals are computed, and|leVesv-bias estimator of the odds ratio
(Jewell 1984) is shown.
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J. VARYING NUMBERS OF MATCHED CONTROLS (“YES-NO” VARIABLE)

Kappa

The program computdsappa which expresses the agreement among all the\a@igaTs in

the matched sets, and may serve to express tlatiegfgess of the matching procedure, since
it indicates the extent to which the findings intaieed sets are more similar than findings in
individuals from different sets. (Fleis$ al 2003: 617-618).

The probability of chance agreement is taken iotmant in the calculation dappa A

value of 1 indicates perfect agreement (aftemalig for this probability of chance
agreement) between ratings; 0 indicates no agretentieer than what can be attributed to
chance, and a negative value indicates less themcehagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellenteagent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAéess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40-0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991).

METHODS

Tests

The Mantel-Haenszel test uses formula 13-18 of Rath(1986). If stratified data are entered,
chi-square =YNum)?/ Y(Den?)

where Num = numerator of Rothman’s formula in stratum
Den = denominator of Rothman’s formula in stratum

The formula forlWalter's tesfor binary data is formula 2 in Walter (1980); focontinuity-corrected test, 0.5 is
subtracted from the absolute value of the numeratbstratified dataare entered, the Walter's tests in the
separate strata (continuity-corrected) are combinyealveraging theiz values (Stouffeet al 1949: 45;
DeMets 1987). Three different sets of weightsueed for this purpose — weighting the test readtslly, by
the sample sizes in the strata, and by the squoate of the sample sizes. In addition, a hetereigetest is
performed, comparing the P-values in the strataguse formula (Wolf 1986: 45):

chi-squarek - 1 d.f.) =Y (Zi - MeanZf
where k= number of strata,

Z, = zvalue in stratum

MeanZ = meanz value.

Odds ratio

The computation of the maximum likelihood estimaitel exact intervals uses an efficient algorithm for
calculating the coefficients of the conditionaltdisution (Martin and Austin 1991, 1996), using edidom
David O. Martin's public-domain EXACTBB program.

The Manterl-Haenszel estimate of the odds rateamiputed by formula 13-9 of Rothman (1986), and its
confidence intervals by the procedure describedame 274 of Rothman (1986).

Kappa

Kappaand its standard error are calculated by formutad4 and 18.46 of Fleigt al (2003).

109
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K. COMPUTE KAPPA FOR A VARIABLE NUMBER OF
RATINGS

This module appraises the agreement between aleriamber (3 or more) of matched
observations with respect to a “yes”-“no” (dichotmums) variable. It might be used to
measure the agreement between ratings of the sativeduals, e.g. by different
observers or tests, or between ratings of the sadinaduals made by the same observer gn
different occasions.

The findings in the set of ratings are then entdogdntering the numbers of “yes” ratings
and “no” ratings. Each set of ratings can be edtseparately, or sets with the same pattern
of findings can be entered together, with theigérency.

The program provides the overkdppa, andkappavalues for individual categories.

If stratified data are entered, an overall valukagfpais computed.

Kappa

The overalkappais computed, with its standard error and signifcearKappavalues are
also reported for individual categories, with tregnificance; but these test results should be
treated with caution, since they are not based monl&iple-comparison procedure.

For stratified dataare entered, an overall valuekalppa weighted by sample size, is
computed.

The probability of chance agreement is taken iotmant in the calculation dappa A

value of 1 indicates perfect agreement (aftemalig for this probability of chance
agreement) between ratings; 0 indicates no agreteptieer than what can be attributed to
chance, and a negative value indicates less thamcehagreement. Fleissal (2003)
suggesthat a value of 0.75 or more indicates excellenteagent, and 0.40 or less indicates
poor agreement. Cicchetti and Sparrow (1981) difAeéess’s 0.40-0.74 group into 0.60—
0.74: good; and 0.40-0.59: fair. Alternative guides$ are: over 0.80, very good agreement;
0.61-0.80, good; 0.41-0.60, moderate; 0.21-0.40Q aflad 0.20 or less, poor agreement
(Landis and Koch 1977, Altman 1991).

METHODS

Kappa

Kappaand its standard error are calculated by formuéd4 to 18.46 of Fleisst al. (2003).
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L1. COMPARISON OF TWO GROUPS OF VARYING
NUMBERS OF MATCHED NUMERICAL OBSERVATIONS

This module is appropriate for the analysis of eam@rol or cohort studies, trials,
comparisons of methods of measurement, or othdiestthat compare two groups of
matched numerical variables, where some or ath@iatched sets have 3 or more
observations, and the numbers of observationseitvib groups (in each set) may vary. The
program compares the two groups of observations.

The groups are arbitrarily referred to as “casesl ‘@ontrols”. Optionally, a fixed number
can be specified for the cases in each matched?setatched set may contain 2-9
observations (1-8 cases and 1-8 controls). Edamsst be entered in a separate line: first
the case or cases, , then a slash (/), then theotoncontrols, then another slash. For
example, the entry for a set containing 1 case3atwhtrolsmight be:

16.23 / 9.8 11.06 15.11 /
Up to 500 sets may be entered.

The program provides thréests(Rosner's and Walter's tests and a paired tftast)e
difference between the mean valuesf cases and controls, approximate confidence
intervals for this difference, arzetween-sets and within-sets variances

Tests

Rosner's tegs a generalization of the pairetest that takes account of within-sets and
between-sets variability (Rosner 1982). lit apgaithe significance of the differences
between the mean values in the two groups. Twal&eg may be displayed. If so, these
may be regarded as the bounds of the true P-vdlhe.true P-value depends on the relative
magnitude of the within-sets and between-sets biitias (see below), as explained by an
on-screen message. The test sometimes presentgtdahfficulties, and is omitted.

Walter's tes{Walter 1980) tests the significance of the measeecontrol difference
weighted by the numbers of cases and controlsaiséfs Rosner (1982) points out that
(unlike his test) Walter's test assumes zero betvgets variability, and may therefore
provide a misleadingly low P-value if there is rhumetween-sets variability.

Thepaired t-testests the significance of the unweighted mearedifice between the case
and control means within each matched set. Rq4882) points out that (unlike his test)
the paired test assumes zero within-sets variability, and thayefore provide a
misleadingly low P-value if there is much withinsgariability.

Difference between the mean values
The program displays the mean case-control differeamd its standard error, computed

separately by the Rosner and Walter proceduresoanchweighted data, with approximate
90%, 95%, and 99% confidence intervals.
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L1. COMPARISON OF 2 GROUPS (VARYING NUMBERS OF MATCHED OBSERVATIONS)

Between-sets and within-sets variances

The between-sets variance represents the varia¢ioveen matched sets, and the within-sets
variance represents the variation within eitherdise or the control group for a specific
matched set. The ratio of the two variances imditation of the value of multiple

matching. If the between-sets variance is mudaielathan the within-sets variance, multiple
matching brings little benefit (Rosner 1982; Led &vilkens 1994).

METHODS

Tests

Rosner's testRosner 1982) is a generalization of the pafris$t that takes account of within-sets and between
sets variability. It adjusts and appraises thai@ance of the mean within-set difference. Tésttsometimes
presents technical difficulties, since it requities computation of maximum-likelihood estimatesalyiterative
procedure that may fail to find an appropriate {fpa=) root. If this difficulty is encountered (uslly because

of marked within-set variability) an appropriatessage is displayed.

In Rosner’s procedure the within-pairing varialiig calculated by Rosner's formula 2.2 (Rosner2).98nd
maximum likelihood estimates of the between-pairiagability and the adjusted mean case-contréédihce
are then computed by an iterative process, usmgdh Wijnsgaarden-Dekker-Brent root-solver (Pedsa.
1989: 283-286). The adjustment takes accounteohtimbers of cases and controls per set, using thei
reciprocals. Significance is appraised by Rosifiertaula 2.3, using alternative degrees of freeddran
referring the test statistitagnbdg to thet-distribution, nameN - 2Rand R - 1(where N = number of
subjects and R = number of matched sets). Thisigeeswtwo P-values (both of which are shown if tdéer
appreciably), which may be regarded as the bouhttedrue P-value. The true value depends omelative
magnitude of the within-sets and between-sets iitias.

Walter’s testuses formula 2.4 of Rosner (1982). This pernpfdiaation of the test to situations where there
are matched sets with two or more cases.

Thepaired t-tests calculated by the usual formula (see, e.g.i8d1991: 65, formula 2.51), except that in each
matched set the two values (of case and contreljepiaced by the means (of cases, if there is thareone
case, and of controls, if there is more than omgrob).

Difference between the mean values

In Rosner's procedure (see above), the adjusted oas&-control difference is computed by weightirey
difference in each matched set by

1/{B+W.[(1L/N1)+ (1/N2)]}
where B = between-sets variance

W = within-sets variance

N1 and N2 = numbers of cases and controls in the se

In Walter’s procedure, the difference in each maticket is weighted byt / [(1 / N1) + (1 / N2)]

Between-sets and within-sets variances

These variances are computed by Rosner's procéasaer 1982).
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L2. COMPARISON OF TWO METHODS OF
MEASUREMENT, USING REPEATED NUMERICAL
OBSERVATIONS

This module is appropriate in methodological stadieat compare two methods of
measuring a numerical variable by applying eachoteto each subject more than once.

The program provides thmean differencebetween measurements by the two methods, and
gives two sets of results — one applicable to st which the true value does not chang
from one set of measurements to another, and osteidees in which the true value may
vary. In each instance, the program computesttiredard deviation of the difference
between the two methods, t88% limits of agreementbetween these measurements, and
ANOVA tables. Theelationship between the difference and the mearalueis
appraised

(4]

The number of pairs of measurements per subjectagn but for each subject there must|be
the same number of measurements (at least twadtyraethod. The measurements of each
subject are entered in a separate line. If thevalige can change between pairs of

measurements, the measurements of a subject byahmethods must be entered in the
same sequence, i.e., the first measurement bymneatttod must be entered first, the second
must be entered second, and so on.

Mean difference and 95% limits of agreement

The mean difference is the weighted mean of tHergifices between the measurements by
the two methods.

The95% limits of agreemeriBland and Altman 1999) answer the question, “giae
measurement by one method, how far might this doa ft measurement by the other
method?” They demarcate the bounds of the raragewlith a 95% probability, includes the
difference between single measurements of the safject by the two methods.

Use of the 95% limits of agreement assumes thalifferences are reasonably constant
throughout the range of measurement. To checkadsamption, the program displays
Spearman’soefficient of correlation between the differenoe #he mean levelThe

correlation coefficient may be expected to be Ziettoe mean difference does not change
with increasing values. Even when one of the outlof measurement is a new one and the
other is an accepted standard, it is preferabéx@mine the relationship between the
difference and the mean value rather than thewaktiip between the difference and the
standard measurement, which (as shown by Bland\inthn 1995b) may be misleading.

ANOVA tables

One-way ANOVA tables show the between-subjectsraadiual components of variance.
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METHODS

Thestandard deviationand95% limits of agreemergre computed by the methods explained by Bland and
Altman (2007).
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M. COMPARISON OF REPLICATE NUMERICAL
MEASUREMENTS (VARYING NUMBERS)

This module appraises the agreement between matcimedrical measurements, in a study
where the numbers of matched measurements vanyiglit be used to measure the
agreement between replicate ratings of the samedidls by different observers or by the
same observer on different occasions, in studigst@fobserver or intraobserver reliability.

The measurements of each subject must be entaradyiorder, on a separate line.

The program computesd®% repeatability coefficient,anintraclass correlation
coefficient (with its 95% confidence interval) al@pearman-Brown coefficients of
reliability , and estimates the number of replicates requiredtain a mean-rating ICC of
0.75 or 0.8.

95% repeatability coefficient

This coefficient expresses the expectation (Wt onfidence) for the maximum size of
the absolute difference between a pair of obsemsatiassuming that repeatability is similar
at all magnitudes. Approximate 95% confidencerirdls are estimated for the coefficient.

Intraclass correlation coefficient

Theintraclass correlation coefficief{tCC), which is appropriate for interval-scale dai#h

an assumed normal distribution, is a measure @eagent that expresses the correlation
between measurements within individuals or seteaithed individuals. The program
provides an estimate of the Shrout-Fleiss modelQ(l (Shrout and Fleiss 1979), which is
based on a “one-way random model”; the coefficeglies to the use of a single
measurement. As a rule of thumb, it has been stgg¢hat values above 0.75 indicate
excellent, and values above 0.4 good, reliabifyqukri and Pause1999: 27). Negative ICC
values indicate that the within-subject variatismgreater than the between-subject variation.

The program reports the effective average numbegpdicates, on which (if the numbers of
replicates vary) the computations are based.

Spearman-Brown coefficients of reliability
Spearman-Brown coefficients of reliabilpyovide estimates of the effect of using the means
of replicated observations (Fleiss 1986: 14-1R)eylpredict what the reliability would be if

between 2 and 6 replications were averaged. Tdgrgm also uses the formula in reverse,
to estimate the number of replicates required tainka mean-rating ICC of 0.75 or 0.8.
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METHODS

The computation of theoefficient of repeatabilitis explained by Bland and Altman (1999: 149)is lbased
on the within-sets variance, computed by formuld @2f Guilford and Fruchter (1986: 235). Approziim
confidence intervals are obtained by substitutimigficdence limits for the within-sets variance, estted by the
method described by Zar (1998: formula 7.16), enfdrmula.

The formula for théntraclass correlation coefficier{Shrout-Fleiss ICC model 1,1, computed from a wag-
random effects model ANOVA) is:

ICC = (MSB — MSW) / [MSB + (k — 1)MSW]
where MSB = between-subjects mean square

MSW = within-subjects mean square

k = effective average number of replicates perextbj
Theeffective average number of replicategsomputed by formula 5 of Ebel (1951). Thisyides a value
(introduced by Snedecor 1946: 234) that is clogaécharmonic mean. The use of Ebel's procedure wa
suggested by Solomon’s rating reliability calcutgi®olomon 2004).

Formulae for confidence intervals for the ICC madaile provided by McGraw and Wong (1996a and 1996b)
in their Table 7, where this ICC is referred td@€(1). The number of ratings in the formulae, ethas
appropriate for studies with a fixed number of iegiks, is replaced by the effective average nurober
replicates.

The Spearman-Brown prediction formu(&leiss 1986: 14-15: formula 1.3 ) for reliabil{fy) is
R=Nr/[1+(N-1)]

where N = number of replicates that are averaged
r = intraclass correlation coefficient

Fleiss’s formula 1.31 is used to estimate the nurobeeplicates required to obtain a reliability@¥5 or 0.8:
N=PQ-r)/[r(1-P)]

where P =0.750r0.8
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Misl. EFFECT OF MISCLASSIFICATION:
COMPARISON OF CASES AND MATCHED CONTROLS

This module appraises the effect of misclassificatnondifferential or differential) on a
comparison of cases and matched controls with cé$péheir exposure to a risk or
protective factor. It demonstrates the effecthef $ensitivity and specificity of the measurg

of exposure, by computing the “true” findings thatuld give rise to the observed findings|.

The program requires entry of the observed fregeernno a paired-data 2x2 table, and
estimates of the sensitivity and specificity (isesand in controls) of the measure of
exposure.

The program computes what the frequencies woultithere were no misclassification, i.e.

the"true" frequencieghat would have given rise to the observed findingether with the
"true" odds ratiobased on the computed frequencies. Confideneevals are displayed for
the observed and “true” odds ratios.

The computed “true” results are not shown if theyunrealistic (if a “true” frequency is
negative). A message is displayed saying thabliserved frequencies are not compatible
with the sensitivity and specificity values, andittif the entries are correct, the findings m:
represent sampling error.

Ly

METHODS

The program constructs a 4 x 4 matrix represeritingequations that express the relationship beivlee
observed and true (correctly classified) frequesy@ad solves them by calculating the inverse @htlatrix and
postmultiplying this by a vector composed of theatved frequencies. The procedure, a generalizafion
Barron's procedure for nondifferential misclassifion (Barron 1977), is described by Kleinbaum, gempand
Morgenstern (1982: 228-236) and Greenland and K&im (1983). If the matrix is not invertible anagrr
message is displayed..

Exact Fisher's 95% confidence intervals are contbfde the odds ratios; the “true” ratio is basedios “true”
frequencies, after rounding them off to the neargsger. The intervals are computed by an allgorit
described by Martin and Austin (1991) and usingectsxdm David O. Martin's public-domain EXACTBB
program. Uncertainty of the sensitivities and #peties is not taken into consideration.

117



Mis2. MISCLASSIFICATION: EXPOSED AND UNEXPOSED

Mis2. EFFECT OF MISCLASSIFICATION: COMPARISON
OF MATCHED EXPOSED AND UNEXPOSED SUBJECTS

This module appraises the effect of misclassificatnondifferential or differential) on a

comparison of matched subjects exposed and unexposerisk or protective factor, where

the dependent variable is a disease or some atlhesroe. It demonstrates the effect of th
sensitivity and specificity of the measure of thcome variable, bycomputing the “true”
findings that would give rise to the observed firgs..

The program requires entry of the observed fregeerio a paired-data 2x2 table, and
estimates of the sensitivity and specificity (ie txposed and unexposed groups) of the
measure of the outcome variable..

The program computes what the frequencies wouléithere were no misclassification, i.e.

the"true" frequencieghat would have given rise to the observed findingether with the
"true” odds ratiobased on the computed frequencies. Confideneevals are displayed fof
the observed and “true” odds ratios.

The computed “true” results are not shown if theyyanrealistic (if a “true” frequency is
negative). A message is displayed saying thabliserved frequencies are not compatible
with the sensitivity and specificity values, anditif the entries are correct, the findings m:
represent sampling error.

1%

)

METHODS

The program constructs a 4 x 4 matrix represerftingequations that express the relationship bettlee
observed and true (correctly classified) frequesicmd solves them by calculating the inverse @htlatrix and
postmultiplying this by a vector composed of theated frequencies. The procedure, a generalization
Barron's procedure for nondifferential misclassifion (Barron 1977), is described by Kleinbaum, pepand
Morgenstern (1982: 228-236) and Greenland and K&im (1983). If the matrix is not invertible anaerr
message is displayed..

Exact Fisher's 95% confidence intervals are congbéde the odds ratios; the “true” ratio is basedios “true”
frequencies, after rounding them off to the neargsger. The intervals are computed by an allgorit
described by Martin and Austin (1991) and usingectsxdm David O. Martin's public-domain EXACTBB
program. Uncertainty of the sensitivities and #pgties is not taken into consideration.
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Mis3. MISCLASSIFICATION: ANY TWO MATCHED GROUPS

Mis3. EFFECT OF MISCLASSIFICATION:
COMPARISON OF ANY TWO MATCHED GROUPS

This module appraises the effect of misclassificatnondifferential or differential) on a
comparison of any two matched groups with respeatdependent variable It demonstrat
the effect of the sensitivity and specificity obtmeasure of the dependent variable, by
computing the “true” findings that would give risethe observed findings..

The program requires entry of the observed fregeerno a paired-data 2x2 table, and
estimates of the sensitivity and specificity (iogps A and B) of the measure of the
dependent variable.

The program computes what the frequencies woultithere were no misclassification, i.e.

the"true" frequencieghat would have given rise to the observed findingether with the
"true" odds ratiobased on the computed frequencies. Confideneevals are displayed for
the observed and “true” odds ratios.

The computed “true” results are not shown if theyanrealistic (if a “true” frequency is
negative). A message is displayed saying thabliserved frequencies are not compatible
with the sensitivity and specificity values, anditif the entries are correct, the findings m:
represent sampling error.

METHODS

The program constructs a 4 x 4 matrix represerftingequations that express the relationship bettlee
observed and true (correctly classified) frequesicmd solves them by calculating the inverse @htlatrix and
postmultiplying this by a vector composed of theated frequencies. The procedure, a generalization
Barron's procedure for nondifferential misclassifion (Barron 1977), is described by Kleinbaum, pepand
Morgenstern (1982: 228-236) and Greenland and K&im (1983). If the matrix is not invertible anagrr
message is displayed..

Exact Fisher's 95% confidence intervals are contbéde the odds ratios; the “true” ratio is basedios “true”
frequencies, after rounding them off to the neargsger. The intervals are computed by an allgorit
described by Martin and Austin (1991) and usingecfsdm David O. Martin's public-domain EXACTBB
program. Uncertainty of the sensitivities and #pgties is not taken into consideration.
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P1. POWER (DIFFERENCE BETWEEN PROPORTIONS)

P1. POWER OF TEST FOR DIFFERENCE BETWEEN
PROPORTIONS (MATCHED PAIRS)

This module computes the power of a McNemar tasa fifference between proportions
observed in matched subjects, or in the same itha@s (as in before-after studies,
comparisons of diagnostic procedures, and crossoats).

The program requires entry of the desired levealigriificance (for a one-sided or two-sided
test), the sample size (the number of pairs of wlsiens), the odds ratio to be detected, and
either the expected number or the expected pegentfaairs with discrepant (“yes-no” and
“no-yes”) results.

Optionally, the percentage of expected losses io$ paa projected study (nonresponses,
dropouts, exclusions from the analysis, etc.) @eriiered, and the sample size that is
entered will be reduced accordingly before poweoimputed. This does of course not
allow for possible bias. If the expected loss lndervations 4%, the expected loss of pair
may beabout 2 - [L?/10000] %.

[72)

Results should be used with caution if samplevang small.

METHODS

Power is computed by the asymptotic unconditionathmd. The formula is an inversionfofmula 3 of
Juliouset al (1999), and is specified by Sahai & Kurshid (199%p of page 562). If an odds ratio under 1 is
entered, the computation uses its reciprocal;Hisrgurpose, an odds ratio of 0 is ficstnverted to 0.000001.

If an expected loss rate is entered, the sampéeisieduced before power is computed, and s®isxpected
number of discrepant pairs, if this number wasrexte
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P2. POWER (ORDERED CATEGORIES)

P2. POWER OF TEST FOR COMPARING DISTRIBUTION
OF ORDERED CATEGORIES (MATCHED PAIRS)

This module computes the power of a test (e.g.Maen-Whitney test for paired data) for
difference between paired observations using amalrdcale (such as “mild-moderate-

severe”). The paired observations may relate twhea subjects, or to the same individug
(as in before-after studies, comparisons of diampsocedures, and crossover trials).

The program requires entry of the desired levealigriificance (for a one-sided or two-sided
test), the sample size (the number of pairs of wlasiens), and the odds ratio to be detecte
The procedure assumes a proportional odds modelisththe odds ratio is assumed to be |t
same, whatever cutting-point may be used when aumdpadjacent ordered categories to
convert the frequency-distribution table into a 2aBle.

The estimate of power is a conservative one {f.enderestimates power), especially if the
are many categories.

Optionally, the percentage of expected lossesirogected study (nonresponses, dropouts

exclusions from the analysis, etc.) can be entened the sample size that is entered will e

reduced accordingly before power is computed. d@bes of course not allow for possible
bias. If the expected loss of observations%s the expected loss of pairs mayabeut
2L - [L?/10000] %.

METHODS

The program uses an inversion of the simple “rdtdiomb” formula recommended by Julioesal (1999:
formula 2) for estimating sample size for theséstes

If an expected loss rate is entered, the sampéeisieduced before power is computed
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P3. POWER (DIFFERENCE BETWEEN MEANS)

P3. POWER OF TEST FOR DIFFERENCE BETWEEN
MEANS (MATCHED PAIRS)

This module computes the power of a pairsest for a difference between means observed
in paired observations, in matched subjects, tlhersame individuals (as in before-after
studies, comparisons of diagnostic procedurescergsover trials).

The program requires entry of the desired levealigriificance (for a one-sided or two-sided
test), the sample size (the number of pairs of mlasiens), and the difference to be detected
(e.g. observation A minus observation B). In additthe standard deviation of the
differences between paired values is requireds Tan be entered, if its value is known or
can be assumed. If not, there are two alternathagspermit computation of the standard
deviation. These are: (a) entry of the within-sgbmean square in an ANOVA (the residual
within-subject mean square, after removal of thevben-subjects component), if this is
known (possibly from a published study; and (b)yof the standard deviations of the two
sets of observations, together with the correlatioefficient between the two sets (if a zero
coefficient is entered, this will provide a cons#ive estimate of sample size).

Optionally, the percentage of expected lossesirogected study (nonresponses, dropouts,
exclusions from the analysis, etc.) can be entened the sample size that is entered will e
reduced accordingly before power is computed. @bes of course not allow for possible
bias. If the expected loss of observations%s the expected loss of pairs mayabeut

2L - [L?/10000] %.

METHODS

The program uses an inversion of formula 1 of lgl&t al (1999).

If the standard deviation of the differences isewtered, it is computed either from the withinjeabmean
square, by multiplying its square root %% (Juliouset al 1999), or from the standard deviations of the $ets
of observation (SPand SIR) and the correlation coefficie(t), as

V(SD,? + SD,? — 2SD,SDy)
(Sokal and Rohlf 1981: 573).

If an expected loss rate is entered, the sampéeisieduced before power is computed
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S1. “YES"-“NO” DATA: DIFFERENCE (MCNEMAR TEST)

S1. SAMPLE SIZES: “YES-NO” DATA:
DIFFERENCE (MCNEMAR TEST)

This module computes the sample size (the numbeisofepant pairs of observations and
the total number of pairs of observations) requicech McNemar test to detect a differencge
of a given magnitude between paired dichotomouss(Ano”) observations in matched
subjects or in the same individuals (as in befdteratudies, comparisons of diagnostic
procedures, and crossover trials). It also congpilite numbers of matched sets required for
case-control studies with more than one matchettaquer case.

Three entry options are offered: (a) entry of tHdsratio to be detected and the expected
percentage of discrepant (“yes-no” and “no-yestjgpar (b) entry of the odds ratio to be
detected, the assumed value ofrtieching factor (see below) and the expected proportion
of “yes” in the set of observations where that ptipn is lower, or (c) the expected
proportions of “yes” in both sets of matched obagons. The first two options are
preferable to the third. In addition, the requisgghificance level and power must be
entered.

If the expected proportions of “yes” in the twossef observations are entered, the
computation provides results based on the assumgtad that the two sets are mutually
independent. The required number of pairs thegpsrted is a maximal estimate, unless the
matched observations are negatively correlatec sitonger the positive correlation, the
more the overestimation, as demonstrated in Tabfe.2hr (2001). If there is a negative
correlation (that is, if a “yes” is likely to besaxiated with a “no” in the matched
observation, as might occur in a paired beforeratiedy where the first response influences
the second, the computed sample sizes are undeadssi. An additional “worst-case”
maximal requirement is calculated, for use in snskances.

Optionally, the program will inflate sample sizescompensate for the probability that not
all the selected observations will be includedh@a analysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dales requires entry of the expected

percentage of pairs that will be lost. This inflatdoes of course NOT compensate for
possible selection bias.. If the expected lossbskrvations i£%, the expected loss of pairs
may beabout 2 - [L?/10000] %.

Matching factor

The matching factor is a measure of the degreehiohathe two sets of findings are similar
because of matching. In a well-matched case-closiidy similarity may be expected
between the exposure status of cases and theihethtontrols; and in a well-matched
cohort study or trial, matched subjects may be ebgoketo be similar with respect to
prognostic factors affecting the outcome. The nsim@lar the findings, the larger the
sample sizes required.

The matching factor may be derived from the expk2t& 2 table showing the paired results;

it is the product of the two numbers of concordaaits, divided by the product of the two
numbers of discordant pairs. In a case-contralysthis is theexposure odds ratjo
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S1. “YES"-“NO” DATA: DIFFERENCE (MCNEMAR TEST)

measuring the unconditional association of the sypostatus of a case with that of a
matched control (Fleiss and Levin 1988, Lachin 3992

The matching factor is 1 if the findings are indeghent, and is seldom much more than 2.5
(Fleiss and Levin 1988).

METHODS

If the odds ratio and expected percentage of diserepairs are entered, the required number ofabsnt pairs
is computed by formula 2 of Julioes al (1999), and the required total number of pairédognula 3 of Julious
et al (1999) (formula 5.4 of Sahai & Kurshid 1996b)stts an asymptotic unconditional method that heenb

shown to approximate satisfactorily to the resoftsomputer simulations (Connett al 1987).

The same method is used if the expected proportibriges” in both sets of observations are enteadir
estimating the numbers of pairs with discrepaniciesach directiong andT) from the proportions of “yes'H1
andP2), using formulae assuming an independent distohuyRoyston 1993; Juliowst al 1999: 245):

S=PL1-P2)] and
T=[P2(1-P1)]
and then estimating the odds ratio and proportfatiszrepant pairs fror8 andT:
Odds ratio =S/ T
Proportion of discrepant pairsS=+ T
For the “worst-case” estimate,
S=min(PL1-P2
T=P2-P1+S

If the matching factor is entered, sample sizecamputed by the multinomial unconditional procedur
(Connor 1987; Lachin 1992: formulas 17 and 21)chhs slightly conservative. If the calculated péarsize
is under 30, use is instead made of the local ufiional variance (Mitra 1958, Lachin 1992: formdlg),
which is then more accurate. The estimated numbdiscordant pairs is also displayed.

Sample sizes for case-control studies with more tre matched control per case are calculatedrioyula 4
of Juliouset al (1999).

All sample sizes are rounded up to the next whalalrer.
If an expected non-inclusion rat@%) is entered, the program multiplies computed darsiges by

1/[1- R/ 100)]

before rounding them up
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S2. “YES"-“NO” DATA: AGREEMENT (KAPPA)

S2. SAMPLE SIZES: “YES-NO” DATA:
AGREEMENT (KAPPA)

This module computes the sample size requiredcsin@dy to determinkappafor two
categories and two sets of observations.

The assumed value of kappa, the assumed propaitiyes” findings (which is assumed tp
be similar in both sets of observations), and #duired significance level must be entered.
In addition, one of the following must be enterg:the requiregpowe; (b) the desired
width of the confidence intervedr kappa(if the significance level is set at 5%, this reftw
the 95% confidence interval); or (c) the desii@der confidence limitor kappal(if the
significance level is set at 5%, this refers toltdweer 95% confidence limit).

If power is entered, the program computes the sasipes required to determine whether a
kappaof the specified magnitude is significantly higliean 0.4 (taken to mean fair or good
agreement) or 0.6 (taken to mean good agreement).

Optionally, the program will inflate sample sizescompensate for the probability that not
all the selected observations will be includedh@a analysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dales requires entry of the expected

percentage of pairs that will be lost. This inflatdoes of course NOT compensate for
possible selection bias.. If the expected lossbskrvations i£%, the expected loss of pairs
may beabout 2 - [L?/10000] %.

METHODS

If power (1 —betg) is entered, the program computes the sampleaigéred to determine whether the lower
[(1-alpha@*100]% confidence interval of the specifikdppaexceeds 0.4 or 0.6. Computation is based on a
non-centrality parameter that is derived from fietg) and (2 xalpha), and entered in the sample size formula
provided by Donner and Eliasziw (1992).

If the desired width of the confidence intervatioe desired lower confidence level is entered ptlogram uses
the procedure described by Donner (1999; formua 2.

All sample sizes are rounded up to the next whatalrer.
If an expected non-inclusion rat@%) is entered, the program multiplies computed darsiges by

1/[1- R/ 100)]

before rounding them up
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S3. “YES"-“NO” DATA: EQUIVALENCE TEST

S3. SAMPLE SIZES: “YES-NO” DATA:
EQUIVALENCE TEST

U

This module computes the number of pairs requioea test of the equivalence of two set
of paired “yes-no” observations. This may be ukefthe planning of equivalence tests ir
matched case-control studies, matched-control lpataals, crossover trials, and
comparisons of diagnostic or screening tests.

The program requires entry of the desired signiitealevel and power, the magnitude of the
difference (between the proportions of “yes”) tisategarded as negligible, and the expected
percentage of discrepant (“yes-no” and “no-yesiiy$

Sample sizes are computed for an equivalence dasstdlon the performance of two one-
sided tests, and for a one-sided test (e.g. forimi@niority of a new treatment or screening
test in comparison with an established one).

Optionally, the program will inflate sample sizescompensate for the probability that not
all the selected observations will be includedhi@ analysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dalas requires entry of the expected

percentage of pairs that will be lost. This inflatdoes of course NOT compensate for
possible selection bias.. If the expected lossbskrvations i£%, the expected loss of pairs
may beabout 2 - [L?/10000] %.

METHODS

The program uses the procedures described bgtlal (2002) to compute the sample sizes requiredstofde
equivalence, on the assumption that the obseraabptions of "yes" in the two sets of observatians
identical. Sample sizes are computed for sampdedeests, applying a continuity correction (whirttreases
the required sample size) unless otherwise staléd.computation without a continuity correctioresis
formula 7 of Liuet al; the computation with a continuity correctioqué&es an iterative process to solve an
equation (Liuvet al 2002: 239); the van Wijnsgaarden-Bekker-Brent-smver (Presst al 1989: 283-286) is
used for this purpose. Sample sizes for a onalsit (e.g. a non-inferiority test) are computed similar
way, with appropriate changes of significance llewel power (Livet al2002: 239). If any computed sample
size is too small to ensure at least one discrgmnin each direction (applying the expected prtipn of

discrepant pair®ropDP), it is raised tol / (PropDP/ 2) to meet this condition.
All sample sizes are rounded up to the next wharalyer.
If an expected non-inclusion rat@%) is entered, the program multiplies computed darsiges by

1/[1- R/ 100)]

before rounding them up
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S4. DIFFERENCE: ORDERED CATEGORIES

S4. SAMPLE SIZES: ORDERED CATEGORIES:
DIFFERENCE

This module computes the number of pairs of obsienvarequired for a test to detect a
given difference between paired observations usidgred categories (such as “mild-
moderate-severe”). The observations may relateatiched subjects, or to the same
individuals (as in before-after studies, comparssohdiagnostic procedures, and crossov
trials).

The procedure used is a simple “rule-of-thumb” arel the estimate of sample sizes is a
conservative one, especially if there are manygoaies.*

If the majority of observations are expected torba single extreme category (e.g. in the
“well” category of a health scale), Julioesal (1999) recommend calling this category

“yes” and determining the sample size needed fes-iyo” data (module S1). If there are
many categories, they suggest that the data hedrea normally distributed (module S5).

The odds ratio to be detected must be enteredthgeith the required significance level
and power. The procedure assumes a proportionial maddel; that is, the odds ratio is
assumed to be the same, whatever cutting-pointomaysed when combining adjacent
ordered categories to convert the frequency-didion table into a paired-data 2x2 table.

Optionally, the program will inflate sample sizescompensate for the probability that not
all the selected observations will be includedhi@ analysis, e.g. because of failure to loc:
addresses, refusal to participate, or missing dalas requires entry of the expected
percentage of pairs that will be lost. This inflatdoes of course NOT compensate for
possible selection bias.. If the expected lossbskrvations i£%, the expected loss of pai
may beabout 2 - [L?/ 10000] %.

* A more exact estimate can be obtained by agatore provided by the PEPI program SAMPLES, which
requires entry (in addition to the odds ratibjhe expected relative distribution of positdiserepant pairs
(pairs with discrepancies consistent in dicecwith the odds ratio) that have different degref
discrepancy (Julious and Campbell 1998).

ate

rs

METHODS

The program uses formula 2 of Juliatsal (1999, Appendix). The procedure is a simpleétof-thumb" one
that estimates the number of discordant pairs riefiea two-category situation and takes this asotal
number of pairs required for a comparison of ordexaegories.

All sample sizes are rounded up to the next wharalyer.
If an expected non-inclusion rate%) is entered, the program multiplies computed darsiges by

1/[1- R/ 100)]

before rounding them up

127



S5. NUMERICAL DATA (PAIRED T TEST)

S5. SAMPLE SIZES: NUMERICAL DATA:
DIFFERENCE (PAIRED T TEST)

This module computes the number of pairs of obsienvarequired for a pairddest to
detect a difference of a given magnitude betweemtbans of observations in matched
subjects or in the same individuals (such as obsiens in matched pairs, before-after
observations in the same individuals. or cross-tnas) (as in before-after studies,
comparisons of diagnostic procedures, and crossoats).

The difference to be detected (e.g. mean A minuanni), and the required significance
level and power must be entered. The standarctieviof the differences between paired
values is also required. This should be enteréd falue is known or can be assumed.
Alternatively, the program can compute the standandation. This requires entry of eithey
(a) the within-subject mean square in an ANOVA (tesidual within-subject mean square
after removal of the between-subjects compondrit)is is known (possibly from a
published study); or (b) the known or assumed stahdeviations of the two sets of
observations, together with the known or assumectletion coefficient between the two
sets (if a zero coefficient is entered, this witbyide a conservative estimate of sample size).

Optionally, the program will inflate sample sizescompensate for the probability that not
all the selected observations will be includedh@a analysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dales requires entry of the expected

percentage of pairs that will be lost. This inflatdoes of course NOT compensate for
possible selection bias.. If the expected lossbskrvations i£%, the expected loss of pairs
may beabout 2 - [L?/10000] %.

Note that for a trial comparing two independentug® each of them having paired values
for each individual (e.g. before and after treattjenodule H2 of COMPARE2 should be
used, entering the difference to be detected betwaged observations, and the standard
deviations or variance of the differences betwesreg observations (Lachin 1981).

METHODS

If the within-subject mean square is entered,qtsase root is multiplied by 2 to obtain the standard deviation
(S.D.) of the differences (Julioes$ al 1999). If the S.D.s of the two sets of obseove(SD, and SIQ) and the
correlation coefficientr] are entered, the S.D. of the differences is tated (Sokal and Rohlf 1981: 573) as

V [SDs + SDy” - 2r(SDy)(SDy)]

The required number of pairs is estimated (for e-sided test) by formula 2.1 of Guenther (19813, @or a
two-sided test) by the same formula usihgha / 2instead oflpha (formula 1 of Juliougt al 1999).

All sample sizes are rounded up to the next whatlabrer. If an expected non-inclusion ra®Reqd) is entered,
the program multiplies computed sample sizes by
1/[1- R/ 100)]

before rounding them up.
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S6. NUMERICAL DATA: INTRACLASS CORRELATION COEFFICIENT

S6. SAMPLE SIZES: NUMERICAL DATA: AGREEMENT
(INTRACLASS CORRELATION COEFFICIENT)

This module computes the sample size requiredsindy to measure agreement by using
intraclass correlation coefficient (ICC). It mag a@ppropriate in a reliability study in which
there are a fixed number (two or more) observatajreach subject, or in studies using
cluster samples of a fixed size.

The required significance level, the number of okettons per subject or set, and the
expected ICC must first be entered. Then twaoaptare offered: (a) entry of the require
power and the value against which the expectedi$G& be tested; in a reliability study, th

an

(D&

latter value is the lowest acceptable ICC; chotbhas have been suggested (Landis and Koch

(1977) are 0.4 (moderate measurement reliabili/(€ubstantial) or 0.8 (almost perfect); i

other studies, it may be zero; and (b) entry ofdasired width of the confidence interval far

the ICC.

If option (a) is selected, the program uses a smpproximation (Waltest al. 1998) whose
results have excellent agreement with exact restil{grovides the sample size required to

=]

test the null hypothesis that the ICC is equahtoualue against it is to be tested, against the

alternative that it is higher. The method is appiate for studies in which the ICC can be
estimated from an appropriate one-way ANOVA, ehgse in which each subject is
observed by different observers, by different mdfhor at different times. Between-
subjects and inter-subject variation are taken attmunt. Walteet al suggest that the
method may also be a practical compromise for stuih which a two-way analysis (e.g.
taking account of variation between specific obsesywould be appropriate.

If option (b) is chosen, the program uses an appration that Bonett (2002) has develope
and shown to be very accurate. This method isompate for studies in which the ICC can
be estimated from a one-way or two-way ANOVA, ¢hgse in which each subject is
observed by different observers, by different mdfhar at different times, in which
between-subjects, inter-subject, and (if necessmtyyeen- observers or between-method
variation must be taken into account

When planning a reliability study, it may be helpgfucompare the sample sizes required for

different numbers of observations per subject.

Optionally, the program will inflate sample sizescompensate for the probability that not

all the selected observations will be includedh@a analysis, e.g. because of failure to locate

addresses, refusal to participate, or missing dales requires entry of the expected
percentage of pairs or sets that will be lost.sThilation does of course NOT compensatg
for possible selection bias.. If the expected tfssbservations ik%, the expected loss of
pairs may babout 2 - [L?/10000] %, and the maximal loss of larger setshei 3%.

U
o

U
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S6. NUMERICAL DATA: INTRACLASS CORRELATION COEFFICIENT

METHODS

If the required power and the value against whitthexpected ICC is to be tested are entered, thpwation
uses formula 12 of Waltet al.(1998), with the recommended addition of 0.5 & ttumber of observations per
subject/set is 2.

If the desired width of the confidence interval fbe ICC is entered, the computation uses formu&Bonett
(2002), with the correction suggested if the nundferbservations per set is 2 and the expectedis@C7 or
more.

All sample sizes are rounded up to the next whalalver. If an expected non-inclusion rei®4) is entered,
the program multiplies computed sample sizes by

1/[1-(R/100)]
before rounding them up
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S7. NUMERICAL DATA: EQUIVALENCE TEST

S7. SAMPLE SIZES: NUMERICAL DATA:
EQUIVALENCE TEST

This module computes the number of pairs requioea test of the equivalence of the means
of two sets of paired numerical observations .sThay be useful in the planning of
equivalence tests in matched case-control studhat;hed-control parallel trials, crossover
trials, and comparisons of diagnostic or screetests.

The program requires entry of the desired signiitealevel and power, the magnitude of the
difference (between means) that is regarded aggitdgl the mean of the reference set of
observations, the expected absolute differencedstihe means of the two sets (which
must be less than the maximum difference regardeubgligible).

The standard deviation of the differences betwegreg values is also required. This should
be entered if its value is known or can be assuikernatively, the program can compute
the standard deviation. This requires entry dfezi{a) the within-subject mean square in an
ANOVA (the residual within-subject mean squaregafemoval of the between-subjects
component), if this is known (possibly from a pshkd study); or (b) the known or assumed
standard deviations of the two sets of observatimyether with the known or assumed
correlation coefficient between the two sets @@eao coefficient is entered, this will provide
a conservative estimate of sample size). The atdrdkviation of the differences (entered|or
computed) must be less than the mean value irefeesnce set.

Either set of observations may be chosen as teeergfe set, but in a study comparing new
and established treatments the established treatsmesually selected. In such studies, a
recommended definition of a negligible differensdérom 0 to 20% of the mean of the
reference set. The mean value must be positite. standard deviation of the differences
(entered or computed) must be less than the mdae wathe reference set.

Sample sizes are computed for an equivalence @asstdlon the performance of two one-
sided tests, and for a single one-sided test f@.gon-inferiority of a new treatment in
comparison with an established one).

Optionally, the program will inflate sample sizescompensate for the probability that not
all the selected observations will be includedh@a analysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dales requires entry of the expected

percentage of pairs that will be lost. This itila does of course NOT compensate for
possible selection bias.. If the expected lossbskrvations i£%, the expected loss of pairs
may beabout 2 - [L?/10000] %, and the maximal loss of larger setkhei 3.%.

METHODS

The program uses the procedure described by ChdwMamg (2001) for a crossover design using raw. data
Specifically, it uses the second set of equati@sighated as “B1” in Appendix B. The required nembf

pairs is computed by an iterative process, usieg/éin Wijnsgaarden-Dekker-Brent root-solver (Pegsa
1989: 283-286). The value 0.2 in Chow and Wargiggons is replaced y/M, whereD is the value entered
as the maximum bound of a negligible differencel Mns the mean of the reference set. The same eqgsati
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are used to estimate the number of pairs requaed bne-sided test, with appropriate changesyoifgiance
level and power (Liet al 2002; 239).

If the standard deviation of the differences isewtered, it is computed either from the withinjegbmean
square, by multiplying its square root #% (Juliouset al 1999), or from the standard deviations of the $ets
of observation (SpPand SIR) and the correlation coefficie(tt), as

V(SD,2 + SD,? - 2rSD:SDy)
(Sokal and Rohlf 1981: 573).

All sample sizes are rounded up to the next whatabrer. If an expected non-inclusion raReqd) is entered,
the program multiplies computed sample sizes by

1/[1-(R/100)]
before rounding them up
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