HOW TO USE COMPARE2

WINPEPI PROGRAMS

COMPAREZ2
MANUAL

Version 2.69

© J.H. Abramson

Revised April 16, 2012

COMPARE?2 is a WINPEPI program (Abramson 2004, 2011), ona &t of computer programs
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COMPARE?2 provides procedures for use in comparisonsf two independent groups or
samples. It may be used for analyses and meta-apsés of cross-sectional, cohort and case-
control studies, and of trials. It can handle botlhcategorical data (dichotomous, nominal or
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can analyse stratified data and can compute powema sample sizes. It has 30 modules.
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HOW TO USE WINPEPI: an ABC

A. Obtain the latest version

The latest set of WINPEPI (PEPI-for-Windows) pragsaand manuals can be downloaded free from
www.brixtonhealth.com.

B. Install

Runwinpepisetup.exélhis will put the programs and manuals in a foloeyour choice (replacing any previous
versions in that folder) and will place a WINPERIal (a “WINPEPI” icon) on your desktop. It may benvenient to
pin the Portal to the Start menu or the Taskbar.

If you downloadedvinpepifiles.zipyou will have to copy its contents to a folderyotir choice, and manually put a
shortcut tovinpepi.exeon your desktop.

C. Use the WINPEPI Portal and find the procedure yo u want

There are seven WINPEPI programs: DESCRIBE ($erin descriptive epidemiology) COMPARKEfor
comparisons of two independent groups or samplRAJRSetc (for comparisons of matched observations)
LOGISTIC and POISSON (for multiple logistic and &smn regression), WHATIS (various utilities, irdilhg a
calculator), and ETCETERA (miscellaneous proceduigach program has a number of modules (over d20)
and each module offers a number of statisticalgutaces.

Open the WINPEPI Portal, which provides accesdl i@ programs and their manuals, and to WINPEPIirsler,
which is an alphabetical index (with over 700 egd)ito the statistical procedures. The Portal giewides access to a
published overview of the programs and their teagipiotential, and to the web-site offering thedatersion of
WINPEPI. Among other options, it provides a magnij glass, for the benefit of users with pooreisor small
monitors. The Finder can also be accessed (in diPEPI| program) by pressing F9 or clicking on “Wemd'. It can
be printed for easy reference.

If you know what program and module is requirecgrothe program by clicking on it in the Portalh@tvise, open
the Finder and search for the procedure you requiree Finder will tell you what module to use.

THE ESSENTIAL REQUIREMENT IS THAT YOU SHOULD KNOW W HAT YOU WANT.

If you open the Finder and search ftultiple linear regressioty for example, you will be directed to ETCETERA
J, i.e. to module J of ETCETERA . You would thereoETCETERA and click on J.

You may be offered alternatives. Forequivalence test for proportiontor example, the FINDER will say
“COMPARE2 A, PAIRSetc A", i.e., either module A GOMPARE2 or module A of PAIRSetc. If the obseroat
are independent, COMPARE?2 is appropriate; if theypmired, PAIRSetc is appropriate.

You may have to open the programs to find what @aatiule offers. For example, a search Didgnostic tests,
accuracy of, will direct you to “DESCRIBE L1, L4, L5, PAIR&c D1, D2, D3". When you open DESCRIBE,
clicking on “L” will reveal that module L1 refere t'Yes/No” tests, and L4 and L5 to tests with ageuof results. In
PAIRSetc, modules D1, D2 and D3 (respectively)ameropriate for comparing normally-, log-normallgr,non-
normally-distributed results with a gold standard.

It is unwise to use a statistical procedure whoagse one does not understand. This manual cannot fulp this
knowledge, and it is certainly no substitute for tle basic understanding of statistics and epidemiolagal thinking
that is essential for the wise choice of methods dithe correct interpretation of their results.
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D. Open the WINPEPI program and select a module

Open the selected program, via the Portal or iskiog on its icon or name in Explorer.

You will generally be presented with a menu, frohiick you should make a selection. Some optionslmayffered
in the horizontal menu at the top of the openingae.

A data-entry screen will then appear. You may bed$o make a further choice before entering the,dad various
options may be offered At each stage, simpletieins are provided (in yellow); pop-up hints nieeyshown.
Additional help may be obtained by pressing F1llicking on “Help” in the top menu. For further infoation, the
program’s manual can be accessed by clicking omtM# in the top menu.

E. Enter the data

Two of the programs can read data files. But intriregances, data must be entered at the keyboarasted from a
text file or spreadsheet. This usually requiresmebunting and summarization, either manuallyyusing statistical
software that processes primary data.

Manual entry of data is usually easy. If entries are requirediiferent boxes, pressirgnteror Tab after entering a
number will generally take you to the next box; anessingescapewill clear the entry. If several entries are reqdi
in the same box, pre&nteror Spaceafter each entry.

Pasting data: If the data are available in a text file (e.g. alTie created by Notepad) or spreadsheet, theybean
copied to the Windows clipboard [usually by pregstrl-Insert or Ctrl-C], and then pasted into a data-entry box
[usually by pressinghift-Insertor Ctrl-V]. This can simplify data entry in boxes that rega number of entries (in
rows or columns). [Also, data can be copied frodata-entry box and pasted to a text file for fette-use; presstrl-
Ato mark it for copying.] The following instructisrcan be accessed by pressing F2 (in any WINPE@Fgm) or
clicking on“Help — Pasting”.

Precautions:

The data must be pasted into the box as a singt& bhnd not piecemeal.
There must be no missing values (e.g., empty telsspreadsheet).
The data must be in the format required in the kdth spaces between the numbers; exact alignnigheo
columns is not necessary. For examp 4566 1
20 3 132
53 11 44
If a defined number of rows is required, this numinest be entered first, e.g. in the “Number oégaties”
box.
If a column of row numbers is shown on the leftZletc.), ensure that the”1” is visible beforetjyas
The cursor must be in the top left corner of the Wwben the “paste” keys are pressed.

F. Run the program

G. Select the results you need

Do not be confused by the multiplicity of resulfau can scroll down until you find the results yoeed; and ignore
everything else. For example, if you want an oddi® rand its confidence intervals, you can igndretaer results.

WINPEPI programs offer more options than most usaiever need, and will usually display more rigsu
than are neede?OU CAN IGNORE THE OPTIONS AND RESULTS YOU DON'T REQUIRE .

On the other hand, you may find some of the otbsults helpful.
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Very often, the program will provide alternatiests and measures of effect, often with confidémeevals estimated
by alternative methods. If there is disagreemetwéen the results, you may find appropriate advidbe manual,
which describes the procedures and their usesimitdtions, with literature references..

H. (Maybe) continue the analysis

After getting the first results, it may be decidectontinue the analysis. It may, for example, éeidkd to repeat the
analysis (by clicking on “Repeat”) and make chariggbe data or the options. After performance édgistic
regression analysis, options are offered for tleeaighe logistic coefficients to compute a prolighirisk ratio, etc.

If stratified dat are entered, clicking on “Next stratum” permitérg of another stratum, and clicking on “All saat
provides a combined analysis of all the strata.il8ity, a meta-analysi€an be performed by entering a table for each

study as a separate stratum, and then pressingttatl”. (This is not necessary if summary datasaailable for
each study, so that a series of tables is not geedadule | of COMPAREZ2 might then be used.)

l. Saving the results

By default, all results (except graphs) are autaraby saved irpepi.txtin the Winpepi folder, with a warning if it
exceeds 500K. This file can be accessed via th@lP®he default procedure can be viewed or chahgericking on
“Saving” in the top menu; this also provides acdesg®epi.txt Optionally, graphs can be saved as BMP files.

Results produced during the current session aoesalged (temporarily) ipepi.tnp, which can be viewed by clicking
on “View” in the top menu.

The results of a single analysis can be saved rigwafile) by clicking on “Print or save” or “Priht

J. Adding comments

Click on “Note” (in the top menu) to add a notehe previously-shown results, for saving with thsults inpepi.txt

K. Printing the results

The results of an analysis can be printed by aligkin “Print or save” or “Print”. Graphs can brnped at low or
high resolution. Also, selected results can betpdifrompepi.txt

L. Pasting the results to a text file

All results shown on the screen are automaticalfyied to the Windows clipboard, from which they tenpasted into
a Microsoft Word or other text file (preferably fdisplay in a Courier or similar font, to ensureger alignment of
tabulated results). Optionally, graphs can be abmehe clipboard, replacing the results.
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Notes

The programs are 32-bit applications, written vidglphi 5, and will run in any version of Microsaftindows
(including Windows 7), except Windows 3. They te&nrun from a portable device such as a USB flaiste g

The manuals that accompany the programs requri@Fareader, such as Adobe Acrobat or Foxit Reader.

The programs and manuals refer to dichotomousMasaas “Yes-No” variables, and to interval- oiaacale
variables as “numerical”.

P-values derived frormandt functions are generally correct to five decimalgals, those based ohi-square, to four
decimal places, and those based orFthenction to three decimal places.

WINPEPI does not adhere strictly to the conventidiedinitions of ‘risk” (ratios with count denominators. e.g.
prevalence) anttate” (ratios with person-time denominators, @nrcidence density), except when the distinction is
important. Risks may be referred to as rates vthisris unlikely to cause confusion.

A DO-IT-YOURSELF THREESOME

1. PLANNING A STUDY : “Research Methods in Community Medicine: Sury&idemiological Research,
Programme Evaluation, Clinical Trials” (J.H. Abraonsand Z.H. Abramson), sixth edition, 2008. JohheW& Sons.

2. ANALYSING THE FINDINGS : The WinPepi suite ofomputer programs for epidemiologists, with their
manuals. Can be downloaded free fremvw.brixtonhealth.co

3. INTERPRETING THE RESULTS : “Making Sense of Data: A Self-Instruction Manoal the Interpretation of
Epidemiological Data” (J.H. Abramson and Z.H.Abrams third edition, 2001. Oxford: Oxford Universigress.
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COMPAREZ2’'S MODULES: a guide

Modules A to Eanalyse tables (e.g. 2 x 2 tables) that comparedberrence of ares-No
dependent variablé.g. a disease or an outcome) .

*« Modules A, B, and Care appropriate if the denominators are numbeisddfiduals, but they are not appropriate for
person-time denominatordlodule A can be used for any 2 x 2 tahteodule B is preferable in studies that focus on
risks (e.g. cases per 1,000) rather than propati@mdmodule Cfor comparisons of cases and controls.

. Module D is designed for studies using person-time denadimigaa

¢ Module E is designed for studies using cluster samples.

Modules F andG compare the occurrence oflapendent variable that has more than two
categories, irtwo independent groups or sample.

¢ Module F comprisesnodule F1 for nominal categories) amdodule F2 (for ordinal categories).

¢« Module G is designed for case-control studies in whichetkigosure variable has more than two categories.

Module H compares the occurrence ofi@merical (i.e. interval-scale or ratio-scale) deplent
variable, in two independent groups or samples.

All the above modules can analydteatified data After entry of a table for each stratum, they can
analyse the combined data as well as the datatdr €ratumMeta-analysesan be performed by
entering the table for each study as a separateistr

Module | is designed for meta-analyses in which summary ded already available for each
study, so that it is not necessary to enter asefiéables. It can also compute a weighted mean of
set of simple proportions.

Module M (accessed by clicking on “Misclass” in the top mneappraises the possible effect of
misclassificatioron a 2 x 2 table.

Modules P1to P4 (accessed by clicking on “Power” in the top meestjmate thgpowerof
various tests.

Modules S1to S12(accessed by clicking on “Sample size” in thertggnu) estimate theample
sizesrequired for various tests.

The options include:

Equivalence testlor “Yes-No” variables (irModule A).
Inclusion ofmissing datan analysis of a 2x2 table (Module A).
Attributable/prevented fractionsn Modules Bto E, andG).
Partitioning of chi-squargin Module F).

Comparison osurvival timegin Module H)

Drawing of aforest plot(in Module I).
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A. COMPARISON OF PROPORTIONS OR ODDS
(analysis of 2 x 2 tables)

This module can be used to analyse any simple 2onfingency table that shows the findings in
two independent groups, or a series of such tabf@esenting the findings in different strataror
different studies. The data may be derived fronolaservational study (cross-sectional or coho
or from a trial. The program can handle data cttié byinverse samplingsee below).

This module is not appropriate for person-time dtdawhich module D of this program should
chosen). Module B is to be preferred in studies thcus on rates (e.g. cases per 1,000) rather
proportions, or if measures of impact (e.g. attabie fractions) are required, or the numbers thg
are needed to avoid or produce one case. Modidgfeferable for comparisons of cases and
controls with respect to their exposure to a risprotective factor.

Data may be entered in a 2 x 2 table format, ewaserators (case frequencies) and denominat
or as proportions and denominators. In a tablevsigthe relationship between two variables,
there is an option for entering the number of migsialues (for one variable).

For stratified data enter the table for each stratum in turn, and tiek on “All strata’ to obtain
the combined results, which permit appraisal efdhsociation while controlling for confounding
effects of the stratifying variable or variablesgdassessment of heterogeneity. oreda-analysis
enter the table for each study in turn (as a sépatratum), and then click oAlf strata’ to
compare and combine the results in separate studies

To compare the changes observed in two group$éaiae-after studwith independentbefore”
and“after” observations, enter the before-after table fohegoup in turn, and then click oAl
stratd’ for heterogeneity tests.

Foreach tableentered, the program providesact probabilities (Fisher's, mid-P and continuity-

corrected)chi-square tests of associatignan optionakquivalence test and several measures of

association, theatio of proportions (with confidence intervals by the log-transforratand Zou-
Donner methods), theifference between proportions (with confidence intervals computed by é
large-sample method and Wilson’s score method)edks ratio (with Fisher's exact, mid-P exac
and Cornfield's confidence interval¥)ile's Q, phi, phi-squared,lambda, andCohen’sw. If the
numbers omissing valuesfor one variable are entered the difference batvpeeportions (with
respect to the other variable) is estimated by adjmn.

For aseries of tableghe program computexact probabilities (Fisher's and mid-P), Mantel-
Haenszeltest, an optionatquivalence test, heterogeneity tests and measuresstimators of the
overall ratio of proportions, difference between poportions, and odds ratio (with their
confidence intervals), thend test for the odds ratios, and (for usenmreta-analysisg¢stimates of
thefail-safe Nand twotests for a skewed funnel plo{suggesting publication bias) .

For studies in whicinverse samplingwas used, the program provides a large-samplé&iseyrce

test and estimates the difference between propaitibe ratio of proportions, and the odds ratio.

The program can be used to testdoper-superiority.

i
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Exact probabilities

For each table, the program computes P-values lmaseract tests, conditional on marginal totals.
A number of results are provided, since there isgrsensus as to the best method of computation
(Armitageet al 2002: 136-137). If these results lead to confilg conclusions, inferences may
require careful consideration. Ludbrook (2008) reotends use of a chi-square test rather than
exact tests if the study is based on a random sadfifa defined population (without predetermined
column or row totals in the 2 x 2 table), sinceatasts are then too conservative.

One-tailed P-valueare shown for each tail — first assuming thatdinection of the findings is
consistent with the study hypothesis, and thenmagguthat the findings point in the opposite
direction. Fisher's P the one-tailed value usually used, is the condatigmobability of the
observed number of individuals, or of any more@&xie number, in the relevant direction.(oéa
larger number if the observed number exceeds chexpectation, or of a smaller number if the
observed number is less than might be expectetidnyce). Fisher's P has a conservative bias,
which may be important when sample sizes are sniéié other one-tailed values shown reduce this
bias —-mid-P estimateghalf the probability of the observed number, phesprobability of a more
extreme number) andontinuity-corrected estimat¢®verall 1990). A mid-P value "does not
guarantee that the Type | error rate falls beldiweal value. However, it usually performs well asd
less conservative than Fisher's exact test" (Agt896: 43); its performance approximates thanof a
unconditional test (Lydersezt al,2009), and its use is supported by many stafisscincluding
Armitageet al.(2002: 120), who recommend that both the Fistardthe mid-P value should be
given but with more emphasis on the latter.

If the Fisher exact test “doesn't quite make ithat is, if Fisher's one-tailed P-value (basedhen
probability of the observed number or a more exé&umber) lies above a critical level (0.05,
0.01, 0.005, or 0.001), but the P-value basedysoleimore extreme findings falls below this
significance level —the program appliescher's testwhich is a more powerful modification of the
Fisher exact test. The test uses a random numlakercide whether probabilities that are exactly
equal to that of the observed constellation shbeltbken into account;. If the test is repeated, i
will use a different random number and may giveffeient result.

Six two-tailed P-valuedased on exact tests are displayed: Fl3her's two-tailed® is the sum of
the probabilities of all sets of possible findirfgsether the number of exposed cases is smaller or
larger than the observed number) that have spguibicabilities that do not exceed the probability
of the observed constellation. This estimate ha@naervative bias, and is very sensitive to small
perturbations in the table (Dupont 1986). It hasrbeferred to as a two-sided test carried out by
Irwin’s rule (Cormack and Mantel 1991; Campbell ZRD@Campbell (2007) , who recommends the
routine use of Upton’s modified chi-square (“N —cHi-square) except in samples where the
expected number (under the null hypothesis) inasrmaore cells is under 1, recommends use of
Fisher’s two-tailed P in these exceptional cas®sDouble the one-tailed Fisher'sfBr the
observed direction (Dupont 1986, Mantel 1990), Wwhgcrecommended by some statisticians, is a
conservative estimate that is usually close toslee provided by Yates's correction to the chi-
square test; a significant result is strong eviddnc a difference in the observed direction
(Armitageet al.2002: 136). (3). Theid-Ptwo-tailed valuds the sum of probabilities (of specific
configurations) that are smaller than the probghdf the observed configuration, plus half of the
probability or probabilities that coincide with tpeobability of the observed configuration (4).
Doublethe mid-P one-tailed valugthe use of this P value is suggested by Rothh@86; 162). The
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program also computes (5) tbentinuity-corrected two-tailed Bnd (6)double the continuity-
corrected one-tailed P

Lydersen et al. (2009) recommend more use of examinditional Fisher's tests rather than the
exact conditional Fisher's tests provided by thiglate, but point out that the exact conditional
mid-P test and (in large samples) Pearson's claregest (both provided by this module) give
results very similar to exact unconditional testiey suggest that the traditional Fisher's e>exstt t
and Yates's correction to the chi-square test shonalctically never be used.

For aseries of tablegall strata”), the program computes one-taifésher andmid-P probabilities,
and doubles them to obtain two-sided P values. yMgatisticians prefer the mid-P value when
results from several studies are combined (Armittgd. 2002: 137, Barnard 1989).)

Chi-square tests of association

For each table, a simple chi-square test of asgsotiss performed, supplemented by tests with
Yates's, Upton's, and Haber’s corrections to ovascthe slight anticonservative bias of the
uncorrected value. Yates's correction is criidiby many statisticians on the grounds that a test
that uses it is too conservative, with an increasddof a type Il error (failure to reject the hul
hypothesis when, in fact, it is false). The otfgnaller) modifications may be preferred; Zar
(1998: 494) calls Haber’s correction (as modifigddhent) “excellent”. If the tests lead to
conflicting conclusions, inferences may requires@drconsideration. On the basis of computer-
intensive tests, Campbell (2007) recommends thin®use of Upton’s adjusted chi-square (also
called the “N-1" chi-square), unless the expectachiner (under the null hypothesis) in one or more
cells is under 1, when he recommends use of Fsh&o-tailed P carried out by Irwin’s rule.

A likelihood-ratio chi-square test (@est) is also performed, with and withoutYatesisrection.
Chi-square tests may be misleading if the expeceepiencies (under the null hypothesis) are too
small. The program displays warnings if therecslés with expected frequencies of less than 5
and less than 1. Upton’s chi-square is appropifiate expected value is below 1 (Campbell
2007).

Mantel-Haenszel test

This overall test of association controls for aanfding effects of the stratifying variable or
variables — e.g. of age and sex if the strata sgmtedifferent age-sex groups. In a meta-analysis,
is an overall test, controlling for the differendegween the studies.

The test is performed with and without a contingityrection. It is usually applied without a
continuity correction.

The Mantel-Haenszel test is valid even for spaede,grovided that overall numbers are sufficient.
A message is displayed if the overall numbers@estnall to warrant use of the test.

Heterogeneity tests and measures
For stratified data (i.e., a series of tables),gtagram providebeterogeneity testor the ratios of

proportions, the differences between proportiond,tae odds ratios in the different strata. These
tests should be interpreted with caution, since fhewver is low; if the result is significant ateth

10
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0.05 level, the hypothesis of homogeneity can feeted; but “a high p-value ... does not show that
the measure is uniform, it only means that heteveige ... was not detected by the test” (Rothman
and Greenland 1998: 276); the larger the stragantbre valid the test.

The program also provides tweeasures of heterogeneiby andl-squared with their approximate
95% intervals, for the ratios of proportions, thiéedences between proportions, and the odds ratios
An H value of less than 1.2 suggests absence of nateywieterogeneity, whereas a value
exceeding 1.5 suggests its presence, even if teedgeneity test is not significantsquared
expresses the proportion of variation that canttsioated to heterogeneity (in a meta-analysis, to
interstudy variation) rather than to sampling error

Estimates of the supposed common underlying vditigearatio of proportions, the difference
between proportions, and the odds ratio (see bedosvdf questionable value if the findings in the
various strata are very disparate. If the resurksnot uniform, explorations of possible causes —
e.g. associations with study design or quality ihwhe sizes or other characteristics of the
samples — may be revealing

The uniformity or heterogeneity of the measurethendifferent strata can be appraised not only by
these tests and measures, but by plotting the valoe their confidence intervals graphically, and
comparing them.

Equivalence tests

Equivalence tests are offered, for use in apprgifie similarity of two proportions. These tests
may be indicated if no statistically significanffdrence between the proportions has been found,
e.g. in "negative trials" comparing a new treatmeitih an established standard treatment, where
there may be a reason to prefer the new treatrhi#ms iat least as effective as the standard
treatment.

If equivalence tests are requested (by using @teetk here for equivalence téstsstruction) they
will be done for the table entered and for subsetsiata.

The bound of “equivalence” must be defined, by gpieg the largest difference between
proportions (e.g. 0.05) that is to be regardedeagigible.

Two one-sided hypotheses are tested: these alg/plogheses that there is more than a specified
"negligible" difference in a specific direction 2. (a) that the first proportion is (more than
negligibly) larger than the second proportion, éndhat the second proportion is (more than
negligibly) larger than the first proportion. If thoof these tests (ohon-inferiority’) yield

significant results, both these hypotheses aretegjeand the results imply that both the one-sided
differences are negligible — that is, the propaiare equivalent. If only one test is significahis
indicates that one proportion is at least as hgyfi.a., "not inferior to") the other.

A non-significant result means that equivalence@ proven”. Non-significant results may be
attributable to small sample size. If the two pmdjeos differ by less than the defined “negligible”
difference, and they are not significantly differéoy the chi-square test with Yates’s correction),
and the equivalence tests are not significantptbgram reports the sample sizes needed to detect
equivalence.
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As an alternative way of testing for equivalencs® is also made of the 90%, 95%, and 99%
confidence intervals for the difference betweenpprtions. If the confidence interval falls
completely within the “negligible” range frond{minusd) to d (whered is the defined negligible
difference between proportions), this rejects thlehypothesis that there is no equivalence. If the
confidence interval is (for example) the 95% Ga tivo-tailed P is 0.05, corresponding to a P vafue
0.025 for the one-tailed tests.

Ratio of proportions

For each table, the program displays the ratilv@faroportion in group A to the proportion in
group B, with its standard error and 90%, 95% &@fb @onfidence intervals. This ratio is likely to
be of interest in epidemiological studies of caasalociations. The confidence intervals are
estimated by the traditional (log-transformatiorgthod and by the procedure described by Zou
and Donner (2008). Confidence intervals are notoeded if one of the proportions is zero.

The program also displayewell's low-bias estimat&f the ratio of proportions in the population,
which draws attention to the tendency for the ratia sample, especially a small one, to
misrepresent the true ratio in the population regméed. A disadvantage is that this estimator is
affected by the direction of computation: the reagal of the A:B estimator is not the same as the
B:A estimator.

Difference between proportions

For each table, the program displays the differdrateeen the proportions (the proportion in
group A minus the proportion in group B), with stendard error and 90%, 95% and 99%
confidence intervals computed by three differenthoeés.

This difference is likely to be of interest in skeslof the magnitude and economic aspects of public
health problems. The confidence intervals arenedd by Fleiss's procedure (appropriate for
large samples only), and by Wilson's score methaithout and with a continuity correction. The
latter methods are said to have advantages ové&ilelss intervals (Newcombe 1998).

Odds ratio

For each table, the program displays the odds (tteoratio of the odds in group A to the odds in
group B, with its reciprocal), its 90%, 95% and 96éfifidence intervals (Cornfield's intervals, and
exact Fisher's and mid-P confidence intervals),anddjusted estimate of the odds ratio (after
adding 0.5 to each cell frequency).

It also displayslewell's low-bias estimataf the odds ratio in the population, which drawsraion

to the tendency for the odds ratio in a sampleg@ajfly a small one, to misrepresent the true odds
ratio in the population represented. A disadvamiadghat (unlike the ordinary odds ratio) this
estimator is affected by the direction of compuatatithe reciprocal of the A:B estimator is not the
same as the B:A estimator (Walter and Cook 199ht&d 992).

The odds ratio is likely tbe of interest in epidemiological studies of caasslociations.
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Overall ratio of proportions, difference between pr oportions, and odds ratio

For aseries of table (“all strata”), the program computes three edtimsaof theoverall ratio of
proportionsandof theoverall difference between proportiorfprecision-based, Mantel-Haenszel,
and DerSimonian-Laird estimators, with 90%, 95% 88% confidence intervals), and four
estimators of theverall odds ratio(conditional and unconditional maximume-likelihoestimators,
a Mantel-Haenszel estimator, and a DerSimoniandLestimator, with 90%. 95%, and 99% exact
Fisher’s, exact mid-P, Mantel-Haenszel, CornfielaH(Gand Dersimonian-Laird intervals). The
unadjusted valuefased on the pooled data, without taking theiBtaion into account) are also
displayed, for comparison.

The ratio of proportions and odds ratio are likelye of interest in epidemiological studies of
causal associations, and the difference betwegoprions is likely to be of interest in studies of
the magnitude and economic aspects of public heatthlems.

These estimates of the supposed common underlgings, and their confidence intervals, should
be treated with caution if the findings in the wvas strata are very disparate. The heterogeneity
tests have a low power, and are unreliable withllSneguencies (Rothman 1986: 223).

The estimators other than the DerSimonian-Lairohnedgbr are based onfixed-effect modeivhich
assumes that the strata provide estimates of the sae effect.The precision-base@stimators

are weighted means, using the reciprocal of theweg in each stratum as the weight for the
stratum when the data are pooled, and are apptepiriiie sample in each stratum is large; strata
that have a zero proportion do not enter into e#leutation, and an appropriate message is shown.
TheMantel-Haenszetstimators are applicable even when there aresepiata in each stratum.

The DerSimonian-Lairdestimator is based onrandom-effectsnodel, which assumes that the
strata provide estimates of randomly differing efife The variation between strata is taken into
account, resulting in wider confidence intervald armore conservative significance test. The
random-effects model gives more weight to smallliets; and may be inappropriate if sample sizes
are very small. Some investigators use it whenxplagned heterogeneity is present (Fleiss and
Gross 1991, Petitti 1994, Whitehead and Whiteh&@d )l “In essence,” say Rothman and
Greenland (1198: 668), “a random-effects model argbs a doubtful homogeneity assumption for
a fictitious random distribution of effects . Thdvantage ... is that the standard errors and
confidence limits ... will more accurately reflectcertainty about unaccounted-for sources of
variation”. The Dersimonian-Laird estimator ig dgsplayed if this procedure does not increase
the variance. A chi-square test appraises whéleegstimator differs from zero.

Trend test

The trend test examines the trend of the oddssratisuccessive strata (in the sequence in which
the strata were entered). A low P value indicategstematic increase or decrease.

Yule's Q, phi and lambda

Yule'sQ (and its significande phi andlambda(measures of association) are displayed for each
table.

Yule's Q(Zar 1998:404) ranges from 0 (no association) coinplete positive dependence) or -1
(complete negative dependence). In a 2 x 2 taldesiquivalent to thgammacoefficient.
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Phi (Zar (1998: 403) ranges from -1 (complete inverseethdence) to +1 (complete positive
dependence); 0 indicates no association. It islisplayed if the expected frequency in one or
more cells is <5. In a 2 x 2 talpéi is equivalent to Cramer's coefficigtitandphi-squared is the
coefficient of determination.

Goodman and Kruskallambda Siegel and Castellan (1988: 298-303) is a coeffitcof

forecasting efficiency that expresses the capacipne variable to "predict” the other. Itis an
assessment of the proportion of incorrect predisticoncerning one variable that would be
prevented if information about the other variabbsvavailable. Twéambdastatistics are
computed; one refers to the prediction of the \deiavhose categories are “Yes” or “No” when it
is known to which group (A or B) the individual bags, and the other refers to a prediction in the
reverse directionLambdaranges from O (if the one variable is of no halpiedicting the other)

to 1 (if the one variable perfectly specifies tlagegories of the other).

Unlike Yule'sQ (and the odds ratiophi andlambdavary with the relative sizes of the two groups
that are compared, and should in general be udgdfdnese groups together make up a defined
population, or comprise a representative sampéedsfined population. The valuesphi and
lambdaare then applicable to this specific population.

Cohen's w

Cohen'sw is an effect-size index that expresses the stnesfghe association between the row and
column variables. It is computed from chi-squang ®hen's criteria, 0.5 or more indicates a large
effect size, 0.3 or more (but less than 0.5) inéEa@ medium effect size, and 0.1 or more (but less
than 0.3) indicates a small effect size (Cohen 1998hen (1988) warns that these criteria should
be used only when there is no better basis fouatain. An adjusted, controlling for the size of
the table, is also computed, as suggested by ShExK7: 658).

Fail-safe N

Estimates of the fail-safe N are provided for usmeta-analysesas rough guides to the possible
importance of the "file drawer problem", i.e. theckision of studies that were not published or
were not found for other reasons.

The program computes the numbers of new "null"isgithose with an odds ratio or risk ratio of
1) that will suffice to bring the overall odds ask ratio to a negligible level (0.8, 0.9, 1.1 02}l

No account is taken of P-values or the size ohtliestudies.

Fail-safe N estimates based on the P-values imaheus studies are provided by module | of this
program.

Tests for a skewed funnel plot

Two tests for a skewed funnel plot are performedute in meta-analysis. The tests, which
examine the association between the sizes of fhetgfin the component studies and their
precision, are theegression asymmetry tesmtd theadjusted rank correlation test.

In each test, a low P value suggests posgiblidication bias although the "small-study effect”

(Sterneet al. 2000) that it indicates may have some other causdy as the use of higher-risk

14



A. COMPARISON OF PROPORTIONS OR ODDS

subjects in smaller studies, resulting in an assiori between sample size and the effect under
consideration.

Both tests have a low power if they are based wctamponent studies. The regression
asymmetry test is generally more powerful (Egggeal. 1997; Sternet al 2000). A critical P level
of at least 0.1 should be used for both tests.

Missing values

An option is provided for entry of the numbers aésing values of one variable. This may be
appropriate in a 2x2 table that shows the relalignsetween two variables (A and B), the
numbers of missing values of variable B being etteimputation (i.e., estimation of what would
have been observed had the values not been missithgdn used, in order to estimate the
proportions of "A yes" when B is "yes" or "no", atiee difference between these proportions. This
procedure is not appropriate for a comparison e$@ected groups, where the categories of
variable A are (for example) “cases” and “contiols

The procedure assumes that the probability of beiisging (“missingness”) of information on B is
dependent only on the value of A, and the resuétg be misleading if it also depends on the true
value of B. There is no need for the procedutmigsingness” is completely random, since the
observed data can then be expected to provide setbiasults.

The program compares the proportions of missingegsivhen A is “Yes” or “No”, in order to
confirm that these proportions are significantlifetent. It then compares the proportions of

“A yes” when B is "yes" or "no" (using imputatiorgnd (using the observed data only) the
proportions of “B yes” when A is "yes" or "no", attte odds ratio. A 95% confidence interval is
computed in each instance

Inverse sampling

Inverse sampling refers to the addition of subjéztsach group (A and B) until the group contains
a prespecified number of cases (i.e., subjects‘Widls” findings). This method of sampling may
be chosen because cases are rare. Since the@addisubjects to a group stops as soon as the
required number of cases has been found, this méshappropriate only if subjects are accrued
sequentially, and their exposure status can berdeted rapidly. The program providesaage-
sample significance teghedifference between proportigrthe ratio of proportionsand theodds
ratio. In some instances, zero frequencies prevent atanpn of the large-sample test and the
standard error of the difference. The computatemesomitted if either denominator is less than 3.

Super-superiority
For a test of Super-superiority", i.e. to see whether proportion A is larger byrenthan a given
amount (for example, in a comparison of cliniceaatments, larger by at least a pre-defined

“clinically important” amount) than proportion Broportion B should be inflated by this amount
before entry. A one-tailed test should then be used
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METHODS

Exact probabilities (single table)

Theexact testare based on the conditional probabilities, utikdemull hypothesis (given the marginal frequengies
each possible number in a specific cell. Basimfdae are provided by Zar (1998: 545-555) and rfft-P) by
Rothman and Boice (1982: 25); or see GahlingerAmdmson (1995: 36-37). In the computation, 3ty
approximation is used in computing the logarithrhfaotorials for large numbers (Rothman and Boi882 26).
Siegel and Castellan (1988). Code provided by &y 8mons (from his STAT22) formed the basis ofgthecedure
employed here. The two-sided mid-P value is Fisheit-P value minus half the probability of the etved
configuration or (if there is another possible dgumfation with the same probability as the observefiguration)
minus the probability of the observed configuratidrhe exact tests are not performed if the numaerdarge (the
program cannot compute factorials for numbers aldg\&1).

Overall’'s continuity-corrected B described by Overall (1990).

ForTocher's tes{Tocher 1950, Siegel 1956: 101), a random propoRidetween 0 and 1 is selected, and if this falls
below a critical level the null hypothesis is reget The critical level for any giveaipha (0.05, 0.01, etc.) is

(alpha- XP) / OP
where  OP = the conditional probability of the atveel number of exposed cases

XP = the sum of the conditional probabilities fdrraore extreme numbers of exposed cases
The random proportioR is computed by the inbuilt Turbo Pascal procedumagmented by an additional randomizing
shuffle using the algorithm of Bays and Durham ¢Bet al 1989: 215-217), followed by the use of the foraul

frac(982R + 0.211327).

Exact probabilities (set of tables)

The computation of exact probabilities for stratifidata is sped up by the employment of an effi@égorithm for
calculating the coefficients of the conditionaltdtsution (Martin and Austin 1991, 1996), using eddom David O.
Martin's public-domain EXACTBB program.

Pearson’s chi-square test of association

The usual formulae are used for Pearson’s chi-sqgiest without and with Yates’s correction (Zar 8983-494:

formula 23.6 and 23.7 respectively). Formula 23sliised for the log-likelihood chi-square testewtthere is a zero
frequency he zero is changed to 0.0000001; aropppte message is displayed.

Upton's chi-squaréUpton 1982; D'Agostino 1990) is the Pearson duiase multiplied by(N - 1) /N
where N = sample size.

Haber's corrected chi-squafgélaber 198) as modified by Ghent, is described by Zar (1988t).

Mantel-Haenszel test
The formula for the Mantel-Haenszel chi-squareres/jgled by (nter aliog Rothman (1986: formula 12: 58).

The criterion used to determine whether the sasipks are sufficient to warrant use of this tegiét the sum of the
expected frequencies in each cell of the 2 x Ztahlst be not less than 5 (Fleiss 1981: 175).

Heterogeneity tests and measures

Theheterogeneity chi-square testse formulae 12-60 of Rothman (1986) for ratiopr@iportions, Rothman’s formula
12-59 for differences between proportions, and tdar10.35 of Fleiss (1981) for odds ratios.

Themeasures of heterogeneitil andl-squared are described by Higgins and Thompson (2062)s computed by
Higgins and Thompson's formula 6, and increaseld todicating absence of heterogeneity, if it lgsmn 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed fréimby formula 10.
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Equivalence tests

The Westlake-Schuirmann test of equivalence isopexéd, with a continuity correction. This involves one-tailed
tests. The method is described in detail by She@07: 691-696). It replaces the method usedhitieg versions
(before ver. 2.29) of COMPARE2.

The sample sizes required to detect equivalenceaanputed by Sheskin’s formula 16.51, with the caiity
correction described on the same page (p. 697)renddjustment for 1-tailed tests (p. 698). Poweseit at 70%. 80%,
and 90%.Alphais set at 0.05.

The use of the confidence intervals for the diffeis explained by Sheskin (pp. 693-94). Fleissge-sample
interval (with continuity correction) is used fdrig purpose (Fleiss 1981: formula 2.14).

Yule's Q, phi and lambda

Yule'sQ can be calculated from the odds r@@e: Q = (OR- 1) / (OR+ 1).1f Q is not 1 or —1, its significance is
tested by formula 16.24 of Sheskin (2007).

Phiis computed by formula 19.61 in Zar (1998), damtibdaby formulae 9.37 and 9.39 of Siegel and Cast€[l288).

Cohen's w

Cohen's wis computed by the formulsv = v (chi-square N) (Volker 2006: formula 17)
whereN = sample size.
The adjustedv controls for the size of the table, using the mdttlescribed by Sheskin (2007: 658)

Ratio of proportions

Standard errors and log-transformation-based aamdilintervals for the ratio of proportions amnpated by formula 12-9
of Rothman (1986); this is formula 4.1 of Lui (2086). Confidence intervals are also estimayeithd method described
by Zou and Donner (2008), based on the Wilson denfie intervals for the two proportions..

Jewell's low-bias estimataf the ratio of proportion A to proportion B (Jeli\1986) is
proportion A/ p+1)/ B+ 1)|
where b andB are the numerator and denominator of proportion B.

Difference between proportions

Three sets of confidence intervals are computedifierences between proportions: continuity-cdeddntervals calculated
by Fleiss's procedure (Fleiss (1981: formula 2\Hjch is appropriate for large samples only, avalgets using Wilson's
score method (Wilson 1927), one without and onk aitontinuity correction. The latter two methadsdescribed by
Newcombe (1998) as methods 10 and 11. Formula@lpcbby Newcombe and Altman (2000: 49-50) are fmehethod
10, which is the same as the method described bw#d Donner (2008) in their formulae 1 and 2.rRethod 11, the
program computes the upper and lower confidengts lzfithe two proportions by formulae 1.26 and7lofFleiss (1981
14), and substitutes them for 11, 12, ul and ulemcombe's formulae for L and U.

Odds ratio

The computationf exact confidence interveflsr the odds ratios uses the network algorithidelita et al. (1985). Itis
based (with permission) on Turbo Pascal code wiityeEduardo Franco and Nelson Campos Filho, azilmgA. Ray
Simons in his EPIDORCS program. There may occallydme inconsistency between the test resultstang.l.s (e.g., the
95% C.I. for the odds ratio may straddle 1 wheretkact two-tailed P is < 0.05) because of diffezerin inferences from
asymmetric sampling distributions, even thougheakeand the C.I. are derived from the same madiglifgs 2009).

Cornfield's approximatiomo confidence intervals for the odds ratio is categ by an iterative procedure described by Fleiss
(1979) and by Fleisst al (2003,pp 116-118). Since the Cornfield estimatesonditional on the marginal totals, the lower
confidence limit may exceed zero even when therebdedds ratio is zero. In such instances theidimit is displayed as
zero, and in the reverse situation the upper igwisplayed as infinity. The accuracy of thereates is checked by the
Mantel-Fleiss test (formulae 15.18 and 15.19 inriklaumet d. 1982).
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Jewell's low-bias estimataf the odds ratio is described by Jewell (198@)he standard error of the log odds ratio is
computed by formula 5.33 of Fleiss (1981: 67).

Overall ratio of proportions, difference between pr oportions, and odds ratio

For theoverall ratio of proportionstheprecision-baseestimator and its confidence intervals are basefdionulae
12-10, 12-11 and 12-46 of Rothman (1986). Wtantel-Haenszedstimator is computed by formula 12-27 of
Rothman (1986), and its standard error and condiel@ne based on formulae provided by GreenlandRaiihs

(1985). Inthe DerSimonian-Lairghrocedure (DerSimonian and Laird 1986) the lothefratio of proportions for each
stratum, and its standard error, are computed etfi@nging any zero proportion to 0.0001

TheQ statistic, which plays a central role in the ctdtion, is based on the data for separate stratatenMantel-
Haenszel estimator. @ + 1 is less than the number of strata, the randffetts approach does not change the results.

For theoverall difference between proportigriee precision-base@stimator and its confidence intervals drased on
formulae 12-8 and 12-51 of Rothman (1986). WMamtel-Haenszetstimatotis based on formulae provided by Greenland
and Robins (1985), and the standard error is cadpyt the method described by Sato (1989). DeeSimonian-Laird
procedure is described by DerSimonian and Laird619BheQ statistic, which plays a central role in the cldton, is
based on the data for separate strata and the Mée@szel estimator. @ + 1 is less than the number of strata the
random-effects and fixed-effect models yield idegitresults.

For theoverall odds ratipthe computatioof exact confidence intervatssped up by the employment of an efficient
algorithm for calculating the coefficients of thenditional distribution (Martin and Austin 1991,98), using code from
David O. Martin's public-domain EXACTBB program.dinaximume-likelihoodstimates are described by Rothman (1986:
194-195) and Rothman and Boice (1982:5-6). Nlhatel-Haenszeatstimator of the common odds ratiois estimated by
formula 10.47 of Fleiss (1981), and the estimatibits confidence intervals is described by Rolreslow and Greenland
(1986) and by Rothman (1986: 219-220). Thenfield-Gartprocedure for confidence intervals is describeélbiss
(1979); its computation incorporates a continuiigrection (Fleiss 1979: 171-172). TherSimonian-Lairgorocedure
described by Fleiss and Gross (1991) is usedthisgpurpose the log odds ratio for each stratunchjta standard error
, are computed after adding 0.5 to each cell iRtk table (Fleiss 1981: 165-166). The Q statishich plays a central
role in the calculation, is based on these reanlis as suggested by Petitti (1994: 111-113), @Mimntel-Haenszel estimate
of the common odds ratio. Chi-square is

(DL / SE)?
where DL is the DerSimonian-Laird estimator and

SE is its standard error.
If Q + 1 is less than the number of strata, thdwameffects and fixed-effect models yield identiesults.

Trend test

The trend test is based on a comparison, in egathrst between the observed findings and the fiysdimedicted by the
maximum likelihood estimate of the common odd®rdthe method described by Breslow and Day (19803éd (formula
4.31 and pp. 142-146). The successive strataar gcores of 1, 2, 3, etc.

Fail-safe N

The fail-safe N is computed by the following formulvhich is derived from Orwin's effect-size foren(Drwin 1983;
Hedges and Olkin 1985, formula 9, p. 306; or lyeaga Greenhouse 1988, formula 5):

Fail-safe N = k[abs(R) - abs(C)] / abs{C}
where k= No. of studies included in the analysis

R = log of the overall odds ratio or riskaa

C =log of the chosen "negligible value" [0.8, A.9, or 1.2).

Tests for a skewed funnel plot

Theregression asymmetry t¢&igger et al. 1997) uses linear regression.giesses the standard normal deviate (SND),
defined as the effect measure divided by its stanef@or) against precision (the inverse of thedsed error of the effect
measure). In both this test and the adjusted ramklation test, the measure of effect is the fdg®odds ratio; the adjusted
odds ratio (0.5 added to each cell) is used ibtgs ratio is zero or infinity. The regressionatiun is

SND = intercept b x precision.
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In the absence of bias, an intercept of zero is@®gg. The program reports the intercept and#s €onfidence interval,
and tests its difference from zero; two-tailed Bisplayed. The usual formulae for least-squamneai regression are used
(e.g. Woolson and Clarke 2002: 309-311; Zar 19@8nfila 17.21).

Theadjusted rank correlation tefBegg and Mazumdar 1994) uses Kendall's ranklatioe (Siegel and Castellan 1988:
245-54) to appraise the association between ths sfzhe effects in the component studies (afstrstandardizing these
effect measures) and their standard errors. latikence of bias, &u of zero is expected. Allowance is made for tiegthe
computation. If there are 30 or fewer componertiss, tables of critical levels for one-tailed B.85, 0.025, 0.01, and
0.005 (Siegel and Castellan 1988: Tables Rl andardlused. If two-tailed P exceeds 0.01 accotditigese tables, and for
larger samples, a Z test (making allowance foy iessed (Armitaget al..2002: 290). The two-tailed P value is displayed.

Inverse sampling

The large-samplsignificance testor the difference between the two groups uses$aimaula (Lui, personal
communication)

z=[absU) - 0.5 * (1 /DenA+ 1 /DenB]/ vV

where U = the uniformly minimum variance unbiased estinwtthe difference between proportions (Lui 2002} 3
= kA-1)/(DenA-1) - xB- 1)/ DenB- 1)
V (variance) 3p(1 -p) [(1 / (DenA- 2) + (1 / DenB 2)]
p=(XA+xB-1)/DenA+DenB- 1)
xA andxB = numbers of exposed subjects in samples A aresgectively
DenAandDenB= the numbers in samples A and B respectively.

For thedifference between proportiorthe program displays a standard error based opabled proportions (i.e., the
square root of/), an unbiased estimate of the differend® @nd confidence intervals estimated by formu8¥ 2f Lui
(2004: 32) or (if there is a zero numerator) byrfala 2.35 of Lui (2004: 31).

For theratio of proportionsthe program displays an unbiased estimate of tiw (faui 2004: 76, formula 4.25), and
two sets of confidence intervals, computed by fdamu4.27 and 4.28 of Lui (2004: 77). The secondssan
approximate one suggested by Bennett (1981), anstéted in the output) it may be preferable ifrthmbers or
proportions of cases are small (Lui 2004: 77)théfre is a zero numerator, 0.5 is first added &b emmerator.

Confidence intervals for thedds ratioare estimated by formula 5.52 of Lui (2004: 10B)there is a zero frequency,
0.5 is first added in each cell.

Missing values

The method of imputation used for estimating thepprtions of “A yes” when B is “yes” or “no” is deisbed by
Fleisset al. (2003: 498-499: formula 16.4). A 95% confideirderval for the difference between these propodiis
estimated by formula 3.14 from the variance, whécbomputed by formula 16.6.

Confidence intervals for the difference betweerpprtions of “A yes” and “B yes” (ignoring the miggi values) are
computed by Wilson’s score method (method 10 of &smbe), as described by Newcombe and Altman (249)0:
Confidence intervals for the odds ratio are compne the method described by Morris and Gardne®@269), after
adding 0.5 to all cell frequencies if any cell fueqcy is zero.
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B. COMPARISON OF RATES
THAT HAVE NUMBER-OF-INDIVIDUALS DENOMINATORS

This module is appropriate for comparisons of rétes have number-of-individuals denominators

(e.g. measures of prevalence, cumulative incidearue risk), derived from observational studies
(cross-sectional or cohort) or trials. The progian handle data collected imyerse sampling

It is not appropriate for rates with person-timaai@inators (for which module D of this program
should be chosen). Itis similar to module A, prdvides extra results (attributable, prevented ar
preventable fractions, and the numbers neededadid av produce one case), and does not provic
the equivalence tests that module A offers.

The findings in two groups can be compared, ori@sef comparisons can be made in different
strata or in different studies. For each comparigata may be entered in a 2 x 2 table formatsor
numerators (case frequencies) and denominatoss, @tes and denominators.

For stratified data enter the data for each stratum in turn, and dhek on “All strata’ to obtain the
combined results, which permit appraisal of treamtion while controlling for confounding
effects of the stratifying variable or variablesgdassessment of heterogeneity.

For ameta-analysisenter the data for each study in turn (as aragpatratum), and then click on
“All strata’ to compare and combine the results in separaties.

To compare the changes observed in two groupbeiae-after studwith independent "before™
and "after" observations, enter the before-aftéa iz each group in turn, and then click on “All
strata” for heterogeneity tests.

Foreach separate comparisahe program providesxact probabilities (Fisher's, mid-P and
continuity-corrected)Pearson and likelihood-ratiochi-square tests of associatigrtheratio of
the rates(with confidence intervals estimated by the lagagformation and Zou-Donner methods
thedifference between the rategwith confidence intervals computed by a largejsi@method
and Wilson’s score method), tbeds ratio (with Fisher's exact, mid-P exact, and Cornfield's
confidence intervals)ule's Q, phi, lambda Cohen’s w; measures of the impact of exposure
(attributable, prevented and preventable fractioms) thenumber needed to avoid or produce
one case

For aseries of comparisonghe program computexact probabilities (Fisher's and mid-P). a
Mantel-Haenszel testheterogeneity tests and measuresgstimators of theverall ratio of rates,
difference between rates. and odds ratiQwith their confidence intervalspeasures of the
impact of exposure(attributable, prevented and preventable fracjicasend test for thenumber
needed to avoid or produce one casand (for use in meta-analysisstimates of th&ail-safe N
and twotests for a skewed funnel plofsuggesting publication bias).

For studies in whicinverse samplingwas used, the program provides a large-samplé&iseyrce
test and estimates the difference between rateoportions, the ratio of rates or proportions, anc
the odds ratio.
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Exact probabilities (See page 7 for fuller detal)s.

The program computeme-tailed and two-tailed P-valuéssed on exact tests. A number of results
are provided, since there is no consensus as teefitanethods of computation. If these resulid lea
to conflicting conclusions, inferences may requimeeful consideration.

Chi-square tests of association

For each table, a simple chi-square test of assotiss performed, supplemented by tests with
Yates's, Upton's, and Haber’s corrections to ovascthe slight anticonservative bias of the
uncorrected value. Yates's correction is criidiby many statisticians on the grounds that a test
that uses it is too conservative, with an increastdof a type Il error (failure to reject the hul
hypothesis when, in fact, it is false). The otfsnaller) modifications may be preferred; Zar (1998
494) calls Haber’s correction (as modified by Ghéaxcellent”. If the tests lead to conflicting
conclusions, inferences may require careful comata®. On the basis of computer-intensive tests,
Campbell (2007) recommends the routine use of Uptadjusted chi-square (also called the “N-1"
chi-square), unless the expected number (underuthé@ypothesis) in one or more cells is under 1,
when he recommends use of Fisher’s two-tailed Rechout by Irwin’s rule.

A likelihood-ratio chi-square test (@est) is also performed, with Yates's correction.

Chi-square tests may be misleading if the expefcéepiencies (under the null hypothesis) are too
small. The program displays warnings if therecalés with expected frequencies of less than 5 and
less than 1. Upton’s chi-square is appropriatieafe is no expected value below 1 (Campbell
2007).

Mantel-Haenszel test

This overall test of association controls for aanfding effects of the stratifying variable or
variables — e.g. of age and sex if the strata septedifferent age-sex groups. In a meta-analisis,
is an overall test, controlling for the differendegtween the studies.

The test is performed with and without a contingityrection. It is usually applied without a
continuity correction.

The Mantel-Haenszel test is valid even for spaega,gprovided that overall numbers are sufficient.
A message is displayed if the overall numbers@esimall to warrant use of the test.

Heterogeneity tests and measures

For stratified data (i.e., a series of tables),dtagram provideketerogeneity tester the ratios of
rates, the differences between rates, and theratids in the different strata. These tests shbald
interpreted with caution, since their power is loivthe result is significant at the 0.05 levélet
hypothesis of homogeneity can be rejected; buigh p-value ... does not show that the measure is
uniform, it only means that heterogeneity ... wasdetected by the test” (Rothman and Greenland
1998: 276); the larger the strata, the more valgteést.

The program also provides tweeasures of heterogeneiby andl-squared with their approximate
95% intervals, for the ratios of rates, the differes between rates, and the odds ratiosH Aalue
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of less than 1.2 suggests absence of noteworthgrdgeneity, whereas a value exceeding 1.5
suggests its presence, even if the heterogensitjstaot significant.I-squaredexpresses the
proportion of variation that can be attributed &dnogeneity (in a meta-analysis, to interstudy
variation) rather than to sampling error.

Estimates of the supposed common underlying vditigearatio of rates, the difference between
rates, and the odds ratio (see below) are of quesgiie value if the findings in the various strata
very disparate. If the results are not uniforrplerations of possible causes — e.g. associations
with study design or quality or with the sizes they characteristics of the samples — may be
revealing

The uniformity or heterogeneity of the measurethendifferent strata can be appraised not only by
these tests and measures, but by plotting the valoe their confidence intervals graphically, and
comparing them.

Ratio of rates

For each table, the program displays the ratibv@frate in group A to the rate in group B, with its
standard error and 90%, 95% and 99% confidencevadte This ratio is likely to be of interest in
epidemiological studies of causal associationse ddnfidence intervals are estimated by the
traditional (log-transformation) method and by inecedure described by Zou and Donner (2008).
Confidence intervals are not computed if one ofrties is zero.

It also displayslewell's low-bias estimataf the ratio of rates in the population, whichwisa
attention to the tendency for the ratio in a samgdpecially a small one, to misrepresent the true
ratio in the population represented. A disadvamiaghat this estimator is affected by the diacti
of computation: the reciprocal of the A:B estimatonot the same as the B:A estimator.

Difference between rates

For each table, the program displays the differdmeteeen the rates (the rate in group A minus the
rate in group B), with its standard error and 99%%6 and 99% confidence intervals computed by
three different methods.

This difference is likely to be of interest in siesl of the magnitude and economic aspects of public
health problems. The confidence intervals arenegéd by Fleiss's procedure (appropriate for large
samples only), and by Wilson's score method, witlamd with a continuity correction. The latter
methods are said to have advantages over the ilesgals (Newcombe 1998).

Odds ratio

For each table, the program displays the odds (dieratio of the odds in group A to the odds in
group B, with its reciprocal), its 90%, 95% and 96éffidence intervals (Cornfield's intervals, and
exact Fisher's and mid-P confidence intervals),amddjusted estimate of the odds ratio (after
adding 0.5 to each cell frequency).

It also displayslewell's low-bias estimat#f the odds ratio in the population, which drawseraion

to the tendency for the odds ratio in a samples@afly a small one, to misrepresent the true odds
ratio in the population represented. A disadvamiaghat (unlike the ordinary odds ratio) this
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estimator is affected by the direction of compuwatatithe reciprocal of the A:B estimator is not the
same as the B:A estimator (Walter and Cook 199ht&d 992).

The odds ratio is likely tbe of interest in epidemiological studies of caasslociations.
Overall ratio of rates, difference between rates, a  nd odds ratio

For aseries of table (“all strata”), the program computes three edimsaof theoverall ratio of
ratesandof theoverall difference between ratgeecision-based, Mantel-Haenszel, and
DerSimonian-Laird estimators, with 90%, 95%, ané39nfidence intervals), and four estimators
of theoverall odds ratia/conditional and unconditional maximume-likelihoestimators, a Mantel-
Haenszel estimator, and a DerSimonian-Laird estimatith 90%. 95%, and 99% exact Fisher’s,
exact mid-P, Mantel-Haenszel, Cornfield-Gart, arldimonian-Laird confidence intervals). The
unadjusted valueghased on the pooled data, without taking thditaion into account) are also
displayed, for comparison.

The ratio of rates and odds ratio are likelyp&oof interest in epidemiological studies of causal
associations, and the difference between ratdéeely ko be of interest in studies of the magnitude
and economic aspects of public health problems.

These estimates of the supposed common underlgings, and their confidence intervals, should
be treated with caution if the findings in the was strata are very disparate. The heterogensity te
have a low power, and are unreliable with smatjdencies (Rothman 1986: 223).

The estimators other than the DerSimonian-Lairohnegbr are based onfixed-effect modeivhich
assumes that the strata provide estimates of the sae effect.Theprecision-base@stimators are
weighted means, using the reciprocal of the vasan®ach stratum as the weight for the stratum
when the data are pooled, and are appropriate gdimple in each stratum is large; strata in which
one of the proportions is zero do not enter inedalculation, and an appropriate message is
displayed The Mantel-Haenszedstimators are applicable even when there arseplata in each
stratum.

TheDerSimonian-Lairdestimator is based onrandom-effectsnodel, which assumes that the strata
provide estimates of randomly differing effectsheTvariation between strata is taken into account,
resulting in wider confidence intervals and a moyaservative significance test. The random-
effects model gives more weight to small studies, may be inappropriate if sample sizes are very
small. Some investigators use it when unexplaineterogeneity is present (Fleiss and Gross 1991,
Petitti 1994, Whitehead and Whitehead 1991)n essence,” say Rothman and Greenland (1198:
668), “a random-effects model exchanges a doubtaologeneity assumption for a fictitious

random distribution of effects . The advantages that the standard errors and confidence limits
will more accurately reflect uncertainty about wramted-for sources of variation”. The
Dersimonian-Laird estimator is not displayed iktprocedure does not increase the variance of the
ratio of proportions. A chi-square test appraisasther the estimator differs from zero.

Trend test

The trend test examines the trend of the raticsiatessive strata (in the sequence in which the
strata were entered). A low P value indicatesstesyatic increase or decrease.

Yule's Q, phi and lambda
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Yule'sQ (and its significancephi andlambda(measures of association) are displayed for each
table.

Yule's Q(Zar 1998: 404 ranges from 0 (no association) fwoinplete positive dependence) or -1
(complete negative dependence). In a 2 x 2 taldesiquivalent to thgammacoefficient.

Phi (Zar 1998: 403) ranges from -1 (complete invergeeddence) to +1 (complete positive
dependence); 0 indicates no association. It islisplayed if the expected frequency in one or more
cells is <5. In a 2 x 2 tabfghi is equivalent to Cramer's coefficieitandphi-squared is the
coefficient of determination.

Goodman and Kruskallambda Siegel and Castellan (1988: 298-303) is a coeffitcof

forecasting efficiency that expresses the capacipne variable to "predict” the other. Itis an
assessment of the proportion of incorrect predisticoncerning one variable that would be
prevented if information about the other variabbsvavailable. Twéambdastatistics are
computed; one refers to the prediction of the \deiavhose categories are “Yes” or “No” when it is
known to which group (A or B) the individual bel@@nd the other refers to a prediction in the
reverse directionLambdaranges between O (if the one variable is of np hepredicting the other)
to 1 (if the one variable perfectly specifies tlagegories of the other).

Unlike Yule'sQ, (and the odds ratiophi andlambdavary with the relative sizes of the two groups
that are compared, and should in general be udgdfdinese groups together make up a defined
population, or comprise a representative sampéedsfined population. The valuesphi and
lambdaare then applicable to this specific population.

Cohen's w

Cohen'sw is an effect-size index that expresses the stnesfghe association between the row and
column variables. It is computed from chi-squang ®hen's criteria, 0.5 or more indicates a large
effect size, 0.3 or more (but less than 0.5) inéEa@ medium effect size, and 0.1 or more (but less
than 0.3) indicates a small effect size (Cohen 1998hen (1988) warns that these criteria should be
used only when there is no better basis for evialnafn adjustedv, controlling for the size of the
table, is also computed, as suggested by Shesk@Y(558).

Measures of the impact of exposure

Measures of the impact of exposure (attributabieygnted, and preventable fractions) are
computed, on the assumption that one group or ga(plis exposed to a risk protective factor,
and the other (B) is not. For a risk factor, thegobam computes thatributable fractions in the
exposed and in the populatiofror a protective factor, it computes firevented fractions in the
exposed and in the populaticendthe preventable fraction in the populatiofihe attributable
fraction is the proportion of the rate that cand@mcertain assumptions) be attributed to expasure
the factor, and the prevented fraction is the priogpo of the hypothetical rate (in the absence of
exposure) that has been prevented by exposure.

By default, the computation of the impact in th@plation assumes that the two groups are together

representative of the population. Optionally lfistassumption is incorrect), the proportion of the
population exposed to the risk or protective factom be entered at the keyboard, as a percentage.
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This value is then used in the analysis, excefiteroverall analyses of stratified data, when the
combined groups (in all strata) are assumed tesemt the population.

The method used for stratified data is appropfiatsparse data as well as for samples with large
numbers. The assumption is made that the risk imtiniform across the strata.

Measures of impact should be interpreted with caueeRockhill et al 1998). They assume that
exposure has a causal effect, and that confouratidgther biases are absent. The preventable
fraction is appropriate only if exposure is amendblchange.

Number needed to avoid or produce one case

For use in studies in which the numerators of #tesrare numbers oasesof a disease or other
condition, or a disease complication, or death ptiegram reports the number of individuals who
are needed in the group with a lower rate, in otdevoid a single case.

In a clinical trial where the rate is lower in tlheated group than in the control group, this & th
number needed to treair thenumber needed to treat (benebt)NNTB (Altman 1998), i.e. the
number of patients who must be treated in ordprégent one event (Sinclair and Bracken 1994,
Feinstein 1995). In a clinical trial that showatth treatment has undesired effects (i.e., tiseae i
lower rate in the control group), the number needdtie control group to avoid one case is also the
number needed to harar NNTH (the number of patients needed to be treatedouyse one

episode of harm) (Sackedt al. 1997: 149; Bjerre and LeLorier 2000).

In an observational study of exposure to a suppoaesdal factor, if the rate is lower in the exposed
group the number needed is the number who neeel éxfrosed in order to avoid one case; whereas
if the rate is lower in the unexposed group itis humber whose exposure must be prevented in
order to prevent one event (assuming that therfgglreflect a cause-effect relationship and that th
causal factor and its effect are modifiable).

The program displays 95% confidence limits fornlienber needed; these limits are the reciprocals
of the confidence limits for the rate differendéone of the latter confidence limits is negativeg
of the confidence limits of the number needed aldb be negative. For example, if group B has a
lower rate and the rate difference is 10 per 1@0 (i.1), with a confidence interval of -5 to 25 pe
100 (spanning zero), the number needed in groupa¥did one case is 10 (the reciprocal of 0.1),
with a confidence interval of 4 to -20, an interttat includes infinity (the reciprocal of zero).
Since a negative number needed to avoid a caspiigalent, if the sign in reversed, to the “number
needed to harm”, and this is the same as the nunaaeled in thethergroup to avoid a case, the
program reports this confidence interval as:

‘4 to infinity in B, then from infinity down to 2h A’
in the hope that this will avoid and not furthentound confusion .(see Altman 1998). This
formulation indicates a continuous interval, fiirstm 4 to infinity in the group with the lower rate
and then extending down from infinity to 20 in thiber group.

The program also provides a formula for estimatirgnumber needed to avoid one case in a

different group or population, using the ratio afias observed in the study sample, on the
assumption (not necessarily valid) that the sartie chrates is applicable..
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Fail-safe N

Estimates of the fail-safe N are provided for usmeta-analysesas rough guides to the possible
importance of the "file drawer problem", i.e. thekision of studies that were not published or
were not found for other reasons.

The program computes the numbers of new "null"istifthose with an odds ratio or risk ratio of 1)
that will suffice to bring the overall odds or rigktio to a negligible level (0.8, 0.9, 1.1 or 1.2o
account is taken of P-values or the size of thestudlies.

Fail-safe N estimates based on the P-values isttltkes are provided by module | of this program.
Tests for a skewed funnel plot

Two tests for a skewed funnel plot are performedute in meta-analysis. The tests, which
examine the association between the sizes of feetefin the component studies and their precision,
are theregression asymmetry temtd theadjusted rank correlation test.

In each test, a low P value suggests posgiblidication bias although the "small-study effect”
(Sterneet al. 2000) that it indicates may have some other causdy as the use of higher-risk
subjects in smaller studies, resulting in an assiori between sample size and the effect under
consideration.

Both tests have a low power if they are based arnctamponent studies. The regression asymmetry
test is generally more powerful (Eggeral 1997; Sternet al 2000). A critical P level
of at least 0.1 should be used for both tests.

Inverse sampling

Inverse sampling refers to the addition of subjéxisach group (A and B) until the group contains a
prespecified number of cases (i.e., subjects wiggs” findings). This method of sampling may be
chosen because cases are rare. Since the addisabjects to a group stops as soon as the relquire
number of cases has been found, this method i®ppate only if subjects are accrued sequentially,
and their exposure status can be determined rapidig program provideslarge-sample
significance testthedifference between rates or proportiotise ratio of rates or proportiongnd
theodds ratio The computations are omitted if either denonuingt less than 3.

METHODS

Exact probabilities (single table)

Theexact testare based on the conditional probabilities, utikdemull hypothesis (given the marginal frequengies
each possible number in a specific cell. Basimfdae are provided by Zar (1998: 545-555) and rffat-P) by
Rothman and Boice (1982: 25); or see GahlingerAbrdmson (1995: 36-37). In the computation, Sty
approximation is used in computing the logarithmh&otorials for large numbers (Rothman and Boig82: 26).
Siegel and Castellan (1988). Code provided by &y 8mons (from his STAT22) formed the basis ofgihecedure
employed here.

Overall’'s continuity-corrected B described by Overall (1990).
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ForTocher’s tes{Tocher 1950, Siegel 1956: 101), a random propoRidetween 0 and 1 is selected, and if this falls
below a critical level the null hypothesis is reéget The critical level for any givealpha (0.05, 0.01, etc.) is

(alpha- XP) / OP
where  OP = the conditional probability of the atveel number of exposed cases

XP = the sum of the conditional probabilities fdrraore extreme numbers of exposed cases
The random proportioR is computed by the inbuilt Turbo Pascal procedumagmented by an additional randomizing
shuffle using the algorithm of Bays and Durham §Bet al. 1989: 215-217), followed by the use of the formula

frac(982R + 0.211327).

Exact probabilities (set of tables)
The computation of exact probabilities for stratifidata is sped up by the employment of an effi@égorithm for
calculating the coefficients of the conditionaltdtsution (Martin and Austin 1991, 1996), using eddom David O.
Martin's public-domain EXACTBB program.
Pearson’s chi-square test of association
The usual formulae are used for Pearson’s chi-sqiest without and with Yates’s correcti(dar 1998:483-494:
formula 23.6 and 23.7 respectively). Formula 23sliised for the log-likelihood chi-square testighhis performed
only with Yates’s correction if there is a zero rarator).
Upton's chi-squaréUpton 1982; D'Agostino 1990) is the Pearson cjuiase multiplied by

(N-1)/N

where N = sample size.

Haber's corrected chi-squafgélaber 198) as modified by Ghent, is described by Zar (1988t).

Likelihood-ratio chi-square test (G 2 test)

Formula 23.11 of Zar (1998) is used. Yates's adioa is applied by making each cell frequencyddser to the
expected frequency.

Mantel-Haenszel test

The formula for the Mantel-Haenszel chi-squareres/jgled by (nter aliog Rothman (1986: formula 12: 58).

The criterion used to determine whether the sasipks are sufficient to warrant use of this tegids the sum of the
expected frequencies in each cell of the 2 x Ztahlst be not less than 5 (Fleiss 1981: 175).

Heterogeneity tests and measures

Theheterogeneity chi-square testse formulae 12-60 of Rothman (1986) for ratiopraiportions, Rothman’s formula
12-59 for differences between proportions, and fdan10.35 of Fleiss (1981) for odds ratios.

Themeasures of heterogeneiti andl-squared are described by Higgins and Thompson (2062)s computed by

Higgins and Thompson's formula 6, and increaseld todicating absence of heterogeneity, if it lgsm 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed fréimby formula 10.

Yule's Q, phi and lambda

Yule'sQ can be calculated from the odds r@& Q = (OR- 1)/ OR+ 1).
If Q is not 1 or -1, its significance is testedfbymula 16.24 of Sheskin (2007).

Phi is computed by formula 19.61 in Zar (1998), amchbdaby formulae 9.37 and 9.39 of Siegel and Cast€[l288).

Cohen's w

Cohen's effect-size indew) is computed by the formulsv = V' (chi-square N) (Volker 2006: formula 17)
whereN = sample size.
The adjustedv takes account of the size of the table by usidg&a's contingency coefficient S:

w= v(S2/(1-S2)) (Sheskin 20638)
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Ratio of rates

Standard errors and log-transformation-based camdiglintervals for the ratio of rates are congpbteformula 12-9 of
Rothman (1986); this is formula 4.1 of Lui (2088). Confidence intervals are also estimatedhéyrtethod described by
Zou and Donner (2008), based on the Wilson confielémtervals for the two rates.

Jewell's low-bias estimataf the ratio of rate A to rate B (Jewell 1986) is
rate A/ [b+1)/ @+ 1)|

where b andB are the numerator and denominator of rate B.

Difference between rates

Three sets of confidence intervals are computedifierences between rates: continuity-correctéshinals calculated by
Fleiss's procedure (Fleiss (1981: formula 2.14)chvis appropriate for large samples only, andgets using Wilson's score
method (Wilson 1927), one without and one with@tioaity correction. The latter two methods arsatlibed by Newcombe
(1998) as methods 10 and 11. Formulae providedeimcombe and Altman (2000: 49-40) are used for oaetl®, which is
the same as the method described by Zou and D(0@8) in their formulae 1 and 2. For method hé,drogram computes
the upper and lower confidence limits of the twopartions by formulae 1.26 and 1.27 of Fleiss (198}, and substitutes
them for I1, 12, ul and u2 in Newcombe's formutad. fand U.

Odds ratio

The computationf exact confidence intervafsr the odds ratios uses the network algorithivelfita et al. (1985). It is based
(with permission) on Turbo Pascal code written Hyd&do Franco and Nelson Campos Filho, and uséd Rgy Simons in
his EPIDORCS program.

Cornfield's approximatioto confidence intervals for the odds ratio is categ by an iterative procedure described by Fleiss
(1979) and by Fleisst al (2003,pp 116-118). Since the Cornfield estimatesconditional on the marginal totals, the lower
confidence limit may exceed zero even when therebdedds ratio is zero. In such instances theddimit is displayed as
zero, and in the reverse situation the upper igwisplayed as infinity. The accuracy of theraates is checked by the
Mantel-Fleiss test (formulae 15.18 and 15.19 inriklaumet d. 1982).

Jewell's low-bias estimataf the odds ratio is described by Jewell (198@)he standard error of the log odds ratio is
computed by formula 5.33 of Fleiss (1981: 67).

Overall ratio of rates, difference between rates, a  nd odds ratio

For theoverall ratio of ratestheprecision-baseestimator and its confidence intervals are basefbionulae 12-10, 12-
11 and 12-46 of Rothman (1986). TWantel-Haenszedstimator is computed by formula 12-27 of Rothrtid86),

and its standard error and confidence are basdéoromlae provided by Greenland and Robins (198&)he
DerSimonian-Lairdorocedure (DerSimonian and Laird 1986) the lothefratio of rates for each stratum, and its
standard error, are computed after changing ary@@portion to 0.0001 The statistic, which plays a central role in
the calculation, is based on the data for sepatedta and the Mantel-Haenszel estimatoQ # 1 is less than the
number of strata, the random-effects approach doeshange the results.

For theoverall difference between ratgheprecision-baseestimator and its confidence intervals d@sed on
formulae 12-8 and 12-51 of Rothman (1986). WMamtel-Haenszetstimatotis based on formulae provided by Greenland
and Robins (1985), and the standard error is cardpyt the method described by Sato (1989). OérSimonian-Laird
procedure is described by DerSimonian and Laird619BheQ statistic, which plays a central role in the cldton, is
based on the data for separate strata and the Mée@szel estimator. @ + 1 is less than the number of strata the
random-effects and fixed-effect models yield idegitresults.

For theoverall odds ratipthe computatioof exact confidence intervatssped up by the employment of an efficient
algorithm for calculating the coefficients of thenditional distribution (Martin and Austin 1991,98), using code from

David O. Martin's public-domain EXACTBB program.ditnaximume-likelihoogstimates are described by Rothman (1986:
194-195) and Rothman and Boice (1982:5-6). Nlaatel-Haenszeatstimator of the common odds ratio is estimated by
formula 10.47 of Fleiss (1981), and the estimatibits confidence intervals is described by Rolreslow and Greenland
(1986) and by Rothman (1986: 219-220). Thenfield-Gartprocedure for confidence intervals is describeélbiss

(1979); its computation incorporates a continuiigrection (Fleiss 1979: 171-172). TherSimonian-Lairgorocedure
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described by Fleiss and Gross (1991) is usedthisgpurpose the log odds ratio for each stratunchjta standard error, are
computed after adding 0.5 to each cell in the 2ab® (Fleiss 1981: 165-166). The Q statistidctvplays a central role in
the calculation, is based on these results arsligagsted by Petitti (1994: 111-113), on the Mariéeinszel estimate of the
common odds ratio. Chi-square is

(DL / SE)?
where DL is the DerSimonian-Laird estimator and

SE is its standard error.
If Q + 1is less than the number of strata, thdwameffects and fixed-effect models yield identiesults.

Trend test

The trend test is based on a comparison, in egathrst between the observed findings and the fisdimedicted by the
precision-based estimator of the common risk réitie. method described by Breslow and Day (198@3ésl (formula 4.31
and pp. 142-146), after computing fitted valuesetich stratum, based on the precision-based &stioidhe common risk
ratio. The successive strata are given scoreshf3l etc.

Measures of the impact of exposure

Attributable and prevented fractions in the expoaezlcalculated from the ratio of rates (R); foatified data, the
Mantel-Haenszel estimator is used. The formulae ar
(R-1)/R
for the attributable fraction, and
1-R
for the prevented fraction.
Confidence intervals are estimated by replacing thése formulae with its upper and lower confidelmits.

If the data areot stratified or refer to asingle stratumtheattributable, prevented and preventable fractiomshe
populationare calculated from the ratio of rates (R) aregtoportion exposed to the risk or protectivedaat the
population (E). By default, E is computed from tia#a entered for the two groups, on the assumfiimirtogether they
represent the population (or population stratu@ptionally (if this assumption is incorrect), E da@mentered at the
keyboard, as a percentage. The formulae are

E(R-1)/[E(R-1)+1]
for the population attributable fraction (AFp), and

E(1-R)
for the population prevented fraction (PFp). Foisk factor, the preventable fraction (if apprape) is the same as the
attributable fraction; for a protective factoristcalculated in the same way as the attributabletibn, after relabelling
the exposed as "unexposed"” and the unexposed pes&X’. Confidence intervals are estimated by#mee formulae,
but replacing R with its lower and upper Cornfietthfidence limits (Daly 1998). These intervalswd be regarded as
approximate, since uncertainty of the exposure gutogn E is not taken into account (Greenland 1989% regarded as
a fixed value.

For stratified data attributable, prevented and preventable fractinrike total population are computed from the
Mantel-Haenszel ratio of rates and the proportiboases (i.e., individuals enumerated in the nutnesaf the exposed
and unexposed groups) exposed to the risk or grodefactor. These proportions are computed byliomg the
numbers entered for the two groups in each stratitnput reference to any values entered for E édmmve), on the
assumption that the combined groups representdpelg@tion. Formula 16-24 of Rothman and Green{d®@8: 296)

is used for the attributable fraction in the pofiola (AFp); if its value is negative, it is convedtto the corresponding
preventive fraction (see conversion equation, bglowor thepreventable fractionthe same formula is used as for the
attributable fraction, after relabelling the expbsad unexposed. For stratified data, confidentvals are computed
from the variance of In(1 - AFp), using formula 26-of Rothman and Greenland (1998: 296).

If the lower confidence limit of an attributableftion (AF) is negative, the prevented fractioR)(Bquivalent to this
negative value is shown; and vice versa. The asitme equations used for this purpose are:

PE=1-1/(1-AF)
and AF=1-1/(1-PF)

In some instances confidence intervals are not sHmegause zero values interfere with their comjmurtat

29
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Number needed to avoid or produce one case

The number needed is the reciprocal of the raferdifice. In a stratified analysis, it is the reogal of the Mantel-
Haenszel rate difference. The 95% confidence lifoitshe number needed are the reciprocals of H9é Sonfidence
limits for the rate difference. In a single conipan, the continuity-corrected Wilson-score coefide interval is used.

The formula for estimating the number needed irugra or B (depending on whether the risk ratioemds 1 or is less
than 1) to avoid one case in a different poputatém the assumption that the ratio of rates oleseiv the study sample
remains appropriate (Chatellier al. 1996; Smeetket al 1999), is.

X/ P,
where X=1/(RR-1)
RR = the ratio of rates

Fail-safe N

The fail-safe N is computed by the following foraulvhich is derived from Orwin's effect-size foren(Drwin 1983; Hedges
and Olkin 1985, formula 9, p. 306; or lyengar amdegBhouse 1988, formula 5):

Fail-safe N = k[abs(R) - abs(C)] / abs{C}
where k= No. of studies included in the analysis

R = log of the overall odds ratio or ratfoates

C =log of the chosen "negligible value" [@&, 1.1 or 1.2).

Tests for a skewed funnel plot

Theregression asymmetry t¢Eiggeret al 1997) uses linear regression. It regressedahdard normal deviate (SND),
defined as the effect measure divided by its stanef@or) against precision (the inverse of thedsed error of the effect
measure). In both this test and the adjusted ram&lation test, the measure of effect is the fab@odds ratio; the adjusted
odds ratio (0.5 added to each cell) is used ibtgs ratio is zero or infinity. The regressionatiun is

SND = intercept b x precision.
In the absence of bias, an intercept of zero ise@®rp. The program reports the intercept and#s €onfidence interval, and
tests its difference from zero; two-tailed P iplliged. The usual formulae for least-squarestiregession are used (e.g.
Woolson and Clarke 2002: 309-311; Zar 1998: forridl21).

Theadjusted rank correlation tefBegg and Mazumdar 1994) uses Kendall's rankletioe (Siegel and Castellan 1988:
245-54) to appraise the association between the sizhe effects in the component studies (dfttrstandardizing these
effect measures) and their standard errors. latikence of biastau of zero is expected. Allowance is made for tiethe
computation. If there are 30 or fewer componertiss, tables of critical levels for one-tailed B.85, 0.025, 0.01, and 0.005
(Siegel and Castellan 1988: Tables RI and Rlluaegl. If two-tailed P exceeds 0.01 accordingdedhables, and for larger
samples, a Z test (making allowance for ties) ésl\{grmitageet al..2002). The two-tailed P value is displayed.

Inverse sampling

The large-samplsignificance testor the difference between the two groups usesaimaula (Lui, personal
communication)

z=[absU) - 0.5 * (1 /DenA+ 1 /DenB] / vV

where U = the uniformly minimum variance unbiased estinwtthe difference between proportions (Lui 2002} 3
= kA-1) /(DenA-1) - xB- 1)/ DenB- 1)
V (variance) 9p(1 -p) [(1 / (DenA- 2) + (1 / PenB 2)]
p=(XA+xB-1)/DenA+DenB- 1)
xA andxB = numbers of exposed subjects in samples A aresgectively
DenAandDenB= the numbers in samples A and B respectively.

For thedifference between rates or proportiottss program displays a standard error based opabled proportions
(i.e., the square root &), an unbiased estimate of the differenidg, @nd confidence intervals estimated by formula
2.37 of Lui (2004: 32) or (if there is a zero nuater) by formula 2.35 of Lui (2004: 31).

For theratio of rates or proportionghe program displays an unbiased estimate of tie (laui 2004: 76, formula 4.25),
and two sets of confidence intervals, computedobyiilae 4.27 and 4.28 of Lui (2004: 77). The sdomonfidence
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interval is an approximate one suggested by Beilb@8&1), and (as stated in the output) it may leégpable if the
numbers or proportions of cases are small (Lui 2@@%. If there is a zero numerator, 0.5 is fadtled to each
numerator.

Confidence intervals for thedds ratioare estimated by formula 5.52 of Lui (2004: 108)there is a zero frequency,
0.5 is first added in each cell.
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C. COMPARISON OF EXPOSURE TO A RISK/PROTECTIVE
FACTOR (IN A CASE-CONTROL STUDY)

th

This module is designed for the analysis of stuthas compare cases and unmatched controls w
respect to the proportions exposed to a supposkarriprotective factor. It might be used in the
evaluation of a therapeutic or preventive procedoyecomparing the proportions who had been
exposed to the procedure. The program can haathecdllected binverse samplingsee below).

The factor must be dichotomous (“exposed” or “nqiased”). If there are degrees of exposure,
module G of this program should be used. Thisute(C) is not appropriate for case-control
studies that use person-time denominators; modydeoiddes limited results for such studies.

A single group of cases can be compared with desgrgup of controls, or a series of case-contro
comparisons can be made in different strata oiffardnt studies. Each comparison requires the
entry of data in a 2 x 2 table format. Optionatlhg prevalence of exposure in the population er th
relevant population stratum can also be entemedyde in appraising the impact of exposure in the
population.

For stratified data enter the data for each stratum in turn, and dhek on “All strata’ to obtain the
combined results, which permit appraisal of treoamtion while controlling for confounding
effects of the stratifying variable or variablesdassessment of heterogeneity.

For ameta-analysisenter the data for each study in turn (as aragpatratum), and then click on
“All strata’ to compare and combine the results in separatiest.

Foreach separate comparisdihge program providesxact probabilities (Fisher's, mid-P and
continuity-correctedghi-square tests of associatigrtheodds ratio (with Fisher's exact, mid-P
exact, and Cornfield's confidence intervalq)je's Q, phi, lambda Cohen’sw, measures of the
impact of exposure(attributable, prevented and preventable fracjicarsd thenumber needed to
avoid one case

For aseries of comparisonghe program computexact probabilities (Fisher's and mid-P). a
Mantel-Haenszel testheterogeneity tests and measuregstimators of theverall odds ratio (a
conditional maximum-likelihood estimator, with ex&ésher's and mid-P confidence intervals, and
unconditional maximum-likelihood, Mantel-HaenszetldDersimonian-Laird estimators, with
Mantel-Haenszel, Cornfield-Gart and DersimoniarsdL@onfidence intervals), teend test for
odds ratiosmeasures of the impact of exposur@ttributable, prevented and preventable fracjions
thenumber needed to avoid one casand (for use inmeta-analysisgstimates of th&ail-safe N
and twotests for a skewed funnel plo{suggesting publication bias)

For studies in whicimverse samplingwas used, the program provides a large-sampl&isarce
test and estimates the odds ratio and the attbbuta prevented fraction.
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Exact probabilities  (See page 7 for fuller detais.

The program computeme-tailed and two-tailed P-valuéssed on exact tests. A number of results
are provided, since there is no consensus as teefitanethods of computation. If these resulid lea
to conflicting conclusions, inferences may reqeeeful consideration.

Chi-square tests of association

For each table, a simple (Pearson’s) chi-squatetessociation is performed, supplemented by
tests with Yates's, Upton's, and Haber’s correstiorovercome the slight anticonservative bias of
the uncorrected value. Yates's correction iscazéd by many statisticians on the grounds that a
test that uses it is too conservative, with angased risk of a type Il error (failure to rejec tiull
hypothesis when, in fact, it is false). The otfsnaller) modifications may be preferred; Zar (1998
494) calls Haber’s correction (as modified by Ghéaxcellent”. If the tests lead to conflicting
conclusions, inferences may require careful comata®. On the basis of computer-intensive tests,
Campbell (2007) recommends the routine use of Uptadjusted chi-square (also called the “N-1"
chi-square), unless the expected number (underuthéypothesis) in one or more cells is under 1,
when he recommends use of Fisher’s two-tailed Rechout by Irwin’s rule.

A likelihood-ratio chi-square test (@est) is also performed, with Yates's correction.

Chi-square tests may be misleading if the expefcéepiencies (under the null hypothesis) are too
small. The program displays warnings if therecalés with expected frequencies of less than 5 and
less than 1. Upton’s chi-square is appropriatieafe is no expected value below 1 (Campbell
2007).

Mantel-Haenszel test

This overall test of association controls for aanfding effects of the stratifying variable or
variables — e.g. of age and sex if the strata septedifferent age-sex groups. In a meta-analisis,
is an overall test, controlling for the differendeween the studies. The test is performed with an
without a continuity correction. It is usually digal without a continuity correction.

The Mantel-Haenszel test is valid even in spars&, gaovided that overall numbers are sufficient.
A message is displayed if the overall numbers@esimall to warrant use of the test.

Heterogeneity tests and measures

For stratified data (i.e., a series of tables),gregram providebeterogeneity testhat compare the
odds ratios in the different strata. These tdstsilsl be interpreted with caution, since their poise
low; if the result is significant at the 0.05 leyviile hypothesis of homogeneity can be rejected; bu
“a high p-value ... does not show that the meaisunaiform, it only means that heterogeneity ..swa
not detected by the test” (Rothman and Greenla®8:1876); the larger the strata, the more valid
the test.

The program also provides tweeasures of heterogeneiby andl-squared with their approximate
95% intervals. ArH value of less than 1.2 suggests absence of ndteyvbeterogeneity, whereas
a value exceeding 1.5 suggests its presence, Etrenhieterogeneity test is not significai.
squaredexpresses the proportion of variation that caattréuted to heterogeneity (in a meta-
analysis, to interstudy variation) rather thanampling error.
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Estimates of the supposed common underlying vditieecodds ratio (see below) are of
guestionable value if the findings in the variotrata are very disparate. If the results are not
uniform, explorations of possible causes - e.go@ations with study design or quality or with the
sizes or other characteristics of the samples -lmagvealing

The uniformity or heterogeneity of the odds ratioghe different strata can be appraised not only b
these tests and measures, but by plotting the ratids and their confidence intervals graphically,
and comparing them.

Odds ratio

For each table, the program displays the odds (tteratio of the odds in group A to the odds in
group B, with its reciprocal), its 90%, 95% and 98éfifidence intervals (Cornfield's intervals, and
exact Fisher's and mid-P confidence intervals),anddjusted estimate of the odds ratio (after
adding 0.5 to each cell frequency).

It also displayslewell's low-bias estimataf the odds ratio in the population, which drawsraion

to the tendency for the odds ratio in a sampleg@ajfly a small one, to misrepresent the true odds
ratio in the population represented. A disadvamiadghat (unlike the ordinary odds ratio) this
estimator is affected by the direction of compuatatithe reciprocal of the A:B estimator is not the
same as the B:A estimator (Walter and Cook 199ht&d 992).

The odds ratio is likely tbe of interest in epidemiological studies of caasslociations.
Overall odds ratio

For aseries of table (“all strata”), the program computes four estonabf theoverall odds ratio
(conditional and unconditional maximume-likelihoostienators, a Mantel-Haenszel estimator, and a
DerSimonian-Laird estimator, with 90%. 95%, and 98&%act Fisher’s, exact mid-P, Mantel-
Haenszel, Cornfield-Gart, and Dersimonian-Lairdfmiance intervals).

These estimates of the supposed common underlgiog vand their confidence intervals, should be
treated with caution if the findings in the varia@igata are very disparate. The heterogeneity tests
have a low power, and are unreliable with smatjdencies (Rothman 1986: 223).

Theunadjusted odds rati(based on the pooled data, without taking thdiitation into account) is
also displayed, for comparison.

The estimators other than the DerSimonian-Lairohnedgbr are based onfixed-effect modeivhich
assumes that the strata provide estimates of the sae effect.Theprecision-base@stimators are
weighted means, using the reciprocal of the vagan®ach stratum as the weight for the stratum
when the data are pooled, and are appropriate ample in each stratum is large; strata in which
one of the proportions is zero do not enter inedhlculation, and an appropriate message is
displayed The Mantel-Haenszetstimators are applicable even when there arssplata in each
stratum.

TheDerSimonian-Lairdestimator is based onrandom-effectsnodel, which assumes that the strata

provide estimates of randomly differing effectshelvariation between strata is taken into account,
resulting in wider confidence intervals and a mmaservative significance test. The random-
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effects model gives more weight to small studiesl, may be inappropriate if sample sizes are very
small. Some investigators use it when unexplaiheterogeneity is present (Fleiss and Gross 1991,
Petitti 1994, Whitehead and Whitehead 1991)n essence,” say Rothman and Greenland (1198:
668), “a random-effects model exchanges a doubtimlogeneity assumption for a fictitious

random distribution of effects . The advantages that the standard errors and confidence limits
will more accurately reflect uncertainty about uwramted-for sources of variation”. The
Dersimonian-Laird estimator is not displayed iktprocedure does not increase the variance of the
odds ratio. A chi-square test is reported, apprgiehether the estimator differs from zero.

Miettinen’s twostandardizeddds ratiog*standardized rate ratios”) are also computedt faking
exposed subjects as the standatiMR”), and then taking the unexposed as the standaRIR").

Trend test

The trend test examines the trend of the oddssratisuccessive strata (in the sequence in whieh th
strata were entered). A low P value indicatesstesyatic increase or decrease.

Yule's Q, phi and lambda

Yule'sQ (and its significancephi andlambda(measures of association) are displayed for each
table.

Yule's Q(Zar 1998:404) ranges from 0 (no association) coinplete positive dependence) or -1
(complete negative dependence). In a 2 x 2 taldesiquivalent to thgammacoefficient.

Phi (Zar 1998: 403) ranges from -1 (complete invergeeddence) to +1 (complete positive
dependence); 0 indicates no association. It islisplayed if the expected frequency in one or more
cells is <5. In a 2 x 2 tabfghi is equivalent to Cramer's coefficigitandphi-squared is the
coefficient of determination.

Goodman and Kruskallambda Siegel and Castellan (1988: 298-303) is a coeffitcof

forecasting efficiency that expresses the capacipne variable to "predict” the other. Itis an
assessment of the proportion of incorrect predisticoncerning one variable that would be
prevented if information about the other variabbsvavailable. Twéambdastatistics are
computed; one refers to the prediction of the \deiavhose categories are “Yes” or “No” when it is
known to which group (A or B) the individual bel@@nd the other refers to a prediction in the
reverse directionLambdaranges from O (if the one variable is of no helpiedicting the other) to
1 (if the one variable perfectly specifies the gatées of the other).

Unlike Yule'sQ, (and the odds ratiophi andlambdavary with the relative sizes of the two groups
that are compared, and should in general be udgdfdinese groups together make up a defined
population, or comprise a representative sampéedsfined population. The valuesphi and
lambdaare then applicable to this specific population.

Cohen's w
Cohen'swv is an effect-size index that expresses the stnerighe association between the row and
column variables. It is computed from chi-squang ®hen's criteria, 0.5 or more indicates a large

effect size, 0.3 or more (but less than 0.5) inés@ medium effect size, and 0.1 or more (but less
than 0.3) indicates a small effect size (Cohen 1288 - 226). Cohen (1988) warns that these
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criteria should be used only when there is no bétisis for evaluation. An adjusted controlling
for the size of the table, is also computed, ageasigd by Sheskin (2007: 658).

Measures of the impact of exposure

If exposure is to a risk factor, the program comepuhe attributable fractions in the exposed and in
the population. If exposure is to a protectivadadt computes the prevented fractions in the
exposed and in the population. The results did ¥dahe odds ratio is an appropriate estimator o
the risk ratio. The attributable fraction is threortion of the rate that can (under certain
assumptions) be attributed to exposure to the faatal the prevented fraction is the proportion of
the hypothetical rate (in the absence of expoghe¢)has been prevented by exposure.

By default, the computation of the impact in th@plation assumes that the cases and controls are
together representative of the population. Optlgrid this assumption is incorrect), the proporti

of the population exposed to the risk or protectastor can be entered at the keyboard, as a
percentage. This value is then used in the asalggcept in the overall analyses of stratifiechdat
when the combined cases and controls (in all $teaaassumed to represent the population.

The method used for stratified data is appropf@teparse data as well as for samples with large
numbers. The assumption is made that the oddasisatiniform across the strata.

Measures of impact should be interpreted with caugeeRockhill et al. 1998). They assume that
exposure has a causal effect, and that confouradidgther biases are absent. .

Number needed to avoid one case

The program provides a formula for calculating @approximate number of person-time units of
exposure or non-exposure (depending on the direcfiche effect) needed to avoid one case. The
formula uses the assumed rate in the non-exposdds dased on the assumptions that the odds
ratio in the study sample (or the Mantel-Haensdelsaratio, for stratified data) is an appropriate
estimate of the incidence density ratio, and thatfindings reflect a cause-effect relationship.

If the exposure under consideration is toesiapeutic or preventive procedure, this numbereas t
number needed to treat to prevent oneed®BNT) or thenumber needed to treat to produce one
episode of harnffNNTH) , depending on the direction of the effect (S#obteal. 1997; Bjerre and
LeLorier 2000).

Fail-safe N

Estimates of the fail-safe N are provided for usmeta-analysesas rough guides to the possible
importance of the "file drawer problem", i.e. thekeision of studies that were not published or not
found for other reasons. The program computeauhngbers of new "null" studies (those with an
odds ratio of 1) that will suffice to bring the oa# odds ratio to a negligible level (0.8, 0.91 br
1.2). No account is taken of P-values or the sfzée null studies.

Fail-safe N estimates based on P-values are pragenodule | of this program.
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Tests for a skewed funnel plot

Two tests for a skewed funnel plot are performedute in meta-analysis. The tests, which
examine the association between the sizes of feetefin the component studies and their precision,
are theregression asymmetry temtd theadjusted rank correlation test.

In each test, a low P value suggests posgiblidication bias although the "small-study effect”
(Sterneet al. 2000) that it indicates may have another caus#) as the use of higher-risk subjects
in smaller studies, resulting in an associationveeh sample size and the effect under consideration

Both tests have a low power if they are based enctamponent studies. The regression asymmetry
test is generally more powerful (Eggeral 1997; Sternet al. 2000). A critical P level
of at least 0.1 should be used for both tests.

Inverse sampling

Inverse sampling refers to the addition of subjéztsach group (cases and controls) until the group
contains a prespecified number of subjects exptustte risk or protective factor under study. This
method of sampling may be chosen because expobgtsuare rare. Since the addition of subjects
to a group stops as soon as the required numlexpolsed subjects has been found, this method is
appropriate only if subjects are accrued sequéntetd their exposure status can be determined
rapidly. The program providedage-sample significance tesheodds ratiq and theattributable

or prevented fractiorisee "Measures of the impact of exposure”, aboMag. computations are
omitted if either denominator is less than 3.

METHODS

Exact probabilities (single table)

Theexact testare based on the conditional probabilities, utikdemull hypothesis (given the marginal frequengies
each possible number in a specific cell. Basimfdae are provided by Zar (1998: 545-555) and rffat-P) by
Rothman and Boice (1982: 25); or see GahlingerAbrdmson (1995: 36-37). In the computation, Sty
approximation is used in computing the logarithrhfaotorials for large numbers (Rothman and Boi882 26).
Siegel and Castellan (1988). Code provided by &y 8mons (from his STAT22) formed the basis ofgthecedure
employed here.

Overall’'s continuity-corrected B described by Overall (1990).

ForTocher's tes{Tocher 1950, Siegel 1956: 101), a random propoRidetween 0 and 1 is selected, and if this falls
below a critical level the null hypothesis is reget The critical level for any giveadpha (0.05, 0.01, etc.) is
(alpha- XP) / OP
where  OP = the conditional probability of the atveel number of exposed cases
XP = the sum of the conditional probabilities firraore extreme numbers of exposed cases
The random proportioR is computed by the inbuilt Turbo Pascal procedumagmented by an additional randomizing
shuffle using the algorithm of Bays and Durham §Bret al. 1989: 215-217), followed by the use efftrmula
frac(982R + 0.211327).

Exact probabilities (set of tables)
The computation of exact probabilities for stratifidata is sped up by the employment of an effica&gorithm for

calculating the coefficients of the conditionaltdizution (Martin and Austin 1991, 1996), using eddom David O.
Martin's public-domain EXACTBB program.
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Pearson’s chi-square test of association
The usual formulae are used for Pearson’s chi-squest without and with Yates’s correcti(dar 1998:483-494:

formula 23.6 and 23.7 respectively). Formula 23sliised for the log-likelihood chi-square testighhis performed
only with Yates’s correction if there is a zero rarator).

Upton's chi-squar¢Upton 1982; D'Agostino 1990) is the Pearson dfuiase multiplied byN - 1) /N
whereN = sample size.

Haber's corrected chi-squalélaber 198) as modified by Ghent, is described by Zar (1988t).

Mantel-Haenszel test
The formula for the Mantel-Haenszel chi-squarer@/igled by (nter aliog Rothman (1986: formula 12: 58).

The criterion used to determine whether the sasipks are sufficient to warrant use of this tegids the sum of the
expected frequencies in each cell of the 2 x Ztahlst be not less than 5 (Fleiss 1981: 175).

Yule's Q, phi and lambda

Yule'sQ can be calculated from the odds r@@e Q = (OR- 1) / OR+ 1). If Qis not 1 or -1, its significance is
tested by formula 16.24 of Sheskin (2007).

Phi is computed by formula 19.61 in Zar (1998), amchbdaby formulae 9.37 and 9.39 of Siegel and Castgll288).

Cohen's w

Cohen's effect-size indew) is computed by the formulsv = V' (chi-square N) (Volker 2006: formula 17)
whereN = sample size.
The adjustedv controls for the size of the table, using the mdttlescribed by Sheskin (2007: 658).

Heterogeneity test and measures
Theheterogeneity chi-square tastes formula 10.35 of Fleiss (1981).

Themeasures of heterogeneitil andl-squared are described by Higgins and Thompson (2062)s computed by
Higgins and Thompson's formula 6, and increaseld tnodicating absence of heterogeneity, if it s 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed fréimby formula 10.

Odds ratio

The computationf exact confidence interveflsr the odds ratios uses the network algorithidelitaet al (1985). It is based
(with permission) on Turbo Pascal code written Hyd&do Franco and Nelson Campos Filho, and uséd Rgy Simons in
his EPIDORCS program.

Cornfield's approximatiomo confidence intervals for the odds ratio is categ by an iterative procedure described by Fleiss
(1979) and by Fleisst al (2003,pp 116-118). Since the Cornfield estimatesonditional on the marginal totals, the lower
confidence limit may exceed zero even when therebdedds ratio is zero. In such instances theddimit is displayed as
zero, and in the reverse situation the upper igwtsplayed as infinity. The accuracy of theraates is checked by the
Mantel-Fleiss test (formulae 15.18 and 15.19 inriklaumet d. 1982).

Jewell's low-bias estimataf the odds ratio is described by Jewell (198@)he standard error of the log odds ratio is
computed by formula 5.33 of Fleiss (1981: 67).

Overall odds ratio
For theoverall odds ratipthe computatioof exact confidence intervatssped up by the employment of an efficient

algorithm for calculating the coefficients of thenditional distribution (Martin and Austin 1991,98), using code from
David O. Martin's public-domain EXACTBB program.ditnaximume-likelihoogstimates are described by Rothman (1986:

38



C. CASE-CONTROL STUDY

194-195) and Rothman and Boice (1982:5-6). Nlaatel-Haenszeatstimator of the common odds ratio is estimated by
formula 10.47 of Fleiss (1981), and the estimatibits confidence intervals is described by Rolreslow and Greenland
(1986) and by Rothman (1986: 219-220). Tenfield-Gartprocedure for confidence intervals is describe#lbiss
(1979); its computation incorporates a continuiiyrection (Fleiss 1979: 171-172). TherSimonian-Lairgorocedure
described by Fleiss and Gross (1991) is usedthisgpurpose the log odds ratio for each stratunchjta standard error, are
computed after adding 0.5 to each cell in the 2ab® (Fleiss 1981: 165-166). The Q statistidclwplays a central role in
the calculation, is based on these results armligagested by Petitti (1994: 111-113), on the Mafteinszel estimate of the
common odds ratio. Chi-square is

(DL / SE)?
where DL is the DerSimonian-Laird estimator and
SE is its standard error.
If Q + 1 is less than the number of strata, thdwameffects and fixed-effect models yield identiesults.

Miettinen’s twostandardized odds ratio§'standardized rate ratios”) (Miettinen 1972¢ aomputed by formulae 5 and
6 of Rothman and Boice (1979: 6).

Trend test

The trend test is based on a comparison, in eaatust, between the observed findings and the fgslpredicted by the
maximum likelihood estimate of the common oddsorafihe method described by Breslow and Day (1980séd
(formula 4.31 and pp. 142-146),

The successive strata are given scores of 1,62¢3,

Measures of the impact of exposure

Attributable and prevented fractions in the expoaeacalculated from the odds ratio (OR); for #ieat data, the
Mantel-Haenszel odds ratio is used. The formutae a

(OR-1) / OR
for the attributable fraction, and

1-0OR
for the prevented fraction.Confidence intervals are estimated by replacingitOfRese formulae with its upper and
lower confidence limits, using exact mid-P (if daéle) or Cornfield limits, or (for stratified dgtMantel-Haenszel
limits.

If the data areot stratified or refer to aingle stratumtheattributable and prevented fractions in the popigatare
calculated from the odds ratio (OR) and the praporéxposed to the risk or protective factor inplepulation (E). By
default, E is computed from the data entered fercitmtrols, on the assumption that it represemtpdpulation (or
population stratum). Optionally (if this assumptis incorrect), E can be entered at the keyba@d, percentage. The
formulae are

E(OR-1) / [E(OR-1) + 1]
for the population attributable fraction (AFp), and

E(1 - OR)
for the population prevented fraction (PFp). Gaerfice intervals are estimated by the same formblaereplacing OR
with its lower and upper confidence limits (Daly9B). These intervals should be regarded as appats, since
uncertainty of the exposure proportion E is noetakto account (Greenland 1999); E is regardeadfa®d value.

For stratified data theattributable and prevented fractions in the totapplationare computed from the Mantel-
Haenszel odds ratio and the proportion of casesseto the risk or protective factor, computeddmbining the
numbers entered in each stratum, without referemeay values entered for E (see above), on thergsa®n that the
combined entries represent the population. Farh6i24 of Rothman and Greenland (1998: 296) id faethe
attributable fraction in the population (AFp); i ivalue is negative, it is converted to the cqroesling preventive
fraction (see conversion equation, below). Fratted data, confidence intervals are computedifthe variance of
In(1 - AFp), using formula 16-25 of Rothman and &1and (1998: 296).

If the lower confidence limit of an attributableftion (AF) is negative, the prevented fractioR)(Bquivalent to this
negative value is shown; and vice versa. The asitme equations used for this purpose are:

PE=1-1/(1-AF)
and AF=1-1/(1-PF)
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C. CASE-CONTROL STUDY

In some instances confidence intervals are not sHmegause zero values interfere with their comjmurtat
Number needed to avoid one case

The formula (derived from Bjerre and LeLorier 208ppendix) is
1/ [R(1 - OR)] if the odds ratio (OR) is less than 1, and

1/ [R(OR- 1)] if the odds ratio exceeds 1
where Ris the assumed rate of events per 1000 personstiitsein the non-exposed.

The Mantel-Haenszel odds ratio is used for stedtifiata.
Fail-safe N

The fail-safe N is computed by the following foraulvhich is derived from Orwin's effect-size foren(Drwin 1983; Hedges
and Olkin 1985, formula 9, p. 306; or lyengar amdgBhouse 1988, formula 5):

Fail-safe N = k[abs(R) - abs(C)] / abs{C}
where k= No. of studies included in the analysis

R = log of the overall odds ratio

C =log of the chosen "negligible value" [@&, 1.1 or 1.2).

Tests for a skewed funnel plot

Theregression asymmetry t€giggeret al 1997) uses linear regression. It regressesahdad normal deviate (SND),
defined as the effect measure divided by its stanefaor) against precision (the inverse of thadsaed error of the effect
measure). In both this test and the adjusted ramklation test, the measure of effect is the fdg®odds ratio; the adjusted
odds ratio (0.5 added to each cell) is used ibtgs ratio is zero or infinity. The regressionatiun is

SND = intercept b x precision.
In the absence of bias, an intercept of zero iseed. The program reports the intercept and#s €onfidence interval, and
tests its difference from zero; two-tailed P iplliged. The usual formulae for least-squarestiregaession are used (e.g.
Woolson and Clarke 2002: 309-311; Zar 1998: forril21).

Theadjusted rank correlation tefBegg and Mazumdar 1994) uses Kendall's ranklatioe (Siegel and Castellan 1988:
245-54) to appraise the association between ths sfzhe effects in the component studies (afstrstandardizing these
effect measures) and their standard errors. latikence of bias,tau of zero is expected. Allowance is made for tiethe
computation. If there are 30 or fewer componertiss, tables of critical levels for one-tailed B.65, 0.025, 0.01, and 0.005
(Siegel and Castellan 1988: Tables Rl and Rllyseel. If two-tailed P exceeds 0.01 accordingesetiables, and for larger
samples, a Z test (making allowance for ties)éslf&rmitageet al..2002). The two-tailed P value is displayed.

Inverse sampling

The large-samplsignificance testor the difference between cases and controlsthse®rmula (Lui, personal
communication)

z=[abs{) - 0.5 * (1 /DenA+ 1 /DenB]/ vV

where U = the uniformly minimum variance unbiased estinwtthe difference between proportions (Lui 2002} 3
= kA- 1) /(DenA-1) - xB- 1)/ DenB- 1)
V (variance) 9p(1 -p) [(1 / (DenA- 2) + (1 / DenB- 2)]
p=(XA+xB-1)/DenA+DenB- 1)
xA andxB = numbers of exposed subjects among cases anwlsamspectively
DenAandDenB= the numbers of cases and controls respectively.

Confidence intervals for thedds ratioare estimated by formula 5.52 of Lui (2004: 108)there is a zero frequency,
0.5 is first added in each cell.

Theattributable fractionin the populatiofAF) is computed by the formula provided by Lui (20087). Its confidence
intervals are estimated by formula 7.47 (Lui 20087), unless the proportion of exposed in the patpr (E) is

entered, in which case they are computed by substitthe lower and upper confidence limits of tiuels ratio,
estimated by formula 5.52 of Lui (2004: 109), @R in the formula

AF=E (OR- 1)/ [1 +E (OR- 1)].
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C. CASE-CONTROL STUDY

If the latter method is used, the confidence irdkrghould be regarded as approximate, since anugrof the

exposure proportiok is not taken into account (Greenland 19%¥9js regarded as a fixed value.

If AF is less than zero, it is converted to the equintgleevented fractiorfPF) by the formula
PF=1-1/(1-AR

If there is a zero frequency, 0.5 is added in eathbefore computing the attributable or preveritadtion.
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D. RATES WITH PERSON-TIME DENOMINATORS

D. COMPARISON OF RATES THAT HAVE PERSON-TIME
DENOMINATORS

This module is designed for the analysis of cobtutlies or trials that compare two incidence,
mortality, or other rates that have person-timeod@nators.

The findings in two groups can be compared, ori@sef comparisons can be made in different
strata or in different studies. For each comparisata may be entered as numerators (case
frequencies) or rates, with their denominatorstiédgally, the prevalence of exposure in the
population or the relevant population stratum dan be entered, for use in appraising the impac
exposure in the population.

For stratified data enter the data for each stratum in turn, and dhek on “All strata’ to obtain the
combined results, which permit appraisal of theaission while controlling for confounding effec
of the stratifying variable or variables, and aseent of heterogeneity.

For ameta-analysisenter the data for each study in turn (as a agpatratum), and then click on
“All strata’ to compare and combine the results in separaties.

Foreach separate comparisgtine program providesxact probabilities (Fisher's and mid-P), the
rate ratio (with exact, Cornfield's and Wald confidence m#ds), therate difference (with
confidence intervals), theumber needed to avoid or produce one casandmeasures of the
impact of exposure(attributable, prevented and preventable fracjions

For aseries of comparisonghe program computexact probabilities (Fisher's and mid-P). a
Mantel-Haenszel testheterogeneity tests and measurea test for trend, theoverall rate ratio
(with exact Fisher's and mid-P, Cornfield, Breskanwd Mantel-Haenszel and Dersimonian-

Laird confidence intervalsjhe overall rate difference(with precision-based and Mantel-Haensz
confidence intervals)neasures of the impact of exposur@ttributable, prevented and preventah
fractions), thenumber needed to avoid one casand (for use irmeta-analysisgstimates of the
fail-safe Nand twotests for a skewed funnel plo{suggesting publication bias) .

The program also providescamparison of two numbers of eventdreated as Poisson variates.
For example, it could test the equality of numlzdrdeaths or other relatively rare events occurrir
in the same population in two equal time periodsiaminators are not required.
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Exact probabilities (See page 7 for fuller detali)s.

The program computes exact P values (Fisher’s addPnone-tailed and two-tailed). Fisher's P has
a conservative bias, which may be important whempéa sizes are small. Many statisticians prefer

the mid-P value, especially when results from ssv@udies are combined (Armitageal. (2002:
137)
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D. RATES WITH PERSON-TIME DENOMINATORS

Mantel-Haenszel test

This overall test of association controls for aanfding effects of the stratifying variable or
variables — e.g. of age and sex if the strata sgptedifferent age-sex groups. In a meta-analysis,
is an overall test, controlling for the differendegween the studies.

The Mantel-Haenszel test is valid even for spaede,grovided that overall numbers are sufficient.
A message is displayed if the overall numbers@estnall to warrant use of the test.

Heterogeneity tests and measures

For stratified data (i.e., a series of tables),gtagram providebeterogeneity tesfer the rate ratios
and rate differences in the different strata. €hests should be interpreted with caution, siheé t
power is low; if the result is significant at th@b level, the hypothesis of homogeneity can be
rejected; but “a high p-value ... does not show tiwa measure is uniform, it only means that
heterogeneity ... was not detected by the testthiRan and Greenland 1998: 276); the larger the
strata, the more valid the test.

The program also provides tweeasures of heterogeneiby andl-squared with their approximate
95% intervals, for the rate ratios and rate diffiees. ArH value of less than 1.2 suggests absence
of noteworthy heterogeneity, whereas a value ekngel.5 suggests its presence, even if the
heterogeneity test is not significaritsquaredexpresses the proportion of variation that can be
attributed to heterogeneity (in a meta-analysisterstudy variation) rather than to sampling erro

Estimates of the supposed common underlying vdltleearate ratio and rate difference (see below)
are of questionable value if the findings in themas strata are very disparate. If the resubsat
uniform, explorations of possible causes - e.go@asions with study design or quality or with the
sizes or other characteristics of the samples -lmeagvealing

The uniformity or heterogeneity of the measurethendifferent strata can be appraised not only by
these tests and measures, but by plotting the valoe their confidence intervals graphically, and
comparing them.

Test for trend

If three or more strata are entered, a chi-squestag performed for trend of the rate ratios. sThi
may be useful if the strata fall into a naturalesrcand are entered in that order.

Rate ratio

For each comparison, the program displays the adtibe rate in group A to the rate in group B, and
its 90%, 95% and 99% confidence intervals, compbteexact ( Fisher's and mid-P) methods, as
well as Cornfield and Wald intervals. This ratidikely tobe of interest in epidemiological studies
of causal associations.

Difference between rates

For each comparison, the program displays therdifitee between the rates (the rate in group A
minus the rate in group B), with its standard eamod 90%, 95% and 99% confidence intervals. .
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D. RATES WITH PERSON-TIME DENOMINATORS

This difference is likely to be of interest in siesl of the magnitude and economic aspects of public
health problems.

Overall rate ratio and overall rate difference

For aseries of table (“all strata”), the program computes estimatdrthe overall rate ratiand the
overall rate difference, with their 90%, 95% an@&®onfidence intervals. The rate ratio is likely t
be of interest in epidemiological studies of caasalociations, and the difference between rates in
studies of the magnitude and economic aspectshicpguealth problems. Thénadjusted values
(based on the pooled data, without taking theiBtaion into account) are also displayed, for
comparison.

Theoverall rate ratiois computed by maximum-likelihood, Mantel-Haenszall DerSimonian-

Laird methods, and its confidence intervals by exXdantel-Haenszel, Cornfield, Breslow and
DerSimonian-Laird methods. The Cornfield estimatesidentical with the intervals (not displayed)
computed by the noniterative Poisson-score proeedescribed by Grahaet al. (2003). The

overall rate differenceand its confidence intervals are estimated byigi@tbased, Mantel-
Haenszel and DerSimonian-Laird procedures, andt @xi&ecvals are also computed.

The estimates of the supposed common underlyingegabnd their confidence intervals, should be
treated with caution if the findings in the variaisata are very disparate. The heterogeneity tests
have a low power, and are unreliable with smatjdiencies (Rothman 1986: 223).

The estimates based on the Mantel-Haenszel proe@derappropriate even when there are zero or
small frequencies. The precision-based estimateweighted means of the stratum-specific values,
using the reciprocals of their variances as weigfitse DerSimonian-Laird estimate uses a random-
effects model; it takes account of the variatiotwleen strata, resulting in wider confidence int&sva
and a more conservative significance test; theqaloie may be inappropriate if sample sizes are
very small.

The DerSimonian-Lairdestimator is based onrandom-effectsnodel, which assumes that the strata
provide estimates of randomly differing effectshelvariation between strata is taken into account,
resulting in wider confidence intervals and a mmaservative significance test. The random-
effects model gives more weight to small studiesl, may be inappropriate if sample sizes are very
small. Some investigators use it when unexplaiheterogeneity is present (Fleiss and Gross 1991,
Petitti 1994, Whitehead and Whitehead 1991)n essence,” say Rothman and Greenland (1198:
668), “a random-effects model exchanges a doubtimlogeneity assumption for a fictitious

random distribution of effects . The advantages that the standard errors and confidence limits
will more accurately reflect uncertainty about uwramted-for sources of variation”. The
Dersimonian-Laird estimator is not displayed iktprocedure does not increase the variance of the
ratio of proportions. A chi-square test is repor@ppraising whether the estimator differs from
zero.

Measures of the impact of exposure

Measures of the impact of exposure (attributaleygnted, and preventable fractions) are
computed, on the assumption that one group or sa()lis exposed to a risk protective factor,
and the other (B) is not. For a risk factor, thegobam computes thatributable fractions in the
exposed and in the populatiofror a protective factor, it computes firevented fractions in the
exposed and in the populaticandthe preventable fraction in the populatiohe attributable
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D. RATES WITH PERSON-TIME DENOMINATORS

fraction is the proportion of the rate that cand@mcertain assumptions) be attributed to expasure
the factor, and the prevented fraction is the priogmo of the hypothetical rate (in the absence of
exposure) that has been prevented by exposure.

By default, the computation of the impact in th@plation assumes that the two groups are together
representative of the population. Optionally lfistassumption is incorrect), the proportion ofesas
exposed to the risk or protective factor can berextat the keyboard, as a percentage. This i&lue
then used in the analysis, except in the overallyaes of stratified data, when the combined groups
(in all strata) are assumed to represent the pbpnla

The method used for stratified data is appropf@teparse data as well as for samples with large
numbers. The assumption is made that the risk iatiniform across the strata.

Measures of impact should be interpreted with caugeeRockhill et al. 1998). They assume that
exposure has a causal effect, and that confouraaidgther biases are absent. The preventable
fraction is appropriate only if exposure is amegdblchange.

Number needed to avoid one case

For use in studies in which the numerators of #tesrare numbers oasesof a disease or other
condition, or a disease complication, or death ptiegram reports the number of person-time units
needed in the group with a lower rate, in ordeavoid a single case.

In a clinical trial where the rate is lower in tlheated group than in the control group, this & th
number needed to treair thenumber needed to treat (benebt)NNTB (Altman 1998), i.e. the
number of patients who must be treated in ordpréwent one event (Sinclair and Bracken 1994,
Feinstein 1995). In a clinical trial that showatth treatment has undesired effects (i.e., tiseae i
lower rate in the control group), the number needdtie control group to avoid one case is also the
number needed to harar NNTH (the number of patients needed to be treatedouase one

episode of harm) (Sacketdt al. 1997: 149; Bjerre and LeLorier 2000).

In an observational study of exposure to a suppoaesdal factor, if the rate is lower in the exposed
group the number needed is the number who neeel éxfoosed in order to avoid one case; whereas
if the rate is lower in the unexposed group itis humber whose exposure must be prevented in
order to prevent one event (assuming that therfgglreflect a cause-effect relationship and that th
causal factor and its effect are modifiable).

The program displays 95% confidence limits fornlienber needed; these limits are the reciprocals
of the confidence limits for the rate differendéone of the latter confidence limits is negativeg
of the confidence limits of the number needed aldb be negative. For example, if group B has a
lower rate and the rate difference is 10 per 1@0 (i.1), with a confidence interval of - 5 to 25 p
100 (spanning zero), the number needed in groupa¥did one case is 10 (the reciprocal of 0.1),
with a confidence interval of 4 to -20, an intertlat includes infinity (the reciprocal of zero).
Since a negative number needed to avoid a caspiigalent, if the sign in reversed, to the “number
needed to harm”, and this is the same as the nunaaeled in thethergroup to avoid a case, the
program reports this confidence interval as:

‘4 to infinity in B, then from infinity down to 2h A’
in the hope that this will avoid and not furthentound confusion .(see Altman 1998). This
formulation indicates a continuous interval, fiirstm 4 to infinity in the group with the lower rate
and then extending down from infinity to 20 in thtder group.
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The program also provides a formula for estimatirgnumber needed to avoid one case in a
different group or population, using the rate ratiserved in the study sample, on the assumption
(not necessarily valid) that this rate ratio oesatemains applicable.. The number is the numiber o
person-time units needed, i.e. the number of pereerded for 1 time unit in the group with the
lower rate.

Fail-safe N

Estimates of the fail-safe N are provided for usmeta-analysesas rough guides to the possible
importance of the "file drawer problem", i.e. theckision of studies that were not published or
were not found for other reasons.

The program computes the numbers of new "null"isgithose with an odds ratio or risk ratio of 1)
that will suffice to bring the overall rate ratio & negligible level (0.8, 0.9, 1.1 or 1.2). Ne@ant
is taken of P-values or the size of the null stedie

Fail-safe N estimates based on the P-values imaheus studies are provided by module | of this
program.

Tests for a skewed funnel plot

Two tests for a skewed funnel plot are performedute in meta-analysis. The tests, which
examine the association between the sizes of faetgfin the component studies and their precision,
are theregression asymmetry temtd theadjusted rank correlation test.

In each test, a low P value suggests posgiblidication bias although the "small-study effect”
(Sterneet al. 2000) that it indicates may have some other ¢auss as the use of higher-risk
subjects in smaller studies, resulting in an assiori between sample size and the effect under
consideration.

Both tests have a low power if they are based arnctamponent studies. The regression asymmetry
test is generally more powerful (Eggeral 1997; Sternet al. 2000). A critical P level
of at least 0.1 should be used for both tests.

Comparison of two numbers of events

The program can also compare two numbers of evieatgded as Poisson variates. It might be used
to test the equality of numbers of deaths or otékatively rare events occurring in the same
population in two equal time periods. For thisgmse, only the two numbers are entered (in the
"Numerator" boxes). Approximate confidence intés\axe computed for the ratio of the two
numbers.

METHODS

Exact probabilities

Formulae for the exact binomial probabilities (Fislnd mid-fin individual comparisonare provided by Rothman
and Boice (1982: 27-28). The program uses sourde from XLIM (by A Ray Simons: version SP2.5); tlidased on
an F-distribution algorithm, supplemented by biggcandregula falsiroot-solvers when there is a marked imbalance
between the two numerators and the sample is ldfdgke bisection solver (which is relatively slpis required and the
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sum of the numerators is 3,000 or less, a fastigthgo from David O. Martin's public-domain EXACTB@ogram
(Martin and Austin 1991, 1996) is used instead.

The computation of exact probabilitiesstratified datais sped up by the employment of an efficient atbar for
calculating the coefficients of the conditionaltdizution (Martin and Austin 1991, 1996), using eddom David O.
Martin's public-domain EXACTBB program.

Mantel-Haenszel test

The modified Mantel-Haenszel test of associatioonis adapted for use in cohort analyses (Bresl®4;1Rothman and
Boice (1982: 11). It is performed without a contigicorrection.

Heterogeneity tests and measures

Heterogeneity testor rate ratios are now based on comparisonstiwéliMiantel-Haenszel estimator, and the
heterogeneity tests for rate differences are naed@n comparisons with the Mantel-Haenszel estimtite maximum
likelihood estimator of the uniform rate ratio ahe precision-based estimator of the rate diffezerithe tests use the
Wald statistic (Rothman and Greenland 1998: 275277

Themeasures of heterogeneitil andl-squared are described by Higgins and Thompson (2062)s computed by
Higgins and Thompson's formula 6, and increaseld todicating absence of heterogeneity, if it g 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed fréimby formula 10.

Test for trend
The test for trend of rate ratios uses formula Brafslow (1984).
Rate ratio

Confidence intervals for the rate ratio are estaddty the Cornfield method (Cornfield 1956). Unldssrate ratio is
zero or infinity, Wald intervals (based on the si@ml deviation of the log of the rate ratio) amoatstimated (Rothman
et al 2008, pp. 244-245). Exact binomial intervals Eiss and mid-P) are estimated as well, unlesetasr more than
20 strata.

Rate difference

Confidence intervals for the rate difference argeldlaon formula 11-15 in Rothman (1986). Exact tmiabintervals are
also estimated, unless there are more than 2@.strat

Overall rate ratio and overall rate difference

The computation of exact confidence intervals faraverall rateis sped up by the employment of an efficient
algorithm for calculating the coefficients of thenclitional distribution (Martin and Austin 1991,96), using code from
David O. Martin's public-domain EXACTBB progranlThe Mantel-Haenszel estimate of the overall ratie ia based
on formula 12.27 of Rothman (1986). Its confideimtervals are based on the variance computedéoyntithod of
Greenland and Robins (1985): formula 12-50 of Rathif1986). The maximum-likelihood estimate is of#d by an
iterative procedure (Rothman 1986: formula 12-1djtmg with the Mantel-Haenszel estimator. Coafide intervals
(Breslow's method) are based on formula 12-49 d¢fiRan (1986). The Cornfield estimates of confideimtervals are
based on Miettinen and Nurminen's extension of @ds method (Cornfield 1956; Miettinen and Nunemn 1985).
The Cornfield estimates are computed without ainaity correction, as recommended by Guetsal (1987) on the
basis of limited simulation studies.

The Mantel-Haenszel estimates of twerall rate differencand its confidence intervals are now computed by th
method described by Rothman and Greenland (199868g70), which is appropriate even if the datagrarsely
distributed. The precision-based estimates aredbas formulae 12-1, 12-2 and 12-3 of Rothman (1:98ey are
appropriate only if the number in each stratunaigé.

In the random-effects DerSimonian-Laird procederSimonian and Laird 1986) for the rate ratio, ldtgerate ratio
for each stratum, and its standard error, are ctedpafter changing any zero rate to
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0.0001 Base
(whereBas = 1,000 or whatever other base is used for ties)}aThe Q statistic, which plays a central inlthe
analysis, is based on the data for separate sinatthe Mantel-Haenszel estimator of the rate katiate difference. If
Q + 1is less than the number of strata the randffetts and fixed-effect models yield identicalules

Measures of the impact of exposure

Attributable and prevented fractions in the exposeacalculated from the rate ratio (R); for sfiedi data, the Mantel-
Haenszel rate ratio is used. The formulae are

(R-1) /R
for the attributable fraction, and

1-R
for the prevented fraction. Confidence intervaiks @stimated by replacing R in these formulae Wstlupper and lower
Fisher's confidence limits.

If the data araot stratified or refer to a single stratuitine attributable, prevented and preventable fratsiin the
populationare calculated from the rate ratio (R) and thgprtion of cases exposed to the risk or protedticéor in the
population (E). By default, E is computed from thenerators entered for the two groups, on thenagon that
together they represent the cases in the populédiomopulation stratum). Optionally (if this asgation is incorrect), E
can be entered at the keyboard, as a percentdgefoimula for the population attributable fracti@d-p) is
ER-1)/R,
and (if AFp is negative) the population preverfragtion (PFp) is computed as
1-1/(1- AFp).
For a risk factor, the preventable fraction (ipegpriate) is the same as the attributable fracfimna protective factor,
it is calculated in the same way as the attribatdtaiction, after relabelling the exposed as "unsed" and the
unexposed as "exposed". Confidence intervalsstrated by the same formulae, but replacing R itstlower and
upper confidence limits (Daly 1998). These inté&s\should be regarded as approximate, since umugrt the
exposure proportion E is not taken into accounef@land 1999); E is regarded as a fixed value.

If stratified dataare entered, attributable, prevented and previentedztions in the total population are computehf
the Mantel-Haenszel rate ratio and the proportioreses (i.e., individuals enumerated in the nutoesaf the exposed
and unexposed groups) exposed to the risk or giedédfactor. These proportions are computed bylining the
numbers entered for the two groups in each stratithput reference to any values entered for E édmmve), on the
assumption that the combined groups representdpel@tion. Formula 16-24 of Rothman and Greenl[d®@8, p.

296) is used for the attributable fraction in tlegplation (AF); if its value is negative, it is converted to the
corresponding preventive fraction (see conversgragon, below). For the preventable fractioe, shme formula is
used as for the attributable fraction, after relligethe exposed and unexposed. For stratifidd,da@nfidence intervals
are computed from the variance of In(1 - Afusing formula 16-25 of Rothman and Greenlan®g19. 296).

If the lower confidence limit of an attributableftion (AF) is negative, the prevented fract{®®) equivalent to this
negative value is shown; and vice versa. The asitme equations used for this purpose are:

PEF=1-1/(1-AF) and
AF=1-1/(1-PF).

In some instances confidence intervals are not slmegause zero values interfere with their comjmrtat
Number needed to avoid one case

The number needed is the reciprocal of the raferdifice. In a stratified analysis, the reciprafahe Mantel-Haenszel
rate differences is used. The 95% confidence lifoitshe number needed are the reciprocals 089 confidence
limits for the rate difference.

A formula is provided for estimating the "numbeeded to avoid one event" in a different sampleagutation, on the
assumption (not necessarily valid) that the ratie @bserved in the study sample remains apprep(@hatellieret al
1996; Smeetlet al. 1999). The formula is:

Number needed = X/ P,
where X=1/(1/(1-RR)/Base)

P = rate per 1000 person-time units in group RE > 1) or B (if RR < 1).
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RR = the rate ratio or its reciprocal (whichevexi%)

Fail-safe N

The fail-safe N is computed by the following foraulvhich is derived from Orwin's effect-size foren(Drwin 1983; Hedges
and Olkin 1985, formula 9, p. 306; or lyengar amdegBhouse 1988, formula 5):

Fail-safe N = k[abs(R) - abs(C)] / abs{C}
where k= No. of studies included in the analysis

R =log of the overall rate ratio

C =log of the chosen "negligible value" [@®, 1.1 or 1.2).

Tests for a skewed funnel plot

Theregression asymmetry t¢Eiggeret al. 1997) uses linear regression. It regressesahdasid normal deviate (SND),
defined as the effect measure divided by its stanef@or) against precision (the inverse of thedsed error of the effect
measure). In both this test and the adjusted ram&lation test, the measure of effect is the fdb@rate ratio.. The
regression equation is

SND = intercept b x precision.
In the absence of bias, an intercept of zero isa®rp. The program reports the intercept and#s €onfidence interval, and
tests its difference from zero; two-tailed P iplliged. The usual formulae for least-squarestiregession are used (e.g.
Woolson and Clarke 2002: 309-311; Zar 1998: forridl21).

Theadjusted rank correlation te@Begg and Mazumdar 1994) uses Kendall's rankletioe (Siegel and Castellan 1988:
245-54) to appraise the association between the sfzhe effects in the component studies (dfttrstandardizing these
effect measures) and their standard errors. latikence of bias, &u of zero is expected. Allowance is made for tiegthe
computation. If there are 30 or fewer componertiss, tables of critical levels for one-tailed B.85, 0.025, 0.01, and 0.005
(Siegel and Castellan 1988: Tables RI and Rlluaesl. If two-tailed P exceeds 0.01 accordingdedhables, and for larger
samples, a Z test (making allowance for ties)ésl{&rmitageet al.2002: 290). The two-tailed P value is displayed.

Comparison of two numbers of events

If the sum of the two values is under 60, a bindneist is used (Siegel and Castellan 1988: 38anila 4.2), with a
binomial probability of 0.5. If the sum is 60 oobm, the program uses a chi-square goodnessiesti{Siegel and
Castellan 1988: 45-61, formula 4.5). Approximatefdence intervals for the ratio of Poisson vasatto b are
estimated by regardin@ / (a + b) as a binomial parameter (Ederer and Mantel 197#iitAgeet al. 2002: 157) and
computing its confidence intervals.
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E. COMPARISON OF BINARY (“YES-NO”) DATA
IN ASTUDY USING CLUSTER SAMPLES

This module provides procedures for the analysidusdtered binary (“yes-no”) data. It compares
the findings observed in two independent groupes $tudy (a trial, case-control study, or other

comparison) in which clusters of individuals or eb&tions are used as sampling units. It might be
used, for example, in a comparison of two samplesse sampling units are clusters of individuals,
or in a study in which a cluster of observationsiede on each member of each sample, at different

times or at different body sites, e.g. in eachayen various tooth surfaces. The clusters cay var

in size, and there can be different numbers oftetasn the two groups.

Before entering the data, one category (e.g. “Cas®gosed”, “died”, or “carious”) must be
defined as “yes”. For each cluster in each grtlupsize of the cluster (the number of observajio
and the number of “yes” observations in the clysgethen entered.

For stratified data enter the table for each stratum in turn, and tiek on “All strata’ to obtain
the combined results, which permit appraisal ofagsociation while controlling for confounding
effects of the stratifying variable or variablesgdassessment of heterogeneity.

For ameta-analysisenter the table for each study in turn (as arsge stratum), and then click on
“All strata’ to compare and combine the results in separaties.

The program provides two procedures that estimatdidence intervals for the risk difference
compensating for the effect of clustering on thearece (the design effect).

It also uses thRao-Scottand Donald-Donner proceduresgo compare the groups while adjusting

for intracluster correlations. For each comparjsach of the two procedures providehasquare
ted and amodds ratiq with approximate 90%, 96% and 99% confidencevails. The Rao-Scott
procedure also computes tiesign effecthevariance inflation factoyin each group, and the
effective sample sizéthe number of observations divided by the defagtor). The Donald-
Donner procedure provides estimators ofitttieaclass correlation coefficienis the two groups.
An analysis of variancéable is displayed. Forseries of tableghe program displayglantel-
Haenszel chi-square tesiadoverall odds ratiogwith approximate 90%, 96% and 99% confiden
intervals) computed by both methods, estimatebeaihtraclass correlation coefficienia the two
groups, and estimates of tfaél-safe N. For comparisorynadjusted results(ignoring the
clustering of observations) are also displayed.

Confidence intervals for the risk difference

90%, 95%, and 99% confidence intervals for the diglerence (i.e, the difference between the
proportions of ‘yes’ observations in the two grougse estimated by two simple methods sugges
by Paul and Zaihra (2008), and shown by compuigulgsitions to be at least as good as other
procedures. These methods compensate for the effeletstering on the variance (the design
effect), but no account is taken of the possiblect$ of over-dispersion or intraclass correlation.
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One method (referred to by Paul and Zaihra as £Based on the estimate of the variance of a ratio
estimator, and the other (method S2) is basedrobwst ‘sandwich’ estimator of the variance of the
regression estimator. Computer simulations dematesthe advantages of the former method.

Confidence intervals for the risk ratio

90%, 95%, and 99% confidence intervals for the ralo (i.e., the ratio of the proportions of ‘yes’
observations in the two groups) are estimated ingtnod suggested by Zaihra and Paul (2010) and
referred to as the MR3 method.

Rao-Scott and Donald-Donner procedures

The Rao-Scott procedure (Rao and Scott (1992)lmmdonald-Donner procedure (Donald and
Donner 1987) compare the groups while adjustingrfivacluster correlations. Each procedure has
its advantages (Ahn and Odom-Maryon 1995, Doehet 1994). The Donald-Donner procedure
may be preferred if the samples were selectedrimjoraization, since it uses a pooled estimate of
the intraclass correlation, based on the assumfietrthe clustering effect is the same in the two
groups. The Rao-Scott procedure does not rethuse@ssumption, and estimates design effects
separately for each group. The Donald-Donner ghaeetends to make a conservative adjustment
to the chi-square test and to provide unduly winlgfidence intervals for the odds ratio.

Fail-safe N

Estimates of the fail-safe N are provided for useeta-analyses, as rough guides to the possible
importance of the "file drawer problem", i.e. #lusion of studies that were not published or not
found for other reasons. The program computestingers of new "null" studies (with an odds
ratio of 1) that will suffice to bring the overdtlao-Scott or Donald-Donner odds ratio (in turnato
negligible level (0.8, 0.9, 1.1 or 1.2).

Fail-safe N estimates based on the P-values imaheus studies are provided by module | of this
program.

METHODS

If there are no “yes” observations in a group, catapon is made possible by changing the numbéyes’
observations in its largest cluster from O to imifarly, if there are “yes” observations only, thember of “yes”
observations in its largest cluster is reduced.binlsuch instances the results underestimatditfezence between the
two groups.

Confidence intervals for the risk difference

The two methods are described by Paul and Zail@8)2The method based on the estimate of a ratfimasr (method
C2) uses formula 4, after adjusting the estimatetability of ‘yes’ observations, as explainedrat foot of page 4210.
The method based on the sandwich estimator ofdhiance of the regression estimator (method S&ssribed on
page 4211.

Confidence intervals for the risk ratio

Formula 6 of Zaihra and Paul (2010) is used, suwhistg v; for var(r).
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Rao-Scott and Donald-Donner procedures

The Rao-Scott procedure is described by Rao antd @@92) and Shoukri and Pause (1999: 65-8%);Rao and
Scott’s equation 3 (design effect) has been chat@édl), to conform with the binomial-variance form@4.21 of Zar
(1998). The Donald-Donner procedure is describeBdnald and Donner (1987) and Shoukri and Pau83@9(165-85).

In the Donald-Donner procedure, negative intractaseelation coefficients are truncated to 0.
The analysis can handle up to 40 strata (with B0 clusters per stratum).

Fail-safe N

The fail-safe N is computed separately for eacthefadjusted common odds ratios.

The fail-safe N is computed by the following foraulvhich is derived from Orwin's effect-size foren(Drwin 1983; Hedges
and Olkin 1985, formula 9, p. 306; or lyengar amdgBhouse 1988, formula 5):

Fail-safe N = k[abs(R) - abs(C)] / abs{C}
where k= No. of studies included in the analysis

R = log of the overall odds ratio or riskaa

C =log of the chosen "negligible value" [0.8, A.9, or 1.2).

Unadjusted results
The usual chi-square test is performed for a singfaparison (Zar 1998: formula 23.6}. The unatfdgestss for
stratified data are based on Hauck's variance flaramd the usual Mantel-Haenszel test (Donald amahBr 1987:

formulae 3 and 5).

The unadjusted odds ratio is based on the poateiéhfis. Approximate confidence intervals are coraguty Woolf's
logit method (Morris and Gardner 200, pp. 60-62).
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F1. COMPARISON OF CATEGORICAL DATA
(THREE OR MORE NOMINAL CATEGORIES)

This module can be used to analyse any simpl& 2antingency table (derived from an
observational study or from a trial) that compdves independent groups with respect to a nomir
variable that has three or more categories, aréesof such tables representing the findings in
different strata or in different studies. Mod#&l2 of this program should be used if the categorie
fall into a natural order. Module G is preferafile comparisons of cases and controls with respe
to their exposure to a risk or protective fact@tthas three or more levels.

The categories may be entered in any order; libeik is a reference category it should be enterg
first.

For stratified data enter the table for each stratum in turn, and tHiek on "All strata" to obtain the

combined results, which permit appraisal of theamtion while controlling for confounding
effects of the stratifying variable or variablesdassessment of heterogeneity.

For ameta-analysisenter the table for each study in turn (as arsge stratum), and then click on
"All strata" to compare and combine the resultsaparate studies.

Foreach tableentered the program providesxact probabilities (Fisher's and mid-Pghi-square
tests of associatiorfwith adjusted residuals, comparisons of categpaad optional partitioning),
Goodman and Kruskal'stau, Theil's uncertainty coefficientU, Sakoda’s modified contingency
coefficient, phi, andCohen’sw, compares thdistribution of the categoriesin the two groups, ang
computesShannon's index of the diversity of distributionamong the categories.

For aseries of tablewith the same number of categories in each, thgrano provides an extende(
Mantel-Haenszel test for nominal categories

al

S
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Exact probabilities (See page 7 for fuller detal)s.

Fisher's and mid-P exact probabilities are compuidtky are based on the conditional
probabilities, given the marginal frequencies, lbpassible constellations of values, on the
assumption that the variables are independeisher's Pis the sum of the probabilities of all
constellations with probabilities lower than, ol@s as, the probability of the observed set of
values. Thenid-P estimate is similar, except that probabilities @@ identical to the probability o

f

the observed values are halved before they aredadddbe sum. A mid-P value "does not guarantee

that the Type | error rate falls below a fixed aliHowever, it usually performs well and is less
conservative than Fisher's exact test” (Agrest6199). Armitagest al.(2002: 120) recommend that
both the Fisher P and the mid-P value should Engi¥xtensive simulations indicate that the mid-P
exact test is the method of choice in small san{pleerseret al 2007).

Since all possible constellations are taken intwant, the probabilities are essentially two-tailed

Computation may be slow if numbers are large aretlage many categories. In such instances

computation may pause, and can be optionally teatachif the interim P (which grows by accretion
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during the analysis) is sufficiently informativéthe analysis is likely to be unconscionably slaw,
is not done.

Chi-square tests of association

The program performs both conventional (Pearsod)@grlikelihood-ratio chi-square @Btests. In
addition, Haldane's large-table chi-square tesix(idl 1961: 41-44) is performed if there are over
30 categories.

Pearson and log-likelihood-ratio chi-square tegenerally lead to the same conclusions. When
they do not, many statisticians prefer the logliil@d-ratio test (Zar 1998: 506). Whenever
Williams's criterion for preferring the log-likeldod-ratio chi-square to the Pearson chi-square is
met — i.e. if any expected frequency (under thémpothesis) is less than its difference from the
observed frequency (Williams 1976) — the prograspldiys a message to this effect.

Chi-square tests may be misleading if the expeteepiencies (under the null hypothesis) are too
small. Cochran (1954) recommended that fewer tmanfifth of the cells should have expected
frequencies of less than 5, and none should haeg@ected frequency of less than 1. The program
displays a warning if these conditions are not nfetvarning is also shown if the mean frequency
per cell is under 5, since the likelihood-ratia tesy then be of low validity; the P-value tend®&
too high if most expected values are less thanahétoo low if most expected values are between
0.5 and 5 (Agresti 1996: 194).

The validity ofHaldane's large-table chi-square tastnot affected by zero or small cell
frequencies. Two alternative methods of appraisapeovided: a Z value and a suggested
improvement, Bartlett's modified chi-square.

Adjusted residualare displayed. These show which cells contributstrto the chi-square, and
may be helpful in determining the sources of aifigant association. The residuals have been
converted to Z scores so as to indicate theirssizdl significance. An adjusted residual ove61.9
or under -1.96, for example, indicates significaatthe P < 0.05 level.

Multiple comparisonsire performed, based on a series of 2 x 2 tablesich each category in turn
is compared with the first one. This should betkempnind when entering the data — if there is a
reference category (for example, a control groug tinal or observational study), it should be
entered first. Odds ratios are displayed as veetlha-squares. The P-values are modified so as to
make them appropriate for multiple tests. In addijtpairwise comparisons of all categories are
performed (unless there are more that eight caegotwo sets of P values are displayed — one
suitable for planned comparisons, and one appitepioa multiple tests withow priori hypotheses.

Partitioning of chi-squarenay help to determine just where the differenceslais generally
recommended that chi-square should be partitiongdiba significant association has been found.
If the option for partitioning chi-square is sekstt categories that are believed to be simélgriori

or after inspection of the data, must be indicatddhe program then performs likelihood-ratio chi-
square tests on two new tables: (a) a table cahtim¢and hence comparing) these selected
categories, and (b) the whole table, but with #leded categories combined (so as to ignore the
variation of these categories), on the assumpliahthey are indeed similar. The sum of the two
chi-squares is the chi-square for the originaldabiwo P values are reported for each test —amne f
testing am priori hypothesis, and one for testing a hypothesis sigddy the data.
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Mantel-Haenszel test for nominal categories

This overall test of association controls for aanfding effects of the stratifying variable or
variables — e.g. of age and sex if the strata sgptedifferent age-sex groups. In a meta-analisis,
is an overall test, controlling for the differendegween the studies.

The test is not done if the number of categoriegsan different strata or if there are over 40
categories or over 40 strata.

Goodman and Kruskal's tau

Goodman and Kruskaltau, a proportional-reduction-in-errors measure ofabgociation between
two nominal-scale variables (here, the “yes-nolalde and the other variable), expresses the
extent to which knowledge of the distribution olorariable enhances the accuracy with which the
other can be predicted (Blalock 1979: 307-310; Bago 1976: 430-434; Agresti 1990: 24-25). It
varies from 0, which means that the one variabi®ifelp in predicting the other, to 1, which means
that the one variable perfectly specifies the otA@uis calculated for predictions in each direction.
A symmetric (nondirectional) version is also congult

Tau is influenced by the marginal totals, and ese¢ffore generally of use only if the data come from
a total group or population of interest, or a repreative sample of such a group or populatiore Th
results may be misleading if the marginal totaésdatermined arbitrarily, as in case-control or
cohort studies in which samples of arbitrary sem@scompared.

Theil's uncertainty coefficient U

Theil's uncertainty coefficied, like Goodman and Kruskalau, is a proportional-reduction-in-
errors measure of the association for between twoimal-scale variables (here, the “yes-no”
variable and the other variable) (Agresti 1990:RPfesset al. 1989: 527-552). It indicates the
extent to which knowing the distribution of oneigte enhances accuracy in predicting the
distribution of the other. The possible rangeaf 0 (no association) to 1 (complete dependence).

U coefficients are computed for predictions in bditlections, as well as a symmetric
(nondirectional) weighted average.

Like Goodman and Kruskaltau (see above)) is influenced by the marginal totals.
Phi

Phi (Siegel and Castellan 1988: 232-235), a measuassufciation based on chi-square, can vary
from0to 1. Ina 2 ktable, it is equivalent to CrameN5(Siegel and Castellan 1988: 225-232).

Like Goodman and Kruskaltau (see abovephi is influenced by the marginal totals.
Sakoda’s modified contingency coefficient
This modification of Pearson’s contingency coeéitiis also a measure of association based on chi-

square, and can also vary from 0 to 1. It can tepreted as a proportion of the maximum variation
between the variables.
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Cohen's w

Cohen'sw is an effect-size index that expresses the dinarfghe association between the row and
column variables. It is computed from chi-squared can exceed 1. By Cohen's criteria, 0.5 or
more indicates a large effect size, 0.3 or mor¢ l@ss than 0.5) indicates a medium effect sizd, an
0.1 or more (but less than 0.3) indicates a snff@tesize (Cohen 1988: 222 - 226). Cohen (1988)
warns that these criteria should be used only where is no better basis for evaluation. An adpliste
w, controlling for the size of the table, is alsoguuted, as suggested by Sheskin (2007: 658).

Distribution of the categories

The program displays the percentage distributioth@fcategories in each of the two groups. For
each category, it shows the difference betweepéheentages observed in the two groups, and the
ratio of the percentages observed in the two grolips percentage distribution in each row is also
displayed, with the corresponding differences atbs.

Shannon's index of the diversity of distribution

Shannon's index (Shannon 1948), which expressefigtidution of observations among the
categories, is computed for each of the two groapd,the difference between the indices in the two
groups is tested.

The Shannon index is high (close to 1) if the thsition is even, and low (close to 0) if it is ueav
Since it is affected by the number of categorielgtive diversity is also displayed, expressing the
index as a percentage of the maximum possible ¥ahute given number of nonzero categories.

Especially in a small sample, Shannon's index israterestimate of the diversity in the sampled
population. The relative diversity is typically anerestimate (Zar 1998: 50-42).

The test comparing the indices is not meaningftiiéfsizes of the groups are determined arbitrarily
as in case-control or cohort studies in which saspf arbitrary sizes are compared.

METHODS

Exact probabilities

The computation of exact probabilities is explaibgdviaxwell (1961: 46-50). The probability ofexy possible
combination of frequencies, taking the marginadjfrencies as fixed, is computed in turn. If thebjatality is lower
than the probability of the observed frequencydaltlis included in the cumulative estimate, bfothFisher's P and for
the mid-P estimate. If the probability of the canation is the same as the probability of the obegtable, it is
included in Fisher's P, and half its value is adaetthe mid-P estimate.

Chi-square tests of association

Formulae for chi-square are provided by most siedisextbooks, (e.g. Zar 1998: formula 23.1 foaiRen's chi-square
and 22.11 for the likelihood ratio test). The cangpion of likelihood-ratio chi-squares when thira zero frequency is
made possible by changing the zero to 0.000000&ppropriate message is displayed.

Haldane's large-table chi-square teit based on the exact mean and variance of ciagireq Formulae are provided by
Maxwell (1961: 41-44).
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Adjusted residual are the discrepancies between the observed freigseand the values expected under the null
hypothesis, converted to Z scores. The procedulescribed by Everitt (1977:46-48; formulae 3.8.8) and Agresti
(1996: 31-32; formula 2.4.4).

Themultiple comparisonsf categories are based on likelihood-ratio chiegg tests. Since these tests are not
independent, the P-values are modified so as te@rfekn appropriate for multiple tests (Everitt 1944-46; Golbeck
1994), using Bonferroni adjustments. P is multighliy the number of tests performed (Golbeck 1994).

Chi-square partitionings described by (among others) Everitt (1977: 4),-Agresti (1990: 50-54 and 1996: 32-33),
and Siegel and Castellan (1988: 118-123). The Bevialr testing am priori hypothesis is based on the degrees of
freedom in the table tested. The alternative (ebraive) P-values provided for testiagposteriorihypotheses are
based on the degrees of freedom in the total (@iptable, so that "it is in no way necessarydoidea priori (i.e.
before seeing the data), what combinations are tested and one may be guided by the data thesssieldeciding
what to test" (Gabriel 1966).

Mantel-Haenszel test for nominal categories

The extended (generalized) Mantel-Haenszel testdorinal categories is described by Agresti (1238%-5). Matrix
calculations are required.

Goodman and Kruskal's tau
Goodman and Kruskaltau (Agresti 1990: 24) is computed twice, with fixedminal totals for the row variable and the

column variable in turn; a symmetric version isoatemputed. For detailed formulae, see Jacobsdé @®Gahlinger
and Abramson 1995: 47.

Theil's uncertainty coefficient U

Theil's uncertainty coefficient is computed bynfalae 12.6.15, 13.6.16, and 13.6.16 of Petsd (1989: 530), using
an adaptation of the cstab2 procedure (Peeat 1989: 530-531).

Phi
The formula fophiis phi = V(chi-square / N)where N = total number of observations.
Sakoda's modified contingency coefficient

Ina 2 xk table, the formula isC //(0.5)
where C = Pearson’s contingency coefficient

=+[chi-square / (chi-square + N)]
N = total number of observations.

Cohen's w

Cohen's effect-size indew) is computed by the formula
w =+ (chi-square / N) (Volker 2006: formula 17).
The adjustedv takes account of the size of the table by usidg&a's contingency coefficieBt

w= V(S /(1-F)) (Sheskin 2007: 658)
Shannon's index of the diversity of distribution
Formulae for Shannon's index and relative divelaigyprovided by Zar (1998: formulae 4.18 to 4.2D)e test for the

difference between two diversity indices (Hutche$6ii0) is described by Zar (1998: 156-158). Lagsase 10 are
used in the computations.
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F2. COMPARISON OF CATEGORICAL DATA
(THREE OR MORE ORDERED CATEGORIES)

This module can be used to analyse any simpl& 2antingency table (derived from an

observational study or from a trial) that compdves independent groups with respect to an ordinal

variable that has three or more categories, oriessef such tables representing the findings in

different strata or in different studies. Mod@eof this program is preferable for comparing cases

and controls with respect to their exposure tsk or protective factor with three or more levels.

The categories must be entered in the correct osthating at either end of the scale; if thera is
reference category it should be entered firsta follow-up study that compares the changes
observed in two independent groups, with categoaerging from extreme change in one directio

to extreme change in the other (based on pairemdefter ratings), the “no change” category must

be specified.

By default, the categories are given scores of 3,étc., for use in some of the tests and measures

If these scores are inappropriate, they can begethto others that better express relative magaitud
or degree. Appropriate scores for age categdoegxample, night be the mid-points of age ranges,

and for smoking categories, they might be the nmediambers of cigarettes per day

For stratified data enter the table for each stratum in turn, and tiek on "All strata’ to obtain
the combined results, which permit appraisal efabsociation while controlling for confounding
effects of the stratifying variable or variablesdassessment of heterogeneity.

For ameta-analysisenter the table for each study in turn (as arsge stratum), and then click on
“All strata’ to compare and combine the results in separatiest.

Foreach table enteredhe program provides axtended Mantel-Haenszel testa T-test for
trend, a Mann-Whitney test, aBrunner-Munzel test, Kolmogorov-Smirnov andCramer-von
Misestests, an optionabtrickland-Lu test,theta(the probability that a value in one group wil b
higher than a value in the othepjjds ratios andregression and correlation coefficientsand (as
an optionjtests for a difference in one taibf the distribution, i.e. in the part of the dibtition
beyond a selected threshold. Measures of the sityita dissimilarity of the distributiondPSR and
ABC) are provided.

For aseries of tableghe program provides axtended Mantel-Haenszel procedurea Mann-
Whitney test (van Elteren proceduregsts and measures of heterogenejtgdds ratios, and
regression and correlation coefficients.

Extended Mantel-Haenszel test

The extended Mantel-Haenszel test (Mantel extertsist), which is based on the scores allocate

dto

the categories (see above), is regarded as atdsthd, since it is much more capable of detgctin
linear and other monotonic relationships than o#éissociations; but a significant result can also be

produced by a non-monotonic association (RothmanGrneenland 1998: 314).
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The test is applied both to a single table andradified data ( provided that the number of
categories is the same in each stratum). Twoekaifel (for single tables) one-tailed P-values are
shown.

The test is appropriate for sparse data, but gingle table) at least two of the cell frequendos
each of the two groups must be large.. For steatifiata, at least two of the cell frequencies &he
group, summed across the strata. must be largéhifidm and Greenland 1998: 315).

T-test for trend

TheT-test for trend (Barlovet al. 1972), which is based on contrasts and does ndhasarbitrary
scores allocated to categories (see above) isteghtir be more powerful than the Mantel extension
test with respect to monotonic relationships, a&asd likely to produce significant results because o
non-monotonic associations (Leuraud and Benich@1 R0

The test is applied to single tables only. Twoetdidind one-tailed P values are shown..

Mann-Whitney test

The Mann-Whitney test (the Wilcoxon-Mann-Whitnegtteor Wilcoxon rank-sum test) is based on
the ranks of the observations; it does not regsdores for the categories.. The null hypothssis i
that the ranks are similar in both groups, andatternative hypothesis is that the observatiorem
group tend to have higher ranks than those in tieroOn the assumption that the distributions are
similar in shape, it is a test for the differenetvreen medians.

If stratified data are entered each stratum isyaedl separately, and the strata are then combaomed f
testing by thevan Elteren procedurso as to control for possible confounding effetthe

stratifying variables. Caution should be usethé strata are small, or (Mehroetal. 2010) if the
results in the various strata are very different.

One-tailed and two-tailed P values are shown. pgrbgram displays, but does not explain, five
values (n, n, U1, U2, andW) that can be employed to obtain more exact P gafuie groups are
small (see “Methods”, below).

Brunner-Munzel test

Like the Mann-Whitney test, the Brunner-Munzel {@&unner and Munzel 2000) is based on the
ranks of the observations, and does not requoresdor the categories. This nonparametric test is
appropriate when variances may be unequal, nogr@itnot be assumed, and the distributions
may be skewed (Neuhauser 2010). When variances diffthe distributions are skewed, the test
generally performs better than the Mann-Whitney ({E€agerland and Sandvik 2009). The null
hypothesis is that there is a probability of atta randomly selected observation in one sample
will be higher (or lower) than a randomly selectdservation in the other sample (a "relative effect
of 0.5).

The test is not performed if there are fewer titabiservations in either sample.
Kolmogorov-Smirnov and Cramer-von Mises tests

The Kolmogorov-Smirnov two-sample test and then@@naVVon Mises test are tests for general
differences between the distributions in the twaugis. They test whether the samples have been
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drawn from the same population (or populations wd#ntical distributions). They are sensitive to
differences in central tendency, spread, and symymesskewness, as well as in trend.

The Cramer-von Mises test is often more powerfahtthe Kolmogorov-Smirnov test (Sprent 1993:
128).

Strickland-Lu test

The Strickland-Lu test is performed only if a “neange” category is specified (see above). Itis a
test for the difference between the changes obdemvievo independent groups, in a follow-up study
in which change, appraised by comparing paireddiegfand “after” ratings for each individual, is
expressed in an ordinal degree-of-change scaleawtaisgories range from extreme change in one
direction to extreme change in the other (Strictland Lu 2003). The degree-of-change data for
each group must be entered, and the category egpiieg “no change” must be specified.

Two-tailed and one-tailed P values are computeagusvo alternative logit models — a proportional-
odds model and an adjacent-category-odds modetkwim effect, gives the same weight to any
change in a particular direction). When therelarge difference between the groups, the test may
slightly overestimate significance.

Tests for a difference in one tail

Tests are offered for a difference in one tailh& distribution of any ordinal or interval-scale
variable, i.e. in the part of the distribution bagleany selected threshold. The tests are done if a
threshold is entered for this purpose. The suceessilues are treated as separate categories, and
their frequencies in each group must be entered.

These tests were proposed for comparisons offésphns of two samples of rats in trials of
interventions intended to increase life-span, campahe probability of lifespans above some
threshold defined as “old”. They could also bedufee other upper-tail comparisons (of, for
example, the blood pressures of hypertensives$prdower-tail comparisons

Two tests are performed. One test simply compheeproportions that are above the threshold; it
is basically an appraisal of a 2x2 table (i.e.,b®tond the threshold, versus beyond the threshold)
The program uses the Mehotra score test (Melebtaa 2003),which Wanget al. (2004) found to

be preferable to an ordinary chi-square test fierghirpose

The second test takes account not only of whetheervations are beyond the threshold, but also of
“the magnitudes by which observations exceed trestiold” using an approach tested and
advocated by Gaet al. (2008), which is apparently preferable to a coadal t-test (Wanget al,

2004). Before performing the test, the program padilthe observations that do not exceed the
threshold into a single first category. If onlyghest is required, data entry can be simplified by
summing these frequencies manually, and enterigny s a single first category; but this will of
course invalidate the module's other results.

Comparison of distributions
Theproportion of similar responseg®SR also called th©C or overlap coefficientand the eea

between curvefABC, also called thdissimilarity inde) are measures of the similarity or
dissimilarity (respectively) of two distribution&iacoletti and Heyse 2011, Mizuno et al. 2005;
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Rom and Hwang 1996). Differences between frequenoyes reflect differences both in location
(means) and in scale (variances).

The PSR measures the degree of overlap of two pildapalistributions. It ranges from 0%,
indicating completely disjoint distributions, to@%, indicating a complete overlap. It has been
suggested that a PSR around 70% is a reasonaieleorrifor equivalence in clinical studies (Rom
and Hwang 1996).

The ABC is a measure of the degree of separatiwee® two distributions. Differences between
frequency curves reflect differences in scale @rare) as well as in location (mean). The PSR and
ABC are related (PSR =1 - ABC/2).

The measures are estimated by two nonparametrieguoes (based on Kolmogorov-Smirnov and
Mann-Whitney tests). Non-parametric estimates astiohg assumptions on the shape of the
distributions, such as normality or equal variaf(®&#ne and Heyse 2001).

These measures have been suggested as aids inrcantpa results of two treatments (Rom and
Hwang 1996), in comparing the responses to admaiish of a drug in different
populations(Mizuno et al. 2005), in the comparisbantibody titres of subjects who do and do not
fall ill after vaccination, and in examining thesdiiminatory capacity of tests (Giacoletti and Heys
2011)

The PSR and ABC values are not reported if eitkeeeds 100%, which indicates that the
procedures are inappropriate for this comparisorhably because the two distributions are almost
or completely discrepant - i.e. with very little mo overlap..

Test and measures of heterogeneity

Two heterogeneity tests are performed - one fotitlear components of the trends in the strata, and
one for the generalized odds ratios in the straitee former test is done only if the number of
categories is the same in each stratum.

Theheterogeneity testsave a low power, and the results should be irggzd with caution. If the
result is significant at the 0.05 level, the hypsiis of homogeneity can be rejected; but “a high
pvalue ... does not show that the measure is umjfdronly means that heterogeneity ... was not
detected by the test” (Rothman and Greenland 1ZB®); the larger the strata, the more valid the
test.

Each heterogeneity test is accompanied byrheasures of heterogeneityhese arél andl-
squared AnH value of less than 1.2 suggests absence of natepoeterogeneity, whereas a
value exceeding 1.5 suggests its presence, etea fifeterogeneity test is not significaiksquared
expresses the proportion of variation that canttsioated to heterogeneity (in a meta-analysis, to
interstudy variation) rather than to sampling error

Estimates of the supposed common underlying measuich as the generalized odds ratio, are of
guestionable value if the findings in the variotrata are very disparate. If the results are not
uniform, explorations of possible causes — e.gpb@atons with study design or quality or with the
sizes or other characteristics of the samples —reagvealing.
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The uniformity or heterogeneity of the measurethendifferent strata can be appraised not only by
these tests and measures, but by plotting the valoe their confidence intervals graphically.

Theta

Theta(Ryu and Agresti 2008), a3/mn(Newcombe 2006), is an estimate of the probaltiit a
randomly selected subject in group B will have aerextreme value (i.e., will fall into a category
nearer to the last-entered category) than a randsehtcted subject in group A. Itis computed from
the ranking data used in computing the Mann-Whitesy, which can be seen as a test of the
significance of the departure of this probabilityrh 0.5 The category scores are not usétieta

has been shown to be the same as the area un@ @lrve. The odds correspondingheta

(theta /[1 - thetg is also reported.

A 95% confidence interval is estimated tbetg this is a Wald interval for the logit ¢iietg
transformed back to thetascale. This method may have a poor coverage pilapdithe groups
are very different in size (Ryu and Agresti 2008).

Odds and odds ratios

As guides to the appraisal of the association @.dose-response relationship), four sets of odds
ratios are displayed: (a) each category in turoompared with the first (reference) category); (b)

each category is compared with the totality of sgoent categories in the scale; (c) each category i
compared with the totality of previous categoriesthe scale; and (d) the scale is dichotomized,
using each possible cut-point in turn, thus prowgdinformation about possible thresholds and the
stability of the odds ratio across a range of dtg{3Heavnerret al. 2010).

For stratified data, Mantel-Haenszel overall oddB8os contrasting each category with the first
(reference) category are shown, with their 95% icemice intervals.

In addition, two summary odds ratios expressingdifference between the distributions in the two
groups are computed: the cumulative odds ratictla@deneralized odds ratio.

Thecumulative odds ratics based on a proportional odds model, which assuirat when the 2 x k
table is converted to a 2 x 2 table by collapsiatggories the odds ratio is the same whatever cut-
point is used; 95% confidence intervals are diggdayfor stratified data, a common cumulative
odds ratio is computed by a Mantel-Haenszel-typeguture, appropriate even when data are very
sparse. The common odds ratio is a weighted agearfthe stratum-specific cumulative odds ratios,
and provides a useful summary of the associatien é&the common cumulative odds ratio
assumption does not hold (provided that heterogyergenot too severe and the directions of the
odds ratios are the same). Its confidence intenvely be inaccurate if the true odds ratios are
heterogeneous within or between strata.

Thegeneralized odds rati(GOR) - which is not based on the proportionalsontbdel - summarizes
the difference between the distributions in the graups. It expresses the odds in favour of a
higher score in one specified group (A or B) thathie other; it is the ratio of two probabilitiethe
probability that a randomly selected observati@mfione specified group (A or B) has a higher
score than a randomly selected observation fronottier group, and the probability that it has a
lower score. Two GOR values are displayed - ona tuigher score in A, and one for a higher score
in B, with their 90%, 95%, and 99% confidence in&s. The GOR is the alpha measure proposed
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by Agresti 1980; it is also described by Lui (20049-122). If stratified data are entered, the
assumed common values of the GOR are displayel tiagir confidence intervals); these are
weighted averages of the stratum-specific GOR &laed are of questionable value is there is
marked heterogeneity.

Regression and correlation coefficients

Regression and correlation coefficients are contyuiased on thgcoresof the categories (and
scores of 1 and 2 for the two groups). They ateappropriate in all study designs. The regression
of the score on the group is the mean differenseanes between the two groups..

In addition, two coefficients based canksare computedkendall’s rank correlation coefficient,
andgamma.

METHODS

Extended Mantel-Haenszel test

The test is described by Mantel (1963) and expthine(among others) Rothman (1986: 346-348), Breslod Day
(1980: 146-154), and Rothman and Greenland (1298-315). The one-sided test uses the squarefabi-square
(Agresti 1996: 35).

T-test for trend

The test is described by Leuraud and Benichou (2f@dthulae 3 and 4). It uses a set of coefficie@ining the “most
stringent somewhere most powerful test” againsbaatonic alternative (Schaafsma and Smid 1966, 8shmea 1968).

Mann-Whitney test

The test is described by (among others) SiegelCastellan (1988: 128-137) and Zar (1998: 146-1%38jpwance is
made for ties, each of the tied observations bgingn the mean value of the relevant ranks.

If either sample contains over 10 observations; and two-tailed Z tests based on normal approxanatare used; the
program uses both the usual normal approximatian {298, formula 8.53) and the improved normakagmation
procedure of Hodgest al1990; Zar 1998: formulae 8.58-8.61) , which presidnore accurate P values. The Hodges
procedure is not used if neither sample has mare 10 values.

If there are 10 or fewer observations in each sayptable of critical values of tikdistribution is used for P < .1,
<.05, <.025, < .01, <.005, and <.0005 for onesthikests, and these probabilities are doublednioitailed tests (Zar
1998: App89: Table B.11). If the size of the serafiroup does not exceed 20, the program displyes that may be
employed to determine P more exactly, using taflies as those in Zar (1998: App89) and Siegel aasiellan (1988:
339). These values ameand n (the sizes of the smaller and larger sampbgeectively), two values &f (U1 andU?2),
andWx (the sum of the ranks of the values in the smak@nple) U1 andU2 are computed by formulae (12.1 and 12.2
in Sheskin 2007) that use the sums of the rankbénrespective samples (A and B). When usingables in Zar

(1998) for a one-tailed tes#2 should be used if the alternative to the null higpsis is that the values in A are higher
than those in B, and1 if the hypothesis is in the opposite directiorg ttigher of U1 and U2 should be used for a two-
tailed test.

If stratified data are entered, the van Elterercedare (van Elteren 1960) is used: After the vahae& been ranked
separately within each stratum, formulae 2, 3 anflMehrotraet al (2010) are applied, giving a weight of
1/ (ny +ny + 1)to each stratum,
where n;andn, are the numbers of values in the two groupsérsthatum.
The procedure is not used if the number of strataeds 100, or if there are over 200 values ingaayip in a stratum.
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Brunner-Munzel test
The Brunner-Munzel test is based on formulae 3d34a8 of Brunner and Munzel (2000).
Kolmogorov-Smirnov and Cramer-von Mises tests

The Kolmogorov-Smirnov two-sample tésdescribed by Siegel and Castellan (1988: 144-1%he test is performed if
both sample sizes exceed 2. The test statisticddmputed by formula 6.18 in Siegel and Cast¢la88: 145). If
sample sizes are small, exact P-values are repast&0.001, <0.01, <0.05, <0.1 or >0.1. For PXD.@# both sample
sizes are 20 or less, these are based on HollandeWolfe (1999: 606-630: Table A.10); for the atbetical values, if
both sample sizes are 25 or less, the source gelSiad Castellan (1988: 350-351: Table L.1l). RBoger samples,
approximate P-values are reported as <0.001, <Q<B1, <0.025, <0.05, <0.1 or >0.1, using thenigeae in Siegel
and Castellan (1988: 352: Table L.1II).

The Cramer-von Mises testdescribed by Sprent (1993: 127-128). It idqremed if both sample sizes exceed 3, and if
the total number in each category is under 10,00the sum of the two sample sizes is less tharet8&ct P-values are
reported as P<0.001, <0.01, <0.05, <0.1 or >0.ar¢w Burr 1964). In other instances the approtémmalues are
calculated by an adaptation of a Fortran procetfora David Baird's library of goodness of fit stditts
(EMPCDF.SRC). Ties are handled as follows: é fiequencies (in groups A and B) in a category3aaed 7, the
cumulative relative frequencies are compared setiares - first after entry of each of the 3 paifobservations (one
in each sample), and then after entry of eacheofithemaining observations.

Strickland-Lu test

The Strickland-Lu test is described by Strickland &u (2003). To obtain the test statistic (anragjmnate normal test
statistic), an odds ratio is estimated for eaclugrdormula 1), and the log of the ratio of the tadds ratios is divided
by the square root of its variance (formula 2)r e purpose of this computation, 0.5 is firstedltb zero cells
(categories with a zero frequency for both groupsrt taken into account).

Tests for a difference in one tail

The score test (Mehotet al 2003, formula 4; Wangt al. 2006) is the “Zpooled” statistic of Suissa aBHuster
(1985).

The test that also takes account of the magnit@itteecobservations (Gaat al 2008) is a Mann-Whitney test,
performed after pooling all the observations thahdt exceed the threshold into a single first gaitg

Two-tailed P values are reported
Comparison of distributions.

The Kolmogorov-Smirnov statistic is used as a noap@tric estimator of ABC, and PSR is derived fithis, using
formula 4 of Giacoletti and Heyse (2011).

PSR and ABC are also derived from the Mann-Whitmeyatistic, as explained by Giacoletti and Heysel{.
Test and measures of heterogeneity

Theheterogeneity chi-squaiis the sum of the Mantel-Haenszel chi-squaresaat estratum minus the overall Mantel-
Haenszel chi-square (Rothman and Boice 1982: 9).

Themeasures of heterogeneitid andl-squared are described by Higgins and Thompson (2062)s computed by
Higgins and Thompson's formula 6, and increaseld todicating absence of heterogeneity, if it lesmn 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed from H, by folarlO.
Theta

Theta is computed ak)1/(m*n), i.e. by dividing the Mann-Whitney statistitl (see above) by the product of the two
sample sizes. [Early versions of this program caeubtnetaby ridit analysis (Fleisst al 2003: 198-205).]
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The computation of the logit Wald confidence intds is explained by Ryu and Agresti (2008).
Odds ratios

Formulae for theumulative odds ratiand its variance are provided by Liu and Agres®96: formulae 2 and 3). The
program uses an adaptation of Fortran code madkalalesto us by Liu and Agresti.

Thegeneralized odds ratilGOR) is computed by the formula provided by Lui (20020), and its 95% confidence
interval by the logarithmic-transformation methddarmula 6.3 (Lui 2004: 121). For stratified dathe assumed
common value of th&ORis the exponent of a weighted average of the ddglse GORvalues in the strata, and its 95%
confidence interval is computed from the estimat@dance of this weighted average (Agresti 1980: 68he common
value is not computed if the GOR in any stratuinfigity.

In stratified data, thedds ratios contrasting each category with thet fi@tegoryare Mantel-Haenszel odds ratios for
2 x 2 tables (Robinst al 1986, Rothman 1986: 217-220); they are not coetpiitthere are over 30 categories.

Regression and correlation coefficients
The regression and correlation analysis based areseises methods described by Mantel (1963).

Formulae foiKendall's rank correlation coefficiermind gamma are provided by (among others) Siegel and Castell
(1988: 245, 291). Ties are allowed for in thecakdtion of Kendall's rank correlation coefficié8iegel and Castellan
1988: 249: formula 9.10). The pooled values arighted means of the coefficients in the variouatatrusing the
number of observations in the stratum as the weight
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G. COMPARISON OF THREE OR MORE EXPOSURE LEVELS
(IN A CASE-CONTROL STUDY)

This module is appropriate for the analysis of mparison of cases and unmatched controls with
respect to their exposure to a supposed risk degtige factor that has three or more ordered
levels.. It might be used in the evaluation die@r&peutic or preventive procedure, by comparieg|th
proportions who had been exposed to the procettyprvides the same procedures as module F2
of this program, with the exception of a Strickldndtest, and with the optional addition of
measures of the impact of exposure (attributabjgevented fractions).

A single group of cases can be compared with desgrgup of controls, or a series of case-control
comparisons can be made in different strata oiffardnt studies

The exposure categories must be entered in theat@rder, starting at either end of the scale; if
there is a reference category (e.g. a nonexposedag) it should be entered first.

By default, the categories are given scores of 3,étc., for use in trend tests. If these scares
inappropriate, they can be changed to others #t&titexpress relative magnitude or degree.
Appropriate scores for age categories, for exanrmidgt be the mid-points of age ranges, and for
smoking categories, they might be the median nusntecigarettes per day

For stratified data enter the table for each stratum in turn, and thiek on "All strata’ to obtain
the combined results, which permit appraisal efdhsociation while controlling for confounding
effects of the stratifying variable or variablesgdassessment of heterogeneity.

For ameta-analysisenter the table for each study in turn (as arsge stratum), and then click on
"All stratd' to compare and combine the results in separatkest.

Foreach tableentered the program provides axtended Mantel-Haenszel tesia Mann-
Whitney test, Kolmogorov-Smirnov and Cramer-von Mises testsodds and odds ratios,
regression and correlation coefficientsandmeasures of the impact of exposurttributable or
prevented fractions) Measures of the similarity or dissimilarity dtdistributionsRSRandABC)
are provided.

For aseries of tableghe program provides axtended Mantel-Haenszel procedurea T-test for
trend; aMann-Whitney test (van Elteren procedure)test and measures of heterogeneitpdds
and odds ratios, regression and correlation coefficientsandmeasures of the impact of
exposure(attributable or prevented fractions)

Extended Mantel-Haenszel test

The extended Mantel-Haenszel test, or Mantel eidartext, which is based on the scores allocated
to the categories (see above), is regarded as atéend, since it is much more capable of
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detecting linear and other monotonic relationskiyag other associations; but a significant result
can also be produced by a non-monotonic associgRothman and Greenland 1998: 314).

The test is applied both to a single table andradifed data (provided that the number of catesgor
is the same in each stratum). Two-tailed andqjingle tables) one-tailed P-values are shown.

The test is appropriate for sparse data, but gingle table) at least two of the cell frequendozs
each of the two groups must be large. For stedgtifiata, at least two of the cell frequencies &he
group, summed across the strata must be largenifiRot and Greenland 1998: 315).

T-test for trend

TheT-test for trend (Barlovet al. 1972), which is based on contrasts and does ndhasarbitrary
scores allocated to categories (see above) isteghtir be more powerful than the Mantel extension
test with respect to monotonic relationships, asd likely to produce significant results because o
non-monotonic associations (Leuraud and Benich@1 R0

The test is applied to single tables only. Twoetidind one-tailed P values are shown..

Mann-Whitney test

The Mann-Whitney test (the Wilcoxon-Mann-Whitnegtt or Wilcoxon rank-sum test) is based on
the ranks of the observations; it does not megegores for the categories. The null hypothissis
that the ranks are similar in both groups, andattexnative hypothesis is that the observatiorem
group tend to have higher ranks than those in tiheroOn the assumption that the distributions are
similar in shape, it is a test for the differenetvreen medians.

If stratified data are entered each stratum isyaedl separately, and the strata are then combamed f
testing by thevan Elteren procedurso as to control for possible confounding effetthe

stratifying variables. Caution should be usedhé strata are small, or (Mehrottal.2010) if the
results in the various strata are very different.

One-tailed and two-tailed P values are shown. grbgram may (if numbers are small) display, but
not explain, five valuest, n, U1, U2, andWX) that can be employed to obtain more exact P galue

Kolmogorov-Smirnov and Cramer-von Mises tests

The Kolmogorov-Smirnov two-sample test and then@@aVon Mises test are tests for general
differences between the distributions in the twaugis. They test whether the samples have been
drawn from the same population (or populations wd#ntical distributions). They are sensitive to
differences in central tendency, spread, and symyroeiskewness, as well as in trend.

The Cramer-von Mises test is often more powerfahtthe Kolmogorov-Smirnov test (Sprent 1993:
128).

Test and measures of heterogeneity
For stratified data with the same number of categan each stratum, the program provides a

heterogeneity test for the uniformity of the tremghe various strata, and two measures of
heterogeneity, with their approximate 95% confidemtervals.
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Theheterogeneity testas a low power, and should be interpreted withica. If the result is
significant at the 0.05 level, the hypothesis afhlogeneity can be rejected; but “a high p-value ...
does not show that the measure is uniform, it amans that heterogeneity ... was not detected by
the test” (Rothman and Greenland 1998: 276); dlgel the strata, the more valid the test.

Themeasures of heterogeneity arealdI-squared AnH value of less than 1.2 suggests absence of
noteworthy heterogeneity, whereas a value excgedbsuggests its presence, even if the
heterogeneity test is not significaritsquaredexpresses the proportion of variation that can be
attributed to heterogeneity (in a meta-analysisterstudy variation) rather than to sampling erro

Estimates of the supposed common underlying valtiesasures of association, such as the
Mantel-Haenszel odds ratio, are of questionableevdlthe findings in the various strata are very
disparate. If the results are not uniform, exgi@ns of possible causes — e.g. associations with
study design or quality or with the sizes or ottlearacteristics of the samples — may be revealing.

The uniformity or heterogeneity of the measurethendifferent strata can be appraised not only by
these tests and measures, but by plotting the valoe their confidence intervals graphically, and
comparing them.

Comparison of distributions

Theproportion of similar responsd®SR also called th©C or overlap coefficientand thearea
between curve@ABC, also called theissimilarity inde) are measures of the similarity or
dissimilarity (respectively) of two distribution&iacoletti and Heyse 2011, Mizuno et al. 2005;
Rom and Hwang 1996). Differences between frequenoyes reflect differences both in location
(means) and in scale (variances).

The PSR measures the degree of overlap of two piidapalistributions. It ranges from 0%,
indicating completely disjoint distributions, to@%, indicating a complete overlap. It has been
suggested that a PSR around 70% is a reasonaieleorrifor equivalence in clinical studies (Rom
and Hwang 1996).

The ABC is a measure of the degree of separatiwee® two distributions. Differences between
frequency curves reflect differences in scale arare) as well as in location (mean). The PSR and
ABC are related (PSR =1 - ABC/2).

The measures are estimated by two nonparametreguoes (based on Kolmogorov-Smirnov and
Mann-Whitney tests). Non-parametric estimates astiohg assumptions on the shape of the
distributions, such as normality or equal variaf®#ne and Heyse 2001).

These measures have been suggested as aids inrcantpa results of two treatments (Rom and
Hwang 1996), in comparing the responses to admaiish of a drug in different
populations(Mizuno et al. 2005), in the comparisbantibody titres of subjects who do and do not
fall ill after vaccination, and in examining thesdiiminatory capacity of tests (Giacoletti and Heys
2011)

The PSR and ABC values are not reported if eitkeeeds 100%, which indicates that the

procedures are inappropiate for this comparisarhaisly because the two distributions are almost
or completely discrepant - i.e. with very little mo overlap..
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Theta

Theta(Ryu and Agresti 2008), a3/mn(Newcombe 2006), is an estimate of the probaltitiat a
randomly selected subject in group B will have agrextreme value (i.e., will fall into a category
nearer to the last-entered category) than a randsefécted subject in group A. It is computed from
the ranking data used in computing the Mann-Whitesy, which can be seen as a test of the
significance of the departure of this probabilityrh 0.5. The category scores are not usétieta

has been shown to be the same as the area un@s @lrve. Theddscorresponding ttheta

(theta /[1 - thetg is also reported.

A 95% confidence interval is estimated fbetg this is a Wald interval for the logit t¢iietg
transformed back to thetascale. This method may have a poor coverage pilapafthe groups
are very different in size (Ryu and Agresti 2008).

Odds and odds ratios

As guides to the appraisal of the association @.dose-response relationship), four sets of odds
ratios are displayed: (a) each category in turooimpared with the first (reference) category); (b)

each category is compared with the totality of sgoent categories in the scale; (c) each category i
compared with the totality of previous categoriesthe scale; and (d) the scale is dichotomized,
using each possible cut-point in turn, thus prowgdinformation about possible thresholds and the
stability of the odds ratio across a range of dtg{Heavneret al. 2010)/.

For stratified data, Mantel-Haenszel overall oddB8os contrasting each category with the first

(reference) category are shown, with their 95% icemice intervals.

In addition, two summary odds ratios expressingdifference between the distributions in the two
groups are computed: the cumulative odds ratictlaadeneralized odds ratio.

Thecumulative odds ratics based on a proportional odds model, which assuirat when the 2 x k
table is converted to a 2 x 2 table by collapsiaiggories the odds ratio is the same whatever cut-
point is used; 95% confidence intervals are diggdayfor stratified data, a common cumulative
odds ratio is computed by a Mantel-Haenszel-typeguture, appropriate even when data are very
sparse. The common odds ratio is a weighted agearfthe stratum-specific cumulative odds ratios,
and provides a useful summary of the associatien é&the common cumulative odds ratio
assumption does not hold (provided that heterogyergenot too severe and the directions of the
odds ratios are the same). Its confidence intemvely be inaccurate if the true odds ratios are
heterogeneous within or between strata.

Thegeneralized odds rati@GOR) - which is not based on the proportionalsontbdel - summarizes
the difference between the distributions in the graups. It expresses the odds in favour of a
higher score in one specified group (A or B) thathie other; it is the ratio of two probabilitiethe
probability that a randomly selected observati@mfione specified group (A or B) has a higher
score than a randomly selected observation fronottier group, and the probability that it has a
lower score. Two GOR values are displayed - ona tuigher score in A, and one for a higher score
in B, with their 90%, 95%, and 99% confidence in&s. The GOR is the alpha measure proposed
by Agresti 1980; it is also described by Lui (20049-122). If stratified data are entered, the
assumed common values of the GOR are displayel tiagir confidence intervals); these are
weighted averages of the stratum-specific GOR &laed are of questionable value is there is
marked heterogeneity.
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Regression and correlation coefficients

Regression and correlation coefficients are conthutased on thecoresof the categories (and
scores of 1 and 2 for the two groups). They ateappropriate in all study designs. The regression
of the score on the group is the mean differenseanes between the two groups..

In addition, two coefficients based canksare computedkendall’s rank correlation coefficient
andgamma.

Measures of the impact of exposure

Optionally, the program computes the attributallprevented fraction in the population, on the
assumption that the exposure is to a factor tlaatses or protects against the disease or other
outcome represented by the cases. If exposuoesisisk factor, the program computes the
attributable fraction in the population; and if espre is to a protective factor, it computes the
prevented fraction in the population. The attrdilé fraction can be regarded as the proportion of
the disease rate that can be attributed to expoandethe prevented fraction as the proportiomef t
hypothetical rate (in the absence of exposure)ithatbeen prevented by exposure.

In each single comparison of cases and contras;dlculation is based solely on the sample data.
The computed fraction is an approximation, basethe assumptions that the prevalence of
exposure among the controls is representativeabfiththe population, and that the odds ratio e th
sample is a good estimate of the risk ratio inpbjeulation.

But if stratified data are entered, options arevjgled for enhancing the accuracy of the overall
values by entering, for each stratum, the prolglaf the disease in the stratum and a population
figure or weight expressing the relative size &f stratum. The latter entries serve to neutraliee
effects of variation in the sampling fractions ugethe various strata, and can also be used to
standardize the attributable or prevented fractiomfferent populations and permit comparisons
while holding constant the distribution of the sifygng variable. The weighting factors used foet
latter purpose might be the sizes of the stratastandard population.

The exposure categories must be entered in thegatarder, with the control (nonexposed)
category first. Attributable or prevented fracspmwith their 90%, 95%, and 99% confidence
intervals are computed for all exposure levels pktee first, separately and together; the cotgras
are with the control category.. Confidence intésaae estimated by three different methods, based
respectively on the maximum likelihood estimatéhaf attributable fraction and on log and logit
transformations. On the basis of analyses of ceenmimulated case-control studies, Whittemore
(1983) recommends the use of logit intervals fortattable fractions in the range 21-79% and
maximume-likelihood intervals for estimates outsidiss range, and says that the simulations suggest
no advantage to using the log intervals.

All results - the attributable or prevented frantistandard errors, and confidence intervals - are
shown as percentages.

If the data are stratified, and the same numbeatg#gories were entered in each stratum, a weighted
average of the values in the separate stratadslesdd. If the data are stratified according® t
categories of a suspected confounding variable,abmtrols for effects connected with this
confounder. The weights may be based solely eséimple data, or may take account of the extra
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G. CASE-CONTROL STUDY WITH THREE OR MORE EXPOSURE LEVELS

information entered (see above). If the diseateinaeach stratum of the population and the size o
each stratum in the population have been entdred,groduct , which is the number of cases in the
population stratum, is used as the weight. A satoh study has shown that "case load weighting"
of this sort is the best method of adjustment lipictical situations with relatively large sample
sizes; in small samples, however, there may beerselownward bias (Gefeller 1992). Crude
attributable fractions, based on simple poolinghefcase-control data in the various strata, & al
displayed.

When a prevented fraction is displayed, the eqaialnegative) attributable fraction (see
conversion formula in “Methods”) is also reported.

METHODS

Extended Mantel-Haenszel test

The test is described by Mantel (1963) and expthlme(among others) Rothman (1986: 346-348), Breslod Day
(1980: 146-154), and Rothman and Greenland (1298-315). The one-sided test uses the squarefabi-square
(Agresti 1996: 35).

T-test for trend

The test is described by Leuraud and Benichou (2l@dthulae 3 and 4). It uses a set of coefficie@ining the “most
stringent somewhere most powerful test” againsbaatonic alternative (Schaafsma and Smid 1966, 8sira 1968).

Mann-Whitney test

The test is described by (among others) SiegelCastellan (1988: 128-137) and Zar (1998: 146-1%9jowance is
made for ties, each of the tied observations bgingn the mean value of the relevant ranks.

If either sample contains over 10 observations; and two-tailed Z tests based on normal approxanatare used; the
program uses both the usual normal approximatian {898, formula 8.53) and the improved normakapimation
procedure of Hodges et al.1990; Zar 1998: form8l&8—8.61) , which provides more accurate P vallles.Hodges
procedure is not used if neither sample has mane 10 values.

If there are 10 or fewer observations in each sapgtable of critical values of the U distributisrused for P < .1,
<.05, <.025, < .01, <.005, and <.0005 for onesthikests, and these probabilities are doublednioitailed tests (Zar
1998: App89: Table B.11). If the size of the sraliroup does not exceed 20, the program dispalyes that may be
employed to determine P more exactly, using tatlles as those in Zar (1998: App89) and Siegel asdefan (1988:
339). These values are m and n (the sizes oftladles and larger samples respectively), two vaafdg (U1 and U2),
and Wx (the sum of the ranks for the smaller sajnplhen using the tables in Zar (1998) for a orledaest, U2
should be used if the alternative to the null hizgsts is that the values in A are higher than tf&: and U1 if the
hypothesis is in the opposite direction; the highfdd1 and U2 should be used for a two-tailed test.

If stratified data are entered, than Elteren procedurévan Elteren 1960) is used. After the values Ha@n ranked
separately within each stratum, formulae 2, 3 anflMehrotraet al (2010) are applied, giving a weight of
1/ (ny + mp+ 1)to each stratum,
where n;andn, are the numbers of values in the two groupseérsthatum.
The procedure is not used if the number of strataeds 100, or if there are over 200 values ingaayp in a stratum.

Mantel-Haenszel test
The formula for the Mantel-Haenszel chi-squareres/jgled by (nter aliog Rothman (1986: formula 12: 58). The

criterion used to determine whether the samplessire sufficient to warrant use of this test id¢ tha sum of the
expected frequencies in each cell of the 2 x Ztahlst be not less than 5 (Fleiss 1981: 175).
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Kolmogorov-Smirnov and Cramer-von Mises tests

The Kolmogorov-Smirnov two-sample tésdescribed by Siegel and Castellan (1988: 14Y-1%he test is performed if
both sample sizes exceed 2. The test statisticddmputed by formula 6.18 in Siegel and Cast¢la88: 145). If
sample sizes are small, exact P-values are repast&&0.001, <0.01, <0.05, <0.1 or >0.1. For PXD.@# both sample
sizes are 20 or less, these are based on HollandeWolfe (1999: 606-630: Table A.10); for the otbetical values, if
both sample sizes are 25 or less, the source gelSiad Castellan (1988: 350-351: Table L.1l). RBoger samples,
approximate P-values are reported as <0.001, <Q<0MB1, <0.025, <0.05, <0.1 or >0.1, using theriadae in Siegel
and Castellan (1988: 352: Table L.1II).

The Cramer-von Mises testdescribed by Sprent (1993: 127-128). It idqremed if both sample sizes exceed 3, and if
the total number in each category is under 10,00the sum of the two sample sizes is less tharet8ct P-values are
reported as P<0.001, <0.01, <0.05, <0.1 or >0.4r¢w Burr 1964). In other instances the approtémalues are
calculated by an adaptation of a Fortran procefiora David Baird's library of goodness of fit sditts

(EMPCDF.SRC). Ties are handled as follows: éf ftequencies (in groups A and B) in a category3aaed 7, the
cumulative relative frequencies are compared setiares - first after entry of each of the 3 paifobservations (one

in each sample), and then after entry of eacheofithemaining observations.

Test and measures of heterogeneity

Theheterogeneity chi-squatis the sum of the Mantel-Haenszel chi-squaresah stratum minus the overall Mantel-
Haenszel chi-square (Rothman and Boice 1982: 9).

Themeasures of heterogeneitil andl-squared are described by Higgins and Thompson (2062)s computed by
Higgins and Thompson's formula 6, and increaseld tnodicating absence of heterogeneity, if it s 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed from H, by folarl0.

Comparison of distributions

The Kolmogorov-Smirnov statistic is used as a noap@tric estimator of ABC, and PSR is derived fithis, using
formula 4 of Giacoletti and Heyse (2011).

PSR and ABC are also derived from the Mann-Whitmeyatistic, as explained by Giacoletti and Heysel{.
Odds and odds ratios

Formulae for theumulative odds ratiand its variance are provided by Liu and Agrek®i96: formulae 2 and 3). The
program uses an adaptation of Fortran code madkalaleato us by Liu and Agresti.

Thegeneralized odds ratilGOR) is computed by the formula provided by Lui (20020), and its 95% confidence
interval by the logarithmic-transformation methddarmula 6.3 (Lui 2004: 121). For stratified dathe assumed
common value of th&ORis the exponent of a weighted average of the ¢dglse GORvalues in the strata, and its 95%
confidence interval is computed from the estimaigdance of this weighted average (Agresti 1980: 683he common
value is not computed if the GOR in any stratuinfigity.

In stratified data, thedds ratios contrasting each category with thet fitegoryare Mantel-Haenszel odds ratios for
2 x 2 tables (Robinst al 1986, Rothman 1986: 217-220); they are not coetpiitthere are over 30 categories.

Regression and correlation coefficients

The regression and correlation analysis based aesases methods described by Mantel (1963).

Formulae foiKendall's rank correlation coefficiermind gamma are provided by (among others) Siegel and Castell
(1988: 245, 291). Ties are allowed for in thecakdtion of Kendall's rank correlation coefficié8iegel and Castellan

1988: 249: formula 9.10). The pooled values arighted means of the coefficients in the variouatatrusing the
number of observations in the stratum as the weight
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Measures of the impact of exposure

The program computes attributable fractions. dffilaction is negative — that is, if the factoaiprotective rather than a
risk factor — the attributable fractigk is converted to the prevented fracti®¥] by the formula

PF=1-1/(1-AF

In each case-control comparison, formulae 7.657a88 of Schlesselman (1982) are used; the disatsénrthe
population is not taken into account. Dichotomoaistasts use formula 5 of Whittemore (1983), amthfda 4-11 of
Kahn and Sempos (1989) is used for standard errors.

For stratified data a weighted average of the attributable fractioriadividual strata is computed (Whittemore 1983:

formulae A1, A3), using weights normalized so titetir sum = 1. The standard erron/i@E.Wi)z’ whereSE andw;
are the specific standard errors and weights iividhdal strata.

The weight allocated to a stratum is based on tineber of cases in the sample stratum, or (if ed)are disease rate in
the population stratum, or (if entered) the sizéhefpopulation stratum, or the product of thetstres disease rate and
size (if both were entered).

The three methods of computingnfidence intervalare explained by Whittemore (1983). An approxinttiesquare
test for the significance of the attributable frawtis provided by Schlesselman (1982: 223).

Thecrude attributable fractionbased on simple pooling of the case-control athe various strata, uses formulae 7.58
and 7.65 of Schlesselman (1982).

The program can cope with up to 60 exposure leuadsup to 60 strata.
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H1. COMPARISON OF NUMERICAL OBSERVATIONS
(NORMAL DISTRIBUTION NOT ASSUMED)

This module provides nonparametric proceduresdargaring two independent sets of numerica
observations (ordinal-scale or interval-scale)hattt assuming a normal distribution. It may be
used for the analysis of trials as well as obsermat studies. Module H2 of this program should
used if a normal distribution can be assumed, aodiube H3 for comparing survival data.

Some of the procedures are based on the actuasvahtered, and are appropriate for interval-sc
variables only. Most of the procedures are baseith® ranks of the observations, and are
appropriate for both ordinal-scale variables andriral-scale ones (treated as ordinal).

The findings in two groups can be compared, ori@sef comparisons can be made in different
strata or in different studies. For each comparigafividual values can be entered, or discrete of
grouped values with their frequencie®ptionally, the proportions at or above a selectgepoint
can be reported.

For stratified data enter the data for each stratum in turn, and dhiek on “All strata’ to obtain the
combined results, which permit appraisal of treoamtion while controlling for confounding
effects of the stratifying variable or variablesdassessment of heterogeneity.

For ameta-analysisenter the data for each study in turn (as aragpatratum), and then click on
“All strata’ to compare and combine the results in separaties.

To compare the changes observed in two groupbeaiae-after studwith independentifefore”
and“after” observations, enter the before-after data for gaactp in turn, and then click on “All
strata” for heterogeneity tests

Foreach tableentered the program providameans and mediansMood’s median test
randomization tests(unless the samples are largedtended Mantel-Haenszel tesiaMann-
Whitney test, aFligner-Policello robust rank test, aConover squared-rank test for a difference
between variances Kolmogorov-Smirnov and Cramer-von Mises testsandmeasures of
association(theodds in favour of a higher value one group, thdifference between population
mediansKendall's rank correlation coefficiermndgamma. [To test for a difference in one tail of
the distribution, use Module F2.] Measures ofdimailarity or dissimilarity of the distributions
(PSRandABC) are provided.

For aseries of tableghe program provides thextended Mantel-Haenszel proceduréincluding
the adjusted differences between mean values aneéé&e mean ranks, and a correlation
coefficient), thevan Elteren procedure a combined P based camdomization tests tests and
measures of heterogeneityandmeasures of associatioftheodds in favour of a higher value
one group, thdifference between population medigikendall's rank correlation coefficierand
gamma.

ale
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Means and medians

Mean and median ranks (determined in relation @ccttimbined observations) and mean and median
values are displayed for both sets of observatidime mean values are relevant to interval-scale
variables only.

Median test

The median test (Mood 1954) is performed if a ndmhngtribution is not assumed. It tests whether
the two groups differ in central tendencies. Thk mypothesis is that the two groups are drawn
from populations with the same median. The tegerg robust against outliers.

Proportions at or above a specified cut-point

The proportion of values that are at or above ecsetl cut-point (i.e. the risk of a high outcomg, e
hypertension, obesity, or hypercholesterolemia)(ocationally) be reported, with its 95%
confidence interval. If there is interest in thegortion of values above (and not “at or aboveg) th
cut-point, a small quantity should be added wheti$ging the cut-point (e.g. a blood pressure of
140.1 instead of 140 mm Hg, or a body mass inde80di01 instead of 30 kgfn

Randomization tests

Randomization (permutation) tests are done ordpdervations are entered individually and (in
order to limit the number of possible combinatitmd 00 million and thereby avoid lengthy
computation) if the samples are not large (see Hdas”, below). An option is provided for
aborting the computation if it is too time-consugin

A randomization test computes the exact signifieasicthe difference between the means in the two
groups. It determines what proportion of the gasstombinations of observations (those in both
groups) would yield a difference as extreme aspore extreme than, the difference actually
observed (Siegel and Castellan 1988: 151-155)

Two randomization tests are done for each tabiest, fhe actual values are compared; this is
appropriate for an interval-scale variable onlhei the ranks of the values are compared; this is
appropriate for both ordinal-scale and intervalseariables. One-tailed P values are computed
and displayed; if the sample sizes are equal. aheevis doubled and reported as a two-tailed P
Richards and Byrd 1996).

For stratified data the P-values obtained in randomization testhénseparate strata are combined
to provide an overall test of significance. Thisiad done if the directions of the difference diffe

Extended Mantel-Haenszel procedure

In each comparison, Mantel's extension of the Mdtiéenszel test (Mantel 1963) is done twice.
First the actual observations are compared; trappsopriate for an interval-scale variable. Then
the ranks of the observations are compared,; ttappsopriate for an ordinal-scale variable or for a
interval-scale one (treated as ordinal-scale)..t€hts are performed for each table and in the
combined analysis (of all strata). One-tailed amattailed P values are displayed.
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The extended Mantel-Haenszel test is regardedes #or trend, since it is much more capable of
detecting linear and other monotonic relationstkiias other associations; but a significant result
can also be produced by a non-monotonic associ@@othman and Greenland 1998: 314).

In an analysis oftratified data the program computes the overall (adjusted) idiffees between the
mean values and between their ranks, as well &srpeng overall tests. It also computes
correlation coefficients (Mantel 1963); these egsrthe relationships of the observations, and of
their ranks, with their group (by allotting scodsl and 2, respectively, to groups A and B).

Mann-Whitney test

The Mann-Whitney test (the Wilcoxon-Mann-Whitnegtteor Wilcoxon rank-sum test), which is
based on the ranks of the observations and isftiierapplicable to both interval-scale and ordinal-
scale data, compares the locations of the twoodetlsservations. The null hypothesis is that the
ranks are similar in both groups, and the altevedtypothesis is that the observations in one group
tend to have higher ranks than those in the offfes.test can be regarded as a comparison of the
median values, on the assumption that the twoiloligions are similar in shape. To permit a
comparison of the shapes of the distributionsptiegram reports the standard deviations and
skewness of the two sets of ranked observatiorsyggested by Fagerland and Wilson (2009).

The program reports two-tailed P values, and oiect® values for the alternatives (A>B, B>A) to
the respective null hypotheses. It may (if numlagessmall) display, but not explain, five values
(m, n, U1, U2, andWX that can be employed to obtain more exact P galue

The Mann-Whitney test and related rank-based proesdare not performed if over 100 discrete
values are entered.

If stratified dataare entered, the strata are combined for testingdoyan Elteren procedurso as
to control for possible confounding effects of gttifying variables. Caution should be usethé t
strata are small, or (Mehroted al. 2010) if the results in the various strata are diferent.

Fligner-Policello robust rank test

This test compares the locations of the two setdeérvations. It can be regarded as a comparison
of the median values, on the assumption only thetwo distributions are symmetric about their
population medians (Hollander and Wolfe 1999: fg)18nlike the Mann-Whitney test, which
assumes that the distributions have similar shapds/ariances (Fligner and Policello 1981). It is
applicable to both interval-scale and ordinal-sci&.

One-tailed P values are reported for the altereat(A>B, B>A) to the respective null hypotheses,
as well as the two-tailed P value.

Conover squared-rank test for a difference between variances
The Conover test for equality of variances is basethe squared ranks of the absolute
deviations of the values from the mean value inréspective sample, which is assumed to be the

population mean..

One-tailed and two-tailed P values are displayeels¢ are appropriate for large samples.
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Kolmogorov-Smirnov and Cramer-von Mises tests

The Kolmogorov-Smirnov two-sample test and then@naVVon Mises test are tests for general
differences between the distributions in the twaugis. They test whether the samples have been
drawn from the same population (or populations wd#ntical distributions). They are sensitive to
differences in central tendency, spread, and symymesskewness, as well as in trend.

The Cramer-von Mises test is often more powerfahtthe Kolmogorov-Smirnov test (Sprent 1993:
128).

Tests and measures of heterogeneity

Heterogeneity tests (for stratified data) are basethe two extended Mantel-Haenszel tests (for the
observations and for their ranks).

In parallel with each test, the program also presitivomeasures of heterogeneiky andl-

squared with their approximate 95% intervals, for the ralkdifferences between the mean values
and between their ranks. Ahvalue of less than 1.2 suggests absence of nateyvbieterogeneity,
whereas a value exceeding 1.5 suggests its presmrareif the heterogeneity test is not significant
I-squaredexpresses the proportion of variation that caatbvéduted to heterogeneity (in a meta-
analysis, to interstudy variation) rather thanampling error.

Estimates of the supposed common underlying valtitee differences are of questionable value if
the findings in the various strata are very disfgara

Measures of association

The program displays the odds in favour of a higloere in one group, the difference between
population medians, Kendall's rank correlation fioeint, andgamma.

Theodds in favour of a higher score in one grarp the odds in favour of finding that a randomly
chosen observation in one group is higher thamadamaly chosen observation in the other group.
These odds are displayed for each group, with #gproximate 95% confidence interval, and for
stratified data..

Thedifference between population mediamshe median difference between the values irvtloe
samples; an approximate 95% confidence intervabmsputed. The assumption is that the data
come from distributions that are similar in shagéf€ring only in the magnitude of the values). eTh
difference is not computed if there are very feweny many observations.

Kendall's rank correlation coefficiemndgammaare based on the ranks of the observations. For
stratified data, they are weighted means of théficants in the separate strata.

For stratified data, the overall (adjusted) differes between the mean values and between their

ranks, and correlation coefficients, are compiethe extended Mantel-Haenszel procedure (see
above).
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Comparison of distributions

Theproportion of similar responsg®SR also called th©C or overlap coefficientand thearea
between curvefABC, also called thdissimilarity inde) are measures of the similarity or
dissimilarity (respectively) of two distribution&iacoletti and Heyse 2011, Mizuno et al. 2005;
Rom and Hwang 1996). Differences between frequenopyes reflect differences both in location
(means) and in scale (variances).

The PSR measures the degree of overlap of two piidapalistributions. It ranges from 0%,
indicating completely disjoint distributions, to@3%, indicating a complete overlap. It has been
suggested that a PSR around 70% is a reasonateleocrifor equivalence in clinical studies (Rom
and Hwang 1996).

The ABC is a measure of the degree of separatiwee® two distributions. Differences between
frequency curves reflect differences in scale @rase) as well as in location (mean). The PSR and
ABC are related (PSR =1 - ABC/2).

The measures are estimated by two nonparametreguoes (based on Kolmogorov-Smirnov and
Mann-Whitney tests). Non-parametric estimates astiohg assumptions on the shape of the
distributions, such as normality or equal varia(®ne and Heyse 2001).

These measures have been suggested as aids inrcantpa results of two treatments (Rom and
Hwang 1996), in comparing the responses to admatish of a drug in different
populations(Mizuno et al. 2005), in the comparisbantibody titres of subjects who do and do not
fall ill after vaccination, and in examining thesdiiminatory capacity of tests (Giacoletti and Heys
2011.)

The PSR and ABC values are not reported if eitkeeeds 100%, which indicates that the
procedures are inappropiate for this comparisahadsly because the two distributions are almost
or completely discrepant - i.e. with very little mp overlap..

METHODS

Values are ranked in relation to the combined olzgems (both groups combined), and tied valuesbogted the mean
of the ranks they would have had had they diffesleghtly ("tied ranks").

If grouped (but not discrete)data are entered, elskrvation is allocated the value midway betweriower and
upper borders of the group; this may, of courdecathe accuracy of the results.

In each comparison, up to 200 separate observatiosets of grouped values may be entered for gamip..

Median test

Mood's median test compares the proportions ofegiln groups A and B that are above the commonamedpton's
chi-square test (Upton 1982; D'Agostino 1990) sdufor the comparison. This is the Pearson chivegomltiplied by

(N - 1) / N, where N = total sample size.

Proportions at or above a selected cut-point

The standard errors of the proportions are comployed/ilson’s method (Wilson 1927, Newcombe and Atm2000).

78



H1. NUMERICAL: NORMAL DISTRIBUTION NOT ASSUMED

Randomization tests

Randomization tests are done only if observatisasatered individually and if the numbers of okagons in the two
groups do not exceed 14 and 14 respectively, @nti315, or 12 and 16, or 11 and 18, or 10 and29 amd 24, or 8
and 30, or 7 and 38, or 6 and 53, or 5 and 87,ard4102, or 3 and 109, or 2 and 109.

The procedure is based on a BASIC program provigeSiiegel and Castellan (1988: 380: Program 3).

For stratified data, the P-values obtained in ranidation tests in the separate strata are comitigpediogit procedure
(George 1977; Mudholkar and George 1979), usingditae 8, 9, and 10 in Hedges and Olkin (1985: 40-41

Extended Mantel-Haenszel procedure

The procedure is described by Mantel (1963) anda@xgd by (among others) Rothman (1986: 346-348sBw and
Day (1980: 146-154), and Rothman and Greenland31234-315). The one-sided test uses the sqoatef chi-
square (Agresti 1996: 35).

Mann-Whitney test and van Elteren procedure

The test is described by (among others) SiegelCastellan (1988: 128-137) and Zar (1998: 146-1%38jpwance is
made for ties, each of the tied observations bgingn the mean value of the relevant ranks.

If either sample contains over 10 observations; and two-tailed Z tests based on normal approxanatare used; the
program uses both the usual normal approximatian {298, formula 8.53) and the improved normakagmation
procedure of Hodges et al.1990; Zar 1998: form8l&8—-8.61) , which provides more accurate P vallies.Hodges
procedure is not used if neither sample has mare 10 values.

If there are 10 or fewer observations in each sapgtable of critical values of the U distributisrused for P < .1,
<.05, <.025, < .01, <.005, and <.0005 for onesthikests, and these probabilities are doublednioitailed tests (Zar
1998: App89: Table B.11). If the size of the seafiroup does not exceed 20, the program displlyes that may be
employed to determine P more exactly, using taflies as those in Zar (1998: App89) and Siegel aasiellan (1988:
339). These values are m and n (the sizes ofnladles and larger samples respectively), two vabfdg (U1 and U2),
and Wx (the sum of the ranks for the smaller sajnplé and U2 are computed by formulae (12.1 an@ k2Sheskin
2007) that use the sums of the ranks in the réispezamples (A and B). When using the tables in(Za98) for a one-
tailed test, U2

should be used if the alternative to the null hizgsts is that the values in A are higher than tf&: and U1 if the
hypothesis is in the opposite direction; the highfdd1 and U2 should be used for a two-tailed test.

Skewnesis defined a [(X - Xmean/ SO / N

where X = rank of observation
Xmean= Mean of the ranked observations
SD = standard deviation of the ranked observations
N = number of observations

If stratified data are entered, than Elteren procedurévan Elteren 1960) is used. After the values Haen ranked
separately within each stratum, formulae 2, 3 anflMehrotraet al. (2010) are applied, giving a weight of
1/ (ny +ny + 1)to each stratum,
where n; andn, are the numbers of values in the two groups irsttetum.
The procedure is not used if the number of strateeds 100, or if there are over 200 values ingaayp in a stratum.

Fligner-Policello robust rank test

The procedure (Fligner and Policello 1981) is descr by Siegel and Castellan (1988: 137-144) ankhHder and
Wolfe (1999: 135-139).

If either group contains over 12 observations, Paised on a normal approximation. For smaller sesnpse is made

of critical values of the test statistid)for P < .1, < 0.05, 0.025. and 0.01 (one-taikeal P <.2, < 0.1, < 0.05 and <0.02
(two-tailed), provided by Siegel and Castellan @9®47: Table K).
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Conover squared-rank test for a difference between variances

The Conover test for equality of variances (Concd880) is described by Sprent (1993: 124-125)is bbased on the
squared ranks of the absolute deviations of theegalrom the mean value in the respective santpipiared mid-ranks
are used for ties (within samples or between sashplé large-sample normal approximation is us&grént (1993:
117: formula 5.7).

Kolmogorov-Smirnov and Cramer-von Mises tests

The Kolmogorov-Smirnov two-sample tésdescribed by Siegel and Castellan (1988: 14Y-1%he test is performed if
both sample sizes exceed 2. The test statisticddmputed by formula 6.18 in Siegel and Cast€lla88: 145). If
sample sizes are small, exact P-values are repast®&0.001, <0.01, <0.05, <0.1 or >0.1. For P3&D.# both sample
sizes are 20 or less, these are based on HollandeWolfe (1999: 606-630: Table A.10); for the atbetical values, if
both sample sizes are 25 or less, the source gelSiad Castellan (1988: 350-351: Table L.1l). RBoger samples,
approximate P-values are reported as <0.001, <Q<B1, <0.025, <0.05, <0.1 or >0.1, using thenigeae in Siegel
and Castellan (1988: 352: Table L.1II).

The Cramer-von Mises teistdescribed by Sprent (1993: 127-128). It idqrened if both sample sizes exceed 3, and if
the total number in each category is under 10,00the sum of the two sample sizes is less tharet8ct P-values are
reported as P<0.001, <0.01, <0.05, <0.1 or >0.ar¢w Burr 1964). In other instances the approtémmalues are
calculated by an adaptation of a Fortran procetfora David Baird's library of goodness of fit stditts

(EMPCDF.SRC). Ties are handled as follows: éf ftequencies (in groups A and B) in a category3aaed 7, the
cumulative relative frequencies are compared sétiares - first after entry of each of the 3 paifobservations (one

in each sample), and then after entry of eachefithemaining observations.

Tests and measures of heterogeneity

Theheterogeneity chi-squatis the sum of the Mantel-Haenszel chi-squaresréod in each stratum minus the overall
Mantel-Haenszel chi-square (Rothman and Boice 1982:

Themeasures of heterogeneitid andl-squared are described by Higgins and Thompson (2002)s computed by
Higgins and Thompson's formula 6, and increaseld todicating absence of heterogeneity, if it lsm 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed fréimby formula 10.

Measures of association

The estimate of thedds in favour of a higher value in one groigp
p/(1-p)
wherep, the probability that a randomly chosen observaitioone group will have a higher value than a canig
chosen observation in the other group, is derivechfthe Mann-Whitney statistic (Zar 1998: 147) by the formula
p=U-Tieg /[nin, — 2(Tie9g]
where Ties=Y(a.b/2)
n; andn, = the sizes of the two samples
a and b; = the frequencies of each tied value the two samples.
For stratified data the values ofy - Tieg and h;n, — 2(Tie9] in the various strata are summated, a pooledgevalp is
calculated from the summated values, and the po@ke of the odds is computed from the pooledevalip
(Abramson and Peritz 1983: 169-170).
The confidence interval for the odds in favour d¢figher value in one group is calculated by théhaw proposed by
Halperin, Gilbert and Lachin (1987), as describgdHbllander and Wolfe (1999: 130: formula 4.37).

The estimation of thdifference between population mediamgxplained by Campbell and Gardner (1988)is tiot
performed if the product of the two numbers of obations exceeds 10,816, or if either group hasbkZervations.

Formulae folKendall's rank correlation coefficiersind gamma are provided by (among others) Siegel and Castell
(1988: 245, 291). Ties are allowed for in thecakdtion of Kendall's rank correlation coefficid®iegel and Castellan
1988: 249: formula 9.10). The pooled values arigited means of the coefficients in the variouatatrusing the
number of observations in the stratum as the weight

For stratified data, the overall (adjusted) differes between the mean values and between theg, ramé correlation
coefficients, are computed by the extended Mans#tdzel procedure (see above).
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Comparison of distributions.

The Kolmogorov-Smirnov statistic is used as a noap@tric estimator of ABC, and PSR is derived fithis, using
formula 4 of Giacoletti and Heyse (2011).

PSR and ABC are also derived from the Mann-Whitnsyatistic, as explained by Giacoletti and Heysel].
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H2. COMPARISON OF NUMERICAL OBSERVATIONS
(NORMAL DISTRIBUTION ASSUMED)

This module provides procedures for comparing tetependent sets of numerical observations,
assuming approximately normal or lognormal distiitms. It may be used in the analysis of trials

well as case-control and other comparative studidsdule H1 should be used if normality or near-

normality cannot be assumed, and module H3 shauldsbd to compare survival data.

The findings in two groups can be compared, ori@sef comparisons can be made in different
strata or in different studies. For each comparigadividual values can be entered, or discrete of
grouped values with their frequencies. This withypde a full set of results (as listed below)..

as

Optionally, mean values can be entered, togethir seimple sizes and standard deviations, standard

errors of the mean, or variances. Also, confidemmtervals for a difference between means can
estimated from the P value from a significance tes

For stratified data, enter the data for each stratum in turn, and ¢hek on “All strata’ to obtain
the combined results, which permit appraisal efdhsociation while controlling for confounding
effects of the stratifying variable or variablesgdassessment of heterogeneity. Foreta-

analysis enter the data for each study in turn (as aragpatratum), and then click oAlf strata’

to compare and combine the results in separatéestutb compare the changes observed in two
groups in defore-after study with independent "before” and "after" observasj@nter the before
after data for each group in turn, and then clickKAll strata” for heterogeneity tests.

Foreach tableentered the program providegescriptions of the frequency distributions
(including tests for normality) based on the rawl &rg-transformed observatigrend foreach pair
of tables it providest-tests (ncluding Yuen'’s testsfor 10% and 20% trimmed megnkevene tests
for equality of variances, dntest, Shoemaker’'s modified- test,andBartlett’s test, thevariance
ratio, thedifference between meanghestandardized difference(“effect size”),omega-squared,
the point-biserial correlation coefficient, eta-squared theratio of geometric means and the
ratio of means(with confidence intervals for the measures oé@if. Thenormality of residuals is
tested. If means are enteretkgsts anF test an optionakquivalence test thedifference
between meansand theratio of meansare provided, and (optionally) risks, risk difaces and
ratios, and odds ratios can be estimated, usieteated cut-point. Measures of the similarity or
dissimilarity of the distributiondRSRandABC) are provided.

For aseries of tableghe program providesverall significance teststests and measures of

heterogeneity precision-based estimators of theerall difference between meanéwveighted

mean differences), tretandardized mean differencgcalculated in four different ways), the
overall ratio of geometric meansthe overalratio of means(using fixed-effect and random-
effects models), and (if means are entered) oves#liratios, risk differences, and odds ratios are
estimated (using selected cut-points for the dedimof risk). Confidence intervals are estimated
for these measures of effect. If means are entdreghrogram does not provide the overall ratio g
geometric means.
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Descriptions of the frequency distributions

For each group, the mean value, its standard an®©0%, 95%, and 99% confidence intervals, and
the standard deviation and coefficient of varia@oe displayed. If the observations are all peositi
they are log-transformed, and geometric means (winiay be of special interest in serological and
microbiological studies) are also computed, witit®0%, 95%, and 99% confidence intervals.

Two tests for normalityare provided; significant results point to depagtintom normality The
Lilliefors test which examines the deviation of the cumulativegtrency from the standard normal
cumulative distribution, is performed if there &er more observations; the result is reported as

P <0.01,P<0.05 P<0.10,P<0.15, P <0.26,20.20. Th®'Agostino-Pearson tesivhich is
based on tests for skewness and kurtosis, is apat®ff there are 20 or more observations. If
normality is in doubt, consideration should be egivo the use of module H1 rather than module H2.

If the values are all positive, these tests are aplied to the log-transformed values, as tests f
lognormality. If the distribution is lognormal,dlgeometric mean is an efficient estimator of the
population median (Quan and Zhang 2003).

Normality of residuals

The normality of the combined residuals (i.e.,dlgiations of the values in both groups from the
mean values in their respective groups) is appatdigea D'Agostino-Pearson teslf normality is in
doubt both for the residuals of the untransformaldes and for the residuals of the log-transformed
values, consideration should be given to the useanfule H1 rather than module H2.

t-tests

The mean values are compared by tM@sts, one assuming equal population variancesisindg a
pooled estimate of the variance, and the otWai¢h’s tegtnot assuming equal population
variances. If the values are all positive, thetsts are repeated on the log-transformed data.

In addition,trimmed meansare computed and compared. This is a useful Wagraparing

samples with different variances (Yuen 1974, Kesglat al 2004). It reduces the effects of
outliers and skewness of the distributions (Wil@@05). The program computes trimmed means
and applie¥uen's tesfYuen 1974) to compare them if both samplesaiardt least 10 values.

Two pairs of trimmed means are calculated, one vamydhe lowest 10% and highest 10% of
values from each sample, and one removing 20% &ach tail. Simulation studies indicate that
Yuen's test is more robust than Welch's; the hygmsht tests is that the population trimmed means
are equal, but "trimmed means provide better estisnaf the typical individual in distributions that
either contain outliers or are skewed" (Keselragal 2002).

The differences between the means and trimmed meghsheir standard errors and 90%, 95%,
and 99% confidence intervals, are reported.

If distributions are very skewed, so that their ngeare not very useful descriptors, the Brunner-

Munzel nonparametric test (see module F2) mayumetul alternative (Neuhauser 2010, Skovlund
2010).
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Variance ratio, Levene tests, F test, Bartlett's test, and Shoemaker’'s modified F test

Thevariance ratiois displayed, with 90%, 95%, and 99% confident¢erirals for the population
variance, computed in the usual way and by Shoerisakethod (Shoemaker 2003).

Levene testsaanF (variance ratio) test, Bartlett's tesindShoemaker’s modified F tgshe F; test)

are performed to compare the variances. Threéoversf the Levene test are provided — namely,
an unmodified test (which is based on deviatioomfthe means), the “W50” test (which is based on
deviations from the medians), and the “W10” tegti@l is based on deviations from the 10%
trimmed means) (Brown and Forsythe 1974). The"Wds€t'ts not performed if either sample
contains fewer than 10 values, the Levene testsarperformed if either sample size exceeds 200
or if there are only two observations in each samghd the Levene and Shoemaker tests are not
performed if mean values are entered.

TheF test and Bartlett’s test are severely affecteddoynormality in the populations from which

the samples are drawn; they are equivalent if saisipks are equal, but may differ in other
instances (Zar 1996: 204). The modified Leventstasd Shoemaker’'s Eest are more robust —

they are less affected by departures from normgihpemaker 2003; Brown and Forsythe 1974).
The “W50” test reduces the effect of asymmetri¢ridiations, whereas the “W10” test is indicated if
there are long tails or outliers. On the basidmatation studies and comparisons with Levene’s and
other tests, Shoemaker concluded thathitest should be the test of choice in most cirdantces.

Equivalence tests

An equivalence test is offered, to appraise thelaiity of the two means.. This may be appropriate
if a statistically significant difference has na&en found between the means, e.g. in “negativis’tria

comparing a new treatment with an established aranteatment, where there may be a reason to
prefer the new treatment if it is at least as ¢ifecas the standard treatment.

If equivalence tests are requested (by using @eetk here for test of equivalehaastruction) the
bounds of “equivalence” must be defined, by spauifyhe largest difference between means that is
to be regarded as negligible. The test also reguntry of the means and sample sizes, together
with standard deviations, standard errors of tharmagor variances.

Two one-sided hypotheses are tested: these alg/plogheses that there is more than a specified
"negligible" difference in a specific direction . (a) that the first mean is (more than neghgibl
larger than the second mean, and (b) that the devean is (more than negligibly) larger than the
first mean. If both of these tests (of “non-infeity’) yield significant results, both these hypesies
are rejected, and the results imply that both theesided differences are negligible — that is, the
means are equivalent. If only one test is sigaiftcthis indicates that one mean is at leastgsds
(i.e., "not inferior t0") the other.

A non-significant result means that equivalence@ proven”. Non-significant results may be
attributable to small sample size. If the two megiffer by less than the defined “negligible”
difference, and they are not significantly diffeeand the equivalence tests are not significet, t
program reports the sample sizes needed to defeistadence and the sample sizes needed for one-
tailed tests.

As an alternative way of testing for equivalencse is also made of the 90%, 95%, and 99%
confidence intervals for the difference betweenanse If the confidence interval falls completely
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within the “negligible” range fromd-(minusd) to d (whered is the defined negligible difference
between means), this rejects the null hypothesisttiere is no equivalence. If the confidence
interval is (for example) the 95% ClI, the two-tdile is 0.05, corresponding to a P value of 0.025 fo
the one-tailed tests.

Overall significance tests

If stratified data are entered, the program perfoaverallZ tests for the difference between the
means and the ratio of the geometric means. Inieatance, two alternative estimates of the
variance are used in the computation, as i thsts.

Tests and measures of heterogeneity

If stratified data are entered, the heterogendith@ differences between means (and, if repoadgd,
the ratio of the geometric means) is tested, usotg of the alternative variance estimates. The
heterogeneity of the standardized mean differe(@maputed by Cohen’s and Hedges’s methods)
and the ratios of means is also tested.

In parallel with each test, the program also presitivomeasures of heterogeneiky andl-

squared with their approximate 95% intervals, for the ralkdifferences between the mean values
and between their ranks. Ahvalue of less than 1.2 suggests absence of nateploeterogeneity,
whereas a value exceeding 1.5 suggests its presmrareif the heterogeneity test is not significant
I-squaredexpresses the proportion of variation that caatbvéduted to heterogeneity (in a meta-
analysis, to interstudy variation) rather thanampling error.

Estimates of the supposed common underlying valtitee differences are of questionable value if
the findings in the various strata are very disfgara

Comparison of distributions

The proportion of similar respons€®SR also called th€©C or overlap coefficientand thearea
between curve@BC, also called theissimilarity inde¥ are measures of the similarity or
dissimilarity (respectively) of two distribution&iacoletti and Heyse 2011, Mizuno et al. 2005;
Rom and Hwang 1996). Differences between frequenoyes reflect differences both in location
(means) and in scale (variances).

The PSR measures the degree of overlap of two piidapalistributions. It ranges from 0%,
indicating completely disjoint distributions, to@%, indicating a complete overlap. It has been
suggested that a PSR around 70% is a reasonaieleorrifor equivalence in clinical studies (Rom
and Hwang 1996).

The ABC is a measure of the degree of separatiwele® two distributions. Differences between
frequency curves reflect differences in scale arare) as well as in location (mean). The PSR and
ABC are related (PSR =1 - ABC/2).

The estimators are applicable to normal distrimdiwith similar or different means and variances.
If full data are entered (rather than means ands$.Ehe program provides estimators for log-
transformed as well as untransformed data, fomdsn the distributions are lognormal. Computer
simulations have shown that the validity of thegadures is highest if the distributions are normal
and the variances are equal (Mizuno et al. 2005)
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The PSR and ABC values are not reported if eitkeeeds 100%, which indicates that the
procedures are inappropiate for this comparisahadsly because the two distributions are almost
or completely discrepant - i.e. with very little mp overlap..

Difference between means

For each comparison, the difference between thesneaeported with two estimates of its standard
error and 90%, 95%, and 99% confidence intervased on the two alternative estimates of the
variance, as in thietests (see above).

If stratified data are entered, tbeerall difference between the meansveighted mean difference
controlling for effects connected with the stratify variable or variables, is estimated by computin
the weighted average of the differences in sepatedéa. The weights are based on the variances,
and therefore two estimators of the overall diffees based on the two alternative estimates of the
variances, are reported. with their standard eants90%, 95%, and 99% confidence intervals.

The results should be treated with caution if tteeeelarge differences between the findings in the
various strata.

Standardized difference between means

The standardized difference between means (thecte$ize”) expresses the difference relative to
the variability of the observations. It is expesdsn standard deviations, not in the units of
measurement. The measure tends to overestimatifférence, but this bias is substantial only if
the total sample size is less than 10 (Dextked. 1995). Four variants are provided, based
respectively on the pooled standard deviation eftito groups — Cohents(Rosenthal 1994); the
pooled standard deviation with a correction for kis@mple bias — Hedges’s adjustg(Rosenthal
1994); and the standard deviation in each sample'm— Glass’slelta(Glass 1976). By Cohen's
criteria, ad value of 0.8 or more indicates a large effect,90z& or more (but less than 0.8) indicates
a medium effect size, and 0.2 or more (but less €ha) indicates a small effect size (Cohen 1992).
Cohen (1988) warns that these criteria should bd osly when there is no better basis for
evaluation.

If stratified data are entered, thndardized mean differenisecomputed (for all four variants),
with its 90%, 95%, and 99% confidence intervalsc8ithe standardized mean difference is
expressed in terms of standard deviations andmits of measurement, its use permits the
combination (e.g. in a meta-analysis of trialspb$ervations based on different methods and units
of measurement . This assumes that the differancgandard deviations reflect differences in
measurement scales, and not real differences iabititty among the groups studied. Glasd&dta

is the preferred method in meta-analyses of tridlere the intervention alters the variability adlwe
as possibly changing the mean value; the variabétosed is then the one using the standard
deviation in the control group (Dee&sal. 1995).

Ratio of geometric means
If the values are positive, so that they can betlagsformed, the ratio of geometric means is

reported, with two estimates of its standard earat of its 90%, 95%, and 99% confidence intervals,
based on the two alternative estimates of the negigas in thétests (see above).
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If stratified data are entered, tbeerall ratio of geometric meansontrolling for effects connected
with the stratifying variable or variables, is estited by weighting and combining the results in
separate strata. The weights are based on theneas, and therefore two estimators of the overall
ratio, based on the two alternative estimates@w#riances, are reported, with their standard®rro
and 90%, 95%, and 99% confidence intervals.

Ratio of means

For each comparison, the ratio of means is reponed its 90%, 95%, and 99% confidence
intervals (the ratio is computed only if the valaes positive). If stratified data are enterediifes
meta-analysis, where each study is entered asaaagestratum), a pooled ratio of means is
computed, with its confidence intervals. Separatdyses are performed using fixed-effect and
random-effects models. Ratios of means are of eauesaningful only for measures that use a ratio
scale, i.e., if a zero measurement indicates absgfte attribute that is measured.

Extensive computer simulations confirm the favoleajualities of this measure of effect, despite a
bias towards no effect in small trials, and a glighs in the opposite direction if the ratios are
heterogeneous (Friedrich et al. 2008a). An empideeparison based on 232 meta-analyses
showed that analyses based on the ratio of meansrddrated similar treatment effects to those
based on the difference between means; heterogevestsubstantially lower than in analyses using
the ratio of geometric means (Friedrich et al 2008b

Unlike differences between means, ratios of measmglme valid in a meta-analysis where different
units of measurement are used in different studies.

Other measures of effect

Omegasquared?) is an effect-size index that expresses the sthhesfthe association between the
row and column variables. It is an estimate ofgraportion of variability of the dependent variable
that is associated with the independent variabteerpopulation (Sheskin 2007: 447) It is calcudate
from the result of thétest (assuming equal population variances andjwaspooled estimate of the
variance). By Cohen's criteria, 0.1379 or moredathis a large effect size, 0.0588 or more (but less
than 0.1379) indicates a medium effect size, a@@9® or more (but less than 0.0588) indicates a
small effect size (Sheskin 2007: 763). Cohen (19&8ns that these criteria should be used only
when there is no better basis for evaluation. A m#megative value indicates absence of an
association.

Etasquared(s?) is an alternative estimate of the proportion arfiability of the dependent variable
that is associated with the independent variabtaerpopulation; it is a more biased estimate ef th
population parameter thamegasquared (Sheskin 2007: 448, 13@Xa-squared is here equivalent
to the square of the point-biserial correlationftoent.

Thepoint-biserial correlation coefficier(ivhich is equivalent teta) is appropriate if the numerical
observations can be assumed to be based on anyimgleontinuous distribution. Its squaretd
squared) is theoefficient of determination

Risks, risk differences, risk ratios, and odds rati oS

In each stratum, the proportion of values thatahi@ above a selected cut-point (i.e. the ris& of
high outcome, e.g. hypertension, hypercholesteraleon obesity), or below the cut-point (e.g
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anemia) can be estimated for each of the two grenfeyed, with their 95% confidence intervals.
This option is available if detailed data are ezdgfwhether or not normality is assumed), or if
normality is assumed and mean values are entéréeltaliled data are entered, the calculation is
based on a direct count, with application of a bired approach to the dichotomized data. If means
and standard deviations (or variances or standaodsg are entered, the computation (using the
method described by Suissa 1991) derives the piopser(i.e., the risks) from these data. The
program then reports the estimated measures ofiatiea (risk differences, risk ratios, and odds
ratios), with their 95% confidence intervals, adlas the risks.

If there is more than one stratum, the cut-poine¢rd for the first stratum is used throughout. If
there is interest in the proportion of values ab@rel not “at or above”) the cut-point, an
insignificant quantity should be added when spé&wifghe cut-point (e.g. a blood pressure of 140.1
instead of 140 mm Hg, or a body mass index of 3Difstead of 30 kg/A). If the distributions are
asymmetric, and lognormal rather then normal, tiopgrtions at/above or below a chosen cut-point
can be estimated by entering the log of the cuttptogether with the mean and standard deviation
of the log-transformed values.

The risk of a disease or event is generally morammgful than the mean value of the underlying
variable. According to Suissa, his method is adeyven in small samples, less subject to errors
due to misclassification, and more efficient thia@ direct method, provided that the distributiores a
normal; but it is rather sensitive to the shapthefdistributions. Anzares-Cabrezgal (2011)
recommend this method of estimation if samplessae large, the distribution of the data is
symmetrical, and the groups have equal standandtea@vs or (if these are different) if the risk in
the control group is between 20% and 80%; the eséisnare not much affected by heterogeneity
among the studies.

As pointed out by Anzares-Cabraeztal (2011), the use of mean values as a basis fadtmation
of risks and measures of association may be heipfuleta-analyses, and especially if there are
some studies that report means of continuous \asahther than risks. But doubts about the
underlying distributions necessitate caution imgghe findings. Risks are safely estimated only if
they are in the region of 20% to 80%.The methquhisicularly appropriate if samples are large.
Simulations show that the results are remarkalidysoto the presence of heterogeneity across
studies.

Confidence intervals derived from a P value

Optionally, if a P value from a significance tesentered together with two means, 90%, 95% and
99% confidence intervals for the difference areast#d, using the method described by Altman and
Bland (2011). The estimates may not be correttafdample is very small. This procedure may be
useful when examining published research resudtispgiovide P values and not confidence intervals.
The method may also be used for other variablgspeoportions, by entering other values instead
of means.

If the published P value is an inequality, and/($€80001 is entered for P < 0.0001, the
estimated C.l.s will be unduly wide. If 0.05 igemd for P > 0.05, the estimated C.l.s will be
unduly narrow.
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METHODS

If grouped data are entered, each observatiomoisadéd the value midway between the lower and uppelers of the
group; this may, of course, affect the accuracthefresults. In each comparison, up to 200 sepatzervations or sets
of grouped values may be entered for each group..

A fixed-effect model is used in comparisons.
Descriptions of the frequency distributions

For the raw and log-transformed data, the usuatditae are used to compute the mean value, itsatémaror and
confidence intervals, and the standard deviatianance, and coefficient of variation (Zar 1998nfialae 4.8, 4.13,
6.18 and 7.5). The mean of log-transformed vaisiésick-transformed to the original units, to pdeva geometric
mean.

The Lilliefors testfor normality (Lilliefors 1967) is explained by &mt (1993: 77-78);the program uses critical values
provided by Hollander and Wolff (1999: 741: Tableg38). TheD'Agostino-Pearson te$br normality, which is based
on tests for skewness and kurtosis (D'Agostind6188Agostino and Pearson 1973), uses formula 6f Zar (1998).

t-tests

The usual formulae are employed for thests (Zar 1998: formulae 8.7a and 8.11). Thméda for the degrees of
freedom for Welch's test (Zar 1998, formula 8.1&)sufractional degrees of freedom, necessitatmgske of
interpolation between integer degrees of freedom.

Welch's test uses Satterthwaite's formula (Arnaigtgal 2002, formula 4.11; Zar 1998, formula 8.12).des fractional
degrees of freedom, necessitating the use of ioli@iipn between integer degrees of freedom.

Comparison of trimmed means

Two pairs of trimmed means are calculated, onentiitg 10% of the total number of observations indample,
rounded down to the nearest integer, from eachaad one trimming 20% of the total number of obatons.
Trimmed means are not computed if there are felngar 10 observations in either sample.

Trimmed means, their standard errors (based osaimple Winsorized variance), and the standard efriire
difference are computed by the formulae presenydddselmaret al (2004). The formulae for Yuen's test (Yuen
1974) and its degrees of freedom are provided tsekearet al. (2004). Approximate confidence intervals for the
difference are derived from the appropriet@lue and the standard error of the differenca@F003).

Variance ratio, F test, Bartlett's test, Shoemaker’'s modified F test, and Levene tests

Confidence intervals for the population variancéigare estimated by formulae 8.30 and 8.31 of Za9§1139-140),
and by Shoemaker’'s method, using his “adjustmemt&s one” (Shoemaker 2003).

TheF testis described by Zar (1998: 137: formula 8.2Bhprtlett’s testis described by Zar (1998: 202-204: formulae
10.44 , 10.46 and 10.47phoemaker’'s modified F teshéF, test) is described by Shoemaker (2003). It usedibnal
degrees of freedom computed by formula 1. Intextanh between integer degrees of freedom is usedrtgpute P
values and (for confidence intervals) invelFsealues. Levene’s tesand its modifications are described by Brown and
Forsythe (1974); they are based on the obsengtimviations from the means (in the unmodified)tdsom the
medians (in the “W50" test), and from the 10% triethmeans (in the “W10” test).

Equivalence test

The test uses the confidence interval or two aileet approach (Westlake 1973, Schuirmann 1987jiidihod is
described in detail by Sheskin (2007: 484-492Yhé 90% confidence interval (for example) of diserved difference
falls completely within the intervaD-to D (whereD is the largest difference specified as negligittlels means that the
two one-sided tests are significant at P < 0.08,tha two-sided equivalence test is significar® at0.1.

The confidence interval of the difference is dedifieom the standard error of the difference, whicbomputed without
assuming that the population variances are equal.
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Approximate sample sizes needed to detect equisaemd for one-tailed tests, are computed by $fisshrmula
11.23; and the formula on p. 492.

Overall significance tests

If stratified data are entered, the significancéheftwo overall estimators of the difference be&weneans and the ratio
of means (see below) is testeddiests, by dividing the estimators by their staddarors.

Tests and measures of heterogeneity

Heterogeneity tests (for stratified data) are basetbrmula 10.10 of Fleiss (1981).

Themeasures of heterogeneitid andl-squared are described by Higgins and Thompson (2002)s computed by
Higgins and Thompson's formula 6, and increaseéd(tndicating absence of heterogeneity) if it s 1. A test-
based interval is computed by Method I#squaredand its 95% interval are computed fréimby formula 10.

Comparison of distributions

If the two variance are not equal, PAS is compieébrmula 2 of Rom and Hwang (1996)
If they are equal, PSR is computed by formula &isfcoletti and Heyse (2011)/
ABC is derived from PSR, using Giacoletti and Héy$mmula 4.

Difference between means

Confidence intervals for the difference betweemmnseare computed by formulae 8.14 and 8.17 of 7288§).

If stratified data are entered, weighted means@ftratum-specific differences, using as weiditséciprocals of the
variances of the differences (computed in two wés&t, by assuming equal population variances, thed by using a
pooled estimate of the variance), are reportedstsators of the overall difference. For formutaethe estimators and
their standard errors and confidence intervalsGadinger and Abramson (1995: 86).

Standardized difference between means

Formulae for the four variants are provided by Beslal 1995, pp 290-302.

Ratio of geometric means

The difference between the means of the log-tramsfd values is the log of the ratio of the geornetreans (see
Altman 1991: 201-202). Confidence intervals foe tifference are computed by formulae 8.14 and 8tZar (1998).
If stratified data are entered, the stratum-spedififerences between the means of the log-transfdrvalues are
weighted and combined, in the same way as the nw#ahe untransformed values (see above), providstgnators of
the overall ratio of geometric means (and its shathérror and confidence intervals).

Ratio of means

The methods used for estimating confidence interasad for computing a pooled ratio of rates aaddnfidence
intervals, based on the log of the ratio and thiéanae of the log, are described by Friedetlal.(2008a).

Other measures of effect

Omegasquared is calculated as
(t?— 1) / ¢+ ny + np — 1) (Sheskin 2007: equation 11.15)

where t = the result of thetest (assuming equal population variances andy@sjyooled estimate of the variahce
n, andn, = the sizes of the two samples.

Eta-squared is calculated as
t2/ (t%+ ny+ np — 2) (Sheskin 2007: equation 11.16)

Thepoint-biserial correlation coefficientSheskin 2007: equation 28.61 or 28.62) is thasg oot oketasquared Its
significance is tested by Sheskin’s equation 28:%¢h yields the same (two-sided) P value asithal t test.
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H2. NUMERICAL: NORMAL DISTRIBUTION

Risks, risk ratios, risk differences, and odds rati 0s

For a single stratum, the standard errors of #lesbased on direct counts of the data for eaalpgsocomputed by
Wilson’s method (Wilson 1927, Newcombe and Altmag@).

The computation of risks and their variances froeamvalues and standard deviations uses the foerdelscribed by
Suissa (1991, Appendix), and also presented by reszGabrera et al. (2011, formulae 7 and 10). dgproximate
variances of the measure of association are defivedthe estimates of the risks and heir variarf€esssa 1991, p.
243).

Confidence intervals derived from a P value
As suggested by Altman and Bland (2011), the cenfi@ intervals are derived from the standard €88y, which is
computed asD/z,

where D = the difference between the means
z is derived from the P value, using a computatiased on a FORTRAN routine by Hill (1973).
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H3. SURVIVALTIMES

H3. COMPARISON OF SURVIVAL TIMES

This module is appropriate for the analysis ofisrend follow-up surveys that compare survival
times in two independent groups. It can be usedtfatified data and for meta-analyses.

A survival time (“time to event”) is the numbertohe units (usually days or months) from the start

of observation until the occurrence of a speci@ad-point event (such as death, the onset of a

disease or complication, recovery from a diseasestarn to work) or (if the event has not occujred

until withdrawal from observation. The main reaséor withdrawal, ocensoring are loss of
contact, circumstances that dictate removal froenstiady, and conclusion of the study.

The findings in two groups can be compared, ori@sef comparisons can be made in different
strata or in different studies. For each comparsisarvival times may be entered separately fon €
subject, or each survival time can be entered igtirequency. Censored survival times are ente
by appending “+”, e.g .by entering “37+". Up to@S8urvival times may be entered for each grou
If there is a reference group (e.g. controls wrexposed”, it should be entered as group B.

To obtain results that are relevant to specifiequisrthat are of interest, these periods can bereht
(e.g., 24 months, to obtain information about 2rygavival).

For stratified data enter the data for each stratum in turn, and ¢hek on “All strata’ to obtain the
combined results, which permit appraisal of treamtion while controlling for confounding
effects of the stratifying variable or variablesgdassessment of heterogeneity.

For ameta-analysisenter the data for each study in turn (as a agpatratum), and then click on
“All strata’ to compare and combine the results in separaties.

To compare the changes observed in two groupbeiae-after studyenter the before-after data
for each group in turn, and then click oAl“strata’ for heterogeneity tests.

The program provides a Kaplan-Meier life-table gsial for each grougc(mulative survival
proportions with their 95% confidence intervalsiedian and mean survival timesand the
incidence rateof the event)comparisons ofsurvival proportions, tests comparing survival
distributions (logrank and Gehan-Wilcoxon test), tfaio of median survival timesand the
hazard ratio (with 95% confidence intervals), and tteends in the early and later periods of
follow-up.

If two or more strata are entered, the programpuaot the data to provide a Kaplan-Meier life-table

analysis for each groupymulative survival proportions with their 95% confidence intervals,
median and mean survival timesand thancidence rateof the event).Directly standardized
survival proportions are also computed, to control for possible confaupéffects of the
stratifying variable or variables. The progranovides overallogrank testsandhazard ratios
that control for the stratifying variable(s), anfdr, use in meta-analyses, estimates offélesafe N.
and thenumber needed to avoid one event

ac
red
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H3. SURVIVALTIMES

Cumulative survival proportions

For each group, the cumulative survival proporti(@gressed as percentages) at each survival time
entered are estimated by the Kaplan-Meier proced@renulative survival proportions are also
computed for any survival times that have beeniBpdas of special interest, with their

approximate 95% confidence intervals; these agelaample limits, and Rothman and Greenland
(1998: 289-90) recommend their use only if at Ié@stevents were observed and there are at least
five survivors under observation at the time of ¢akulation; a warning is displayed if these
conditions are not met.

The step-by-step survival proportions that are ejloprovide raw data for the construction of
survival curves, consisting of horizontal linestwitertical steps whenever the survival proportion
changes.

If stratified data are entered, the Kaplan-Meiercgdure is applied to each stratum and to the
pooled data.

Directly standardized survival proportions

If stratified data are entered, directly standadigurvival proportions are computed for one group
(A), based on the fiction that the distributiontioé stratifying variable in this group is the saae
every survival time entered, as in the other gri@ighe reference group). The standardized
survival proportions are displayed when the “Atbsa” button is clicked. This permits a
comparison with the corresponding findings in gr@&j controlling for the possible confounding
effect of the stratifying variable or variable .

Standardized cumulative survival proportions (egpeel as percentages) in group A are provided for
each survival time entered , and for survival tirtieg have been specified as of special interest.
They may not, however, be available for the whaeqa studied; they are not calculated beyond
the last time at which survivors are present ithlggoups in all strata.

The survival proportions are estimated by the Kaydteier procedure, and then standardized by the
method described by Nieto and Coresh (1996), wihat jpait that one advantage of this method of
adjustment for confounders is that it permits congoa of the shapes of the curves. The procedure
can handle time-dependent covariates.

Direct standardization is not performed if there aver 26 strata.

Median and mean survival times

Where possible, median and mean survival timesegerted for each group.

Whether survival times are censored or not, theiamesurvival time is defined as the time at which
the cumulative survival probability drops to 50%betow. An approximate standard error and 95%
confidence interval are reported; these valuesImeapaccurate if the sample is small (Machin and
Gardner 2000: 97)..

If the survival probability is not precisely 50%the reported median survival time, an alternative
median is also reported, based on linear interjpoldtetween the times straddling the 50% mark.
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The program also computes the median survival érpected if the distribution is exponential; s is
very different from the observed median, the assiomf exponentiality can be rejected..

The mean survival time is displayed, with its 9568fftcdence interval. If there are censored survival
times, these values are estimates.

If stratified data are entered, median and meavi\airtimes are reported for each stratum and for
the pooled data.

Incidence rate of the event

The average rate of events and its confidencevialteare estimated from the mean survival time
and its confidence limits. If any survival tima® &ensored, the rate is an estimate.

If stratified data are entered, the incidence isatstimated for each stratum and for the pooléd. da
Comparisons of survival proportions

For specific survival times that have been spetifie being of special interest, the program display
the difference between the survival proportionthmtwo groups, and the ratio of these proportions,
with their approximate 95% confidence intervaldhie Tonfidence intervals should be used with
caution if the survival times were selectedosteriori after examination of the data (Altman 1991
376).

If stratified data are entered, these comparisempaformed in each stratum. If comparisons of
survival proportions are required for the poolethdthe pooled data should be entered.

Tests comparing survival distributions

Mantel’'s logrank test and the Gehan-Wilcoxon teshpare the survival distributions in the two
groups. Both tests allow for censored observatidise-tailed and two-tailed P values are shown.

Thelogrank teststatistic is computed with and without a contigworrection; this correction is not
recommended if subjects were randomly allocatetédwo groups, but it may be appropriate in
other circumstances (Peto et al. 1977). If stestifiata are entered, an overall logrank test is
provided, as well as the logrank tests in the s#pastrata..

The Gehan-Wilcoxon tess more heavily influenced than the logrank tgstlifferences in the
occurrence of short survival times (Selvin 19964;38ox and Oakes 1984: 107). If there is much
censoring, it may be less powerful than the logitask

If stratified data are entered, the logrank tesipiglied in each stratum and in the pooled datee T
Gehan-Wilcoxon test is applied in each stratunt;iff required for the pooled data, the pooled data
should be entered.

Ratio of median survival times

Approximate 95% confidence limits are computedtif@r ratio of the median survival times in the
two groups, on the assumption that the survivagsitnave an exponential distribution (Simon 1986;
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Altman 1991, pp 384-385). To permit this assumptmbe checked, the program computes the
medians that would be expected if the distributiese exponential, for comparison with the
observed medians.

If stratified data are entered, the ratio is estédan each stratum; if it is required for the paxbl
data, the pooled data should be entered.

Hazard ratio

The hazard ratio, which is similar to a relativakriexpresses the relative survival experiencaef t
two groups. A approximate 95% confidence intersalomputed. The program also displays the
values (in each group) on which the hazard ratimised — the number of observed events and the
“extent of exposure” or “expected events”, andrthatio.

For stratified data, the overall hazard ratio ispated, with its approximate 95% confidence
interval.

Trends in the early and later periods of follow-up

As a simple indication of possible time-relatedeténces between the survival distributions, the
program summarizes the change in the cumulativevalmproportion in each group, in the early and
later segments of the follow-up period (usuallyngsine median survival period for Group A as the
cutting-point). The change is expressed as the idrthe survival percentage.

Comparison of the changes may point to trendsateatlifferent in the two groups or time periods.
Differences in trend in the two periods may be absd in the overall results.

If stratified data are entered, these trends gpeagged in each stratum. If this appraisal is iregu
for the pooled data, the pooled data should beeshte

Fail-safe N

If stratified data are entered, estimates of tilesédfe N are provided for use meta-analysefn

the assumption that the strata represent sepauaies, as rough guides to the possible importance
of the "file drawer problem", i.e. the exclusionsbfidies that were not published or were not found
for other reasons.

The program computes the numbers of new "null"isgithose with a hazard ratio of 1) that will
suffice to bring the overall hazard ratio to a mgfgle level (0.8, 0.9, 1.1 or 1.2). No account is
taken of P-values or the size of the null studies.

Number needed to avoid one event

For use in studies in which the events are avoadbk program reports the number of individuals
who are needed in the group with a longer suntivag, in order to avoid a single case.

If stratified data are entered, the number neeslegported for each stratum; if it is required tioe
pooled data, the pooled data should be entered.
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METHODS

Cumulative survival proportions

Cumulative survival proportions are estimated kyKlaplan-Meier technique (Kaplan and Meier 1958nidaigeet al.
2002: 575-576; Machin and Gardner 2000: 94-96).

95% confidence intervals for survival proportionsgecific selected times are computed from thienestd variance of
the logit of the proportion, using Greenwood'’s fofan (Rothman and Greenland 1998: 289-90).

Directly standardized survival proportions

Standardization is performed by the method desgridlyeNieto and Coresh (1996), using their formdlag, and 3.
Occasional anomalous rises in the standardizedvsiliproportion are corrected by reverting to thevious value.
Standardization is performed if up to 200 timesmeered,;

Median and mean survival times

Themedian survival timés defined as the time at which the cumulativevisal probability drops to 50% or below. Its
approximate standard error and 95% confidenceviat@re computed by the formulae provided by Maeirid
Gardner (2000: 97-98), based on the survival tiateghich the survival probabilities reach or crtss45% and 55%
levels, or if these probabilities are equal, thés4ihd 60% levels. The effective sample size reguior the calculation
is the total sample size minus the number cendoeéate the median survival time (Machin and Gardge00: 94). If
the sample is small, the results are unreliable.

If the survival probability is not precisely 50%the reported median survival time, an alternatieglian is also
reported, based on linear interpolation betweertithes straddling the 50% mark (Selvin 1996: 374).

The median survival time expected if the distribotis exponential is the sum of the survival tirwelsether censored or
not) divided by the number of events (Altman 19385).

Themeansurvival time and its confidence intervals are computed in th@lusay if no survival times are censored.
Otherwise, a nonparametric estimate of the meaarigputed, based on formula 11.29 of Selvin (1998)3its
standard error is computed by formula 11.31 and éseinterval estimation; for this purpose, thadest survival time

is treated as uncensored, even if it is censorie farmula for 95% confidence intervaldiean + 1.96(SH)n
versions of COMPARE2 prior to 1.48, mean * t.SE}waed].

A mean/median survival time is also computed, basethe assumption that the distribution is exptin&(Selvin
1996, formula 11.19; Altman 1991: 385). Its staddarror is computed by Selvin's formula 11.20.

Incidence rate of the event

Since (in a closed population) an incidence rateaseciprocal of the average time until occuresotthe event
(Rothman 1986: 29; Morrison 1979), the reciprocdlthe mean survival time (or the estimate of treamsurvival
time) and its confidence limits are used as esémaf the average rate of events and its confidkmits.

Comparisons of survival proportions

For comparisons of survival proportions, the estiomof the variances and confidence intervalshefdifferences and
ratios is described by Rothman and Greenland (129B,292). Formulae 16-15 and 16-16 are used doasethe
estimated variances of the logits of the propo#gi@Rothman and Greenland 1998, pp 289-90).

Tests comparing survival distributions

For thelogrank testa variance-based formula is used (Armitagel. 2002: 577: formula 17.12); but if the variance is

zero, formula 17.15 is used. The test statistaoimputed with and without a continuity correctioBtratified data are
combined by the method described by Rstal (1977).
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The Gehan-Wilcoxon tess performed by the procedure described by Sh€2ki@7: pp 555-557), using a large-sample
normal approximation (Sprent 1993: 117, formulg 5o7appraise the sum-of-scores test statisticor Ry version 2.10
of this program, the formulation descried by Sp(@®93: pp 118-120 was used..

Ratio of median survival times

The computation of a confidence interval for thigoraf the median survival times in the two grogmon 1986), on
the assumption that the survival times have anmemiial distribution, is described by Altman (19884-385). The
median survival times used for this purpose amsahat which the cumulative survival probabilitppls to 50% or
below.

Hazard ratio

The program computes the Pike hazard ratio estimi@tke 1972), with its confidence interval basectloe large-
sample variance of its log (Berey al. 1991, formula 1). If there are no events in #éfenrence group the confidence
interval is estimated by the method of Machin arddBer (1988), using the Peto hazard ratio estinfatasufet al.
1985).

Stratified dataare combined by the method described by Betd (1977). The estimation of the confidence inteofa
the hazard ratio is described by Machin and Gar(i288).

Trends in the early and later periods of follow-up

Changes in the survival percentage in each groeipegrorted, in the early and later periods of felleqp. The cutting-
point used for this purpose is based on the mesliarival period for Group A (or, if this medianrist reached, on the
point at which the cumulative survival proportiamps to 60%). The longest survival time enteretgmaines the end
of the later period. Where possible, the intedefined for Group A is applied to Group B alsonear interpolation is
used where necessary.

Fail-safe N

The fail-safe N is computed by the following foraulvhich is derived from Orwin's effect-size foren(Drwin 1983; Hedges
and Olkin 1985, formula 9, p. 306; or lyengar amdegBhouse 1988, formula 5):

Fail-safe N = k[abs(R) - abs(C)] / abs{C}
where k= No. of studies included in the analysis

R = log of the overall hazard ratio

C =log of the chosen "negligible value" [@&, 1.1 or 1.2).

Number needed to avoid one event
The number of individuals who are needed in thegmith a longer survival time in order to avoidigle case, and its

confidence interval, are computed from the diffeesbetween survival proportions and its estimadgidnce (Altman and
Andersen 1999).

97



. COMPARISONS BASED ON SUMMARY MEASURES

l. ANY COMPARISON, USING SUMMARY MEASURES FOR
EACH STRATUM OR STUDY

This module is designed for use in meta-analysessugties of stratified data, if a measure of

association or a P-value is available for eaclhefdomponent studies or strata. In such instahces

is not necessary to enter detailed data for eaty sir stratum (as in modules A to H of this
program). The module is particularly appropriaterheta-analyses based on study reports that
provide measures of association or P-values witttmutetailed data on which these were based
is applicable to the results of studies (trialsgrmss-sectional, cohort or case-control studies) t
compare two independent groups or samples.

The measure of association may be a ratio measdds (atio, risk ratio, rate ratio, or hazard rgtig

the difference between risks or rates or meansfteet size (the standardized difference betwee
means), or other measures with an approximatelyalodistribution and a zero value when there
no association (includinkgppa the Z transformation of a correlation coefficieassimple
regression coefficient, Kendaltau, and the population attributable fraction).

The module can also be used to calculate a weighesth (precision-based) of a sepadportions

either a standard error or a confidence interv@{995%, or 99%). This applies to ratio measur
differences between risks or rates, and other megsuth an approximately normal distribution
a zero value when there is no association. Far naasures, the required standard error is the
standard error of the log of the ratio. The accy the results depends on the accuracy of the
entries; entry of rounded-off numbers will yielojpgoximate results.

In most instances it is necessary to enter theevaliserved in each study or stratum, together w}h

For effect sizes (standardized differences betweeans), the required entries (for each study or
stratum) are the difference between the meansgacil sample’s size and standard deviation.

If measures of association are entertgte program combines and compares them. It gegvi
overall measuresof association, using fixed-effect and random-effecodels (with standard
errors, significance tests, and confidence intsjyaindests and measures of heterogeneityor
use in meta-analysis, it also provides estimatekefhil-safe N, twotests for a skewed funnel
plot (suggesting publication biggnd asensitivity analysisshowing the effect (on the overall
measure, the tests, and heterogeneity) of exclushich study or stratum in turn. Optionallfpeest
plot can be drawn, if the measures of associationagi@sror differences, and they are entered wi
their confidence intervals

The values that are entered eoenpared with a reference val(ibe value entered as stratum 1)

If P-values are enteredhey must be one-sided P-values testing the shimaetion of effect. An
overall probability is then computed. Optionally, a weight can bera together with each P-
value (e.g. the sum of the sizes of the two samplése study or sample)., and the P-values will
then be weighted both by the weights and by tharmggroots of the weights. The program also
provides aheterogeneity testthefail-safe N and asensitivity analysisshowing the effect of
excluding each study or stratum in turn.

S
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Overall measures

If measures of association are entered, two overadisures are computed, using fixed-effect and
random-effects models respectively. Using thediréfect model, which assumes that the
individual studies or strata provide estimateshefgame true effect, precision-base@stimator is
computed; this is a weighted average that usesetigrocal of the variance in each study or
stratum as the weight for the study or stratuns itot identical with the (preferable) measures
computed by modules A to H. Using the random-éffecodel, which assumes that the studies or
strata provide estimates of randomly differing etife aDerSimonian-Lairdestimator is computed;
this takes account of the variation between stugliedrata, resulting in wider confidence intervals
and a more conservative significance test. Thdaameffects model gives more weight to small
studies, and may be inappropriate if sample siesery small. Some investigators use it when
unexplainedheterogeneity is present (Fleiss and Gross 199ittiR894, Whitehead and
Whitehead 1991). “In essence,” say Rothman and Greenland (1998;, 668andom-effects model
exchanges a doubtful homogeneity assumption fatitidus random distribution of effects . The
advantage ... is that the standard errors anddmmde limits ... will more accurately reflect
uncertainty about unaccounted-for sources of variat The Dersimonian-Laird estimator is not
displayed if this procedure does not increase #nmnce of the overall measure.

For each estimator, a chi-square test is perforiaggkaising whether the estimator differs from
zero, and a standard error and 90. 95, and 99%demtie intervals are displayed..

The overall values are of questionable validitthé separate values are widely discrepant, e.g. if
they demonstrate associations in opposite direstiorif the heterogeneity test is significant at a
conservative level of significance (Fleiss 19814)16The procedure should not be used for small
samples.

If effect sizeg¢standardized differences between means) are thsegdrogram provides two aids to
the appraisal of the overall effect size. Finstlisplays the approximate percentage of members of
one group whose values fall below the mean of therggroup (Glasst al. 1981: 29), based on the
assumption that the population variances in thegmwoips are equal. Secondly, it computes an odds
ratio (Tritchler 1995) that expresses the accuvety which individuals would be allocated to the
two groups on the basis of likelihood ratios dedii®m a comparison of the distributions, using
any arbitrary cut-point. It is the ratio of thedsdn favour of correctly classifying members dher
one of the groups to the odds in favour of incdtyedassifying members of the other group.
Because effect sizes are "unitless”, they can bd g combining the results of studies that use
different measurement scales; but, as pointedy@rbenland (1987), Petitti (1994: 123) and
others, this may be misleading.

Proportions

The program can compute averall proportion after entry of either a set of proportions whleit
standard errors or confidence intervals, or ofrthespective numerators and denominators. Two
sets of results are provided — one based on sipgakng of the data (if numerators and
denominators were entered), and the other a poeeimsed estimate, using the reciprocal of the
variance of the proportion as the weight for thapprtion..
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Overall probability

If measures of association are entertiee overall probability is measured by chi-squasts that
appraise whether the estimator of the overall nreadiffers from zero.

If P-values are enteretthe program combines them, to provide an oveeatl ¢f significance, on the
assumption that they are based on tests of edbetiimsame hypothesis. The studies from which
the P-values are obtained must be independenteoéother, but different tests may be used —
neither the statistic nor the outcome variabletbdse identical. For example, P-values frotrest,
chi-square test, and other tests may be combinprbtiuce a summary P-value. A summary
P-value can, however, lead to misrepresentatiotine iindividual test statistics do not have a
continuous distribution (Oldham 1968: 114-115; Mdlet and Bush 1954).

Several summary P-values are computed, using puoeggduggested for this purpose by Fisher
(1948), George (1977), Stouffer al. (1949: 45), Mosteller and Bush (1954), and Edgind1972).
One-tailed and two-tailed summary P-values arel@ysol. Edgington's normal-curve procedure
(Edgington 1972) is an additive method, based emiban of the sum of P-values.

The Edgington and Stouffer procedures are statbe tnore appropriate as indications of the
consensus of test results than Fisher's test, vidiciiuenced more heavily by smaller than by
larger P-values (Rice 1990). Edgington’s methadbisused if there are fewer than four P-values,
since it then has “no practical value” (Edgingt&@72).

One-sided P-values must be entered, all testingahee direction of effect. It is generally
satisfactory to halve the two-sided value, bubhd tirection of the observed effect is oppositthéd
of the study hypothesis, the halved two-sided Revahould be subtracted from 1 before entry.

Optionally,weighting factorsmay be entered, for use in the calculation of ylated average of the
separate test statistics (Mosteller and Bush 1964hey are entered, the program provides three
sets of results for Stouffer's and George’s proesiwnweighted, weighted by the factors entered,
and weighted by the square roots of the factomredt Computer simulations indicate that the
weighted Z-method (Mosteller and Bush 1954; Lipt8k8) is more powerful than, and hence
preferable to, Fisher's method or Stouffer's uniteid) Z-method for a combination of independent
tests of the same null hypothesis(Whitlock 200%c@xding to Whitlock, the ideal weights are the
reciprocals of the variances. The weighting faatay be the sample size (i.e. the combined sizes of
the samples that are compared) or some measutnedyfcuality (DeMets 1987). Whitlock points
out that in a meta-analysis the allocation of lasgéghts to large studies may reduce the effect of
publication bias due to the omission of small sadin a study using different tests based on the
same sample (as in genetic epidemiology), Won. €2@0D9) recommend the use of effect sizes as
weights.; if precise effect sizes are unknown thayise use of the Fisher method if the effect sizes
are expected to be small, and the unweighted Z-odefreffect sizes are expected to be large.

In one comparative study, weighting by the squaot of the sample size yielded a summary P-
value similar to those computed by the Cochran-Betblog odds ratio procedures for combining
data from independent four-fold tables.; these oadhessentially weight by the square root of
sample size (Canner 1987).

100



. COMPARISONS BASED ON SUMMARY MEASURES

Hedges and Olkin (1985) compare the statisticgbgntoes of various methods. Simulation studies
of power suggest that George’s logit procedure (Ge@977) may be nearly optimal for a variety of
situations.

Tests and measures of heterogeneity

The program provideseterogeneity testéor the measures of association in the diffestmdlies or
strata. These tests should be interpreted wittiazgisince their power is low; if the result is
significant at the 0.05 level, the hypothesis ahlogeneity can be rejected; but “a high p-value ...
does not show that the measure is uniform, it omans that heterogeneity ... was not detected by
the test” (Rothman and Greenland 1998: 276); tlgefahe strata, the more valid the test.

The program also provides twweasures of heterogenegily andl-squared with their approximate
95% intervals, for the measures of association. HAmlue of less than 1.2 suggests absence of
noteworthy heterogeneity, whereas a value excgedbsuggests its presence, even if the
heterogeneity test is not significaritsquaredexpresses the proportion of variation that can be
attributed to heterogeneity (in a meta-analysisterstudy variation) rather than to sampling erro

The estimates of the overall measure of associatieof questionable value if the findings in the
various studies or strata are very disparatethelfresults are not uniform, explorations of pdssib
causes — e.g. associations with study design dityjoawith the sizes or other characteristicshod

samples — may be revealing

The uniformity or heterogeneity of the measurethendifferent studies or strata can be appraised
not only by these tests and measures, but by piptitie values and their confidence intervals
graphically, and comparing them.

If P-values are enteredhe heterogeneity test (which is based on thgedsson of the Z scores)
yields a low P-value if the individual test statistare very dissimilar. The test is not very
meaningful if the sample sizes for individual temts small.

Forest plot

Optionally, a forest plot can be drawn, providingirple visual representation of the variation
between studies (Egger et al. 1997). Forest phatg also be useful in cumulative meta-analyses
(Egger et al. 2001) and in sensitivity analysesmammg methods of meta-analysis (Egger and
Smith 2001).

The plot can be drawn if the measures of assoaiatie ratios or differences, and if they are edtere
with their confidence intervals. A horizontal lipertrays the confidence interval of each study,
extending to both sides of a symbol that repreddetpoint estimate. If ratios are entered a log
scale is used for the x axis, and a vertical lthvayvn at 1 on this axis, indicates the absenca of a
effect. If differences are entered, a simple nucaéscale is used, and the vertical "no-effectie lis
drawn at zero.

Several options are offered: (a) a label can beredtand shown for each study; (b) the sizes of the
studies can be entered, for reflection in the siakthe symbols used for the point estimatesthe)
symbols to be used can be selected (solid or hdbpyares, circles, or triangles); (d) smaller or
larger symbols can be chosen; (e) the overall nmedby a fixed-effect or random-effects model)
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. COMPARISONS BASED ON SUMMARY MEASURES

can be entered, for display at the foot of thetglzand (f) a caption can be entered for the graph,
"Odds ratio and 95% confidence interval”.

The specimen forest plot portrays a negative maiahip between months of breastfeeding and the
presence of overweight in adult life, using firginculled from a meta-analysis by Harder et al.
(2008).

Study 1 |_._|

Study 2 I . I

Study 3 ”

Study 4 I_._._I

Study 5 |_._|

Study 6 |_.._|

Study 7 |—-—|

Study 8 | . |

Study 9 _

Study 10 HH

Study 11 .—|

Overall |-%'|
R
Odds ratio and 95% confidence interval

Speen forest plot
Fail-safe N
Estimates of the fail-safe N are provided for usmeta-analysesas rough guides to the possible
importance of the “file drawer problem?”, i.e. theckision of studies that were not published or not
found for other reasons.
If ratio measuregodds, risk, rate, or hazard ratios) are enteredprogram computes the numbers
of new “null” studies (those with a ratio measufd pthat will suffice to bring the overall ratio
measure to a negligible level (0.8, 0.9, 1.1 0).1.2

If effect sizeare used, the program computes the numbers ofmdi¥ studies (those with an
effect size of 0) that will suffice to bring theerall effect size to a negligible level (0.1 or)0.2
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. COMPARISONS BASED ON SUMMARY MEASURES

If P-valuesare entered, thiail-safe Nis computed if the overall test is significane(iif the

summary P-value is 0.05 or less by the Stouffehoaetvithout weighting). The fail-safe N is an
estimate of the number of nonsignificant tests thast be added in order to push the overall P
above 0.05. If the overall test is significantrat 0.01 level, the number of null tests required t
push P above 0.01 is also computed. At eacheskthwo levels, the fail-safe N is computed by two
methods. The first (Rosenthal 1979) is based ermfisumptions that the null hypothesis is true and
that all significant results at the given two-tdile level have been included. The second method,
which yields a lower fail-safe N, has been calléd/arst-case” calculation (Rosenthal and Rubin
1988; lyengar and Greenhouse 1988Db). It allows fetronger bias in the ascertainment of studies,
and makes the assumption that significant resulisgaven one-tailed P level have been included,
and missing studies are not significant or areiBggmt in the opposite direction.

Tests for a skewed funnel plot

If measures of association are entered, two tes $kewed funnel plot are performed, for use in
meta-analysis. The tests, which examine the assmcibetween the sizes of the effects in the
component studies and their precision, arg¢igeession asymmetry temtd theadjusted rank
correlation test.

In each test, a low P value suggests possgibidication biasalthough the "small-study effect"
(Sterneet al. 2000) that it indicates may have some other ¢ausd as the use of higher-risk
subjects in smaller studies, resulting in an assioti between sample size and the effect under
consideration.

Both tests have a low power if they are based encfamponent studies. The regression asymmetry
test is generally more powerful (Eggeral. 1997; Sternet al. 2000). A critical P level of at least
0.1 should be used for both tests.

Sensitivity analysis

In a meta-analysis, it may be considered unwiskdw a conclusion that hinges on a single study.
Therefore, to permit examination of the possibilitgt the overall results are unduly affected by a
single study or stratum, the program calculatest @fs*partial” overall results (using the fixed-
effect model), each time excluding a different comgnt study or stratum.

If measures of associati@ne entered, each set of “partial” results conagren overall measure of
association (with its 95% confidence interval) hasquare test, and tests and measures of
heterogeneity. In addition, the program testsstgeificance of the difference between each
component measure and the overall measure basstaither measures; two P-values are
displayed for each test, one for 1 degree of freednd one fok-1 degrees of freedork € total
number of P-values); the latter P-value shouldgssluf the comparison was suggested by the data.
The sensitivity analysis for measures of associad@mitted if there are many strata.

If P-valuesare entered, a set of overall P-values (one-tad@ibrge’s method) is provided, each one
based on all the component P-values except one.

Comparisons with a reference value

The values that are entered are compared withegergfe value (the value entered as stratum 1).
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Absolute and relative differencésm the reference value are reported if the diatentered is a
proportion or rate, or if it is a difference (ebgtween rates or risks) or another normally-distehd
statistic. The relative difference is the absotlifeerence expressed as a percentage of the referen
value. Two sets of 95% confidence intervals, basethirge-sample methods (and therefore to be
regarded as approximations if samples are smadlyeported for both the absolute and relative
differences. In each instance the confidence dimithe second set are adjusted to allow for the
effect of multiple testing.

If the statistic entered is a proportion or rated numerators and denominators are entered)itor if
is a ratio (e.g. an odds ratio, risk ratio, cumutatncidence ratio), the program reports tago of

each value to the reference value. If numeratodsdenominators or standard errors are entered, a
95% confidence interval is estimated for the rdficonfidence intervals are entered, the
confidence interval computed for the ratio hasstme confidence level as those entered. The
confidence interval for the ratio is estimated lpracedure (Zou and Donner 2008) based on the
confidence intervals of the values that are enteresl procedure is appropriate for small as asl|
large samples, and does not assume symmetry atleact intervals. If standard errors are entered,
Zou and Donner's procedure is applied to confidemegvals estimated from the standard errors.

The use of relative as well as absolute differemcescommended when appraising disparities in
health measures (Kappel et al. 2005). Absoluteralative discrepancies may lead to different
conclusions (Moser et al. 2007 )

METHODS

Up to 100 studies or strata may be entered.

If confidence intervals for measures of associatimnentered, standard errors are computed orssuenption that the
confidence limits are equidistant from the poirtreate (or, for ratio measures, that their logsageidistant from the
log of the point estimate).

During processing, zeros are converted to 0.00dtHnwecessary to avoid computation errors.
Overall measures of association

The precision-based procedures are described BsFIES81: 161-164, 185, 302) and Kleinbagtral. (1982: 341-342,
359-361). The DerSimonian and Laird procedureescdbed by DerSimonian and Laird (1986) . Zermsadre
changed to 0.00001. The Q statistic, which plagerdral role in the analysis, is based on the ftmtaeparate strata and
the precision-based estimate of the common measu€ + 1 is less than the number of strata timeloan-effects and
fixed-effect models yield identical results. Résuhay differ slightly from those provided by moelsilA to D, which

use the Mantel-Haenszel estimate of the commonumgasot the precision-based estimate.

For effect sizegstandardized differences between means), thgssdbllows the lines described by Petitti (19849-
123). Pooled standard deviations (assuming equallption variances) and approximate variancesfetesizes are
computed by formulae from Hedges and Olkin (1985:80). The formula for the odds ratio (based aitcfiler 1995) is
Odds ratio=[a / (1 - &)]
where a=1-P
P = one-tailed probability for Z (standardizedmal deviate)
Z = |Effect size| / 2

Overall probability
Fisher's method(Fisher 1948) of combining probabilities is basedhe product of the P-values, étuffer's method

(Stouffer et al. 1949: 45) on the sum of fhealues (standard normal deviates) derived fronPtwvalues. The formulae
for Fisher's and Stouffer's methods are descrilyeddMets (1987).George’s logit proceduréGeorge 1977;
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. COMPARISONS BASED ON SUMMARY MEASURES

Mudholkar and George 1979) uses formulae 8, 9,1@nd Hedges and Olkin (1985: 40-41). Ealgington’s
procedure the program uses formula 2 of Edgington (1972Wbombining P-values, P-values less than 0.000a691
changed to 0.0000001, and P-values exceeding (899%e changed to 0. &@rogeneity

If measures of associati@ne entered, the heterogeneity chi-square testsaamed on formula 10.5 of Fleiss (1981)

If P-valuesare entered, heterogeneity is appraised by thewoih formula (Wolf 1986: 23):
chi-squarek-1 d.f) =Y[Z - C Z / k)7

where Z; = the test statistic in the individual test
k = the number of tests.

Themeasures of heterogeneitld andl-squared are described by Higgins and Thompson (2062)s computed by
Higgins and Thompson's formula 6, and increaseld todicating absence of heterogeneity, if it lgsm 1. A test-
based interval is computed by Method I#squaredand its 95% interval are computed fréimby formula 10.

Forest plot

The forest plot is drawn with the aid of Wilko C Brans's XYgraph unit (version 2.2). The default siteach study's
symbol is determined by the quintile (of sample}yin which it falls

Fail-safe N

Orwin's formula is used faffect size¢Orwin 1983; Hedges and Olkin 1985, formula 93@6; or lyengar and
Greenhouse 1988, formula 5), and a formula derfirad this is used foratio measures

Fail-safe N = k[abs(R) - abs(C)] / abs{C}
where k= number of studies included in the analysi

R = log of the overall odds ratio or risk ratio

C = log of the chosen "negligible value" [0.8,,019 or 1.2).

If P-values are entered and the summary P-val0@&or less by the Stouffer method without weiggptithe fail-safe N
is computed by two methods. The first (RosentBal9) is based on the assumptions that the nullthgsé is true and
that all significant results at a given two-tailrdevel have been included. Rosenthal's fornaula i

N = Y(Z;)? / 2.7055for a critical level of P <= 0.05

or N =Y(Z)?%/5.4119 for a critical level of P <= 0.01
where  Zi- the Z value (standard normal deviates) derived filoerspecific P-value.
The second method yields a lower fail-safe N, aasllbeen called a "worst-case" calculation (RoséatithRubin
1988; lyengar and Greenhouse 1988b). It allowsfstronger bias in the ascertainment of studiesnaakes the
assumption that significant results at a given w@iled P level have been included, and omittedistudre not
significant or are significant in the opposite diien. The equation (lyengar and Greenhouse @9%88mula 4) is:
N = [-b -V(b? - 4ac)] / 2a
where a=0.01177 for a critical level of P <=9.6r 0.0007236 for a critical level of 0.01
b =-0.21F 7 - 2.70554 for a critical level of 0.05 or -0.@%¥; - 5.4119 for a critical level of 0.01
c=(2Z)*- 2.70554k for a critical level of 0.05 oFZ) ? - 5.4119k for a critical level of 0.01
k = the number of studies included in the analysis
>'Z; = the sum of the test statistics in the k studies

The estimates of the fail-safe N are rounded ofh&nearest whole number. If N < 1 (but not zéris) taken as 1.
Tests for a skewed funnel plot

Theregression asymmetry té&iggeret al. 1997) uses linear regression. It regressesahdastd normal deviate (SND, the

measure of association divided by its standara)exgainst precision (the inverse of the standamt ef the effect measure).

If a ratio measure is used, its log is used, ih bus test and the adjusted rank correlation t8$te regression equation is
SND = intercept b x precision.

In the absence of bias, an intercept of zero iseed. The program reports the intercept and#s €onfidence interval, and

tests its difference from zero; two-tailed P iplliged. The usual formulae for least-squarestiregession are used (e.g.

Woolson and Clarke 2002: 309-311; Zar 1998: forréud.).

105



. COMPARISONS BASED ON SUMMARY MEASURES

Theadjusted rank correlation tefBegg and Mazumdar 1994) uses Kendall's ranklatioe (Siegel and Castellan 1988:
245-54) to appraise the association between the sfzhe effects in the component studies (afstrstandardizing these
effect measures) and their standard errors. latikence of bias, a tau of zero is expected. Ao is made for ties in the
computation. If there are 30 or fewer componertiss, tables of critical levels for one-tailed B.65, 0.025, 0.01, and 0.005
(Siegel and Castellan 1988: Tables Rl and Rllyseel. If two-tailed P exceeds 0.01 accordingesetiables, and for larger
samples, a Z test (making allowance for ties)ésl&rmitagest al2002: 290). The two-tailed P value is displayed.

Proportions

Approximate confidence intervals for the pooledgartion are estimated by adding or subtractirgy)(@&.96 times the
standard error. In the computation of precisiosebaestimates, zeros are replaced by 0.001.

Differences from the reference value

For both absolute and relative differences,fromrétfierence value, the large-sample methods enploy€henget al.
(2008) are used:

Forabsolute differences

D = absolute difference ¥; - Vyef

95% Cl forD = D + 1.966Ei)

SE; = standard error d = \/(SE2 + SEefz)

Forrelative differences

pctDiff = percent difference B / Vi

SEycwir = standard error of pctDiff RSEcpirr X pctDiff
RSEcoi= V (RSEir” + RSEer)

RSk = V (SE” +SEef) / D

RSEer = SEet / Vet

95% Cl for pctDiff = pctDiff + 1.968Ecoi)

where V, =the value under consideration
Vet = the reference value
SE = the standard error &f
SE.; = the standard error b

If confidence intervals fov; andV,are enteredsE andSE, are approximated on the assumption that the endlimits
are equidistant from the point estimate.

To adjust for multiple comparisare P value (fPis calculated for each comparison, derived fa@am
Z= standard normal deviate pCtDiff / SEyctpir

;rhe Rvalues are then adjusted for multiple comparisasiag Holm's procedure (Holm 1979, Aicken and Garkd96), and
adjusted z valuesu(j2) are then back-calculated from the adjusiediBes, and used to obtain adjusted FEIff /
adjz)., which are substituted fG‘EpctDiﬁ when computing the confidence interval.

Confidence intervals for thatios of values to the reference vahre estimated from the confidence intervals fentiues,
along the lines suggested by Zou and Donner (26G&)merators and denominators are entered, thfeoce intervals for
the values are estimated by Wilson's score-testadéWilson 1927), as described by Newcombe andakit(2000). If
standard errors are entered, the 95% confiderewahfor each value is estimated as

exp[In[R, - 1.966E)] to exp[InR) + 1.966E)]
where R =the value

SE = the standard error of its log.
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M. EFFECT OF MISCLASSIFICATION

This module appraises the effect of misclassifieatnondifferential or differential) on a 2 x 2 lab
It demonstrates the effect of the sensitivity apelcHficity of the measures on the association
between two dichotomous variables. by computindtiue” findings that would give rise to the
observed findings.

The observed findings, the type of study. and #@msiivity and specificity of the measures must he
entered. The program labels the variables asddeseand “exposure, but it may be applied to an
pair of dichotomous variables.

<

The study may be a study of a population or a sgtive sample of a population, or a
comparison of two independent samples.

The sensitivity and specificity of both measurdsdjeease and of exposure) must be entered. If
these differ in the two groups (differential vatii separate entries are required for each group.
The procedure assumes that the probability of mssdication of one variable is independent of the
probability of misclassification of the other.

In a comparison of two samples using different darggractions, the computed ‘true’ findings
need not reflect the ‘true’ findings in the popidatfrom which the samples were drawn, unless
sensitivity and specificity in the study data anéeeed, rather than sensitivity and specificitytia
total population, which may be very different (Grklzand and Kleinbaum 1983; Rothman and
Greenland 1998: 351-352).

')
o

The “true” results computed by the program arectiefrequencies, the odds ratio, and, in studfe
a total population or comparisons of exposed amxkposed groups, the risk ratio (the ratio of the
proportion with the disease among the exposeda@itbportion with the disease among the

unexposed, with approximate 95% confidence interf@l these ratios. No account is taken of other
porrible sources of bias.

The computed “true” results are not shown if theywnrealistic (i.e.,if a “true” frequency is
negative). A message is displayed saying thabliserved frequencies are not compatible with the
sensitivity and specificity values, and that if #r@ries are correct, the findings may represent
sampling error or the effects of bias.

Note that in some circumstances this procedureynedy surprising findings. Nondifferential
misclassification generally brings the odds or resko nearer to 1, and the correction increases it
But in a study of the association of a disease witisk factor that has a very low prevalence, an
extremely small difference in the specificity okétbxposure measure in cases and non-cases may
yield a "corrected" odds or risk ratio that is re@do 1, or even crosses to the other side ofrhai
also produce a surprisingly marked increase irottds or risk ratio. In such extreme instances, the
correction may be deemed unreliable (Jueeél 2008).

METHOD

The program constructs a 4 x 4 matrix represer@gations that express the relationship betweealbkerved and true
(correctly classified) frequencies, and solves tirealculating the inverse of the matrix and pastiplying this by a
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vector composed of the observed frequencies. Towepure is a generalization of Barron's procedur@dndifferential
misclassification (Barron 1977); see Kleinbaenal, (1982: 228-236) and Greenland and Kleinbaum (19&3he

matrix is not invertible an error message is digpth If misclassification is nondifferential, fortaul2.4 of Kleinbaum
et al. produces the same results.

Approximate 95% confidence intervals are computedife modified estimates of the odds and rislosatbased on the
adjusted frequencies, after rounding them off ortharest integer. These intervals are derived fhenstandard errors
of the logs of the modified values of the odds &ski ratios (Morris and Gardner 2000: 58 and 8djhcertainty of the
sensitivities and specificities is not taken intmsideration.
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P1. POWER OF TEST FOR COMPARISON OF PROPORTIONS

This module estimates the power of exact and chiusgtests for detecting a difference of a given

magnitude between two independent proportions ngilie significance level and sample sizes.
For exact testgFisher and mid-P) it computes thepected powefalso callecbverall, averager
unconditionalpower) (Bennett and Hsu 1960, Higfi al 1994), which is particularly appropriate

when a study is being designed.. Computatiorhefpower of exact tests is slow if the samples are

large, and can be optionally aborted; it is notedfor very large samples..

Besides the significance level (a one-tailed or-taited value may be entered) and sample sizes

the

program requires entry of one of the proporti@ams] the magnitude of the difference to be detected.

The samples are designated A and B, and the szfprmoportion is the known or assumed
proportion in sample B. If there is a controlrgmarison) group (non-cases in a case-control stu

or subjects not exposed to a supposed risk orgnadefactor, or to an experimental treatment in a

trial), it should be called sample B. The magretad the difference to be detected can be indicat
by entering an odds ratio, a risk ratio (the rafithe proportions), or the proportion in sample A.

If losses of sample members are expected (nonsimeiun the analysis because of failure to find
addresses, nonresponses, dropouts etc.), allowghonoéd be made for this before entering the
intended sample sizes, by multiplying them by (167 / 10000, wher® is the percentage of
expected losses (Lachin 1981). this does of caoumseompensate for possible bias.

The effects of changing the significance level sienspzes or other parameters are easily examin

The program computes the power of Fisher’'s andPnékact tests and the power of a chi-squarg
test, with and without a continuity correction. eltontinuity correction reduces the power estimé
If an odds ratio of 1 is entered, the program caepthe "true" type | error proportion (Casagranc
et al 1978b).

The program can also be used to determine the sasigas required for an exact test with a givelr
power, by entering different sample sizes in aeseof trial-and-error estimations of expected pow
until the required power is attained (Higfi al. 1994).

dy,
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METHODS

For exact testspower is computed by formulae provided by Casadgat al. (1978a) and Bennett and Hsu (1960). It is

not computed if the combined sample sizes exce@d4.1The accuracy of the computations has beerkedeagainst a
program (Hirjiet al 1994) kindly provided by Prof. S.E. Vollset.

A number of methods of computing power &i-square testare available, and their results differ (Sahai Khdrshid
1996). For computing power without a continuityreation, this program used a formula derived fformula 3.19 in
Fleiss (1981); this is formula 24.76 in Zar (19p8560) and formula 22 in Sahai and Khurshid (199&)wer with a
continuity correction is computed by formula 52Sahai and Khurshid (1996). If the computation étivision by
zero, the zero is changed to 0.0000001.
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P2. POWER OF TEST FOR COMPARISON OF PROPORTIONS:
STRATIFIED DATA

This module estimates the power of a Mantel-Hadnegze(Mantel and Haenszel 1959) or Cochr
test (Cochran 1954), on the assumption that the cati is the same in all strata . It regards the
relative number of members of the two groups @ges and controls in a case-control study) in
each stratum as fixed (Woolson, Bean and Rojas)1986

Besides the significance level (a one-tailed or-taited value may be entered), the total sample
size, the odds ratio to be detected, and the nuoflsgrata, the program requires three items of
information (known or assumed) for each stratuhe stratum’s relative size (e.g. the number of
subjects, or the percentage or proportion of tked sample); the ratio (in this stratum) of theesof
sample B to the size of sample A; and the proporiiexpressed as a percentage) in sample B ir

this stratum (i.e., the percentage of sample Brigstratum, who have the attribute under studly).

there is a control (comparison) group (non-casesdase-control study, or subjects not exposed
supposed risk or protective factor, or to an expental treatment in a trial), it should be called
sample B.

If losses of sample members are expected (nonsiaeiun the analysis because of failure to find
addresses, nonresponses, dropouts etc.), allowsaocéd be made for this before entering the
intended sample sizes, by multiplying them by (16 / 10000, wher® is the percentage of
expected losses (Lachin 1981). this does of causseompensate for possible bias.

The effects of changing the significance level, glensizes or other parameters are easily examir

The program estimates power for tests with andawitizontinuity corrections. The continuity
correction reduces the power estimate

o a

ed

METHOD

The computation of power for a stratified case-pargtudy is based on the Cochran-Mantel-Haenga#ssc expressed
as a weighted average of the difference betweernrgependent binomial proportions (in the two gretipat are
compared). The formula (without a continuity cotiet) is derived from formula 2.8 of Woolson, Bemmd Rojas
(1986). For a continuity correction, use is mafithe correction factor defined in formula 2.5.
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P3. POWER OF TEST FOR COMPARISON OF DISTRIBUTIONS
IN ORDERED CATEGORIES

This module estimates the power of a Mann-Whitégitfdoxon rank sum) test used to compare t
independent samples with respect to the distributican attribute that has ordered categories
(Mann and Whitney 1967; Wilcoxon 1945).. The tagjht be used (for example) to compare lev
of exposure to a supposed causal factor (e.g. h@awkers, light smokers, nonsmokers) in a cas
control study, or levels of outcome (e.g. sevdneds, moderate illness, mild iliness or no illpess
a cohort study or trial.

A proportional odds model is employed. That iss iissumed that when the R table that displays
the presence of the attribute in a seit ofdered categories is converted to a 2 x 2 table by
combining adjacent categories, the odds ratiodstme, whatever cutting-point is used.

The samples are labelled A and B If there isrdrob(comparison) group (non-cases in a case-
control study, or subjects not exposed to a suppnsk or protective factor, or to an experimenta|
treatment in a trial), it should be called sample B

Besides the significance level (a one-tailed or-taited value may be entered), the sizes of the ty
samples, and the number of categories, the progrguires entry of the relative sizes (known or
assumed) of the categories in sample B (e.g. nisrddeubjects, or the percentage or proportion
sample B falling into each category) , and eitherdadds ratio to be detected, or the percentage ¢
sample A that is expected or known to be in tret fintegory.

If losses of sample members are expected (nonsiaeiun the analysis because of failure to find
addresses, nonresponses, dropouts etc.), allowsaocéd be made for this before entering the
intended sample sizes, by multiplying them by (16 / 10000, wher® is the percentage of
expected losses (Lachin 1981). this does of causseompensate for possible bias.

The procedure is based on a normal approximatiwh@ay not be accurate for small samples.

The effects of changing the significance level, giensizes or the number of categories are easily
examined.

The program displays the power of the test anth@fodds ratio was not entered) the odds ratio
computed from the percentage of sample A in tis¢ éategory.
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METHOD

The formula is derived from formula 10 of Whitehgad893). Allowance is made for ties.

If the percentage of sample A that is expectedhomin to be in the first category is entered instefatthe odds ratio, the
odds ratio is calculated, assuming a proportioddsanodel.
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P4. POWER OF TEST FOR COMPARISON OF MEANS

This module estimates the power dftast for detecting a difference of a given magtetbetween
the means in two independent populations, giversidp@ficance level and sample sizes. The res
should be used with caution if the samples are seil.

Besides the significance level (a one-tailed or-taited value may be entered), the sizes of the
samples, and the magnitude of the difference tebected, the program requires entry of either t

ults

he

known or assumed pooled variance or the knownsumasd standard deviations in the two samples.

If losses of sample members are expected (nonsiaeiun the analysis because of failure to find
addresses, nonresponses, dropouts etc.), allowghonoéd be made for this before entering the
intended sample sizes, by multiplying them by (167 / 10000, wher® is the percentage of
expected losses (Lachin 1981). this does of caumseompensate for possible bias.

The effects of changing the significance level, giensizes or other parameters are easily examir

ed..

METHOD

The program uses the method described by LachBil(li& formula 7, after dividing the sample sizethg correction
factor described.

If the pooled variance V is not entered it is cotepas follows:

V =S (Qu) + S°(Qs)
where & and $ = standard deviations of Samples A and B respalgtiv
QA and QB -= proportions of subjects in Samplesd B respectively
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S1. SAMPLE SIZES FOR COMPARISON OF PROPORTIONS

This module computes the sizes of the samplesnextjto detect a true difference of a given
magnitude between proportions in two independemipsas, with a given significance level and a
given power or precision. Options are provideddmmparing twaluster samplesand for
determining the required cluster size if the nundferiusters is fixed.

The samples are labelled A and B If there isrdrob(comparison) group (e.g. subjects not
exposed to a supposed risk factor or to an expetah&eatment), it should be called sample B.
The program can estimate the sample size needadést of Super-superiority.

The desired significance levelpha) for a two-sided test, the ratio of the samplesjzhe known
or expected proportion in Sample B, and the madgitf the difference to be detected must be
entered. If a one-tailed test is wantaiiphamust be doubled; e.g., 10% should be enteredterob
sample sizes for a 5% significance level. The sfzabe difference to be detected can be indicate
by entering an odds ratio, the ratio of the prapasd, or the proportion in sample A. The effedts ¢
changing the significance level or other paramedegseasily examined .

To stipulate thgpowerof the test, it is entered as a percentage, 8%. 8Cohen (1988: 56)

recommends an allowable Type Il errbe{g of about four timeslpha Thus, for aralphaof 5%
(i.e. 0 .05) betamight be set at, say, 0.20 (power = 80%). No&t tiis module does not compute
sample sizes for agxact testvith a given power; but these can be obtaineddoygumodule P1
(Power of test for comparison of proportions) anteeng different sample sizes in a series of-rig
and-error estimations of expected power, untilrdgpiired power is attained (Higt al. 1994).

Use the results with caution if samples are verglsmAs samples that are big enough to detect g
difference may not estimate its size precisely ghdo permit a decision on its practical importan
(see Goodman and Berlin 1994, Bristol 1989), tleg@m permits stipulation gbrecision, in

terms of the required confidence interval for eittiee difference between proportions or the odds
ratio, instead of power.

Optionally, the program will inflate sample sizescompensate for the probability that some
members of the selected samples will be lost,begause of failure to locate addresses, refusal t
participate, or missing data. This requires eotrthe expected non-inclusion rate (%). This
inflation does of course NOT compensate for posssklection bias.

If the required power is specifiethe program computes the required sample sines @est with or
without a continuity correction) and reports th@ested confidence interval for the difference
between proportions. It may be prudent to usetmtinuity-corrected sample sizes in all instanc
If a confidence interval is stipulated for the oddto, the program computes the sample sizes
needed to meet this requirement with a 95% or 908bability, the power of tests using these
sample sizes, and the expected confidence intlawtie difference between proportions.
Computation may be slow if sample sizes are laagegption is supplied for aborting it.

If a confidence interval is stipulated for the difnce between proportiorthe program computes
the required sample sizes, and reports the powetedt using these sample sizes.

In aone-samplesituation, the module can also compute the sasipteneeded for a comparison of the proportioién t

d
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sample with a selected fixed proportion.




S. SAMPLE SIZES

Precision of the test

The required precision of the test can be stipdlatéwo ways: by specifying the required width of
the confidence interval of the odds ratio, or alédively, by entering the required width of the
confidence interval of the difference betweengheportions.. In each instance, the confidence
interval in question is the (100aipha% confidence interval — e.g., the 95% confidemterval if a
significance level of 5% has been entered.

The required width of theonfidence interval of the odds rai®specified by entering the required
ratio of the odds ratio’s upper confidence limithe odds ratio’s lower confidence limit . To cfgri
the meaning of this specified ratio (of the uppanfelence limit to the lower one), the program
subsequently displays the required confidencevatdor the odds ratio. It also displays the
equivalent confidence interval for the differenetvizzen proportions (on the assumption that the
entered proportion in group B is correct). If afidence interval is stipulated for the odds ratio,
sample sizes are computed for two tolerance probedj the probability that confidence intervals
will fall within the defined range being set at 9%#d 90% in turn. *

The required width of theonfidence interval of the difference betweerpttogortions is specified
directly — i.e., the upper confidence level of tlikkerence minus the lower confidence level of the
difference.

Cluster samples

If sample sizes are required for a comparisonustel samples (as for example in cluster
randomised trials) the assumiattaclass correlation coefficierftCC) andaverage cluster sizeust
be entered.. The program uses these values tdai@@n inflation factor (‘design effect’) by whic
it multiplies the sample size required for a congmar based on random samples. The required
number of clusters of the specified size (with gnad number of clusters in each sample) is then
calculated .

The ICC is a measure of the degree of homogendityniaa cluster with respect to the study
variable. The computation assumes that the IC@nsas in all clusters. The choice of an ICC for
entry is usually based on the findings of previsuslies of the clustering of the study variable in
similar clusters in similar contexts (e.g. Campkeell. 2000, Elley eal. 2005, Cosbt al. 2003,
Health Services Research Unit 2004). ICC valudseadth studies are usually below 0.01, and
veryseldom exceed 0.6.

The computation assumes that the clusters areasimikize. The cluster size would be 2 if the
clusters were married couples or (in a study oseyelividuals, 20 in a study of teeth in children,
and might be say 30 if the clusters are hospitatlgvar the patients with a specific disease in
different family practices. If the clusters diffi@rsize, entry of the largest cluster size withyide
conservative results (Donner et al. 1981).

If the number of clusters is known in advance goample in a randomized controlled trial of a
health care procedure based on a comparison ofajgmactices that have agreed to participate and
whose patients are regarded as separate clustergduired size of each cluster can be computed.
The feasibility of a study using this fixed numioéiclusters is first tested (Hemming et al. 2011)
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Super-superiority

To calculate the sample size for a test of "suppesority”, i.e. to see whether proportion A is
larger by more than a given amount (for example, @@mparison of clinical treatments, larger by at
least a pre-defined "clinically important” amouthtan proportion B, proportion B should be inflated
by this amount before entry.

Since a one-tailed test would be appropriate, mifsignce level of 10% should be entered if 5% is
required for the one-tailed test.

One-sample situation

The module can compute the sample size neededcfunparison of a proportion with a selected
fixed proportion, using a test with a given sigrdgince level and power, its null hypothesis beirg th
the proportion in the sample does not differ frive selected fixed value. This might be helpful,
for example, when planning a study to appraise kndraghe prevalence of a disease, or the
proportion with complications after an interventieat a given level.

Sample sizes are computed for one-sided and tvemt$ekbts.

METHODS

All sample sizes are rounded up to the next whalaber.

If the required power of the test is stipulagtachumber of methods are available for the contipmaf required sample
sizes, and their results differ (Sahai and Khur4l§il6). This program uses two methods. The fivkich yields smaller
sample sizes, is appropriate for tests that usntinuity correction, and the second is appropriat tests that use a
continuity correction. The computation of samgilees without a continuity correction uses an aggtigpnormal
method: formula 24.77 in Zar (1998: 560), formRtain Sahai and Khurshid (1996). The computatvih a
continuity correction uses formula 3.18 in Flei$8§1); this is formula 24.76 in Zar (1998: 560) &mdnula 22 in Sahai
and Khurshid (1996).

The approximatexpected length of the confidence inteivals computed by the following formula, whichas
adaptation of the formula provided by Bristol (1%89

L* = 2ZV[Pa(1 - P) / Na+ B(1 —=R) / Ng] + 1/ Na+ 1/ N,
where z =is the standard normal deviate foralpba2 level of significance

P, and B = the postulated proportions in groups A and B

(if necessary, Pis computed from fPand the odds ratio or the ratio of proportions)

N, and N, = the required sizes of samples A and B

If a confidence interval is stipulated for the oddto, the program uses a procedure described by SattbKupper
(1990) to compute the smallest sample sizes foctwtiie confidence interval for the log odds ratith mot exceed a
specified width, with a probability of 95% or 90%his width is the log of the square root of théargof the upper to
the lower confidence limit) that was entered. Phegram uses an adaptation of a Microsoft Basiorélgn provided
by Satten and Kupper. The sample sizes are sligittier than those required for tests using Celti§ method
(without continuity correction) of computing condidce intervals. If proportions below 0.001 or ab6v999 are
entered, the program alters them to 0.001 and 0&g$ectively.

If a confidence interval is stipulated for the diffince between proportionshe method depends on the relative sizes of
the samples. For equal-sized samples, the proeésitinat described by Bristol (1989) and GoodnrahBerlin (1994).
For unequal samples, approximate sizes are compytezblacing both the probabilities required insBil's formula for

Q by a weighted average (Pbar) of the proportiorsaimples A (§ and B £y):

Pbar:=(R+R*R) /(R +1),
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where R is the ratio of the sample sizes (B:A)e $lze computed by Bristol's formula for the sangie (nL) is
multiplied by

V[1+1/R]/2)
and taken as the size of sample B. Power is tbempuated for the computed sample sizes, using faen8I19 and 3.20
of Fleiss (1981); a continuity correction is incorated.

If a noninclusion rate is enterethe program inflates sample sizes by multiplyimg computed sample sizes by
1/[1-(R/100)]

where R = noninclusion rate %

before rounding them up.

Cluster samples

The computed sample size is multiplied by an iidtatactor (Campbelkt al. 2004), calculated as
1+n-1)*ICC

where n= average cluster size.

The resulting sample size is divided by the clusiee to obtain the required total number of clissteSince it is

assumed that the two groups being compared cotfimisame number of clusters, the number of clusgemsinded up

to the nearest even number and divided by two {aeil rounded up to the nearest integer). The totaber of

individuals required is calculated, and the prograports its ratio to the number that would beunesgl if cluster

sampling was not used.

The feasibility of a study using a fixed numbeedgfial-sized clusters is tested by formula 21 of Merg et al. (2011),
and the required size of the clusters by formula 14

One-sample situation

The computation of the sample size needed fongedison of a proportion with a selected fixed mien is based on
the normal approximation to the binomial distrilouti

The formula (Rosner 2006, equation 7.46) is:

Sample size AB* /C
whereA = p0(1 — p®

B = Zupna*+ Z0eaV{p1(1 — p1) / [pO(1 — pO)]}

C=(p1 - p0*

pl = the proportion in the sample

p0 = the selected fixed proportion

Zapha= the z value for the significance level; for grsficance level of 5%Z.nais 1.645 for a one-tailed test, and
1.96 for a two-tailed test.

Zyeta = thezvalue for power; zbeta is 1.281 if power = 90%, e&h842 if power is 80%.
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S2. SAMPLE SIZES FOR TESTING EQUIVALENCE OF
PROPORTIONS

This module computes sample sizes for studiesaih@ato compare two proportions in order to
determine whether they are equivalent, that is tindrehey differ by more than a negligible amou
Equivalence tests are commonly performed in cliritals that compare a new treatment with an
established standard treatment, where there mayéason to prefer the new treatment if it is at
least as effective as the standard treatment.

The bounds of “equivalence” are defined by specgythe largest difference (e.g. 0.05) to be
regarded as negligible. The test’s significaneelland power, the ratio of sample sizes, and the

known or assumed proportion are also required.dDptly, the test may be one-sided or two-sided.

One-sided tests are usually used. In planningnécalitrial that aims to determine whether a new
treatment (A) can be regarded as not worse tlsaanalard or control treatment (B), the one-side
hypothesis of interest depends on whether the ptiops being compared represent a favourable
unfavourable outcome (“successes” or “failure$”dr a favourable outcome, the hypothesis that
tested of is that the proportion in B is more thagligibly higher than the proportion in A (the
alternative, the “study hypothesis”, being thas ihot materially higher). For an unfavourable
outcome, the hypothesis that is tested is thaptbportion in A is more than negligibly higher thar
the proportion in B (the alternative being thasihot materially higher). If the aim of the studyto
determine whether the treatments are equivabetihthe hypotheses that are tested are of intere
The corresponding “study hypotheses” (the altevestio the hypotheses that are tested) are (for
“successes”) that the proportion in B is not matgrihigher, and (for “failures”) that the propani
in A is not materially higher. The program dis@dlie sample sizes required for one-sided tests
both directions.

The program also computes sample sizes for twaldieks, where the alternative to the null
hypothesis is that the two proportions do not diffieeither direction by more than a negligible
amount. This option is available only if the saegpin the two groups are to be equal in size; the
same proportion must be entered for A and B.

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be includdederanalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakés requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

L
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METHOD

The program uses the maximum likelihood procedbasd€d on the difference between proportions) pebby
Farrington and Manning (1990; formulae in AppengiRk)s has been reported to be generally prefeitabither
methods (Roebruck and Kuhn 1995). Sample sizes fan-sided test are computed by Sheskin’s forrmélal
(Sheskin 2007:697), with the continuity correctaescribed on the same page. Equal sample sizeassumed.
All sample sizes are rounded up to the next whahabrer. If a noninclusion rate (R%) is enterethe program inflates

sample sizes by multiplying the computed samplessibefore rounding them up, by/ [1 - (R/ 100)].
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S3. SAMPLE SIZES FOR COMPARISON OF PROPORTIONS
(STRATIFIED DATA)

This module computes the sizes of the samplesnextjto detect a true difference of a given

magnitude between proportions in two stratified gkas, with a given significance level and a giv
power or precision. It is appropriate for a Masttelenszel (Mantel and Haenszel 1959) or Coch
test (Cochran 1954), and assumes that the oddssdhie same in all strata. The data may come
from a trial or observational study comparing twdependent groups or samples.

The samples are labelled A and B If there isrdrob(comparison) group (e.g. subjects not
exposed to a supposed risk factor or to an expetahreatment), it should be called sample B.

The program requires entry of the desired signiftealevel for a two-tailed test, power, and numk
of strata, and the odds ratio to be detected. otie-tailed test is wantealphamust be doubled;
e.g., 10% should be entered to obtain sample 8zes5% significance level. Power is entered a
percentage, e.g. 90%. Cohen (1988: 56) recommemdfowable Type Il erroibetg of about four
timesalpha Thus, for aralphaof 1%,betamight be set at, say, 0.05 (power = 95%). Theot$f
of changing the significance level or other pararseare easily examined

In addition, three items of information (known @samed) are needed for each stratum: the
stratum’s relative size (e.g. the number of subjemt the percentage or proportion of the total
sample); the ratio (in this stratum) of the sizgsample B to the size of sample A (in a case+cbn
study, for example, this is the number of contpss case); and the proportion under study
(expressed as a percentage) in sample B in thiwstr(i.e., the percentage of sample B, in this
stratum, who have the attribute under study).

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be include¢teranalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakes requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

The program computes the required sample sizdgitwo groups, for a test with or without a
continuity correction. It may be prudent to use tntinuity-corrected (larger) sample sizes in al
instances. Use the results with caution if samates/ery small.
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METHOD

The procedure described by Woolson, Bean, and Rb§86) is used;. The numbers of members ofwegroups
(e.g. cases and controls in a case-control studgach stratum are regarded as fixed.

All sample sizes are rounded up to the next whataber. If a noninclusion rate (R%) is enterethe program inflates
sample sizes by multiplying the computed samplessibefore rounding them up, by

1/[1- R/ 100)]

118



S. SAMPLE SIZES

S4. SAMPLE SIZES FOR COMPARISON OF PROPORTIONS
(MULTIPLE LOGISTIC REGRESSION)

This module computes sample sizes for comparisbpsoportions in two samples using a logistid
regression analysis.

The program requires entry of the information reggiifor computing sample sizes for a simple
comparison of proportions, and of the multiple etation coefficientRR) relating the variable (the
one to be compared) with all other covariates erttodel. This coefficient can be provided by
statistical programs for multiple regression arnialys

As well asR, the desired significance levealljha) for a two-sided test, power (entered as a
percentage, e.g. 90%.), the ratio of the sizee@two samples, the known or expected proportio
Sample B, and the magnitude of the difference tddiected must be entered. If a one-tailed tes
wanted alphamust be doubled; e.g., 10% should be enteredtiorobample sizes for a 5%
significance level. The size of the differencdé&detected can be indicated by entering an odds
ratio, the ratio of the proportions, or the propmrtin sample A. The effects of changing the
significance level or other parameters are easdyrened.

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be includdederanalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakds requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

The program computes the required sample sizesgstimdates an approximate confidence intery
for the difference between proportions. It alsporgs the maximum number of covariates that ca
be safely handled with a sample of the computeal siz
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METHODS

Sample sizes for a simple comparison are firstutaied, using an asymptotic normal method witteobntinuity
correction: formula 24.77 in Zar (1998: 560),nfimla 20 in Sahai and Khurshid (1996). These sasipés are then
multiplied by a variance inflation factor (VIF) callated from the multiple correlation coefficie®)( The procedure is
described by Hsieh et al. (1998). The formula is

VIF=1/(1 ).

The "10 events per variable" rule-of-thumb (Rothraad Greenland 1998, p. 406; Pedwetzil 1996) is used to
estimate the maximum number of covariates thabeasafely handled with a sample of the computeal sihe
expected numbers of events in the two samplescanputed, rounded off downwards, and summed. Theatzd
number of non-events is computed in the same wal/tfee smaller of the two sums is divided by 1@ravide the
maximum number of covariates.

119



S. SAMPLE SIZES

The approximatexpected length of the confidence intelvais computed by the following formula, whichés
adaptation of the formula provided by Bristol (1989

L* = 2ZV[Pa(1 - P) / Na+ B(L = R) / Ng] + 1/ Na+ 1/ N,
where z =is the standard normal deviate foralpba'2 level of significance

P, and B = the postulated proportions in groups A and B

(if necessary, Pis computed from fPand the odds ratio or the ratio of proportions)

N, and N, = the required sizes of samples A and B.
The confidence interval in question is the (108lpha% confidence interval — e.g., the 95% confidemterval if a
significance level of 5% has been entered.

All sample sizes are rounded up to the next whataber. If a noninclusion rate (R%) is enterethe program inflates
sample sizes by multiplying the computed samplessibefore rounding them up, by

1/[1- R/ 100)] .
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S5. SAMPLE SIZES FOR COMPARISON OF DISTRIBUTIONS I'N
ORDERED CATEGORIES

This module computes the sizes of the samplesnextjto detect a true difference of a given
magnitude between two independent samples, withea gignificance level and|a given power,
with respect to the distribution of an attributatthas ordered categories, using a Mann-Whitney
(Wilcoxon rank sum) test (Mann and Whitney 1967jddkon 1945).. The test might be used (fo
example) to compare levels of exposure to a supbceesal factor (e.g. heavy smokers, light
smokers, nonsmokers) in a case-control studyvetdeof outcome (e.g. severe illness, moderate
illness, mild illness or no illness) in a cohomdy or trial.

A proportional odds model is employed. That iss iissumed that when the R table that displays
the presence of the attribute in a seit ofdered categories is converted to a 2 x 2 table by
combining adjacent categories, the odds ratiodstime, whatever cutting-point is used.

The samples are labelled A and B If there isrdrob(comparison) group (non-cases in a case-
control study, or subjects not exposed to a sumposk or protective factor, or to an experimenta
treatment in a trial), it should be called sample B

The program requires entry of the desired signiftealevel for a two-tailed test, power, the ratio ¢
sample sizes, the number of categories, the knowenmected relative size of the categories in
group B (e.g., numbers of subjects, or percestag@roportions of all subjects in group B), and
either the odds ratio to be detected, or the ptapoof group A falling into the first categoryf d
one-tailed test is wantedlphamust be doubled; e.g., 10% should be enteredttrobample sizes
for a 5% significance level. Power is entered psraentage, e.g. 90%. The effects of changing
significance level or other parameters are easéyrened

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be include¢teranalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakes requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

The program displays the required sample sizestim groups.. The procedure is based on a nor
approximation, and is accurate only if it generateslerate to large sample sizes. Sizes may be
under- or overestimated if the proportional oddslet@oes not hold (Lee et al. 2002).

the
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METHODS

The formula for computing sample sizes for a ManhitWéy test (allowing for ties) is derived from foula 10 of
Whitehead (1993).

All sample sizes are rounded up to the next whatabrer. If a noninclusion ra{®%) is entered , the program inflates

sample sizes by multiplying the computed samplessibefore rounding them up, by 1/[1 - (R/ 100)
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S6. SAMPLE SIZES FOR COMPARISON OF MEANS

This module computes the sample sizes requiredttctia difference of a given magnitude betwsg
the means in two independent samples, with a giesver or precision. Options are provided for
comparing twacluster samplesand for determining the required cluster sizééf number of
clusters is fixed.

The desired significance levellpha) for a two-sided test, the ratio of the sizeshaf samples, eithe
the pooled variance (known or assumed) or the atdmtkeviations (known or assumed) in the
samples, and the difference to be detected mushieeed. If a one-tailed test is wantalpha must
be doubled; e.g., 10% should be entered to obtempke sizes for a 5% significance. The effects
changing the significance level, sample sizes loeroparameters are easily examined..

To stipulatepower, it is entered as a percentage, e.g. 90%. Cdlg88(56) recommends an
allowable Type Il errorl{etg of about four timeslpha Thus, for aralphaof 1%,betamight be
set at, say, 0.05 (power = 95%).

As samples that are big enough to detect a difteremay not estimate its size precisely enough t
permit a decision on its practical importance (Geedman and Berlin 1994, Bristol 1989), the
program permits stipulation gfrecision, in terms of the required width of the confidenceimal
for the difference between means, instead of power.

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be include¢teranalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakes requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

If the required power is specifiethe program computes the required sample siz&seqorts the
expected confidence interval for the differenceneein means.

If a confidence interval is stipulated for the difnce between meartke program computes the
required sample sizes, and reports the poweredtausing these sample sizes.
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Cluster samples

If sample sizes are required for a comparisonustel samples (as for example in cluster
randomised trials) the assumattaclass correlation coefficietCC) andaverage cluster sizeust
be entered.. The program uses these values tdai@@n inflation factor (‘design effect’) by whic
it multiplies the sample size required for a congmar based on random samples. The required
number of clusters of the specified size (with gna number of clusters in each sample) is then
calculated .

The ICC is a measure of the degree of homogenéitynia cluster with respect to the study
variable. The computation assumes that the IC@nsas in all clusters. The choice of an ICC for
entry is usually based on the findings of previsusglies of the clustering of the study variable in
similar clusters in similar contexts (e.g. Campleekl. 2000, Elley eal. 2005, Cosb¥t al. 2003,
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Health Services Research Unit 2004). ICC valudseaidth studies are usually below 0.01, and
veryseldom exceed 0.6.

The computation assumes that the clusters areasimikize. The cluster size would be 2 if the
clusters were married couples or (in a study o§eyelividuals, 20 in a study of teeth in children,
and might be say 30 if the clusters are hospitatlsar the patients with a specific disease in
different family practices. If the clusters diffi@rsize, entry of the largest cluster size wilbyide
conservative results (Donneral. 1981).

The feasibility of a study using a fixed numbeegtial-sized clusters is tested by formula 21 of
Hemminget al. (2011), and the required size of the clusterfohyula 14.

METHODS

Sample sizes for atest are computed by formula 6 of Lachin (198Ihe computed total size N is multiplied by a
correction factor, (N + 1) / (N - 1). The computattiof the approximate expected width of the comftdeinterval is
explained by Goodman and Berlin (1994: Appendikthe pooled variance V is not entered it is cotepluas follows:
V=SPQn + $°Qe
where & and $ = standard deviations of Samples A and B respalgtiv
Qa and @ -= proportions of subjects in Samples A and B eetipely

If he width of the required confidence intervakigered, sample sizes are computed by the forffarlal) provided
by Bristol (1989). Power is then computed for tiesv sample sizes, using formula 7 of Lachin (1981gontinuity
correction is incorporated.

All sample sizes are rounded up to the next whalabrer. If a noninclusion rate (R%) is enterdue, program inflates
sample sizes by multiplying the computed samplessibefore rounding them up, by 1/[1 - (R/ 100)

Cluster samples

The computed sample size is multiplied by an iidtafactor (Campbekt al.2004), calculated as
1+(n-1)*ICC

where n= average cluster size

The resulting sample size is divided by the clusize to obtain the required total number of clissteSince it is

assumed that the two groups being compared cai@isame number of clusters, the number of clugeminded up

to the nearest even number and divided by two {aeil rounded up to the nearest integer). The totaber of

individuals required is calculated, and the prograports its ratio to the number that would beunesgl if cluster

sampling was not used.

If the number of clusters is known in advance ggample in a randomized controlled trial of a Healire procedure
based on a comparison of general practices that &gneed to participate and whose patients arededas separate
clusters, the required size of each cluster cacobgputed. The feasibility of a study using thi®efl number of clusters
is first tested (Hemmingt al 2011)
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S7. SAMPLE SIZES FOR TESTING EQUIVALENCE OF MEANS

This module computes approximate sample sizeg$bs that compare two means in order to
determine whether they differ by more than a ndgkgamount. These tests are commonly used
determine whether two treatments can be regardbdwasg an equal effect (tests of average
bioequivalence). Sample sizes are computed faosstded test, based on the two one-sided tes
(confidence interval) approach (Schuirmann 1987).

The bounds of “equivalence” are defined by spectfithe largest difference to be regarded as
negligible. Other required entries are the sigaifice level for the two-sided test, its power,ri®
of sample sizes, and either the pooled variancewhkror assumed) or the standard deviations
(known or assumed) in the two samples.. Optiontily expected means may be entered; if they
not entered they are assumed to be equal; thigpmllide minimal sample sizes for the equivalen
tests — if the means differ, an equivalence tptires larger samples.

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be includdederanalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakés requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

The effects of changing the significance level, powr other parameters are easily examined..
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METHOD

Sample sizes are computed by Westlake's procedestiake 1973, formulae 1 and 2); the initial cotafian uses the
normal distribution (Kim 1997), and the resulthien modified by iterations that use the t disttitny, as suggested by
Westlake. Approximations are used in the compatafisample sizes are unequal or if the meankdriwo samples
are known or assumed to differ; the sample sizas tie be slightly higher than those computed byRASS 2000
power-and-sample-size program of NCSS Statistioftiv@re.

If the pooled variance V is not entered it is coteplas follows:

-2 2
V=5"0a+F0Qs
where @ and $ = standard deviations of Samples A and B respalgtiv
Qa and @ -= proportions of subjects in Samples A and B eetipely
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S8. SAMPLE SIZES FOR COMPARISON OF MEANS
(MULTIPLE LINEAR REGRESSION)

This module computes sample sizes for comparisbneans in two samples using a multiple lin
regression analysis.

The program requires entry of the information reggiifor computing sample sizes for a simple
comparison of means, proportions, and of the malgprrelation coefficientR) relating the
variable (the one to be compared) with all othefac@tes in the model. This coefficient can be
provided by statistical programs for multiple reggien analysis.

As well asR, the desired significance levallfha) for a two-sided test, power (entered as a

percentage, e.g. 90%.), the ratio of the sizeB@two samples, either the pooled variance (know
or expected) or the standard deviations (knowrxpeeted) in the two samples and the difference
be detected must be entered. If a one-taileddesantedalphamust be doubled; e.g.,10% shoulc
be entered to obtain sample sizes for a 5% sigmte level

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be include¢teranalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakes requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

The program computes the required sample sizesegadts the approximate confidence interval
expected for the difference between means.

The effects of changing the significance level theo parameters are easily examined.

ear

2 to

=)

METHOD

Sample sizes are first calculated for a simple @mpn, using formula 6 of Lachin (1981). The pomed total sample

size N is multiplied by a correction factg + 1) / (N - 1);this has a negligible effect on large sampleghdf
pooled variance V is not entered it is computetbbews:

V=S5’ Qn + SBzQB
where @ and $ = standard deviations of Samples A and B respalgtiv

Qa and @ -= proportions of subjects in Samples A and B eetipely
These sample sizes are then multiplied by a vagignftation factor (VIF) calculated from the mulgpcorrelation
coefficient (R). The procedure is described byeHst al. (1998). The formula is

VIF=1/(1 -R).
The computation of the approximate confidence Vrtkis explained by Goodman and Berlin (1994:Append

All sample sizes are rounded up to the next whataber. If a noninclusion rate (R%) is enterethe program inflates
sample sizes by multiplying the computed samplessikefore rounding them up, ly/ [1 - R/ 100)] .
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S9. SAMPLE SIZES FOR COMPARISON OF NUMBERS OF
EVENTS (E.G. DISEASE ONSETS/SPELLS)

This module computes sample sizes for comparisbtieaates of occurrence of events that are
assumed to have a Poisson distribution. It maydbgful in the planning of cohort studies or sial
that compare the occurrence of new cases of alisease, or numbers of disease episodes. in tw
groups.

The desired significance levelpha) and power (entered as a percentage), the ratledizes of
the two samples and the ratio of event rates theiwished to detect must be entered. Optionally
the known or assumed rate of events in one ofahekes can also be entered; the required sam

sizes will then be computed in terms of person-timis as well as in terms of numbers of events.

The statistical test can be regarded as a testvad-gided hypothesis, although it is based ontaile
of the chi-square or Poisson distribution. Feegy approximate indication of the sample sizes
required for a one-tailed test, the required sigaifce level can be doubled (e.g. by entering 109
for a one-tailed test at 5%).

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be include¢teranalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakes requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

If the rate in one sample is not enterdte program provides an estimate of the numbevents
required in each sample, based on a normal appatixamto the Poisson distribution. .

If the rate in one sample is enterelde program provides two estimates of the nurnbewents
required in each sample; both estimates are appaiiins, and are generally not identical.. The
number of person-time units required in each samspdso reported.

o

ple

D

=)

METHODS

The method based on a nhormal approximation to tliesBn distribution, which uses a chi-square testescribed by
Breslow and Day (1987: formula 7.3 and 7.4) and &iy(2000, formula 11); a continuity correctionapplied.

If the assumed rate of events is entered, the ctatipn is based on the test described by ShiueBaid (1982), unless
the samples are unequal and the larger samplsusnasl to have the higher rate, when the computaibased on the
test described by Thode (1997), which is more pfwkeiThe basic formula is Thode's formula 2, fraumich the
sample sizes for both tests are derived.

All sample sizes are rounded up to the next whataber. If a noninclusion rate (R%) is enterethe program inflates
sample sizes by multiplying the computed samplessikefore rounding them up, dy/ [1 - R/ 100)] .
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S10. SAMPLE SIZES FOR COMPARISON OF SURVIVAL
(TIME TO EVENT)

This module computes sample sizes for comparisbssreival time in two groups, e.g. in clinical
trials and cohort studies. (Survival time, or ‘@no event”, refers to the time-lapse until the
occurrence of a specified end-point event, sudteath or the onset of a disease.)

Sample sizes are computed for two tests: the l&gest and a score test based on the log hazar
ratio The results, which are approximations, alehonly if the hazard ratio is constant over time
an exponential curve is assumed.

The program requires entry of the desired sigaifte level lpha) for a two-sided test, power, and

the ratio of the sizes of the two samples. If a-tailed test is wanted)phamust be doubled;
e.g.,10% should be entered to obtain sample siwes 5% significance level. Power is entered a
percentage, e.g. 90%. Cohen (1988: 56) recomnandfowable Type Il errobgtg of about four
timesalpha Thus, for aralphaof 1%,betamight be set at, say, 0.05 (power = 95%). Tlecef
of changing the significance level or other pararseare easily examined

To obtain only the required numbers of events fawtdbf subjects), the hazard ratio that it is &bl
to detect must be entered..

To obtain the required numbers both of events drsdilgects, there are four options:

(a) enter the hazard ratio to be detected, aresmmate of the average probability of survivalthte
end of the follow-up period (a weighted ageraf the probabilities in the two groups);

(b) enter the known or assumed probability of sato the end of the follow-up period, in each
group;

(c) enter the known or assumed median survivakrat each group, and the study's follow-up
period;

(d) enter the known or assumed median survivebkrat each group, the accrual period (the time
from the study's start to the entry of thet Rubject), and the follow-up period of the ladtjsct.

The first three of these options are appropriatefstudy in which all subjects are enrolled at the
same time and followed up for the same period,thadast option is appropriate for a study in
which the entry of subjects is staggered over eger

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be includdederanalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakas requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

The program reports the total sample size requanebthe sample sizes required in each group,
both the log-rank test and the score test. Thardaatio and probabilities of survival (if not
entered) may also be reported.

for
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METHODS

The method for the log-rank test is described l®eBman (1982) ,and the method for the score teSthgenfeld
(1983). The total numbers efentsequired for the two tests are computed by forrdutd Freedman (1982) and
formula 1 of Schoenfeld (1983), respectively. Tagard ratio required by these formulae is caledldif it is not
entered) as the ratio of the natural logs of theigal probabilities in the two groups or, if sual probabilities are not
entered, as the ratio of the hazard functions Kutated for each group as

H = -In(0.5) / (median survival time).

For each test, the total number of subjects reduir¢hen computed by dividing the total numbeewénts by the
probability of an individual having an event in tstedy population, which is the complement of therage probability
of survival. If the latter is not entered, the Ipability of an event is calculated from the prolti&ibs in the two groups
(Schoenfeld 1983, p. 500); the relative samplessiwe used as weights. If these probabilitiesmatentered, but
median survival times and the follow-period are, pinobabilities are calculated as

1 — exp[-(hazard ratio) « (follow-up period).]

For a study whose subjects are accrued over adyehie probability of an event is computed by Siomsrule, as
explained by Liu (2000: 787); the survival probdigis used for this purpose are averages of thevaliprobabilities in
the two groups, weighted by the relative samplessithese survival probabilities S at time} é8e estimated by the
formula (Armitage eal. 2002: formula 17.20)

S = exp(-H).

where H= hazard function at time t.

All sample sizes are rounded up to the next whataber. If a noninclusion rate (R%) is enterethe program inflates
sample sizes by multiplying the computed samplessikefore rounding them up, dy/ [1 - R/ 100)] .
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S11. SAMPLE SIZES FOR STUDY OF CHANGE
(USING BEFORE-AFTER ORDINAL-SCALE RATINGS)

This module computes sample sizes for tests thapace the changes in two independent group
followed up in a cohort study or trial, where th@oges are based on a comparison of paired
“before” and “after” ratings that use an ordinahles such as “never’—“once a day”™-"2 or 3 times

day"—“more than 3 times a day”.

The samples are labelled A and B If there isrdrob(comparison) group (e.g. subjects not
exposed to a supposed risk factor or to an expetah&#geatment), it should be called group B.

One direction of change (e.qg. “less frequent”) nmagesarbitrarily designated as the “right” directior]
of change. This should be the direction of chahgeéis more probable in group A (e..g., “less
often” or “less pain”).

The program requires entry of the desired sigaifte level §lpha) for a two-sided test, and powe
If a one-tailed test is wantedlphamust be doubled; e.g.,10% should be entered torobample
sizes for a 5% significance level. Power is emterg a percentage, e.g. 90%. Cohen (1988: 56)
recommends an allowable Type Il errbe{g of about four timeslpha Thus, for aralphaof 1%,
betamight be set at, say, 0.05 (power = 95%).

In addition. it is necessary to enter four prolaibd: the probability (known or assumed) of a
changed rating (in either direction) in each grabp; probability (known or assumed) of a change
the right direction in group B, and the probabibfychanges in the right direction that it is dedito
detect in group A (this cannot be less than théaidity entered for group B).

Optionally, the program will inflate sample sizescompensate for the probability that not all
members of the selected samples will be includdederanalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakés requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

The program uses a procedure described by Strtldad Lu (2003), which is based on a
comparison of the odds ratios (in the two groupgavour of change in the right direction. These
odds ratios, which are estimated from the aboveesniare displayed together with the required
sample sizes.

Occasional problems occur with the procedure. m@dation is not possible if one of the groups
has no changes in the “wrong” direction; this caroleercome by adding a fictitious observation
showing a change in the “wrong” direction . Vergthsample sizes may be reported if the ratio ¢
odds ratios is very large. As a precaution, ifrdite of odds ratios is over 20 the program checks
whether the computed sample sizes increase wheatibas reduced by 10%; if they do not, a
warning is shown, saying that the sample sizeslmagxaggerated.

)

f
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METHODS

The program uses the procedure described by Strnidikdnd Lu (2003) in section 3.2 ("ordinal resporagjacent
category odds”) of their paper. The sample siegsired for a test using the adjacent-category-odatdel are larger
than those required for a test using the propaatiodds model. The working formula, which is elént to formula 3
in the paper, is:
N = [(Za + Z) / deltd® * (X +Y)

where

N = required sample size in each group

Z,=z(1 -alpha)

Z, = 2z(1 -betd

delta= In(OR, / OR,);

X=[ T/ (T)2+(1-T)/ (1-T)°]/ P

Y= [T/ (T +(1-12) [ (1- T/ Pry

T,=Pn/Pg

T,=Pr/Pg

Pq = probability of a changed rating in group A

Pg = probability of a changed rating in group B

Pr, = probability of a change in the right directiangroup A

Pi = probability of a change in the right directiongroup B
The odds ratios in favour of change in the righection are

OR =T,/ (1-T) [in group A] and

OR =T,/ (1- T, [in group B].

If the ratio of odds ratios is over 20 the progremecks whether the computed sample sizes increlaese the ratio of
odds ratios is reduced by 10% (ateltais modified accordingly before insertion in theoab formula).

All sample sizes are rounded up to the next whahabrer. If a noninclusion rate (R%) is enterethe program inflates
sample sizes by multiplying the computed samplessikefore rounding them up, dy/ [1 - R/ 100)] .
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S12. SAMPLE SIZE BASED ON RESULTS OF PRIOR
COMPARISON

This module computes the total size of the samglgsired for a comparison of two samples (wit
given significance level and a given power), basedhe findings of a previous comparison, on th
assumption that the planned comparison will hagesdime design as the previous comparison, &
that the outcome will be similar.

The required data about the previous comparisotharewo-sided or one-sided P-value found in
that study, or the confidence limits found in thedy (from which an approximate P-value can be
computed), and its sample size.

The method is described by Boehal. (2010), who point out that the planned study nnessimilar
to the previous one with respect to the ratio oligrsizes. the method of statistical analysis,iand

the case of a multivariate analysis, the choiceowfiriates . The results are exactddests, and are

approximate for tests that approximately followoaimal distribution or a chi-squared distribution
with one degree of freedom. They may be appliadetample, td-tests, linear regression, analyse
of variance and covariance, linear mixed mode[sagd measures analysis, logistic regression,
Poisson regression, and binomial regression, dsawéb nonparametric tests such as the Mann-
Whitney test and the logrank test. If the plannedyis small, the computed sample size may be
slight underestimate.

Optionally, the program will inflate the sampleestb compensate for the probability that not all
members of the selected sample will be includetienanalysis, e.g. because of failure to locate
addresses, refusal to participate, or missing dakes requires entry of the expected non-inclusio
rate (%). This inflation does of course NOT congaga for possible selection bias.

N a
e
ind

METHOD

The method is described by Borm et al. (2010). fitegram uses their formula 1, which is based orPtivalue and
sample size in the previous study and on the reduignificance level and power of the new stutigetessary, the P-
value is computed from the two-sided confidencerirdl, using formula 3; if the confidence interisabased on a
logarithmic transformation, e.g. for odds ratiask ratios, rate ratios, and hazard ratios, thdidence limits are
transformed back before formula 3 is used. Thesgotations assume that the confidence limits avédéegant from
the point estimate (or, for ratio measures, thair logs are equidistant from the log of the pastimate).

The sample size is rounded up to the next wholebeumlf a noninclusion rate (R%) is entered ,ghegram inflates
the sample size by multiplying it, before roundingp, by1 / [1 - (R / 100)]
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