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What DESCRIBE does

DESCRIBE is a WINPEPI program (Abramson 2004, 20part of the PEPI suite of computer
programs for epidemiologists. (“PEPI” is an acnorfpr “Programs for EPldemiologists”.)

DESCRIBE provides procedures for use in descriptivepidemiology, including the appraisal

of separate samples in comparative studieslt can handle categorical data (dichotomous,
nominal or ordinal) and numerical data (includingvéval times). It provides a capture-recapture
procedure, appraises screening and diagnosti¢ éegtan compute sample sizes. There are 21
modules to choose from.
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HOW TO USE WINPEPI: an ABC

A. Obtain the latest version

The latest set of WINPEPI programs and manualdeattownloaded free from www.brixtonhealth.com.

B. Install

Runwinpepisetup.exélhis will put the programs and manuals in a foloeyour choice (replacing any previous
versions in that folder) and will place a WINPERIal (a “WINPEPI” icon) on your desktop. It may benvenient to
pin the Portal to the Start menu or the Taskbar.

If you downloadedvinpepifiles.zipyou will have to copy its contents to a folderyotir choice, and manually put a
shortcut tovinpepi.exeon your desktop.

C. Use the WINPEPI Portal and find the procedure yo u want

There are seven WINPEPI programs: DESCRIBE (&scdptive epidemiology) COMPARERo compare two
independent groups or samples), PAIRSetc (fo coenpatched observations). LOGISTIC and POISSON (for
multiple logistic and Poisson regression), WHATV&rious utilities, including a calculator), and EETERA
(miscellaneous procedures). Each program has aemmflnodules (over 120 in all), each of which offa number
of statistical procedures.

Open the WINPEPI Portal, which provides accesdl ttve programs and manuals, and to WINPEPI’s Rinadich
is an alphabetical index to the statistical praced. The Portal also provides access to a padiskierview of the
programs and their learning or teaching potengiad] to the web-site offering the latest versiomNPEPI. Among
other options, it provides a magnifying glass,dsers with poor vision or small monitors. The Findan also be
accessed (in any WINPEPI program) by pressing Ficking on “Winpepi”.

If you know what program and module are requirggirothe program by clicking on it in the Portalh@&tvise,
search the Finder for the procedure you requitee Finder will tell you what module to use.

THE ESSENTIAL REQUIREMENT IS THAT YOU SHOULD KNOW W HAT YOU WANT.

If you open the Finder and look foktltiple linear regressioty for example, you will be directed to ETCETERA
i.e. to module J of ETCETERA . You would then o &CETERA and click on J.

You may be offered alternatives. Forequivalence test for proportionor example, the FINDER will say
“COMPARE2 A, PAIRSetc A", i.e., either module A GOMPARE2 or module A of PAIRSetc. If the obseroat
are independent, COMPARE?2 is appropriate; if theypmired, PAIRSetc is appropriate.

You may have to open the programs to find precigdlgt each module offers. For example, a searctfiagnostic
tests, accuracy tfwill direct you to “DESCRIBE L1, L4, L5, PAIRSc D1, D2, D3". When you open DESCRIBE,
clicking on “L” will reveal that module L1 refere t'Yes/No” tests, and L4 and L5 to tests with ageuof results. In
PAIRSetc, modules D1, D2 and D3 (respectively)ameropriate for comparing normally-, log-normallgr,non-
normally-distributed results with a gold standard.

It is unwise to use a statistical procedure whosgse one does not understand. This manual cannot qulp
this knowledge, and it is certainly no substitutedr the basic understanding of statistics and
epidemiological thinking that is essential for thewise choice of methods and the correct interpretatin of
their results.




D. Open the WINPEPI program and select a module
Open the selected program, via the Portal or iskiog on its icon or name in Explorer.

You will generally be presented with a menu, frohiick you should make a selection. Additional opgiare
offered in the horizontal menu at the top of theripg screen.

A data-entry screen will then appear. You may ed$o make a further choice before entering tha,dand
various additional options may be offered At esiye, simple instructions are provided (in yejiquop-up hints
may be shown. Additional help may be obtained ®sping F1 or clicking on “Help” in the top menu.r Faller
nformation, the program’s manual can be accesseatiding on “Manual” in the top menu.

E. Enter the data

Two of the programs can read data files. But intrimetances, data must be entered manually atetyigoard, or
pasted from a text file or spreadsheet. This ugwatjuires prior counting and summarization, eithanually or by
using statistical software that processes primatg.d

Manual entry of data is usually easy. If entries are requiredifferent boxes, pressirgnteror Tabafter
entering a number will generally take you to thetdmx; and pressingscapewill clear the entry. If several
entries are required in the same box, pEgeror Spaceafter each entry.

Pasting data: If the data are available in a text file (creatied example, by Notepad or Microsoft Word) or a
spreadsheet, they can be copied to the Windowkadipl [usually by pressir@trl-Insertor Ctrl-C], and then
pasted into a data-entry box [usually by press&hdt-Insertor Ctrl-V]. This can simplify data entry in boxes
that require a number of entries (in rows or colsmrAlso, data can be copied from a data-entwydad

pasted to a text file for future re-use; first,g@€trl-A to mark it for copying.] The following instructis can

be accessed by pressing F2 (in any WINPEPI progeaarcljcking on ‘Help — Pastiny,

Precautions:
» The data must be pasted into the box as a sihgtk, and not piecemeal.
» There must be no missing values (e.g., emptyg oeh spreadsheet).
» The data must be in the format required in the, lvith spaces between the numbers; exact alighmen
of the columns is not necessary. For examplé5 66 1
20 3 132
53 11 44
« If a defined number of rows is required, thisnier should be entered first, e.g. in the “Numlder o
categories” box.
« If a column of row numbers is shown on the (&ft2, etc.), ensure that the”1” is visible befpessting.
» The cursor must be in the top left corner ofltb& when the “paste” keys are pressed.

F. Run the program

G. Select the results you need

Do not be confused by the multiplicity of resulf&u can scroll down until you find the results yoeed; and
ignore everything else. If you want an odds ratid @s confidence intervals, you can ignore alkottesults.

WINPEPI programs offer more options than most uadisver need, and will usually display
more results than are needd@NORE THE OPTIONS AND RESULTS YOU DON'T
REQUIRE.




On the other hand, you may find some of the otbsults helpful.

Very often, the program will provide alternatiests and measures of effect, often with confidémtesvals
estimated by alternative methods. If there is disagnent between the results, you may find apprtgpadvice
in the manual, which describes the procedureslaiduses and limitations, with literature referesic

H. (Maybe) continue the analysis

After getting the first results, it may be decidectontinue the analysis. It may, for example, eeidked to
repeat the analysis (by clicking on “Repeat”) arakenchanges in the data or the options. Afteroperdnce of
a logistic regression analysis, options are offéoedhe use of the logistic coefficients to congatprobability,
risk ratio, etc.

If stratified data are entered, clicking on “Nettasum” permits entry of another stratum, and diigkon “All
strata” provides a combined analysis of all thatatrSimilarly, a meta-analysis can be performedrigring a
table for each study as a separate stratum, andptiessing “All strata”. (If summary data (e.gkrratios) are
available for each study, a series of tables isiretled; module | of COMPARE2 might then be used.)

|. Saving the results

By default, all results (except graphs) are autaraby saved irpepi.txtin the Winpepi folder, with a warning
if its size exceeds 500K. This file can be accessthe Portal. The default procedure can be vikare
changed by clicking on “Saving” in the top menusthlso provides accesspepi.txt Optionally, graphs can
be saved as BMP files.

Results produced during the current session aoesalged (temporarily) ipepi.tmp which can be viewed by
clicking on “View” in the top menu.

The results of a single analysis can be saved riewafile) by clicking on Print or savé or “Print”.

J. Adding comments

Optionally. click on “Note” (in the top menu) to dé note to the previously-shown results, formgwiith the results
in pepi.txt

K. Printing the results

The results of an analysis can be printed by aligkin ‘Print or savé or “Print”. Graphs can be printed at low
or high resolution. Also, selected results can tiet¢d from

L. Pasting the results to a text file

All results shown on the screen are automaticalfyied to the Windows clipboard, from which they &en
pasted into a Microsoft Word or other text fileéfarably for display in a Courier or similar fotd, ensure
proper alignment of tabulated results). Optionajlaphs can be copied to the clipboard, replaaiyg results.
that are there.



Notes

The programs are 32-bit applications, written vidglphi 5, and will run in any version of Microsaffindows
(including Windows 7), except Windows 3. They ta&nrun from a portable device such as a USB flaiste.d

The manuals that accompany the programs requri@Fareader, such as Adobe Acrobat or Foxit Reader.

The programs and manuals refer to dichotomoushlasgaas “Yes-No” variables, and to interval- ofa-a&cale
variables as “numerical”.

P-values derived frora andt functions are generally correct to five decimalgals, those based ohi-square,
to four decimal places, and those based o thanction to three decimal places.

WINPEPI does not adhere strictly to the conventidiedinitions of “risk” (ratios with count denomators.
e.g. prevalence) and “rate” (ratios with persoretidenominators, e.g incidence density), except \ilen
distinction is important. Risks may be referrecsorates when this is unlikely to cause confusion.

A DO-IT-YOURSELF THREESOME

1. PLANNING A STUDY : “Research Methods in Community Medicine: Sury&idemiological Research,
Programme Evaluation, Clinical Trials” (J.H. Abraommsand Z.H. Abramson), sixth edition, 2008. JohheWi
& Sons.

2. ANALYSING THE FINDINGS : The WinPepi suite of computer programs for epidéogists, with their
manuals. Can be downloaded free from www.brixtaftheco

3. INTERPRETING THE RESULTS : “Making Sense of Data: A Self-Instruction Manoal the
Interpretation of Epidemiological Data” (J.H. Abraom and Z.H.Abramson), third edition, 2001. Oxford:
Oxford University Press.
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DESCRIBE’'s MODULES : A GUIDE

Modules A to Dappraise single variables in single groups or $asnp

e Module A appraisesates and proportionéfor “Yes-No” [dichotomous] variables).

» Module B appraises aet of rates or proportions or ratios of counts.

* Module C appraisesominal —scale or ordinal- scale variablésith 3 or more categories).

* Module D appraisesiumerical (interval-scale or ratio-scale) variables a sequence of numbers.

Effect of misclassification ModuleA

Probit analysis Module B

See “FINDING WHAT YOU WANT” (on previous page)
If you wish to appraise findings, select an opti@tween A and F in the main menu.

« To appraise aate or aproportion select modulé\.

« To appraise aequence of ratew proportions or ratios of countselect modul®.

« To appraise a frequency distributiasith three or more categori€gaominal or ordinal), select modulz

e To appraisemumerical data(normally distributed or not), select modide The numbers may or may not fall into a
specific sequence. The numbers can represent arsegjof nominal categories.

¢ To appraiseseasonal variatiorfusing monthly, weekly, or daily data), select miedtE.

* To appraisesurvival data(time-to-event data), select modie

« To appraise acreening or diagnostic testelect module L

To standardize the findings, select module G (tistandardization) or H (indirect standardizatiSMR).

To estimate the number of cases in a populatianguscomplete overlapping lists of cases (captepture method), select
module | in the main menu.

To estimate prevalence from observations in clyusteatified, or pooled samples, select modulethénmain menu.

To estimate the sample size required to estimptealence, proportion, or mean, or to find a gimember of cases, select module
K in the main menu.

To plot an epidemic curve, select module M.
Easy entry of data:

» If entries are required in different boxes, preg&interor Tab after entering a number will generally take you
to the next box; pressirigscapewill clear the entry.

» If several entries are required in the same boessiEnter or Spaceafter each entry.

e Optionally, data can be “pasted” into entry boxase(next page).

Recalling results:

Click on“View” in the top menu to display the current sessioreésipus results

Pasting results:

Results shown on the screen are automatically ddpi¢he Windows clipboard, from which they canpasted into a
Microsoft Word or other text file at the site ofthursor (usually by pressighift-Insertor Ctrl-V. To ensure proper
alignment of tabulated results, a Courier or sinfibat should be used in the text file. If thereut session's previous
results are recalled (by clicking on "View"), texétn be marked (drag the mouse over it with byttessed) and
copied to the clipboard (by pressi@trl-Insert or Ctrl-C) for pasting elsewhere.



Adding comments:

Click on "Noté' in the top menu if you wish to add explanatorynoeents to be placed in the clipboard, saved, or
printed with the results.



Saving results:

By default, all results of Pepi-for-Windows progmmare saved in PEPL.TXT in the Winpepi folder, vétiwvarning if it
exceeds 500K. Results also go to PEPL.TMP (fgulasin the View” option); this file may be overwritten unless it is
renamed on quitting DESCRIBE. Click 68aving (in the top menu) to see the default procedure change it.

Also, currently-shown results can be saved by tiglon 'Print or savé. [Results saved in earlier installations may be
found in C\PEPI.TXT]. TXT files can be combinedmJOINTEXT , supplied with the Winpepi package.

Printing results:

Click on "Print". If this fails, try switching the printer off @won again, and click orPtint" again. A simple solution is
to paste the currently-shown results (which hatteraatically been copied to the Windows clipboant) a

Microsoft Word or other text file, and print fromere. To ensure proper alignment of tabulated t€salCourier or
similar font should be used in the text file. Résghn also be printed from one of the files inckithey are
automatically saved, e.g. PEPL.TXT (which can beeased by clicking orResults in the Winpepi portal).

Note: the “Print” option ejects full pages only.

If you get an Error opening windowmessage, close and re-open DESCRIBE.

PASTING DATA

If the data are available in a text file (e.g. alTfie created by Notepad), they can be copiedéoWindows clipboard
[usually by pressingtrl-Insert or Ctrl-C], and then “pasted” into a data-entry box [usubihpressingshift-Insertor
Ctrl-V]. This can simplify data entry in boxes that rieg@ number of entries (in rows or columns). PAldata can be
copied from a data-entry box and pasted to a tiextdr future re-use; presstrl-A to mark it for copying.]

Precautions:

e The data must be pasted into the box as a singtdk johnd not piecemeal.
e The data must be in the format required in the kdtky spaces between the numbers; exact alignnieheo
columns is not necessary. For examp 4566 1
20 3 132
53 11 44
» If a defined number of rows is required, this numinest be entered first, e.g. in the “Number odtstt or
“Number of categories” box.
* If row numbers are shown on the left (1, 2, etengure that the”1” is visible before pasting.
» The cursor must be in the top left corner of the Wwhen the “paste” keys are pressed.

HOW TO OBTAIN PEPI PROGRAMS

All WINPEPI (PEPI-for-Windows) can be downloadeddr The latest versions of WINPEPI programs —ecuily
COMPARE2, DESCRIBE, ETCETERA, LOGISTIC, PAIRSet®QIBSON, and WHATIS — can be downloaded from
www.brixtonhealth.com. Version 4 of PEPI, whichtains over 40 DOS-based programs (which can beinse
Windows), can be downloaded from www.simtel.net/pdis4632.html

All the programs are distributed with PDF manuals.
WINPEPI programs are provided with no liability to users and without any warranties, whether expressedr

implied. They are copyrighted, but may be freely apied and distributed for personal use; they may niobe
exploited commercially without permission.

Wilko C Emmens's XYgraph unit (version 2.2) credtesgraphs displayed by this program.



A. RATE OR PROPORTION

A. APPRAISAL OF A RATE OR PROPORTION

This module providesonfidence intervalsfor a rate or proportion, and can also tesgfmodness
of fit with an expected value, appraise the effechistlassification and (for randomly recurrent
events) estimate the individuatlsances of occurrence

If the observations are based on a sample of algiigu of known size, this size can be entered,
The program then appliediaite population correction, and estimatesonfidence intervals for
the number of caseqindividuals with the attribute under study) irethopulation.

Confidence intervals applicableitoverse samplingare also reported. These are appropriate if|the
sample size was not decided in advance, but randsehtcted subjects were investigated until a
predetermined number of cases were identified. prbgram can estimate the confidence intervals
of the prevalence when the first case is identiiired case-finding program.

Two basic entries are required ramerator(e.g. the number of persons with a given attriptlte
number of cases of a disease, or the number disleaither events) or a proportion or rate; and a
denominator - @ount denominatofnumber of individuals) anumber of person-time units
(usually person-years). If inverse sampling isdusiee denominator is the number of cases plug the
number of "failures”. If a rate is entered, theggam may adjust it to ensure that the numerator|is

a whole number.

In addition, theotal population sizenay be entered if the observations are basedsamale; this
is unnecessary if the sampling fraction is less % and confidence intervals for the number of
cases are not required.

Additional entries are needed if a test for goodraddit is required., or if the effect of
misclassification is to be appraised (see below).

Confidence intervals for the prevalence

For a proportion or a rate with a count denominaggact Fisher's and mid-P confidence intervals
are generally computed. If the denominator is Varge, approximations to the exact intervals are
displayed; the approximation to the Fisher intersalose enough to be regarded as exact. For a
rate with a person-time denominator, exact Fislartsmid-P confidence intervals are displayed if
the number of events is 402 or less, and approeimétrvals if it is higher.

Confidence intervals based on Wilson's score-Wds6n 1927) are also computed if there is a
count denominator. These are arguably preferaltieet exact intervals in terms of closeness to the
required confidence levels (Agresti and Coull 1998ewcombe and Altman (2000: 46)
recommend use of Wilson’s score intervals rathan thisher's exact method, which is unduly
conservative, adding that, especially if the prtiparis very close to 0 or 1, it is reasonablede u

the mid-P exact method, although it too is somewtn@te conservative than the score method.

If there is a count denominator, confidence intkrvare also estimated by three other methods:

The method described by Fleiss et al. (2003: 28+&Bich is claimed to be preferable to other
approximate methods when the proportion is vergeto 0 or 1; the SAIFS (single augmentation

10



A. RATE OR PROPORTION

with an imaginary failure or success) method describy Borkowf (2006), which provides
intervals that are claimed to have near nominakcaye; and a less satisfactory method using
Wald'’s statistic.

Confidence intervals are not computed if the tptglulation was studied, i.e. if the size of thaltot
population is entered and it coincides with the garsize.

Finite population correction

If the observations are based on a sample of algomu of known size, and this size is entered, a
finite population correction is applied. This reds the variance and hence makes confidence
intervals narrower. The correction is necessaly ibthe sampling fraction is more than 5%
(Cochran 1977: 25) and sampling is done withoufaimgment, as it usually is (that is, an individual
cannot be selected more than once). The correletistittle effect unless the sampling fraction is
large.

Confidence intervals for the number of cases

If the total population size is entered, confideimtervals are estimated for the number of cases
(subjects with the attribute under study) in thpyation, by applying the Wilson confidence limits
for the prevalence (with a finite population cotree) to the population size. The numbers are
rounded off to the nearest integer.

Inverse sampling

The program provides confidence intervals for ttevalence that are applicable if inverse
sampling was used — that is, if randomly-selectdajexts were investigated until a predetermined
number of cases were identified. The computasdrased on the number of cases and the number
of subjects investigated (the number of casesthiisiumber of "failures").

Three sets of intervals are provided — Fisher'staréervals, which may be preferred if the
denominator is small (Lui 2004: 9), and intervadsdd on Wald's statistic (which uses a biased
estimate of the prevalence) and on Finney's estinfahich uses an unbiased estimate of the
prevalence), both of which are derived from largmpgle theory. If the number of cases is large,
the intervals provided by the three proceduresiandar.

The program can estimate the confidence intervalseoprevalence if the number of cases is 1,
that is, when the first case is identified in asclisding program.

Goodness of fit
To test goodness of fit with an expected rate opertion, the expected value must be entered.

If a count denominator is entered, goodness o iomputed by an exabinomial tes. This test is
appropriate in a comparison of the numbers of olagiens in two alternative categories. If the
numbers are 2 and 10, for example, 2 should beezhtes the numerator and 12 as the
denominator. The test compares the observed d#taawieoretical expectation; if, for example,
the expectation is a 1:1 ratio, an expected prapodf 0.5 should be entered. The two-tailed P
value will usually be appropriate, the null hypatisas that the numbers do not differ from

11



A. RATE OR PROPORTION

expectation. In a one-tailed test, the null hypsihes that the number in one category is not large
than expected.

If a person-time denominatds entered, goodness of fit is tested by compahegbserved and
(calculated) expected numbers of events, assumiwsson distribution. This is appropriate if the
event is rare. Exact Fisher's and mid-P testparermed if neither the observed nor the expected
number of events exceeds 200, and a large-sampledim other instances. A large-samgté
square goodness-of-fit test is also done.

Appraisal of misclassification

This module may be appropriate if the numeratoraggnts the number of individuals with a given
characteristic (e.g. the presence of a disealkegpquires entry of the sensitivity and specifiof

the measure of whatever is enumerated by the ntionegbait if a person-time denominator is
entered, a specificity of 100% (an absence of fadsgtives) is assumed.

The program computes the true rate or proportian(given the above sensitivity and specificity
values) would have given rise to the observedoafgoportion, assuming that the sample studied
is a representative one. If this calculated figanender 0% or (when a count denominator is used)
over 100%, the program displays a warning sayiagtthe observed finding is incompatible with
the sensitivity and specificity values entered, #rad if the entries are correct, the findings may
represent sampling error. Confidence limits atereged for the computed true rate, based on the
confidence limits for the observed rate or proportiThese intervals make no allowance for
uncertainty of the sensitivity and specificity vedu

If confidence intervals (say 90% or 95%) are a\mddor sensitivity and specificity, it may be
enlightening to compute a range for the estimatgeltate. To compute an upper bound for the
true rate or proportion (when a count denominaarsied), enter the lower confidence limit of
sensitivity and the upper confidence limit of sfietty; to compute a lower bound, enter the upper
confidence limit of sensitivity and the lower cafénce limit of specificity; if incompatibility is
reported, take the lower bound for the true ratgroportion to be zero.

Chances of occurrence

If a person-time denominator is entered, the pragcamputes an individual's chances of 1, 2, 3 or
more events in a unit of time (in a year, if a pargear denominator is entered). These estimates
apply to randomly recurrent events that follow @&Bon distribution.

METHODS

Confidence intervals

For a proportion or a rate withcaunt denominatorexact Fisher's and mid-P binomial confidencerirtis are
computed by a procedure from XLIM (version SP2%Ab Ray Simons. If the denominator is over 30,000 if the
numerator is zero, over 15,000), Fisher's interasdsestimated by a method based on a relatiobgtipeen the F and
binomial distributions (Brownlee 1965); this prog&lestimates that are close enough to be regasdedat. Zar's
formulae 24.28 and 24.29 are used (Zar 1998, p. 524he denominator is over 30,000 or (if themarator is zero)
over 15,000, approximate mid-P intervals are coegbbily Vollset's procedure (Vollset 1993); for distasee the Pepi
manual (Abramson and Gahlinger 2001, p. 260).

12



A. RATE OR PROPORTION

Formulae for the computation of Wilson's confidemtervals, based on a inversion of the scoreftest proportion,
are provided by Newcombe and Altman (2000: 46-47)he numerator (number of cases) was not entitlied
calculated from the proportion or rate, and rounaiédo the nearest integer.

The formula for the confidence intervals proposgdrigisset al (2003: 28-29) uses their formulae 2.17 and 2118.
the proportion or rate is 0, the computed loweitlimchanged to 0, and if the proportion is 1 tfor rate 100%) the
computed upper limit is changed to 1 (or 100%).

Borkowf’s “single augmentation with an imaginaryldae or success (SAIFS)” confidence intervals @mputed by
formulae 8-11 of Borkowf (2006).

The confidence intervals using Wald's statistic @mputed by formula 1.3 of Lui (2004), with thgusiments
suggested by Lui: if the proportidhis 0 or 1, the variance is takenRgyj (1 - Paq) / n,;
if (P*n<5)or[(1-P)* n <5] the program displays a warning: "Not recomdes for these data";
and if the computed lower limit < 0 it is changedt and if the computed upper limit > 1 it is ched to 1;
where P=X/nandP,;=(X+0.5)/6 +1);

X = numerator and = denominator;

Confidence intervals for rates wigierson-time denominatoese based on the assumption that the number afsve
has a Poisson distribution. If there are 40 orefegwvents, exact Fisher's intervals are displaygidg tabulated values
from Pearson and Hartley (1966), and for 20 or feswents, exact mid-P intervals are displayed,gisbulated
values from Cohen and Yang (1994). If there areemewents, closely approximate intervals are coetpby formulae
17 and 18 of Rothman and Boice (1982: 29).

Standard error

The formula (Zar 1998: formula 24.20) is

V[p (1 —=p)/ (n—1); butiftn=1, ¥[p (1 —p) / n] is used, to avoid zero division.

where p = proportion
n = count denominator

Finite population correction

If the total population size is entered, the figitgpulation correctionfijc) factor for the variance is computed as:
(N-n)/(N-1)

where N = total population size and = size of sample.

The standard error is multiplied kpc.

The confidence intervals for the prevalence areected by multiplying the distance between eactiidence limit
and the point estimate b{fpc, using modified point estimates (Burstein 1975¢i@an 1977: 59) for this purpose:
(@- 0.5) /n for the lower limit, and
(@+a/n)/nforthe upper limit

where a = numerator
n = denominator

Inverse sampling

Confidence intervals appropriate for inverse sangpéire provided by Lui (2004) — formula 1.20 foe #ixact
intervals, formula 1.15 for the intervals based/éald's statistic, and formula 1.19 for the formbésed on Finney's
estimator. The Wald and Finney methods are not ifiskd proportion is 0 or 1. The computations based only on
the sample; the total population size (if enteiedynored.

If a single case has been found, the program tisgsrocedure suggested by George and Elston (1888} is a
special case of formula 1.20 (Lui 2004: 9)..
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A. RATE OR PROPORTION

Goodness of fit

Thebinomial test of goodness of fjSiegel and Castellani 1988: 38-42), which ifgened when a count denominator
is entered, uses the incompleetafunction to compute exact cumulative binomial fiilos (Preset al 1989, pp
188-190). The lower of the two one-tailed probdieti is displayed as the one-tailed P, and thePnidiue is their
mean (unless the observed proportion is 0 or Which case the mid-P value is half the lower axiked P). The two-
tailed P values displayed are conservative appratkims, obtained by doubling the one-sided values.
If a person-time denominator is entered, the foamdbrPoisson-based goodness-of-fit temts those provided by
Rothman and Boice (1982: 29); iterative root-firgiprocedures are used. The formula fordhiesquare
goodness-of-fit test, with 1 degree of freedom, is

chi-sq. = (Obs - Exp)?/ Exp
where Obs and Exp are the observed and expecteldensiof events (Vaeth 2000, Rothman and Greenlégd,1
p.235). Chi-square is also computed with a continuity cormac{izar 1998: formula 22.3):

chi-sq. = (|Obs - Exp| - 0.5)2/ Exp
Appraisal of misclassification

To appraise the effect of misclassification, thestrate or proportion is calculated by the forn{blased on formula
19-5 in Rothman and Greenland 1998):

True proportion =[P - (1-Sp)]/(Se+Sp-1)
where P = observed proportion

Se = sensitivity, expressed as a proportion

Sp = specificity, expressed as a proportion.
This formula is applied both to the observed ratproportion and to its Wilson’s 95% confidenceitsx(if a count
denominator was entered) or its Fisher’'s 95% ceniig limits (if a person-time denominator was exapr

Chances of occurrence

The computation of the individual's chances ofl,@®, 3 or more events in a unit of time uses fdan3u18 of
Armitageet al (2003: 72). The rate per person-time unit islsethe Poisson mean.
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B. SEQUENCE OF RATES OR PROPORTIONS

B. APPRAISAL OF A SEQUENCE OF RATES OR
PROPORTIONS OR RATIOS OF TWO COUNTS

This module appraises a sequence of rates or grop®or ratios of two counts, measured at
successive points along a scale — usually alongeadcale, but sometimes along some other
dimension, e.g. the number of cigarettes smoked@gror the severity of a disease (e.g. mild,
moderate, severe).

It provides tests for aend and fordeparture from a linear trend, andmultiple-comparison
tests that compare the values with one anotRegression coefficientare computed, expressing
the relationship between the values and their jpositalong the scale, using both the raw data g
log-transformed data, and thelative change per scale unife.g. the annual rate of increase or
decrease) is reported. Tests are performed f@l serrelation of residuals — i.e., correlation
between the deviations of consecutive rates orgrtmms from the regression line. If the finding
suggest the presence of positive serial correlatirmCochrane-Orcutt procedureis used to
control its effects and provide corrected estimafdbe regression coefficients and the relative
change per scale unit. The regression lines, dinatputhose based on the Cochrane-Orcutt
procedure, are displayed irgeaph, together with sioothed curves(based orkernel smoothing
Probit analysisis provided as an option, accompanied by a nonpatrantounterpart
(Spearman-Karber analysig.

If a change-point test is required, or smoothedesfor plotting a curve, or nonparametric
regression coefficients (for rates or proportioreasured at equal intervals along the scale), ent
the sequence of rates or proportions in this praggranodule D.

Alternative methods of data entry are offered:yeafmumerators (e.g. numbers of cases of a
disease) and denominators, or entry of proportmstheir denominators, or entry of rates and
their denominators. Eitheount denominator&humbers of individuals) grerson-time
denominatorge.g. person-years) may be entered. By defdndtpoints along the scale are given
scores of 1, 2, 3 etc., which makes them equaligeph. The scores can be changed if the point
are not equally spaced; calendar years (1999, 2003,can be used as scores. For a scale of
smoking, the median numbers of cigarettes smokeday might be used as the scores for
categories of smokers.

[2)

er

[72)

Tests for trend

Two almost equivalent tests for trend are providedCochran-Armitage chi-square tembd the

Mantel trend test A significant result generally indicates a Anérend, but the trend is not always

linear or monotonic. Both the trend test and t@epanying test faleparture from a linear
trendmay be significant. The numbers of expected fragigs that are <2 and <5 are displayed,
since the Cochran-Armitage test may be uncertaimaifiy expected frequencies are <2, and the
value for the test for departure from a linear dremay be uncertain if many are <5 (Armitageal.
2003: 505). The Mantel test is valid even if thenerators are only zeroes or ones, provided th

P

at

at least two of the proportions or rates have lawgaerators and (for pure-count data) that, for at

least two rates or proportions, there are a laugeber of individuals not included in the numerat
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B. SEQUENCE OF RATES OR PROPORTIONS

(Rothman and Greenland 1998: 315). Note thatraltappraisal of age-standardized rates may be
misleading if not supplemented by appraisals otithed of age-specific rates (Chedial. 1999).

In addition,Bartholomew’s test for tren@Bartholomew 1959a, 1959b) is done if three or four
values are entered. This test is recommended titeescale represents a qualitative gradient, so
that only arbitrary scores can be allocated totsafong the scale — for example in a study using
“mild”, “moderate”, “serious”, and “extreme” as nwaes of severity (Fleisgt al. 2003). Unlike

the Cochran-Armitage and Mantel tests, this tessdwt use scores. One-tailed and two-tailed P
values are reported, as is the direction of thedtte which the one-tailed P applies. The onedhail
tests are performed after “condensing” the seryesalculating weighted averages of any adjacent
values whose direction of change diverges from aatanic upward or downwards tendency. The
test assumes that after this “condensing” procasls denominator is large, no proportions are very
close to 0 or 1, and no expected cell frequentgsis than 5 (Bartholomew 1959a). It can
occasionally happen that the test indicates afsignt trend in the opposite direction to the slope
of the linear regression line. The results mustdgarded as approximate if person-time
denominators were entered, since the analysisttieain as count denominators.

Multiple-comparison tests

Multiple tests are performed, comparing each planatues, unless there are over 100. A
Tukey-type (“honestly significant difference testiiultiple-comparison procedure is used. The
results must be regarded as approximate if peisomdenominators were entered, since the
analysis treats them as count denominators; stgmifie is probably overestimated.

Regression coefficients

The linear relationship between the rates or ptogos and their scores (i.e., their positions along
the scale) is summarized by regression equatiosexdban both raw and log-transformed values.
Standard errors, 95% confidence intervals, andlddtand 2-tailed P values are displayed for the
slope coefficients. The regression lines areldysal in agraph (see below).

If nonparametric regression coefficients are regfljithey can be obtained (for rates or
proportions measured at equal intervals alongdbk¥xby selecting this program’s module D.

Relative change per scale unit

The relative change per scale unit is computedhelfscore units are years, this is the annuabfate
increase or decrease.

Serial correlation of residuals

Two tests are performed for serial correlationesfiduals, i.e., correlation between the deviations
of consecutive rates or proportions from the regiogsline. In a study of a time trend this may be
caused by factors that have an effect persistieg siccessive periods, and that do not find their
expression in the straight regression line; they aramay not be confounders of the association
under study, such as fluctuations in diagnostiega.

Serial correlation will produce an unduly narrowmfidence interval for the slope coefficient, and
its presence may throw doubt on the appropriatemiesstraight regression line.

16



B. SEQUENCE OF RATES OR PROPORTIONS

The tests are thBurbin-Watson testwhich assumes a normal distribution for the nesis, and a
runs testwhich makes no such assumption. The Durbin-Walatatistic is compared with the
lower and upper bounds of its 5% critical levelt it below the lower bound, this indicates
positive serial correlation at the P < 0.05 levfal;is below only the upper bound, this is
inconclusive; it indicates that there may be pesiserial correlation at the P < 0.05 level. The
runs test is based on the direction of the disereipa; it compares the number of runs of
uninterrupted sequences in the same directiont{pesir negative) with the number expected in a
random sequence.

Two-tailed and one-tailed P values (testing forigpasand negative correlation) are displayed, a
low P value indicates serial correlation.

Cochrane-Orcutt procedure

If the findings suggest there may be positive $enaelation, the program uses the Cochrane-
Orcutt procedure to control its effects and prewidrrected estimates of the regression
coefficients and the relative change per scale(ergt the annual rate of increase or decrease). Th
procedure is applied to both the raw data andragsformed values. The corrected estimates are
displayed in graph (see below).

Smoothed curves

Two alternative smoothed curves are provided.,casplayed in a@raph (see below). They are
based orkernel smoothingsee Rothman and Greenland 1998: 317-320), arapbgrepriate for
rates with person-time denominators as well asisés, proportions, and case-control and other
ratios with number-of-individuals denominators.

The principle of kernel smoothing is that each eakireplaced by a weighted average of the values
falling within a defined radius around it, the gleis being lowest for observations that are futthes
from the centre of the ‘window’ defined by the nagli Two sets of smoothed values are computed,
one using weights based solely on distance froncehére of the window, and the second taking
account of sample size as well, so as to decrbaseftuence of values based on smaller samples.
The radius defined by the program is three timesiedian distance between observations along
dimension X (the dimension along which the ratestber ratios — representing variable Y — are
plotted), i.e., three times the distance betweenessive scores. The first and last values in the
series are not modified.

Probit analysis

Probit analysis may be used to analyse a seripopbrtions or rates that bear a sigmoid (S-
shaped) relationship to a covariate (e.g. age sagh). It uses probits that transform the sigmoid
curve to a straight line, and estimates the vafubeocovariate that is associated with a given
proportion. This may be helpful in (for exampledgs-sectional studies that aim to estimate the
average age of occurrence of an event (e.g. memaramopause, or cessation of breastfeeding)
from "yes-no" data collected from subjects of dif& ages. It is often used in dose-response
studies that measure the proportions of subjedtsawiven effect after administration of differen
doses of a drug, in order to find what dosage presdlhis effect in a given proportion (usually
half) of subjects, i.e., the median effective d@&@50) or (if the response is death) the median
lethal dose (LD50). It may similarly be used ttiraate ED50 after exposure to toxins, or after the
administration of a stimulus to produce a psychoimetsponse.
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B. SEQUENCE OF RATES OR PROPORTIONS

The probit analysis is performed twice, first usihg observed values of the covariate, and then
using the logs of these values. These methodsggtgely) assume a normal or log-normal
distribution; dose-response studies generally hisdolg transformations of the dose.

If the lowest value of the covariate is zero, swijgg that the study is a dose-response or similar
study with a control (i.e., a zero dose or stimyltwwo additional probit analyses are performed,
after reducing the proportions (for other valuethef covariate) in order to allow for the control
effect, so as to produce adjusted proportionstibtier express the net effect of the drug, toxin,
stimulus under study. Both the untransformedeslof the covariate, and their logs, are used.
These additional analyses are not performed if gnegent a computational difficulty.

For each analysis, the program reports the coeaveties associated with proportions of 0.5 and
0.9 (with their 95% confidence intervals), and perfs a chi-squared heterogeneity test. If the test
points to a poor fit with the probit model, the iaaice is increased before estimation of confidence
intervals. The test may be misleading if sampitessanall.

The two or four probit regression lines (with threlts back-converted to proportions) are
displayed graphically, in different colours (sedlg. permitting visual comparison of their
appropriateness. The results of any analysis withaa fit to the model (as seen in the graph)
should be ignored. The nonparametric (Spearmabdfpanalysis may be an appropriate
alternative.

Spearman-Karber analysis

If a series of proportions or rates bears a sigr{eidhaped) relationship to a covariate (e.g.,time
age, or dosage), the Spearman-Karber analysisas@arametric method of estimating the
threshold level (of the covariate) at which thegamdion reaches 50%. Its use has been
recommended in psychometric studies, for exampég,rheasure the proportions of times that a
certain response is given as a function of sompguty of a stimulus, as well as in dose-response
studies of the effectiveness or toxicity of drugsd other studies. It may be used together with or
instead of probit analysis, and is particularlyfuk# the data are not normally distributed (i.¢a
cumulative normal distribution cannot be assumedHe series of proportions), or if the fit with a
probit model is poor (Miller and Ulrich 2001).

The program reports the median value of the coteafthe value corresponding to a proportion of
50%, i.e. the 50th percentile of the proportionghe median effective value), the mean value
(unless it is very different from the median valua)d the interquartile range (the values of the
covariate ranging from the 25th to the 75th peit®nt

The procedure is described hytér aliog Church and Cobb (1973) and Miller and Ulrich (200
2004). The mean value computed in this way isnodiguivalent to a maximume-likelihood estimate
(Church and Cobb 1973)

Graphs
A graph is displayed, showing the simple linearesgion line (the regression of the rates or
percentages on their scores — i.e., on their positalong the scale) and also, if the findings

suggest positive serial correlation, a correctgdession line (labelled “C-0”) based on the
Cochrane-Orcutt procedure . The regression liregrancated at the edges of the graph. The
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graph also displays alternative smoothed curvgsean line based on weights that depend only on
distance from the centre of the kernel, and a lshécbased on weights that are also influenced by
sample size.

Rate per 1000 — Simple —C-0

Optionally, this graph can be replaced by a singlee showing regression lines based on the log-
transformed rates or proportions, to permit a iagparaisal of whether log-transformation
produces a better fit.

Rate per 1000 — Simple (logs) — C-0

The expected values according to any of the reigregsjuations, and the smoothed values, can be
read by clicking on the graph. Accuracy can beeced by "zooming" (but not for the graph
showing log-transformed data) - any segment ofraecoan be magnified by pressiGtyl and

clicking on the graph, and then drawing a rectatglautline the required segment. Each graph
can be printed, copied to the clipboard for paséiisgwhere, or saved in a bitmap (.BMP) file.

If the probit analysisoption is selected, the graph shows the two prelgitession lines (with the
probits back-converted to proportions) - a greea based on the analysis using the observed
values of the covariate, and a red line for thdyarsusing the logs of these values. The two lines
may overlap, as in the following graph, which isé@ on a study of menarche (Ayatollehal.
2002); this overlap indicates that either methodrwlysis is appropriate.

Froporion

The two probit regression lines are less similahanfollowing graph, which is based on
information about the proportions of babies ofeliént ages (in days) who were being breast-fed
(Ferreira et al. 1996); each point along the segleesents a group of babies of similar age,
characterised by their mean age. For these da&tagthline represents a better fit than the green
line.
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Froportion
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In the following graph, from a study of the toxjcdf a certain root to certain beetles (Finney 1947
Table 17) there are four probit regression linesaddition to the green and red lines, there are
blue and olive ones, representing the associatibosntrol-corrected proportions with
(respectively) the observed values of the covaaaid the logs of these values. The fit of the red
line is clearly unsatisfactory, and the olive Inepresents a better fit than the blue line.
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METHODS

If rates or proportions are entered as such +f inelmerators are not entered — the numeratorsalcelated and
rounded off to the nearest integer. Correctedsratgoroportions (using the rounded-off numeratars)used in
subsequent computations.

The Mantel trend test and the Durbin-Watson testhat done if ratios other than proportions areremut.

Tests for trend

The Cochran-Armitage tedor a linear trend test (Altman 1991: 261-265 § #me test for departure from a linear trend
use formulae 24.90 and 24.91 of Zar (1998, p. 5&7ferson-time denominators are entered, theyraréplied by
1,000,000, as suggested by Rothman and Boice (B®}2:If ratios other than rates or proportiors antered, they

are converted to proportions (using the sum ofwlteentered counts as the denominator) before agptiie test.

TheMantel trend testises the formula provided by Rothman (1986: 346person-time denominators are entered
the variance (in the denominator) is increasedhanging the first term to

2(@i) I{Z(N) « [X(N3) - 1]}

Bartholomew’s test described by Fleist al. (2003: 195-198), and in more detail by Bartholon{@@59a, 1959b).
Thechi-series of rates or proportions is “condensed” &lguating weighted averages of adjacent valueseho
direction of change diverges from a monotonicdrerThis is done twice, once for an upward ancedoc a
downward trend, and a square statistic is calagilageh time by formula 9.32 of Fleissal. A one-tailed P value is
derived from the higherhi-square, and reported as <0.005, <0.01, <0.0295<60.1, and >0.1, and doubled to
provide a two-tailed value. The one-tailed P valaee read from Tables A.7 and A.8 of Fleisal, after calculating
values forc; andc2 (formulae 9.34 —9.36 of Fleigs al), and interpolating in botey andc; if necessary.

Multiple-comparison tests

The Tukey-type multiple-testing procedure is ddsuliby Zar (1998: 563-564). Formula 13.8 is usedHe
transformation. If person-time denominators artera, rates exceeding 100% are changed to 1008ef@urpose
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of these tests. Results are appraised in rel&iontical values of the Q distribution (Zar 199&bles B5, B6, B7),
and reported as P < 0.001, < 0.01, < 0.05, origatficant.

Regression coefficients

The regression coefficients are based on ordirastisquares regression analysis , using botlatneata, and
(unless there are negative numbers in the sedgdyansformed rates or proportions (natural Iabars). If log-
transformation is applied, zero proportions aretaéts 0.0001, and zero rates are taken as 0.-aper(®.g., per 1000).

Relative change per scale unit

The slope coefficientd) for the log-transformed data is used to compugerélative change per scale unit, using the
following formula (after the Cochrane-Orcutt prouesl[see belowlh* is substituted fob ).

100(expb) — 0.1).
Serial correlation of residuals

The Durbin-Watson test (Durbin and Watson, 1951 s@rial correlation is based on the magnituddef t
discrepancies between the observed values andithesvcomputed from the regression equation. Timeuia is

D =2l[(ei — e1)? / 2[(&)],
where ¢ = the discrepancy for a specific value (other tthenfirst) in the series)

e.1 = the discrepancy for the previous value in théeser
D is compared with tabulated critical values (tnédr bound [DL] and the upper bound [DU]) for P .8® (University
of Manchester School of Economic Studies).

The runs test for serial correlation is based endinection of the discrepancies between the obsderalues and the
values computed from the regression equation.ntpaoes the number ofins of uninterrupted sequences in the same
direction (positive or negative) with the numbepested in a random sequence. The runs test isilbeddn

numerous texts (e.g. Siegel and Castellan 198845&-ar 1998: 583-585; Sprent 1993: 82-84). If¢hare <21 values
in the sequence, P is reported as <0.05, <0.1,610:D.2 (or, for one-tailed tests, <0.025, <0£86.1 or >0.1), using
the table of critical values supplied by Zar (1988p171-Appl179). In other instances an approxinfaig computed

by formulae 25.14 to 25.16 in Zar (1998: 584).

Cochrane-Orcutt procedure

The program performs the Cochrane-Orcutt regregwmiocedure (Cochrane and Orcutt 1949, Johnstobéxardo
1997) if the original Durbin-Watson D value is bglthe upper critical level for P < 0.05, or if thens test for serial
correlation yields a one-tailed P < 0.05). Foetaded description of the procedure, see SPSS3§20Dhe procedure
is based on the serial correlation coefficiehb] between the residuals (the deviations from tigeassion line, gand

the residuals of the immediately preceding valugbé sequence; € Rhois estimated by dividing.(g * e;,) [for

i = 2 ton] by Y(e? [for i = 1 ton], wheren is the number of values in the sequence. Thisas ofrho is used to
modify the regression equation between X (scord)¥afrate or proportion) so as to remove the Sgridrrelated
error term. This is done by transforming the X &ndalues to X* and Y*, using the formulae

X*i = Xi - (rho » Xi-1)
and  Y* =Yi- (rhoe Yi-1).

New regression coefficients a* (intercept) and &ivfe) are then computed, by regressing Y* agaitisa*/(1 - rho)

is taken as the best estimate of the true interespk b* as the best estimate of the true sloges frocess is repeated,
computing new residuals from the original X andafues and the new coefficients, and then compuatingwrho,

until the new value afho is within 0.001 of the previous value, or until it€rations have been completed. The newest
regression coefficients are displayed. The ratgsaportions are then log-transformed, and theh€ate-Orcutt
procedure is repeated. Natural logs are used,@fging any zeros to 0.1 (rates) or 0.00001pgmtdons). The
percentage change per scale unit is computed fieralope coefficiertt* for the log-transformed data, as

100[expb*) — 0.1].
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Smoothed curves

For kernel smoothing, the raditsthat the program defines to demarcate the windeittsn which rates or ratios will
be averaged is three times the median distancesbatabservations along dimension X. i.e., threegithe distance
between successive scores; the radius is 3 sodsg ifithe default scores are used..

A smoothed value for the rate or raRpat levelX; on the X scale is then calculated as
2(WR) / 2W

where R = each rate or ratio (includirig) within the window extending (on the X scale) frofn- Hto X; + H
W, = 1 - (Xi - Xj)*/ H? if sample size is not taken into consideration
W =Dj[1 - (X - X)?/H? if sample size is taken into consideration

D; = denominator oR,
Probit analysis
Up to 50 proportions or rates may be entered.

The program uses the reiterative procedure desthipdreddy et al. (1992) in a paper on their FORNRpobit-
analysis program. The results coincide with thegmrted by that program. They may not be identiz#hose
computed by programs using other computationalg@iores. Logarithms to base 10 are used. The maximumber
of iterations is 30.

The conversion of the observed proportions to igphnd the subsequent back-conversion of theawga probits to
proportions, are based on Table 1 of Finney (194rinted as Table | by Reddy al 1992). Weighting coefficients
and other factors required for the computationadatained from Table IV of Redddt al (1992), supplemented at its
extremes by numbers from Table Il of Finney (194f)d from Finney and Stevens (1948).

The variances of the covariate values that cormdpo proportions of 0.5 and 0.9 are estimate(tdspectively)
formula 6 of Reddt al. (1992) and formula 3.6 of Finney (1947). If the-squared heterogeneity test yields a P

value under 0.05, the variances are multiplied bgterogeneity factor (Finney 1947: 33)6f (n - 2), as suggested
by Busvine (1971), wheneis the number of values of the covariate.

If the lowest value of the covariate is zero, sstigg that the study is a dose-response or sistilaty with a control,
the proportions are adjusted by using Abbott's fdanfFinney 1947, formula 6.2): each proporti&) (s replaced by

(Pi - C)/( 1- C), whereC is the proportion observed in the control groupe Bnalyses are then repeated.
Spearman-Karber analysis

If the proportions or rates do not have a monottneied, they are first monotonized by the methodysr et al

(1955), as described by Miller and Ulrich (20013sed on the appraisal of successive sets of toem,three, and then

two adjacent proportions.

For the purpose of the calculation, a fictionakllesf the covariate is appended at each end dligtgbution, differing
from its adjacent level by the mean interval betwewels, and with an allocated probability of Olor

The program then uses formula 2 of Miller and Wir{2001) (equivalent to formula 1.1 of Church arablg 1973) to
compute the mean value of the covariate. The ftansuadjusted if the proportions tend to drop eatfan to rise.

The median and interquartile range are computdhbgr interpolation from the proportions (Millené Ulrich 2001).
The mean value is not displayed if it diverges fitin median by more than 20%.
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C. APPRAISAL OF A FREQUENCY TABLE WITH THREE OR
MORE CATEGORIES

This module tests thgoodness of fitof a distribution in three or more categories véthexpected
distribution. It is applicable to tables showimgduencies in three or maneminal or ordinal
categories including tables whose categories represemntbers of “events” per “entity” (0, 1, 2
etc. accidents per person, or children per faroilyjeaths per month, etc.) and the correspondin
numbers of “entities” (persons, families, monttis,)e The expected distribution may be an eve
one (the same expected number in each categogy}pacified uneven distribution, or (for
categories representing numbers of events) theceeghérequencies based oRa@aissonor

binomial distribution . Low P-values indicate nonconformity with #sepected distribution.

S Q

The program also examines each category separateiyding 95% confidence intervals for the
proportions in the categoriestandardized residuals andtests that compare each category
with all other categories.

An index of qualitative variation is also provided.

Goodness of fit

Goodness of fit is tested by tK@lmogorov-Smirnov test for discrete data which is appropriate
only for ordinal categories (categories that haweeaningful sequence), and dyi-square tests
which take no account of the order of the categori@hree chi-square tests are ddtgarson's
goodness-of-fit testnd thdog-likelihood-ratio testeach of which is preferred by some
statisticians (Zar 1998: 475), and fheessie-Read tesivhich has been recommended as a
compromise between the former two. The prograrortepvhether Williams's criterion for
preferring the likelihood-ratichi-square to the Pearsohi-square is met. Since it is generally
advised that thehi-square tests should not be used if more than Zae@xpected frequencies
used in the analysis are below 5 or if any expefregiency is less than 1 (Siegel and Castellan
1988: 49), the number of such frequencies is regortf a Poisson or binomial distribution has
been met, the program combines categories befang dbi-square tests, to avoid expected
frequencies below 1. This is not done for the Kaparov-Smirnov test, which is not invalidated
by small expected frequencies.

The expected frequencies based &oesson or binomial distribution (only one of which will
generally be of interest) are calculated from theeoved mean number of events per entity (for the
Poisson distribution) or the probability of an etventhe population (for the binomial distribution:
the binomial success rate); these values are esdclifrom the data or (optionally) entered by the
user. Use of the Poisson distribution assumedhteagvent is a random occurrence with a low
probability. This limitation does not apply to thimomial distribution. But a binomial distributio
can be fitted only if the ceiling score (the maxmmaoumber of possible events per person, family,
month, etc.) is known. For example, if the talileves numbers of families with 0, 1, 2, etc.
diseased members, the maximum score is the faméy @nd a binomial distribution can be fitted
only if the families are of the same size. Tafthinomial distribution, the frequency of each sg¢or
from O to the ceiling; must be entered. For a #mdistribution, zero frequencies at the end ef th
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C. THREE OR MORE CATEGORIES

distribution need not be entered; scores at theoétite distribution can be grouped; for example,
if the top number of events entered is 5, it cderr® “5 or more”.

The program can be used to test the significanctuesfering in time or spacéthe “entities” are
uniform time periods or equally-sized areas, byraismg conformity with a Poisson (chance)
expectation; a low P value points to clusteringdar fit with a random temporal or spatial
distribution). To test for monthly variation, mbrAby-month data extending over a number of
years should be used. A frequency distributiardgiired, showing the numbers of months with O,
1, 2, etc. events. If the test is based on calemadaths (which differ in length) it is of course
approximate. Clustering in space can be apprdigedmparing the numbers of occurrences in
equal-sized non-overlapping areas with the charpeatation. The areas may be defined by
applying a grid to a map; a frequency distribut®prepared, showing the numbers of areas with 0,
1, 2, etc. events in a given period.

Analyses of separate categories

A 95% confidence interva$ estimated for the proportion falling into eactegory, and
standardized residuakbased on the discrepancies between the obsereaqaehcies and those
expected under the null hypothesis) are compubeshdw which categories contribute most to the
overall goodness-of-fit chi-square. They are esped az scores, which indicate their statistical
significance. A standardized residual over 1.96rater -1.96 indicates significance at the P < 0.05
level, and a standardized residual over 2.58 oeui58 indicates significance at the P < 0.01
level. The use of this procedure is describedirigr aliog Sheskin (2007: 264-265).

The program also perfornehi-square goodness-of-fit tests that compare therobddrequency in
each category (in turn) with the combined obsefueguencies of the other categories. Both
unadjusted and Bonferroni-corrected P values avenishThe former are appropriate for tests based
on prior hypotheses, and the latter for tests mased on prior hypotheses.

These analyses of separate categories are notrpedan comparisons with Poisson or binomial
distributions.

Index of qualitative variation

The index of qualitative variation is computed bath the observed and expected distributions. It
ranges from 0 (the most uneven distribution pos$itd 1 (an even distribution). It is not
computed if the categories represent numbers afteve

METHODS

Binomial and Poisson distributions

The methods of estimating expected frequenciesistens with binomial and Poisson distributions described by
(inter alia) Zar (1998: 520-522 and 571-574) and Maxwell (19612-109).

Kolmogorov-Smirnov one-sample test
The Kolmogorov-Smirnov one-sample test for discdztta is described by Siegel and Castellan (198&6). The
appraisal of P is based on the values for twodd#e= 0.01, 0.05, 0.1 and 0.2 in Table 14.3.3 Zvaflinger and

Kokoska (1999). The program displays the KolmogeBmirnov statistic D, which is the largest diffece detected
between the cumulative observed and expected fnetpee(as proportions of the total number of obesons).
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C. THREE OR MORE CATEGORIES

Chi-square tests
Pearsonandlog-likelihood chi-square goodness-of-fit tegte described byr(ter alia) Zar (1998: 462-464, 473-475).

Williams's criterionfor preferring the likelihood-ratiohi-square to the Pearsohi-square is the presence of a
difference between any pair of observed and exgdoteuencies that is not less than the expecesgiémcy
(Williams 1976).

The CressidReadtest is described by Cressie and Read (1984othmula is on p. 463). Lambda is set at the
recommended value 6. If a zero expected frequency was entered ch#&ged to 0.0000001 to avoid division by
zero during the computation ofii-square. When calculating the log likelihoodeand Cressie-Reathi-squares,
0.0000001 is added to the observed frequencieg ibathem is zero. The degrees of freedom aretimeber of
categories used in the analysis, minus 1, or ¢fRbisson or binomial parameter is computed fraardtta) minus 2.

For chi-square tests of goodness of fit with a binomiaPoisson distribution, the program combines caiegat the
end of the distribution if this is necessary toidvan expected frequency of less than 1.

Analyses of separate categories:

Confidence intervalfor the proportion falling into a specific categ@re computed by the formulae provided by Fleiss
et al. (2003, formulae 2.17 and 2.18). These assameersion of the original table into a 2 x 2 &bl
Thestandardized residudbr categoryi (Sheskin 2007, pp. 264-265) is

Z= (Oi - Ei)/\/ (Ei)

where Oi = observed frequency
E; = expected frequency

Comparisons of each category with the other categgcombined) require reconfiguration of the ¢éadohd a separate
chi-square goodness-of-fit test (with a correcfmmcontinuity) in each instance (Sheskin 2007 atiqun 8.5)

Chi-square 2. [sqr (abs Qi - Ei) - 0.5) /E]
Index of qualitative variation

The formula for the index of qualitative variatiifealey 1984) is:

[1-2(PA] /{1 -[1-(/K]}
where P=the fraction of observations in category i
k = the number of categories
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D1-4. APPRAISAL OF NUMERICAL DATA

These modules appraise a set of numerical daty. déseribe drequency distributiomn terms of
its central tendency,dispersion and shape displaysbox-and-whisker diagrams and
(optionally) performsomparisons of the median or mean with a selected/pothetical value
Both the raw data and log-transformed data areagggat. Confidence intervals are estimated for
the mean, using both he raw data and log-transibiaaéa. If the observations are based on a
sample of a population of known size, this sizelvantered. A finite population correctiisn
applied when estimating confidence intervals fermiieanThe mean and its confidence intervals
are also estimated (in module D2) blyaotstrap procedure A heterogeneity testfor counts is
performed. Some of the results are relevant tdisitibutions, others only to normal or near-
normal distributions (normality tests are perforinetihe values may be entered individually (in
modules D1 and D2), or discrete values (in modug @ grouped values (in module D4) may b
entered with their frequencies.

D

In addition, a variety of tests and measures aveiged that are appropriate only if the numbers
constitute apecific sequenc@nodule }, e.g. if they are numerical observations made at
successive points in time or space. The numbédteisequence can represent nominal categoties,
e.g. the two sexes, or different diseases (whaohelraus must be used for this purpose, e.g. “1” for
male and “2” for female). A warning is displayéairesult is not applicable to numbers that
represent nominal categories.

The tests and measures applicable to a specifieeseg include three tests fandomness tests
and measures ¢fend andslopeg correlation coefficientsandlinear regression analysis
expressing the association between the value amdrk in the sequenceclhange-point testa
test for centrifugality, andShewhart and Cusum proceduregor detecting an unduly high rise.
If the sequence is a time series extending overatwuaore years, the program can appraise tren
while controlling for seasonal variation and examine the similarity of the trends in defe
seasons Smoothed valuesre computed to facilitate the drawing of a cur¥ée values are
plotted in agraph, with regression lines and smoothed curves.

[@N

Module B of this program should be used if a seqaef rates or proportions is to be appraised.

Central tendency

The program displays thmean with its standard error and 90%, 95% and 99%idence
intervals, thanedian with its 95% confidence interval, and threbust estimators of the megan
which (like the median) are relatively unaffectgddoitliers or long tails of the distribution. Tkees
are atrimmed mean(which ignores observations below the 1st demilabove the 9th decile),
Huber's m-estimatofwhich reduces the influence of these observalj@mla mean that excludes
outliers Thegeometriaoneanandharmonic meamre also displayed.

The mean and its confidence intervals are alsmastid by dootstrap procedurbased on 5000
resamplings (with replacement) of the original etaaBons. This approach may be helpful in, for
example, estimation of the average cost of mediieatment in a situation where a minority of
patients require large amounts of resources, oe thiee very small treatment costs for a high
proportion of patients (De Portu et al. 2010)
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Confidence intervals for a lognormal medan the original scale) are estimated from the lo
transformed data (Zou and Donner 2008). They goeogpiate if the distribution of the log-
transformed data is approximately normal.

Finite population correction

If the observations are based on a sample of algomu of known size, and this size is entered, a
finite population correction is applied. This reds the variance and hence makes confidence
intervals narrower. The correction is necessaly ibthe sampling fraction is more than 5%
(Cochran 1977: 25) and sampling is done withoufaiment, as it usually is (that is, an individual
cannot be selected more than once). The correletistittle effect unless the sampling fraction is
large.

Dispersion

The program displayguantiles(quartiles, quintiles, octiles and deciles, whexrranted by the
number of observations), tiséandard deviation (S¥ndvariance theaverage absolute deviation
(AAD) from the mean, and theedian absolute deviation (MADPm the median. ThAAD and
(especially) theMAD are less influenced than tB®I1by the shape of the frequency distribution
and the presence of outliers. The range from thdiananinusMAD to the median plusIAD
includes about half of the values below the mediagh about half of the values above the median,
and is a parallel to the interquartile range.

The program reports the numberooftiiersat each end of the distribution (defined as values
further than 5 x MAD from the median), and perfor@rsibbs’ test for outliersa low P value
indicates the presence of one or more values fufitben the mean than might be expected in a
normal distribution with the given standard dewatiAs an alternative, outliers are also defined in
relation to the distribution’s hinges (i.e., thet2&nd 75th percentiles) and hinge-spread (i.e., th
difference between the ®%nd 75 percentiles): an outlier is then a value thaaigér than 1.5
hinge-spreads above the upper hinge or smallertiahinge-spreads below the lower hinge; a
“severe” outlier is a value that is larger than lHifsge-spreads above the upper hinge or smaller
than 1.5 hinge-spreads below the lower hinge (She&X)07: 44).

As an option, module D2 can estimate an approxi®a¥% confidence interval for any chosen
percentile.

Theshape of the frequency distributieappraised in terms of isymmetry or skewneasd its
peakedness or flathesand twotests for normalit are performed for both the raw data and log-
transformed data.

Symmetry or skewness is expressed bysk@mvness coefficient gdthich provides an estimate of
skewness in the population, andBywley's quartiles-based skewness coeffici®hich ranges

from -1 (extreme skewness to the left) to +1 (ereskewness to the right). A coefficient above 0
means that the distribution is positively skewedhwhe modal value above the mean), and a
coefficient below 0 means that it is negativelyvskd (with the modal value below the mean).
Three tests are appliedsengle-sample test for evaluating population skesgrtbeRandles-
Fligner-Policello-Wolfe testand theWilcoxon signed-rank test of symmedrgund the sample
median. The Randles-Fligner-Policello-Wolfe téss$ts the hypothesis that the values are
generated from a symmetrical distribution with aknown median, and it has satisfactory power
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for samples greater than about 20 (Siegel and IGast988: 55-58); since computation is slow, it
is not done if the total number of individual vaduexceeds 150. The results of the tests will not
necessarily coincide.

Peakedness or flatness is summarizeMbygrs' octiles-based kurtosis coefficiewhich can range
from zero to infinity. A value of under 1.233 igdies that the distribution is less peaked than a
normal distribution, and a value of over 1.233 @adies that it is more peaked. K&lmogorov-
Smirnov test for an even distributi@itatness of the curve) is performed. A low Pueindicates
that the distribution curve departs from flatnesshe range extending from the lowest value
entered to the highest value entered. (To applye$ieto a wider range, use the “Enter discrete
values” option and enter each required new limihwai frequency of zero.) The test is not done if
grouped data are entered.

ThelLilliefors testfor normality examines the deviation of the cuntiuafrequency from the
standard normal cumulative distribution; it is penied if there are 6 or more observations; the
result is reported as P < 0.01, P < 0.05, or 'igmificant’. TheD'Agostini-Pearson tess based on
tests for skewness and kurtosis; it is appropifdtesre are 20 or more observations (Zar 1998: 80)

The shape of the frequency distribution is pictureblox-and-whisker diagramgsee below).
Box-and-whisker diagrams

Two box-and-whisker diagrams are displayed, to geainaisual appraisal of the shape of the
frequency distribution.. Each of these picturesrdnge from the 95to the ' percentile (shown

as a vertical line [two “whiskers”]) and the rarfgem the 75 to the 28' percentile (shown as a
solid box), in relation to the median or geometniean (shown as a horizontal line). The diagrams
are not displayed if there are fewer than 20 values

Each diagram permits appraisal of the symmetrkewsess of the distribution (by comparing the
ranges above and below the median or mean), apdatsedness or flatness (by comparing the
height of the box with the length of the verticalbiskers” line).

BOX-AND-WHISKER PLOTS

“a B

]

I I
RAW DATA LOG DATA

The first plot, which is based on the raw datayshthe observed median arff, 25", 75", and

95" percentiles. The second plot is based on thérfotsformed data, and is not displayed if there
are negative or zero values. It shows the gedcrmean and the computetl, 25", 75", and

95" percentiles of the log values (back-transformesato units); these percentiles assume a
normal distribution of the log values.

Comparison of the two plots may be helpful in aisien on whether to use log-transformed data
in analyses.
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Comparison of the median or mean with a hypothetica | value

Three tests are provided to determine whether ge&nnor median differs significantly from a
specified hypothetical value:taest which assumes a normal distributid¥ilcoxon's signed-ranks
test,which assumes a symmetric distribution, arsia testwhich is generally less powerful but
does not assume a symmetric distribution. Onedaihd two-tailed P values are displayed.

Test for heterogeneity

The test for heterogeneity (the Poisson dispert&ist) is appropriate if the values that were edtere
are counts. It indicates whether the counts anewariable, or less variable, than might be
expected by chance, by testing whether the valoglsl ceasonably have been drawn from Poisson
distributions with the same mean (Armitageal 2002: 234). This might be helpful in, for
example, a study of possible clustering , basecoomts of occurrences in the cells of a
geographical grid, or in a reliability study whenmedue variability of successive counts (e.g. of
micro-organisms), or an excessive similarity ofcassive counts, might indicate imperfection of
the study methods. The program reports a one-$tdedue, and if this is 0.05 or less it states
whether there is evidence of more-than-chance ti@amigverdispersion) or less-than-chance
variation (underdispersion).

Randomness

There may be interest in appraising the conforiwiity sequence of numbers with random
expectation, for example when the sequence repgresbgervations whose mutual independence is
in question, or when it is a set of purportedlyd@am numbers. The program offers four tests: two
runs testsanup-and-down-runs tegwhich is more powerful), and tmeean square successive
difference test For all of these, a low P-value points to dagarfrom randomness; if the result is
significant the hypothesis that the sequence idarmshould be rejected.

Two runs testsare provided. The first, which is done if thes&gce contains 25 or more values,
and these are whole numbers (possibly representimgnal categories), is based on the number of
runs of identical numbers; a two-tailed P-valueejgorted. The second, done in all instances, is
based on the number of runs of “high” (above-medsan “low” (median or lower) values; a two-
tailed P-value and two one-tailed P-values arertedo The one-sided alternatives to the null
hypothesis (randomness) are the presence of chgsi{gewer runs than would occur at random)
and a tendency toward a uniform distribution (nromes than would occur at random).

Theup-and-down-runs testefines a run as an unbroken sequence of incgeasitdecreasing
observations. A two-tailed P value is reportethe Test is not done if the sequence contains only
two alternative values (e.g. “1” and “2”, represegt'male” and “female”).

Themean square successive difference tebich is done if the sequence contains threeaem
different numbers, is appropriate only if normabign be assumed in the underlying distribution; it
is not meaningful if the numbers represent nomia#gories. A one-tailed P value is shown; a
low value indicates nonrandom variability and des@arelation (of consecutive measurements).
Tests for trend

Two nonparametric tests for a monotonic upwardardvard trend are provided: thann-
Kendall test for trenénd theCox-Stuart test for trendOne-tailed and two-tailed P-values are
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displayed. If a time sequence with seasonal da¢atered, the Mann-Kendall test is performed
twice, once without controlling and once contrddlifor seasonal variation (see below).

The tests of the significance of correlation argtession coefficients (see below) are tests for a
linear trend.

Slope

If the numbers in the sequence represent equadlgespobservations along some dimension — for
example, if they are measurements made daily, wertdnthly, or annually -Sen's estimator of
slopeis appropriate. It estimates the median changenperval (e.g. per day, per week, per month,
or per year). The estimator is computed if 4 oren@lues are entered, and its confidence interval
if 5 or more are entered. If a time sequence safisonal data is entered, Sen's estimator is
computed twice, once without controlling and oneetmlling for seasonal variation (see below).

Slope is also measured by theoefficients provided by linear regression analysee below).
Correlation coefficients

Spearman'sindKendall's rank correlation coefficien{sho andtau), which range from -1 to +1,
express the linear association between the rankifhtyge numbers and their ranks in the sequence.
Two-tailed and one-tailed P-values are shown; aFawdicates the presence of the association.
Approximate 95% confidence intervals are computedafu.

Pearson's correlation coefficiefit), which ranges from -1 to +1, expresses the liasaociation
between the numbers and their ranks in the sequélnge-tailed and one-tailed P values are
shown, as is the coefficient of determinatiof),(which expresses the proportion of the variation
that is accounted for by this association. If ¢h@re no zero or negative numbers in the series, th
numbers are log-transformed and the computatiogpsated.

Linear regression analysis

The linear relationship between the numbers and itk in the series is summarized by
regression equations basedleast-squares regression analyaisdnonparametric regression
analysis 95% confidence intervals are displayed for tlopsicoefficients. Least-squares
regression analysis is done using the raw numbmelsso (unless there are zero or negative
numbers in the series) using log-transformed valu€ke latter findings are used to compute the
relative changefrom one number in the series to the next; tray e helpful if the numbers
represent observations made at equal intervalsgalay a time scale. The nonparametric
procedure does not assume a normal distributiahhas the advantage of robustness - i.e.
discrepant 'outlier' observations have a reduckettetwo estimators of the intercept may be
shown; the second is recommended if deviations tl@regression line can be assumed to be
symmetrical.

The simple regression line and the nonparametgiession line are displayed in a graph, together
with smoothed curves (see below).

Change-point test
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The change-point test appraises whether therpasd at which there is a change in values during
the sequence; specifically, whether there is d@ shthe median of the distribution. Two-taileddan
one-tailed P-values are shown. If a significargtrae is found (one-tailed P < 0.05), the point at
which it occurs is reported. If the sequence dastanly two alternative whole numbers, the
change-point test for binomial variablesused; in other instances ttgange-point test for
continuous variabless used.

Test for centrifugality

If the sequence contains only two alternative valjpeobably representing two nominal
categories), its conformity with a centrifugal jeattis tested. A low P indicates a good fit with a
centrifugal pattern, i.e. a tendency for one ofwkles to occur near the beginning and end of the
sequence, and for the other value to appear neanitidle. The appropriate P-value is one-tailed,
testing a specific hypothesized centrifugal pattgainst all alternatives; the program also doubles
this value and displays it as two-tailed P.

Controlling for seasonal variation

If a time series extending over two or more fukhsgeis entered, an option is provided for the
control of seasonal variation when performing thenkitKendall test for trend — the¢asonal
Mann-Kendall test(Hirsch et al 1982) — and when computing Sen’s estimator qfeslgee
above), which is computed twice, once without aaliitrg and once for seasonal variation. A
heterogeneity tess performed, comparing the season-specific slopéso, twomeasures of
heterogeneityH andl-squaredare provided, with their approximate 95% intervafs H value of
less than 1.2 suggests absence of noteworthy olgetegity, whereas a value exceeding 1.5
suggests its presence, even if the test is noffisgnt. I-squaredexpresses the proportion of
variation that can be attributed to heterogeneitigar than sampling error; a value greater than
50% may be considered substantial heterogeneitgiit and Green 2006).

This option is applied if commas are placed betwhervalues for successive seasons when
entering the data, and semicolons between the védnesuccessive years. Each year must have the
same number of seasons (optionally, 2, 3, 4, @prldut the number of values per season can vary.
If 2 or more values are entered for a season, #dian of these is used for the Mann-Kendall test
and Sen's slope estimator (other analyses are basatithe numbers entered). A space can be left
if there is no value for a specific season.

Shewhart and Cusum procedures.

These simple procedures are used to see whetherisheerise that is unduly high towards the end
of the sequence.. If the series represents the ensnalh cases of a disease in successive equal time
interval (e.g. days or weeks), an unduly high nsgy suggest the onset of an outbreak, on the
assumption that there has been no major change ipdpulation’s size or composition during the
period covered. If the series is to be updated rarahalysed periodically (e.g. for early detection

of an outbreak), it may be convenient to mainth@record of counts in a text file or spreadsheet,
for copying-and-pasting when necessary.

The Shewhart procedureompares the last value with the mean of prewalises. A number that
exceeds the mean by more than three times theasthedor of the mean is regarded as “unduly
high”, and if the number exceeds the mean by betwa&e and three times the standard error, the
program reports that it “may be unduly high”. Tdesling of three standard errors was set by
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Shewhart (1931) on empirical as well as theoregcalinds (at least 99% of observations occur
within three standard errors of the mean).

The second-last and third-last numbers in the sarie excluded when the baseline mean of
previous values is calculated; this introduceggada guard interval, between the baseline and the
last number, to prevent the raising of the meancam$equent loss of sensitivity that might occur
in a gradually increasing outbreak (Buckeriégal. 2005).

If there are over 15 numbers in the series, coopmbs to the 15th-last are ignored, If there were
previous outbreaks during the period covered,redsices the sensitivity of this method by raising
the mean of previous counts.

The Shewhart method is only recommended for deigetilarge change (Sonesson and Bock
2003). The method assumes a normal distributidheofaluess, an assumption that may be
especially unjustified if the disease is a rare (@erdinalet al. 1999).

TheCusum (cumulative sum) methd@age 1954) use the cumulative sum of the positive
differences between each of the last seven vaha given baseline (negative differences, where
the value is below the baseline, are ignored).ddseline is based on only seven successive
values, to avoid the effect of previous peaks (Whiould raise the baseline value and thus
decrease the sensitivity of the method. The pasdifferences are then summated. If and when
their cumulative sum crosses a chosen threshwdpriogram reports that the number at that point
is unduly large.

Two Cusum methods are used — a simple Cusum medhddy Poisson Cusum method,
specifically designed for dealing with counts (piosi integers) (Lucas 1985).

The baseline for theimple Cusum methot the mean of seven prior values, plus 0.4 tithes
standard deviation, and the threshold is 5 standewdhtions. The parameters 0.4 and 5 were
found to be the optimal ones in a study of a sim@lasum calculation by Wang et al. (2010), based
on evaluations of sensitivity, specificity, and éliness.. They are not necessarily appropriatd in a
instances.

The baseline chosen for tR@isson Cusum methaglthe rounded-up mean of the same seven prior
counts, and the threshold is double this value.

Two variants of each procedure are provided faerdaning the baseline: a moving-average
procedure that uses the last 15 numbers in tihessamd is performed only if the series includes at
least 15 numbers, and a fixed-average procedureisea the last 9 numbers in the series. The
moving-average method computes a different bas@dinine appraisal of each of the last seven
counts, each time using the seven counts immegiateteding the count under consideration; this
is the approach used in the Centers for Diseas&@srCI-MILDrly aberration reporting system
(Hutwanger et al.2005). The fixed-average procedareputes a single baseline , based on the
seven counts from the ninth-last to the third-lakis leaves a guard interval of two time interyals
to prevent the raising of the mean and conseqoeatdf sensitivity that might occur in a gradually
increasing outbreak.

Cusums are sensitive to small sustained changdge(lghal. 2011), and may signal an outbreak
before it is apparent from raw incidence data (@Brand Christie 1997). The procedure assumes
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a normal distribution of the counts, an assumpti@t may be especially unjustified if the disease
is a rare one (Cardinal et al. 1999).
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Smoothed values

Two procedures are used for computing “objectivelyioothed values, one basedronning
mediansand one ofrourier transforms The running-median procedure is less affected by
isolated extremely discrepant numbelResidual valueare displayed, for use in pinpointing “out-
of-line” numbers. Smoothed values are not compiitéee sequence contains only two
alternative numbers. Curves smoothed by both ndsthce shown in the graph (see below).

Graphs

The values in the sequence are plotted in a gtegdlshows the simple linear regression line
(labelledR1), the nonparametric regression lif2(, curves smoothed by the running medians
(S) and Fourier-transforms method?, and the change-point (if significant), markedaoed
triangle.
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The charted values can be read by clicking onittee |IAccuracy can be enhanced by “zooming” —
any segment of a curve can be magnified by pressingnd clicking on the graph, and then
drawing a rectangle to outline the required segmé&he graph can be printed, copied to the
clipboard for pasting elsewhere, or saved in a &ifiBMP) file.

METHODS

When appraising a frequency distribution, obseovetin a class containing a range of values anéuatd to the
middle of the range, except when computing quasitile

Note: The accuracy of means and standard devidtias®een validated against the certified resoitte statistical
reference datasets (for univariate summary steistif average or higher difficulty provided by tRational Institute
of Standards and Technology (http://www.itl.nistgbv898/strd/).

Central tendency

Formulae for thestandard error of the measndconfidence intervals for the meare provided by Zar 1998 (formulae
6.18 and 7.5).

Therobust estimators of the meane atrimmed mearfwhich ignores observations below the 1st dedilelbmve the
9th decile) Huber's m-estimatorand amean that excludes outliefgalues further than 5 median absolute deviations
from the median). Huber's m-estimator is a maxintikedihood estimator of the mean, computed bytarative
procedure (described by Sprent 1993: 280-282) hiclwobservations beyond a defined distance framban are
allotted weights (dependent on their distance ftloenmean) that reduce their effect. The prografimeie this distance
as half the interval between the 1st and 9th deoiféhe distribution.

Geometric and harmonic meaase computed if there are no negative or zero gétlie geometric mean if there are at
least 20 values, the harmonic mean if individudliea are entered).

34



D. NUMERICAL DATA

The median is determined in the same way as othantiles (see below). For 6 to 100 observationg)act
confidence interval (as close to 95% as possibldjsplayed for the median, and an approximate @fétval is
computed if there are more observations (Camphbell@ardner 2000: 37-39 and Table 18.4).

Bootstrap procedure

The bootstrap procedure uses 5000 random sampthe shme size as the original sample, each omendieith
replacement) from the values in the original sample mean of the 5000 sample means is calculatetthe
standard error of the mean is computed from tHeraifices between the sample means and the overatl. m
Confidence intervals are estimated by finding therapriate percentiles in the series of 5000 ramkeen values
(Selvin 2011).

The random sampling in this bootstrap procedurs aggseudo-random number generator described biyrivdic and
Hill (1985), which derives each number in turn frthmee seed numbers that it modifies for subsequsmt Initial
values for the seed numbers are generated by Beipbuilt random-number procedures, namely RANDQH’|I
using the system clock, and RANDOM, which gener#iese random numbers from which the required semtbers
are computed. Delphi's RANDOM procedure is augeegtbly an additional randomizing shuffle, usingakgorithm
of Bays and Durham, as described by Press et389(1
215-217). The formula for each selection is

trunc(RM) + 1
where R is arandom numberintherange0 <R <1

M = the number of candidates.

Finite population correction

If the total population size is entered, the figitgpulation correctionfijc) factor for the variance is computed as:
(N-n)/(N-1)

where N = total population size
n = size of sample.

The standard error of the mean is multipliedviiiyc, which reduces the width o the confidence irgks for the mean.

Confidence limits for a lognormal mean

Confidence limits for the mean (on the originallstaf a lognormal distribution are estimated frora mean and
standard deviation of the log-transformed valusmagiformula 3 of Zou and Donner (2008).

Dispersion

Each quantile is determined by computing an appeitgoindex Q, e.g.

Q=(N+1)*05
for the median and

Q=(N+1)*0.75
for the upper quartile, and then locating the @thdst item in a sequential array of the N obseowat{see Zar 1998:
26-27). Q is first rounded off (in the lower haffthe distribution it is rounded up to the nearestger or half-integer,
and in the upper half of the distribution it is noled down to the nearest integer or half-integkit)js half-way
between two integers, the quantile is the midpo@ttveen the relevant observations. If the freqesnaf ranges of
values are entered, the assumption is made thabervations are equally spaced within each gfGopk 1987); the
class interval is divided intlo segments, wheltkeis the number of observations in the class, aadbservations are
allocated to the midpoints of the segments.

This method is generally equivalent to methodsEX¢€tusive™) and 8 ("J & F") of the 15 other methad<alculating
guantiles found by Langford (2006). To calculaterdo and upper quartiles by these two methods, dlte gkt is
divided into bottom and top halves (excluding thedian value from both halves if there is an odd lpemnof
observations), and the quartiles are then the medikthe bottom half and the top half. These gearmay differ
slightly from the "hinges" used in box-and-whiskédots by Tukey (1977), which are calculated inshene way, but
with the median value included in each half if thex an odd number of observations.
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The approximate 95% confidence interval for a selbpercentile is estimated by the large-sampléoaetiescribed
byConover 1999 (formulae 21 and 22). This optiopresvided only for samples larger than 20.

Formulae for the standard deviation and varianegaovided by Zar 1998 (formulae 4.8 and 4.13).

Theaverage absolutdeviation from the meaffAD) and themedian absolute deviation (MAD) from the medcia®
self-explanatory.

Outliersare defined as values further than 5 x MD fromrtteglian.

Grubbs' test for outlier¢Grubbs 1969) is performed by finding the valuetest from the mean, and dividing its
absolute distance from the sample mean by the sastgahdard deviation. If there are between 3 @nebtues, the
critical value at a 0.05 significance level forstlstatistic G is obtained from a table (US Army fg30of Engineers
2001, Table f-1). If the sample is larger (N > &@)approximatévalue is computed by the formula

t=v{[(N(N - 2)G? /[(N - 1)2 - NG]}
and finally the P value corresponding to thislue, at (N - 2) degrees of freedom, is multighliyy N.

Shape of the frequency distribution

Skewness coefficient g& computed by the formula (Sheskin 2007: formuz0)
[NX(% —Xmean ] / [(N - 1) — 2)]

where n=sample size
X; = observation

Xmean= 2.(%) / N
This formula yields the same value as the formotah unbiased estimate of population skewnessgedby
Sheskin (2007: formula 1.27), citing Cohen (20@tnfula 3.18). In a comparison of skewness measdoasies and
Gill (1998) refer to this coefficient (which is ubby Minitab and BMDP) as “b1” (not “gl”).

Bowley's quartiles-based coefficient of skewrsesghivioors' octiles-based coefficient of kurtoai® computed by
formulae 6.10 and 6.12 of Zar (1998: 71-72).

The single-sample test for evaluating population skesgris described by Zar 1998: 115-116) ands She&dfa(:
205-210). The test is a large sample approximagad,there are variants that may supply slightfiedént results
from those provided by this program (Sheskin 2@1I7-212). The test occasionally calls for zerogdon or use of a
logarithm of a negative number, and is then omitted

The Randles-Fligner-Policello-Wolfe test for distriborial symmetryRandleset al 1980) is based on the examination
of skewness in each possible set of three consecuiiues, after arranging the values in monotdigieacending
order. lItis described by Siegel and Castella®81%5-58) and Hollander and Wolfe (1999: 87-94)

The Wilcoxon signed-ranks test for symmef#gar 1998: 119-120; Siegel and Castellan 19883%)7is based on the
discrepancies between the values and the sampliameldondiscrepant values are ignored. If theesfewer than 20
pairs significance is appraised by using critiezklls for one-tailed P = .05, .025, .01, .005,.0@2fl (derived from
Siegel and Castellan 1988: Table H; and Zar 19981d'B.12). If the sample is larger a normal agjpnation is used,
with allowance made for ties. The test uses thadita provided by Siegel and Castellan (1988: 8emtila 5.5), but
allowing for the effect of ties on the variancerbplacing the denominator (as suggested by Sp898: 53 and Mehta
and Patel 1991: 7-10) by

VS 1 4),

where  $=the square of the rank of the difference betwmsred observations.

The Kolmogorov-Smirnov tegbr an even distribution is the goodness-of-fit tler continuous data described by Zar
(1998: 478-481), over a given range. At each ssiee level, the cumulative observed frequencyismared both
with the cumulative expected frequency at thatliésepected on the assumption of a continuousildigion over that
range) and with the cumulative expected frequenhtlyeanext level, and the largest absolute diserepa both sets of
comparisons is then compared with critical valumsputed by a formula given by Zar (p. App85) [tkeand of the
formulae cited from Miller (1956)].
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The Lilliefors test for normality(Lilliefors 1967) is explained by Sprent (1993:78); it uses the critical values
provided in Table IV. Th®'Agostini-Pearson test for normalifip'Agostino 1986, D'Agostino and Pearson 1973)
uses formula 6.19 of Zar (1998). To test for ndityaf log-transformed data, the program uses lmgsase 10; value
X is transformed to log(X + 1) (Zar 1998: 275);sthiransformation is not possible if there are tiegavalues.

Box-and-whisker diagrams
The median and quantiles required for the diagraset orraw dataare determined by the method described above.

The geometric mean shown in the diagram basddgdatais the mean of the logs of the values, back-t@ansd to
raw units by taking its antilog. The percentiles @omputed from the mean and S.D. of the logh®falues (Altman
1991: 60-63), back-transformed to raw units. Tdrenulae are

Mean + 0.674  S.Dfor the 28 and 7%' percentiles,
and Mean = 1.645 ¢ S.D for the 8" and 95' percentiles.

Comparison of the median or mean with a hypothetica [ value

Thet testused for testing against a hypothetical value &edbed by Zar (1998: 91-98),and Wéicoxon signed-rank
testused for testing against a hypothetical valueescdbed by Hollander and Wolffe (1999: 79-83) hvgitgnificance
appraised as for the Wilcoxon signed-ranks tessyarmetry (see above). Thign testis an exact binomial test with a
binomial probability of 0.5 (Sheskin 2007: 289; gétand Castellan 1988: formula 4.2).

Test for heterogeneity

The test for heterogeneity (the Poisson dispettsist) is described by Armitage al (2002: 234-235) and Cuzick
(2000). The test is not performed if non-integames entered, or if there are fewer than 5 counmts,to avoid
misleading use of thehi-square approximation (Armitage al. 2002: 235} if the mean count is under 2, or if it is
under 5 and there are fewer than 15 values.

The test is based on a comparison of the obsemeance > [(X; - X)z], with the predicted variancé of a Poisson
distribution. Thechi-square test statistic is
S[(% -X)? / X], which is equivalent to

(n—1)s*/ X (Brown and Zhao 2002)
where x = an individual count

X=mean =2(x )/n
n = number of counts
s = standard deviation of the observed distriloutio

P is derived from thishi-square value, at-1 degrees of freedom, and reported as a one-failedue; but if P is 0.95
or more and the observed variance is less thaexipected variance, 1-P is reported as the oneRilalue. If the
reported P value is 0.05 or less, the program tepdrether the findings indicate overdispersiongmwthe observed
variance exceeds the expected variance) or ungerdisn (when the observed variance is less thmaxpected
variance).

Randomness

Theruns testis described in numerous texts (e.g. Siegel arsfle@an 1988: 58-64; Zar 1998: 583-585; Sprent 1993
82-84). If there are two alternative values inghees, and there are <21 of each value, oriiéthee more than two
alternative values, with <21 “high” (above-mediaajues and < 21 “low” (median-or-below) valuessPdported as
<0.05, <0.1, <0.2 or >0.2 (or, for one-tailed tes3.025, <0.05, <0.1 or >0.1), using the tablerdfcal values
supplied by Zar (1998: Appl71-Appl79). In othestamces an approximate P is computed by formulaietad 24.16
in Zar (1998: 584). The runs test for a seriesaiaitig more than two alternative whole numbers fisesulae 24.16
to 24.18 in Zar (1998: 584-585); it is not donthié series contains <25 values.

For theup-and-down-runs tésthe numbers of runs of increasing and decreasisgrvations are counted twice. First

the runs are defined as either monotonically upveardownward (i.e. a pair of equal observationsksean upward
run, but not a downward run) and then as eitherangwr monotonically downward (i.e. equal obseoraibreak a

37



D. NUMERICAL DATA

downward run only). If these two methods yieldatiént total numbers of runs, they are averaged 1288: 588-
589). If the sequence contains 20 or fewer valBeslues (reported as <0.001, <0.01, <0.02, <603,, <0.2 or
>0.2) are obtained from Table B.31 of Zar (1998pA®2-Appl83). For larger numbers, use is maderohdlae
25.23, 25.24 and 25.16 in Zar (1998: 584 and 588).

The test statistic for theean square successive difference tésting's C (Young 1941) is calculated by formula
25.20 in Zar (1998: 587. If the number of obstors is between 8 and 50, use is made of theaki@alues for P =
0.25, 0.10 and 0.05 in Zar's Table B.30 (Zar 199§180-App181,; for larger numbers, the program tdisasaula
25.22 in Zar (1998: 587).

Tests for trend

The Mann-Kendall test for trenMann 1945, Hollander and Wolfe 199: 376) is aplaption of Kendall's sign-based
test for trend (Hollander and Wolfe 199: 363-38The method is described briefly by McBride (20a6§ Salmiet

al. (2002). The Kendall sample correlation statiktis computed by summing the scores obtained framvjze
comparisons of all values, the score being +1dfigtter value is higher, -1 if the earlier valudigher, and 0 if they
are equal. If the sequence contains up to 20 sathe one-tailed P value (reported as <0.001,15:0.025, <0.05,
<0.1, or >0.1) and corresponding two-tailed valtee@btained from Table A.30 of Hollander and Wolff®99: 724-
731). If ties are present, this P value is appnate. If there are more than 20 values a larggaapproximation is
used; the variance &f is computed by formula 4 of Salmi al, making allowance for ties, and the test statigti

(from which the P value is derived) by formula Hieh includes a continuity correction fiir

If a time sequence with seasonal data is entelnedylann-Kendall test is performed twice, once withaontrolling for
seasonal variation and once controlling for sedsaaréation (see below).

The Cox-Stuart test for trenid described by Cox and Stuart (1955) and Sp93: 37-39). The test is based on
comparisons of the numbers in the first and sedmies of the set. Thigh number (in the first half) is compared with

the ( + N/2)th number (in the second half) if the numbfvalues (N) is even, and with th&i + 1 + N/2)th number if

N is odd. A binomial test with probability 0.5tlsen applied to the numbers of comparisons shodavghward and
upward differences between the two halves of the se

Slope

Sen's estimator of slof8en 1968) is computed by comparing each posgditeof values and dividing their difference
(subtracting the earlier value from the later valoethe difference between their ranks in the sege (Salmet al
2002). The median of these results is the Semagir. For 5 to 14 values, an exact confidenarval is displayed,
and an approximate 95% interval is computed ifdétere more values (Campbell and Gardner 2000: 33h89able
18.4).

If a time sequence with seasonal data is entersus &stimator is computed twice, once withoutradlitig for
seasonal variation and once controlling for sedsaration (see below)

Correlation coefficients

Kendall's tauis computed from the Kendall sample correlatiatisticK (see above) by formula 8.34 of Hollander and
Wolfe (1999: 382), taking account of tied ranks] &s approximate 95% confidence interval by foraeu8.37 to 8.39.
The significance ofauis appraised by the Mann-Kendall test (see above).

Spearman's rh@Siegel and Castellan 1988: 235-244) is compuyed jprocedure that takes account of tied ranks (an
adaptation of the SPEAR procedure in Pedsal 1989: 538-539). An approximate 95% confidenteriral (Zar

1998: 398) is estimated if N is 10 or more and is 0.9 or less, based on the Fisher z transfoomafi he confidence
limits are

exp[2(z £ 1.96°SEz) - 1] / exp[2(z - 1.96°SEZz) + 1]
where SEz =/[1.06 / (N — 3)] as recommended by Fieller, Harteg Pearson (1957, 1961), and
z = 0.5¢In[(1 +ho) / (1 -rho)]
If there are 30 or fewer numbers, the significapfcéno is appraised by the use of critical levels for-taiked P = 0.10,

0.05, 0.025, 0. 01, 0.005, and 0.001 (Siegel arsie@tan 1988: Table Q). If there are over 30 nuisib&-test is used
(Siegel and Castellan 1988: 243, footnote; Pe¢sd 1989: formula 13.8.2, p. 537).

38



D. NUMERICAL DATA

A modification of the PEARSN procedure in Presal (1989: 535) is used to compute Pearson's cooelat
coefficient and its significance (Prestsal 1989: formula 13.7.5, p. 533). Natural logs ased to log-transform the
numbers.

Linear regression analysis

Linear regression coefficientse computed by formula 14.2.6 of Presal (1989, p. 554), and standard errors,
confidence intervals and significance by formul&e20 and 16.21 of Zar (1998: 337). Natural logsused to
log-transform the numbers. If log-transformed ealare used, the percentage change from one nimtberseries to
the next is computed from the(slope) coefficient by the formula

(-1 + exph))  100.

Thenonparametric regression analygisocedures are described by Daniel (1995: 622;&%ent (1993: 195-202)
and Sen (1968). The analysis is not done if thezeover 146 values in the sequence. Three atteenwvays of
estimatingbeta(the slope coefficient) are used.

If up to 30 numbers are entered, Theil's estim@beil 1950) is computed by a method described fimg& (1993:
195-198). If more than 30 numbers are entereds3agthod (Sen 1968) is used ; but if there areertiean 146
different values the program employs the abbredidteeil method (Sprent 1993: 198-202), which ussgséematic
sample of the data. For the Sprent and abbrevigted methods, which (unlike Sen's method) assuistindt values
of the independent variable, the program treatsdleservations as if they were not identical byutmy differences of
(alternately) 0.000001 or -0.000001.

The point estimate dieta(p) is the median value @, where

Bi = (% - y) / (% - %)
for each pair of values of the independent variale and x) and the corresponding values of the dependerahiar
y (y; and y). Using Sprent's methofl; is calculated for all of the N(N-1)/2 possible igenf values; zero values of; &
X;) are changed to 0.000001 or -0.000001 (alternateétySen's procedufl is calculated only if (x x;) is not zero.
In the abbreviated Theil procedure, each of thet 2 pairs in the sequence is then linked withghir situated N/2
positions further along the arrd;is computed only for these linked observationsp zetues of (x- x;) are changed
to 0.000001 or -0.000001.

Alphais estimated by two alternative formulae. Thstfis the median of the;(yx) terms for the N pairs of
observations, and the second (Daniel 1995: 623-82fe median of the averages of the (x;) terms calculated for
each of the pairwise combinations of observatioBath estimators are shown if they differ. Thstfiestimator is
recommended if deviations from the regression modehot be assumed to be symmetrical; the secdinabsr of
alpha(which is not calculated if the abbreviated Thedqedure is used) is recommended if the symmesyragtion
is tenable. The regression line shown in the gfaph above) uses the first estimatoalpha

Confidence intervals fdvetaare obtained from an array of values pfrborder of increasing magnitude. Sen's method
(Sen 1968) uses critical values provided by a ksagaple formula based on a variance estimate deddor ties, and
Sprent's method (Sprent 1993: 199-202), based eil'§ huses critical values based on the critiedie for Kendall's

tau for significance at the nominal 5% level in twdldd tests, obtained from Siegel and Castellan 13883, Table

RII) and Sprent (1993: Table 1X). Approximate ddehce intervals are estimated in a similar wathaabbreviated
Theil procedure, using critical values based omfda 2.3 in Sprent (1993: 34).

Change-point test

The change-point test (Siegel and Castellan 1988:0§ uses a method appropriate for binomial véemfSiegel and
Castellan 1988: 65-67) if the sequence containg twd alternative whole numbers, and in other insés it uses a
method appropriate for continuous variables (Siagedl Castellan 1988: 67-70), with allowance fos.tie~or the
binomial-variabletest, if each of the alternative whole numberaioce@5 times or fewer, two-tailed P values are
obtained from Table Lii of Siegel and Castellang§89350-351) for P<0.01, <0.05 and <0.1; for langgmbers, Table
Liii of Siegel and Castellan (1988: 352) is usealf the two-tailed P value is reported as the ailed P value. For
thecontinuous-variabléest, if both the number of values below the clapgint and the number after the change-
point are 10 or less, one-tailed and two-tailechRes are derived from Table B10 of Altman (19982533); formula
4.12 of Siegel and Castellan (1988: 68) is usedafgyer numbers, after allowing for ties by chaggis denominator
to the expression for the variance shown in forndul2 (p. 134).
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Test for centrifugality

For the test of centrifugality (Ghent 1993), thegmam first constructs a table with 2 rows (for the alternative
values) and columns (for the ranks in the sequence), showirganks of the two values; it then changes thiesran
the right-hand part of the table (beyond the mediak) by numbering them from the right-hand emd] %lds' the
right-hand part over the left-hand part, combinietjs with the same rank. A Mann-Whitney teshisrt applied to
this table. For small samples the one-tailed Reshre reported as <0.0005, <0.005, <0.01, <0265, <0.10 or
>0.10. If there are 10 or fewer in each row, gsmade of critical values provided by Zar (1998p88-App100:
Table B11); otherwise a hormal approximation isduse

Controlling for seasonal variation

If a time sequence with seasonal data is entelnedylann-Kendall test and computation of Sen’s skgigmator (see
above) are repeated, in such a way as to contrgefasonal variation. If more than one value tereal for a specific
season, the program uses the median of these yagasons with missing values are omitted fronttieulations.

For theseasonal Mann-Kendall te@itlelsel and Hirsch 2002: 338-34K) and its variance (see above) are computed
separately for each season, by making pairwise adsgns of the values (in that season) for diffeyears. Ties are
not taken into account when computing these vagigand he seasonklvalues and variances are then summated, and
the corresponding P value is computed by usindgifyee-sample approximation.

For Sen’s estimator of slopéHelsel and Hirsch 2002: 340), separate setswiparisons are made, each one limited to
pairwise comparisons of the values for a spec#@sen; the median of these results (for all seasmmbined) is the
Sen estimator. Confidence intervals are obtaisedeacribed above.

Theheterogeneity testomparing the season-specific slopes uses foriiulel of Fleiss (1981: 163), takiggas the
slope estimator for a specific season, ands the inverse of its variance. Theasures of heterogene(ty and I-
squared are computed by the methods described by HiggmasThompson (2002H is computed by Higgins and
Thompson's formula 6, and increased to 1 (indigatinsence of heterogeneity) if it less than 1ed-based interval is
computed by Method llll-squaredand its 95% interval are computed fréinusing formula 10.

Shewhart and Cusum procedures

Shewhart index = ( X - M)/ SE
where X =the last count in the series
N = the mean of seven counts, from théhrast to the third —last
SE = the standard error of the mean
An index of over 3 is taken to mean that X in uychibh, and an index of between 2 and 3 that i beunduly high.

Simple Cusum procedure

S is computed for each of the last seven valugsq(X5) in the series.

Si = max(0, Si-1 + [Xi M +1D)]) /SD (Hutwagner et al. 2005)

where M = mean of seven prior values*
SD = standard deviation of seven prior valuesSDif = 0, it is changed to 0.2
f=0.4

The values of Sare summed cumulatively {Being set at zero). If cusum (iS, which can only rise or remain
constant, exceeds 5xSD, an “unduly high” messagkasn.

* The choice of the seven prior values is diffefamtthe moving-average and fixed-average methsés {ext).
Poisson Cusum procedure:

S iis computed for each of the last seven valXe$o(X-) in the series.

S =max(0,f- X;)
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wheref (the baseline) is determined from the mean ofrs@vior values, as explained in the text.

The values of Sare summed cumulatively (SO being set at zerofusum (i.eXS ) exceeds the threshold (which is
set at 2xf), an “unduly high” message is shown.

Smoothed values

Smoothed values are computed by adaptatiottseafunning-medianandFourier-transformsprocedures described by
Hartwig and Dearing (1979: 36-42) and Presal (1989) respectively.

Smoothing by running mediaissdone in several stages. First, 5-point mowigglians are calculated: each number
except the first two and the last two is replacedhe median of the set of five successive numbgwghich it is the
centre. The first and second numbers are replagéide median of the first three numbers in thginél series, and
the last and second-last numbers are replacedehyéidian of the last three numbers in the origrakes. Three-
point moving medians of the adjusted values are tiadculated, copying the modified first and lasiues unchanged,
and this process is repeated until no further casmgcur. Two-point running medians are then ¢ated, and this
step is repeated once; this may modify all bufiiiis¢ and last values. The residuals are displayed the
discrepancies between the original numbers andatues computed by this method.

The Fourier-transform smoothing methages an adaptation of the SMOOFT procedure irslted (1989: 544-
545), who say “It removes any linear trend, andhthges a Fast Fourier Transform to low-pass filterdata. The
linear trend is re-inserted at the end”. The paagarbitrarily defines the width of the window uselden smoothing
neighbouring points as 0.2 times the total numtbeatues in the sequence.
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E. APPRAISAL OF SEASONAL VARIATION

This module provides procedures for the appraisséasonal variation in the incidence of disease
consultations, hospital admissions, onsets of siskmbsences, or other events, usingthly
weekly or daily data.

If monthly or daily data are entered, the prograpli@sFreedman's testusing monthly totals or
daily data, respectively) and three tests baseti@monthly totalsEdwards's test(as modified
by Roger), theatchet circular scan test andHewitt's test (as extended by Rogerson). If weekly
data are entere®@ococks's harmonic-analysis procedures used. The data and results are
summarized irgraphs.

Data are required for a full year or for a setuf years. If monthly totals are entered, data for
separate years must be combined before entry,eoasttumption that there is no long-term trend (a
rising trend, for example, will mean a higher ireside at each year's end than at its start, splyious
suggesting seasonal variation). If events araemtey weeks, the number of events in each
separate week (e.g., 208 weeks in a 4-year pemogj be entered in turn; any odd days at the ¢nd
of the last year are dropped. If events are edteyalays, each event must be entered separately
by entering its date (day and month) of occurretto@gentries in separate years must be combined
before entry, on the assumption that there is ng-term trend.

As a default, the lengths of the months are takemaccount in the tests that use monthly or daily
data. If the numbers of individuals at risk vamydifferent months, they can be entered, and
appropriate correction factors will be used in Editsaand Hewitt's tests. Optionally, these
corrections can be applied in addition to montlgtenor instead of month length. The latter
option is appropriate if the number at risk isuigihced by the length of the month (e.g. monthly
numbers of births, in a study of congenital anoesli If data for two or more years are entered
the annual numbers at risk for each month shoulcbb@bined before entry.

Freedman's tests

Freedman's tests (for monthly and daily data) detegartures from a uniform occurrence
throughout the year. The test based on monthéystobay be safely used if the total number of
events is 50 or more; for smaller samples, exaetsdshould be entered (Freedman 1979).

Edwards's test

Edwards's test (Edwards 1961) tests the null hgsidhagainst the occurrence of a sinusoidal curve
with a 12-month period, i.e. a single annual peakasingle trough, with six months between the
two. The program computes the amplitude of thee(as a percentage of the peak frequency), an
angle that indicates the time of the peak, andl#tte that corresponds to this angle. The
significance test uses Roger's modified procedrogér 1977), and is appropriate even for total
sample sizes as small as 20. If the test is sogmif, (P < 0.05), the time of the peak is indidate
agraph(see below). The number of individuals at riskeath month may be entered if they need
to be taken into account (see above).
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Ratchet circular scan test

The ratchet circular scan test (Wallenstein, Weigband Gould 1989) is based on the maximum
number of events in two or three consecutive monthis sensitive to a relatively sharp increase i
incidence for a season, superimposed on a constadénce over the entire year. The test is used
if the total number of events is 8 or more. Shigant peak periods (P < 0.05) are indicated in a
graph (see below).

Hewitt's rank-sum test

Hewitt's rank-sum test detects a 6-month seas@# (Hewittet al. 1971), and, as suggested by
Rogerson (1996) a 5-month or 4-month peak. Itasreservative test. Significant peak periods

(P < 0.05) are indicated ingaiaph (see below); a set of high-incidence months theltides
December and January is split into two segmentisargraph.. Rogerson points out that the length
of the pulse should be hypothesized in advancegegshe simultaneous testing of multiple
hypotheses may lead to misleading P values.

Pococks's harmonic-analysis procedure

For Pococks's harmonic-analysis procedure (Poc®¢k)] the population at risk should be a fixed
cohort of individuals at risk throughout the per{@fidhe population is a changing one, this may
affect the occurrence of events).

The number of events must be entered for each weekn (e.g. 208 entries in a 4-year period),
starting with Jan. 1st to 7th of the first yeard @nopping any odd days at the end of the last year

The mean weekly number per week and the variantieeoireekly numbers are reported, and a
test for weekly variatiors done; a low P value indicates for more-thamckavariation Tests for
seasonality and non-seasonal cyclic variataye then performed, and the seasonal, non-seasonal
and randontomponents of variatioare computed. For these purposessonal variatioms

defined as the occurrence of cyclic trends (withquks ranging from 2 to 52 weeks) that have an
exact number of cycles (1 to 26) in a 52-week gkramdnon-seasonal variatioas the occurrence
of other cyclic trends. Thatio of seasonal to random components of variatsoreported. Since
this ratio is influenced by the mean number of ¢év@er week, atandardized ratias computed

(for a standard mean of 10 events per week); pnisits comparisons with the relative importance
of seasonal variation in other sets of data (emgother populations or events, or at other times).

The program computes the statistical significarfceeasonal harmonics with cycles of different
lengths, and the proportion of variance that iskattable to the harmonic is reported if P < 0.05
and the proportion of variance is at least 1%erkgt will usually centre on the harmonic whose
cycle has a period of 52 weeks. If this harmosisignificant (P < 0.05) and accounts for at least
5% of the variance; theeak months reported and shown in tigeaph this is an approximation,
based on the peaks in different years, and isisptayed if the peaks in any two years differ by
more than six weeks.
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E. SEASONAL VARIATION

Graphs

If monthly or daily datare entered, the monthly totals are plotted ina@ly, which also shows any
statistically significant peak periods of two, tharéour, five or six consecutive months, marked as
P2 to P6 respectively, and (if Edwards’s testosifive) the peak date of a 12-month sinusoidal
curve, marked by a red triangle.

MONTHLY DATA WEEKLY DATA
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If weekly dataare entered, the weekly totals (pooling the datdaHe separate years, on the basis of
the fiction that each year contains precisely 52ksg are plotted in a graph. If Pococks's
harmonic-analysis procedure finds that the harmahigse cycle has a period of 52 weeks is
statistically significant (P < 0.05) and accoursdt least 5% of the variance, the approximate
month in which its peak occurs is indicated ingngph. This is an approximation, based on the
peaks in different years, and it is not reportetiéf peaks in any two years differ by more than six
weeks.

METHODS

Freedman's tests

Freedman's test for seasonal variation using ekaes provides a test statistic derived f\dfN), which is a
Kolmogorov-Smirnov type statistic (see Freedman9)97f monthly totals rather than exact datesarered, the test
employs a step distribution similar to a Kolmogo®@mirnov type statistic for a discrete distribution
The critical values are:

For exact dates: P < 0.1, 1.620; P < 0.05, 1.7470®25, 1.862; P < 0.01, 2.001.

For monthly totals: P < 0.1, 1.29; P < 0.05, 1BX¥ 0.01, 1.66.

Edwards' test

Edwards' test (Edwards 1961) provides the ampliafdbe curve, the angle that indicates the timthefpeak, and a
chi-square test, using Roger's modification of Edwaets (Roger 1977). An approximate date corredjporto the
peak angle is calculated by determining the propof the year equal to

d =365.25/ 360
where d is the number of days since beginning of the year.
Correction factors are applied before Edwardstssgserformed (Walter and Elwood 1975). Each galfiN (the
number of events in month i) is multiplied by areation factor

>Mi I M;
to produce N, and each value of;Ns then multiplied by

2Ni/ 2Ny
to obtain a final adjusted value. If numbers sit are not entered (see above),dvthe length of the month. If

numbers at risk are entered, i8leither the number at risk (instead of the Ieraftthe month) or a person-time
denominator (the number at risk multiplied by teedth of the month).
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Ratchet circular scan test

For the ratchet circular scan test (Wallens&inl 1989),peak periodgof 2 and 3 consecutive months, respectively)
are identified, by comparing the numbers of evantsach possible period of that length.

If the total number of events is between 8 and3&alues are based on critical levels (P < .0825.@nd < .01) fon,
the maximum number of events in (respectively) 3 aronths. These critical levels are derived fiiaible 1 in
Wallensteiret al. (1989). For larger numbers of events, a tessstaR is calculated by the formula
R=(n-1-N)/v[Nw(1l-w)]
where n = number of events in the peak period
N = total number of events
w = the number of days in the peak period, dividg®65.
Critical levels of R (for P < 0.1, < 0.05, < 0.0250.01 and < 0.005) are read from the asymptasitibutions shown
in Figs. 2 and 3 in Wallensteet al (1989). These are applicable for N of 50 or naod, as conservative estimates,
for N of 36 to 49 (the program displays an appratgrivarning).

Hewitt's test

For Hewitt's test (Hewitet al 1971), the monthly numbers of events are ranlkeat.each period (4, 5, and 6 months),
all possible rank sums based on consecutive manghexamined, the set of months with the highest sam is

defined as the peak period, and the significaneel is based on this rank sum. Tied ranks areaediby first

adjusting the monthly frequencies according toléingth of the month and any correction factors rexkeif ties occur,
an average rank is used (Walter 1980). The progisas exact significance levels provided by W{[t&80) and
Rogerson (1996), with interpolation for non-integelues (Walter 1980).

Pococks's harmonic-analysis procedure

The harmonic-analysis procedure that is appliedgekly data, which is based on the theory of Foumalysis, is
described in detail by Pocock (1974). The weekimbers are treated as Poisson random variabléee@ssumption
that events are rare.

The tests for non-chance variation, seasonal vamia&ind non-seasonal variation are based on (tgply) the index
of dispersion (Pocock's formula 7) and Pocock®stdae 9 and 14. Measures and tests of seasonativarare based
on the combination of harmonics that have a cyw¢ appears an exact number of times (from on@é times) in
each 52 weeks (formula 3). The seasonal sum ofssjimdefined by formula 6 and tested by formuylar@l the non-
seasonal sum of squares is tested by formula bé. p€rcentages of variation attributable to randachseasonal
variation are computed by formulae 10 and 12;dfshm of these percentages exceeds 100% it isedda 100%,
keeping their ratio the same (Pocock p. 109). Thedardized ratio of seasonal to random comporgnariation is
computed by formula 17.

Tests for individual seasonal harmonics are basddronula 8, and their contributions to sample aace are defined
by formula 13 (negative values being taken as OF4he sum of the individual seasonal componeitsrdes from
the total seasonal component (formula 6), the iddad components are rescaled to the total seasongbonent.

The approximate peak week in a one-year cycletisated by averaging the peak weeks in each 52-weskd. The
month in which this week falls is reported as thpraximate peak month if the one-year cycle isifigant (P < 0.05)
and accounts for at least 5% of the variance, bageaks in any two years do not differrbgre than six weeks.
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F. APPRAISAL OF SURVIVAL DATA (TIME-TO-EVENT DATA)

This module provides procedures for use in studiiesirvival; that is, in cohort studies that
investigate the period of freedom from a speciégdnt, such as death, occurrence of a disease
complication, onset of pregnancy, discharge frospital, or return to work.

The program estimatesedian andmean survival times(with their confidence intervals) and the
incidence rate of the eventand computesumulative survival proportions (the percentage of
subjects who are still free of the event afteneegiperiod) at each survival time entered, and al$o
for any selected periods of special interest @ypar or 5-year survival proportions). sarvival
curve is displayed.

Either survival times or life-table data may beegetl. Asurvival timeis defined as the number of
time units (usually days or months) from the stéuabservation until occurrence of the event, bn (i
the event has not occurred) until withdrawal frobservation. The main reasons for withdrawal,
or censoring are loss of contact, circumstances that diceteowal from the study, and conclusign
of the study. Censored survival times are entbyegipppending “+” to the survival time, e.g.
“37+". Survival times may be entered separatetyefach subject, or the number of subjects with
each survival time may be entered; optionally, slatay be entered (the date at which the
observation of each subject started and the dateeafvent or withdrawal from observation), and
the program will compute the survival time (inciesiof both dates, to avoid zero survival times).
If survival times are entered, the Kaplan-Meieg liible procedure is used. Alternativéifie-table
datamay be entered, i.e. the numbers of events arndivaivals in successive periods (e.g. in the
first year, the second year, etc.) after the stigivllow-up; these periods can differ in lengtifijife
table data are entered, a simple cohort life tabheputation procedure is used

D

The procedures assume that there isvitbdrawal bias. Other assumptions are that (if subjects
entered the study at different times) the proligiof the end-point event did not greatly altethwi
time, and (if life-table data are used) that witbach follow-up period, both end-point events angd
withdrawals are evenly spaced.

Median survival time

If survival times are entered and none are censtined median is reported. If there is censoring
or if life table data are entered, the median siahime is estimated by the longest observed
survival time for which the cumulative survival pability is 50% or less. Exact or approximate
confidence intervals are reported. If the survpyalbability is not precisely 50% at the reported
median survival time, an alternative median is atgorted, based on linear interpolation between
the times straddling the 50% mark

Mean survival time
The mean survival time is displayed if survival ¢éisnare entered, with its confidence intervals. If
any survival times are censored, the mean is amast The program also computes a

mean/median survival time based on the assumpgtairtitie distribution is exponential; if this is
very different from the observed median, this agstion can be rejected.
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Incidence rate of the event

The average rate of events and its confidenceviaiteare estimated from the mean survival time
and its confidence limits. If any survival timae &@ensored, the rate is an estimate.

Cumulative survival proportions

If survival times are entered, cumulative survipedportions are estimated by the Kaplan-Meier
procedure. Standard errors and 95% confidencevaiteare displayed for periods in which the
user has indicated special interest (e.g. 2-yedbayear survival proportions).

If life table data are entered, the program usesusual life table technique, and survival
proportions are displayed with their standard eresrd 95% confidence intervals...

Extreme bounds are displayed for the cumulativeigalr proportion, based on assumptions of
maximal withdrawal bias (see below).

In a comparison of two samples, confidence interf@l the difference between their cumulative stalvat a given
time can be estimated from the standard errorefitfierence $ED) (the square root of the sum of the squares of the
two standard errors); the approximate 95% confiddimgits are 1.96ED) above and below the observed difference.

Survival curve
The cumulative survival percentages are plottethbytime interval since the start of follow-up. If

any survival times are censored, the graph algoayis theextreme boundsf the survival
percentages, based on assumptions of maximal aitladibias (see below).

— Sunvival, % — Extreme bounds
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The charted values can be read by clicking onitiee |IAccuracy can be enhanced by “zooming” -
any segment of a curve can be magnified by pres3ingnd clicking on the graph, and then
drawing a rectangle to outline the required segmé&he graph can be printed, copied to the
clipboard for pasting elsewhere, or saved in a &ifiBMP) file.

Withdrawal bias

The procedures assume that the survival of peoptelk@wn from follow-up is the same as that of
people followed up. This may not be so; it hasbmeygested that the results may be questionable
if the proportion of withdrawalseaches 10% before the point at which the sunpvaportion is
computed (Axtell, 1963). If survival times are ened, this proportion is reported at each stage
(unless over 50 survival times are entered).

As a guide to the possible impact of withdrawakbthe program also compudreme estimates

of the cumulative survival proportionassuming maximal bias (first in one direction and
then the other) of withdrawn subjects. These extrbounds are shown in the graph.
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METHODS

Median survival time

If survival times are entered and none are censtied median is reported; an exact confidenteryal (as close to
95% as possible) is displayed if there are 6 W difbjects, and an approximate 95% interval is caetpif there are
more than 100 subjects (Campbell and Gardner 28039 and Table 18.4).

If there is censoring or if life table data areezatl, the median is estimated by the longest obdesurvival time for
which the cumulative survival probability is 50%Iless. If the survival probability is not precis&0% at the reported
median survival time, an alternative median is aégmrted, based on linear interpolation betweertithes straddling
the 50% mark (Selvin 1996: 374). The standardremd 95% confidence intervals of the median arepeded by the
formulae provided by Machin and Gardner (2000: 8Y-Based on the survival times at which the saiviv
probabilities reach or cross the 45% and 55% leweld these probabilities are equal, the 40% @0th levels. The
effective sample sizequired for the calculation is the total samie sninus the number censored before the median
survival time (Machin and Gardner (2000: 94). hi sample is small, the results are unreliable

Mean survival time

If survival times are entered and none are cedstine mean and its confidence intervals are coetpmt the usual
way. Otherwise, a nonparametric estimate of therm@ot assuming an exponential distribution o¥isal times) is
computed, based on formula 11.29 of Selvin (1898.); its standard error is computed by formul&11and used for
interval estimation; for this purpose the longastival time is treated as uncensored, evensféensored

A mean/median survival time is also computed, basethe assumption that the distribution is exptine(Selvin
1996, formula 11.19; Altman 1991: 385). Its staddarror is computed by Selvin's formula 11.20.

Incidence rate of the event

The reciprocals of the mean survival time (or teneate of the mean survival time) and its confehimits are used
as estimates of the average rate of events andrifglence limits.

Cumulative survival proportions

If survival timesare entered, cumulative survival proportions atereated by the Kaplan-Meier technique (Kaplan and
Meier 1958; Armitaget al 2003: 575-576; Machin and Gardner 2000: 94-@andard errors are calculated by
Greenwood's formula (Altman 1991; p. 379), and usezbktimate 95% confidence intervals (Altman 1921378).

If life table dataare entered, the program uses the basic formutaéded by (among others) Rothman and Boice
(1983: 39). The standard error of the cumulatirabpbility of survival is calculated by formula Z7f Armitageet

al. (2003) and confidence intervals by formulae pied by Rothman (1978).

Withdrawal bias

Theextreme estimates of the cumulative survival propos, assuming maximal bias (first in one direction #meh
the other) of withdrawn subjects., are based omlieenative assumptions that withdrawn subjectsgpt those with
survival times exceeding the longest uncensoredvalitime) all incurred the event (low bound), ahdit all
withdrawn subjects remained under observation agr Wee of the event (high bound).

The formulae for the extreme probability of an enetreach point (Kaplan-Meier procedure) or in gaetiod (cohort
life table method) are
(E+W)/N
and E/N,
where E = number of events at this point or dutimg period
W = number of withdrawals at this point or durihgstperiod
N = number at risk, including withdrawals.
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G. DIRECT STANDARDIZATION

This module combines rates (or other statisticsyvimor more strata of a group or population,
using standard weights for the various stratassio @rovide a standardized rate (or other sta}is
for use in comparisons with other groups (usingsdr@e weights). This neutralizes the possiblg
confounding effect of differences between the gsoapthe relative sizes of the strata, e.g. (fa-q
standardized rates) in age composition, althougtait be less informative than performing a
separate comparison in each stratum.

The statistics to be standardized include rategp@itions, and means, and differences between
rates, proportions or means; but not ratio meaqsresh as rate or risk ratios). Direct
standardization is most commonly used for morbiditg mortality rates.

Theweightsmay be proportions, percentages, or absolute nithee sizes of the strata in a
selected standard population, or any other apatepfigures). To give equal weight to each
stratum, for example, "1" might be entered for eadje standardization is often based on the g
distribution of the population of a given counttyaagiven time, or of a hypothetical standard
population. For convenience, the program displag®gkats based on the age composition of thre
hypothetical standard populations

For age-standardization, the program can als@agsentervals as weightsdispensing with the
need for a standard population. For this purptbeerequired weights are the numbers of years

successive age intervaior example, a weight of 5 for a 20-24 years strgtand 10 for a 25-34
years stratum.

If confidence intervals are not needed, the ontyiehrequired are the weights and the values.
computation of confidence intervals requires ektfarmation — standard errors or denominators
Numerators (numbers of cases) and denominatorbecantered instead of rates or proportions.
Separate provision is made for the entry of colmirfiber-of-persons™) denominators and persag
time denominators. In the program instructionsftimer are termed "denominators”. and the
latter "PT denominators”; the term "rate" referatmeasure with either kind of denominator.

Unless age intervals are used as weights, theat@indd value is weighted averagef the values
entered for the various strata. The program coagpatstandard error and confidence intervals.
denominators are entered, the overall crude rgpeaortion is also displayed.

If age intervals are used as weights, the starwkzdidiate is theveighted sunof the age-specific
rates, i.e. the overall @umulative rateduring the age-span covered. The program alseutes
therisk during this age-span, the approximate standaad efithe age-standardized rate, and
approximate 95% confidence intervals for the raie far the corresponding risk.

If over eight strata are entered, the display abhis or values may sometimes fall out of
alignment with the stratum numbers. This doesaffect the computation, but a warning may be
shown, to avoid confusion.
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Hypothetical standard populations

Optionally, the program displays tables of standeetyhts representing the age distributions of
idealized world, Africa, and European populatioiifie world population is a new WHO standard,
representing the estimated age-structure of thédvpapulation in 2000-2025 (Ahmaad al.). The
standard African population is relatively younggdhe standard African population is relatively
old (Waterhouset al 1976, Breslow and Day 1987: 54).

STANDARD POPULATIONS

Standard population Standard population [tandard population
WORLD [WHO) AFRICARN ELUROFEAN
Aqge wieight Aige wieight Age Weight
] ] I 2 ] 16
1-4 1586 1-4 8 1-4 B4
5.9 269 5-3 1] -3 T
10-14 8.60 10-14 10 10-14 7
15-14 247 15-19 0 1514 T
20-24 g.22 20-24 0 20-24 T
25-24 183 2524 0 25-29 7
30-34 TE1 30-34 0 30-34 T
3534 715 25-39 0 35-34 7
4044 E53 40-44 5 40-44 T
45-49 E.04 4549 5 45-49 T
Gi-54 ity 501-54 3 50-54 7
55-53 4 55 5554 2 55-59 G
Eil-E4 372 Bi-54 2 EO-B4 5
E5-E4 286 E5-E4 1 EG-B9 4
70-74 221 70-74 1 T0-74 i
7E-74 152 75-74 0.5 7574 s
a0-54 031 2084 0.3 B0-54 1
26+ g3 abe 0.z L 1

The list of standard weights can be truncatedtheeend (or at both ends) if the study deals with
restricted age-span. If an age-stratum is widan those shown in the table, the weights in the
table should be combined: if in the table the %8ryand 10-14 year age-groups have weights of 10
and 9 respectively, the weight for the 5-14 yea-ggpup is 19. In the World standard, the weight
shown for the age group 85+ is an aggregrate cktifior age groups 85-89 (0.44), 90-94 (09.15),
95-99 (0.04) and 100+ (0.005).

Use of age intervals as weights

This method of age-standardization (Day 1976; Bresind Day 1980: 49-53; Breslow and Day
1987: 57-61; Selvin 1996: 360-362; Abramson 198%ppropriate for incidence and mortality
rates. The procedure assumes that the incidenoenality density is at least approximately
constant within the age intervals for which speaifites are entered; the narrower these intervals,
the more valid the results.

The adjusted rate is the sum of the age-speciisyaveighted by the number of years in each age
interval; in effect, this gives each single yeangé the same weight; the procedure may be seen as
use of a hypothetical standard population in wigabh single-year age-group has the same size
(Hill and Benhamou 1995). The weighted sum ofabe-specific rates is the overallaumulative

rate for the age-span covered by the data. It meetbdlic purpose of age-standardization, since
differences observed between the rates calculatddferent populations cannot be attributed to
differences in their age distribution. The overate should be regarded as a rate having a person-
time denominator.

The program also computes the approximgteduring the age-span covered. This is the
probability of occurrence (of the disease, death) &r an individual who is at risk during thedb
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age-span (i.e., assuming no deaths of competingesaiu Reservations have been expressed about
the use of this method of standardization when @ing populations with widely different all-
cause mortality rates (Inskip 2000).

METHODS

If rates with person-time denominators are entateinumber of cases (numerator) in each stratwalésilated and

rounded off to the nearest integer, for use incthraputation; this may modify the rate.

Unless age intervals are used as weights (see hdtmstandardized values are simple weightedhges:
Standardized proportion X(WP))

Standardized rate E(WR)

Standardized mean (or other statistiQ)@\iM;)

where R = rate in stratum
P, = proportion in stratum
M; = mean (or other statistic) in stratum

W, = weight allotted to stratum divided by>W..

The standard error of a standardized proportion(d@mdunt denominators are entered) of a standaddrate (after
converting the rates to proportions) is

«/Z[V\llzpi(l —Py) / Dj if standard errors are not entered

and Z(V\/izSz) if standard errors are entered

where D; = denominator in stratum i
S = standard error of the proportion in stratum

If person-time denominators are entered, the ajymiate standard error of a standardized rate is atedpby a
formula using the Poisson model (Breslow and D&§71%9, formula 2.2):

\/Z(V\/izci / Diz)

where Ci = number of cases (humerator — entered or compubedtraturi.

The standard error of a standardized mean (or otige) is
VE(WS?
where § = standard error of the mean (or other valuejratismi.
The 90%, 95%, and 99% confidence intervals of stedided means, proportions, and rates are comnaedthe

standard error in the usual way, using a normat@gpmation. For person-time rates, alternativeficamce intervals
(appropriate for small number of events) are comgblily a procedure explained by Dobstml (1991).

Using age intervals as weights

The age-standardized rad&Ris computed as
ASR= X (wiP))

where Ri = rate in stratum (computed from numerator and denominator if noéeal)
w; = weight (number of years) in stratum

Its approximate standard error is computed usiRgiason model (Breslow and Day 1987: 59, formu®: 2
S.E. =VY(W’R / D)

and itsits approximate 95% confidence limits are compuated
ASR+ 1.96(S.E.)
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The same formulae are used, whether or not a péireerdenominator is entered.

The risk during the age-span under study is derired the age-standardized rate by the formula
Risk = 1 - exp(ASR.
Its confidence limits are estimated by substitutimg confidence limits of the rate fASRin this formula.
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H. COMPUTATION OF SMR
OR INDIRECTLY STANDARDIZED RATE

This module performmdirect standardization. It computes a standardized morbidity or

mortality ratio (SMR) and (optionally) an indiregdtandardized rate, with confidence intervals.| It

can also be used for other purposes, in studiesaifrrences that are assumed to have a Poisson

distribution.

The SMR is the ratio of observed to expected cgsamts); more specifically, it is the ratio of th
number of observed cases in a study populationegmtimber that would be expected if the rates
its various strata were the same as those in th@sif a selectestandard (reference) population
Use of the SMR permits comparisons in which a fmssionfounder is controlled by using it as

D

Ur

the stratifying variable, e.g. by basing the expéctumber on the rates in the age categories of the

standard population.

Theindirectly standardized rates a fictional (and usually unnecessary) rate asexgb by
multiplying the SMR by the rate in the standardydapon.

The observed and expected numbers can be eitleedrdr computed by the program. Instead |of

the observed number, the observed rate and thefsike study population can be entered, or the
number of cases in each stratum, or the rate amohai@ator in each stratum. Instead of the
expected number, the rate or the number of cagskdemmominator size in each stratum of the
standard population can be entered, together Wilsize of each stratum of the study populatio
If the observations covgryears and annual data are entered for the stapdardation, a
correction factorof y must be entered.

=)

The program computes exact and approximatdidence intervals for the SMR and the
standardized rate and for the number of cases. Optionally, it catep alternative confidence
intervals that take account of random variatiothef number of expected cases as well as that of
observed cases; this may be advisable if the ezgeuntmbers are based on rates that were
measured in small samples of the standard popnlatiacan also take account of correlation
between the observed and expected numbers, asaglcan the study population is part of the
standard population.

The program may also be usedther comparisons of observed and expected numbeo$
occurrences assuming a Poisson distribution, e.g. in studfespace-time clustering.

It also estimatesonfidence intervals for an observed number of eves (without entry of an

expected number), e.g. in the instance of a raeade whose occurrence can be assumed to have a

Poisson distribution.

The program displays the SMR (the ratio of obseteegkpected numbers, expressed as a

percentage), exact and approximsigmificance testdor the departure of the ratio from 100%, the

indirectly standardized rate, and 90%, 95%, and 86&6idence intervals for the SMR, for the
standardized rate, and for the number of events.
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Indirect standardization

Indirect standardization provides an SMR or a statided rate for use in comparisons with other
study populations or groups (using the same welgtith the aim of neutralizing the possible
confounding effect of differences in compositiorgy.en age distribution. The essential feature is
the application to the study population of ratesesized in the strata of a standard population, in
order to determine the expected number of casks.s@&lection of strata (age, ethnic group, etc.)
depends on what possible confounder it is wishembtdrol. Two or more confounders can be
controlled simultaneously; for example, by stratifyby both age and ethnic group - this requires a
known rate in each age-ethnic category of the st@hplopulation, and knowledge of the size of
each age-ethnic category of the study population.

Indirect standardization does not require inforovatn the rate in each stratum of the study
population. It is the lack of such information,iteruncertainty because of small sample sizes, tha
often leads to the choice of indirect rather thaeeaal standardization.

Thestandard (or reference) populati@hnould preferably be the population with whiclsitwished

to compare the study population (Andersbmal 1980). If several study populations are to be
compared, the use of one of them as the standardikely to produce substantially misleading
results. Less advisedly, any other populationimnsed as the standard. Use is often made of the
combined study populations, or of a broad popufetiat contains all the study populations that it

is wished to compare with one another. The SM&énstandard population is of course 100%.

Confidence intervals for the SMR and standardized r ate

Confidence intervals for the SMR are computed enatbsumption that the number of events is
subject to random variation in accordance with s$dm distribution (appropriate if the event is
rare), whereas the expected number of eventsesranfree constant. The estimates may be
inaccurate if the denominators are very small. cEk#sher's and mid-P confidence intervals are
computed if there are 70 or fewer events, and aqupette Fisher's confidence intervals in other
instances. Cohen and Yang (1994) point out thidilkeithe conservative Fisher's intervals, the
narrower mid-P intervals do not guarantee the nahdanfidence level in all instances, but these
authors suggest that the discrepancies are @f fitdctical importance.

The program can also estimate alternative confielémervals that take account of random
variation of the number of expected cases (asaselif observed cases); this may be advisable if
the expected numbers are based on rates that veaxguned in small samples of the standard
population. The procedure is based on the nornmltfre Poisson) distribution, using Fieller's
theorem for obtaining confidence limits for theiaif two normal variables). The confidence
intervals are wider than those computed by theddaisnethod. They are approximate, and the
method may be very inexact or unworkable if numlaeesvery small. As suggested by Silcocks
(1994), the procedure is offered only if both thserved and expected numbers are 10 or more.

The program also provides an extension of thedfidlased procedure, adjusting the confidence
intervals to allow for the effect of the correlatibetween observed and expected numbers that
occurs when the study population is part of thadded population. This may be important if the
study population group forms a large proportiohef standard population. The adjustment, which
makes the confidence intervals narrower, requirkgmation, for each stratum, on the number of
observed events and the number of individuals alm @@pulation. The program displays the
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H. SMR, INDIRECT STANDARDIZATION

adjustment factor, which is the weighted percentddbe standard population that is in the study
population (using the numbers of observed castwisgtrata as weights).

If a standardized ratés computed, its confidence intervals are caleddty multiplying the
confidence limits of the SMR by the rate in thenstad population.

It may be helpful to know that an approximate cdefice interval can be computed for tago of
two SMRs or standardized rat@hat use the same standard) by the formula
ClL=ALE/(1-A)EitoAy.E;/ (1 -Ay)Er (Morris and Gardner 2000):
where A_ andAy are the lower and upper confidence limits (whiah be calculated by Option A
of this program) of the proportidd; / (O; + Oy);
O: andO; are the observed numbers of events in populaficared 2 respectively;
E; andE; are the expected numbers of events in populaficarsd 2 respectively.

For a significance test,= [SMR —SMR)| / V(SE*+ SE?).

Other comparisons of observed and expected numbers of occurrences

The program can also be used for other purposasydies that compare observed and expected
numbers of occurrences that are assumed to hawssoR distribution, the expected number being
based either on theoretical considerations or guirezal observations.

It could be used, for example, for a simpst of space-time clusterirffnox 1964; Selvin 1991.:
126-128) by defining ‘closeness in space’ and et@ss in time of occurrence’, and then
classifying every possible pair of observationslase in both space and time, or not so. If there
aren cases the number of possible paisién(n- 1) / 2. The observed and expected numbers of
pairs that are close in both time and space areghtered in the program;3fpairs are close in
space and pairs are close in time, the expected number (uihgenull hypothesis) iST/ N.

In viewing the results of such analyses, the SMiRddd by 100, would be read as "the ratio of
observed to expected numbers".

Confidence intervals are computed on the assumgatithe number of events is subject to
random variation in accordance with a Poissonibigiion (appropriate if the event is rare),
whereas the expected number of events is an egercbnstant. The estimates may be inaccurate
if the denominators are very small. Exact Fishemts mid-P confidence intervals are estimated if
there are 70 or fewer events, and approximate Fsstenfidence intervals in other instances.
Cohen and Yang (1994) point out that, unlike theseovative Fisher's intervals, the narrower mid-
P intervals do not guarantee the nominal confidéewe in all instances, but these authors suggest
that the discrepancies are of little practical im@oce.

Confidence intervals for an observed number of even ts
The program can estimate confidence intervalsriasteserved number of events (without entry of
an expected number), e.g. in the instance of adiaease whose occurrence can be assumed to

have a Poisson distribution. Exact Fisher's ardiPnconfidence intervals are estimated if there are
70 or fewer events, and approximate Fisher's cendid intervals in other instances.
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Significance tests

One-tailed tests are done for the significancdnef3MR's departure from 100%, or the
observed:expected ratio's departure from unityp(died as the departure of the SMR from 100%),
or the standardized rate's departure from thematee standard population. If the observed and
expected numbers of events are 88 or less, exstoeis and mid-P probabilities are shown;
otherwise a large-sample test is used. FishaxgResses the probability of occurrence, under the
null hypothesis, of the observed or a more extraomaber of events, and the mid-P value
expresses the probability of a more extreme nurmlosrhalf the probability of the observed
number. The one-tailed P-values are doubled taigeedwo-tailed P-values.

METHODS

If observed numbers are calculated from rates, &ineyounded off to the nearest integer. The tatg} diverge from
the true number if the rates were rounded off. &kmected number is multiplied by the correctiastda (if entered).

Standard error

The standard error of the SMR (the ratio of obsgteeexpected numbers of events) is calculated as
S.E. =v2{Fi[1 - (Fi / Ni)]}/ 2(PiNi) if separate values & are entered, and

S.E. =VXFi / 2(PiNi) if separate values & are not entered data are not entered

where F; = number of events in stratunof study population
N; = size of sratum of study poulation
P; = rate in stratum of standard population.

Significance tests

Formulae for the computation of approximate anccekesher and mid-P probabilities are provided loytfhan and
Boice (1982: 29: formulae 9-12). Rothman and Bsif@mula 19 is used for the large-sample test.

Confidence intervals

Exact Fisher's and mid-P confidence intervalstier8MR, the standardized rate, and the numberasfteybased on
the Poisson distribution, are displayed if ther= & or fewer events, using tabulated values frear$dn and Hartley
(1966) and Cohen and Yang (1994). In other ingsnar if an exact confidence interval cannot brapated, Fisher's
confidence interval is computed by a large-sampéhod (Rothman and Boice 1982: 29: formulae 17-18).
Confidence intervals for an observed number ofcase based on a Poisson distribution with mearvandnce of 1.

The Fieller-based procedure is explained by Silsq@®94). The confidence limits for the observedeeted ratio,
when the expected number is subject to randomti@rieare the two solutions farof the quadratic equation

e(e - ¢)X - (20e - 20qpx +0(0-C) = 0
where o ande = observed and expected events

¢ = chi-square (2.7055 for 90%, 3.84146 for 95%, or 6.6499% ClI).

g = 0 if the effect of correlation between obseraed expected numbers is not taken into account

q=2.(r /N) /2r if the effect of correlation between observed arpected numbers is taken into account
r = observed events in a specific stratum

n = size of that stratum in index group
N = size of that stratum in standard population.

For an observed number of 0, the lower confideimi is zero and the exact upper confidence lisit i

-2.302585093(log[a]) (Diem 1970: 137, formula 129).
where a = 0.05 for the 90% interval, 0.025 for@6&s interval, and 0.005 for the 99% interval.
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|. ESTIMATION OF NUMBER OF CASES, USING CAPTURE-
RECAPTURE METHOD

This procedure is appropriate in an epidemiologstadly that aims to estimate the number of
individuals with a defined characteristic (usudahig number of cases of a disease) in a populati
on the basis of incomplete overlapping lists detifrem two to four sources.

The individuals in each list must be identifialde,that it is possible to determine in which lists
they appear. The numbers of cases appearing solech of the lists, and in each combination
lists, must be entered.

The program then displays thstimated total number of casesncluding those not appearing in
any list, together with approximate 95% confidemtervals. Optionally, the total population siz
may be entered, to permit display of the resultsate” format.

of

(1%}

If there are two sources of data, it is assumetthigasources are independent of one another; that

is, that the probability of appearing in one Isthbt increased or decreased by inclusion in therqt

list. The estimated total number of cases is atertestimate if the two sources are positively
correlated, and an overestimate if they are negjgtoorrelated. Two alternative confidence
intervals are displayed, one based on the staratesdof the estimator, and one on the Poisson
distribution. Following a recommendation by Sefd®82), the latter interval may be preferred i
the overlap between the lists is small (as deflmedw), and the former in other instances.

If there are three or four sources of data, thggam provides two estimators of the total numbe
of cases, with their confidence intervals. Onéheke estimators assumes that the sources are
independent, and the other does not. .The progtsondisplaysoefficients of covariationthat
indicate the direction and degree of the dependsriz@tween lists.

For each listpercent ascertained (exhaustivenessy reported, with its 95% confidence interval.

This is the number of cases that appear in theeligiressed as a percentage of the estimated tqtal

number of cases.

Estimated total number of cases

For two sources of data, the program uses Chapmoanisias modification of Peterson's estimat
of the total number of cases. Two sets of confidantervals are displayed — one based on the
standard error, and a Poisson confidence interwati-a recommendation as to which is to be
preferred (see below). The estimated total magrbenderestimate if the two sources are
positively correlated, and an overestimate if taeynegatively correlated.

For three or four sources of data, the program teesample-coverage approach described by
Chao and her colleagues. Two estimators of tlz moimber of cases are computed, with their

or

confidence intervals. One is to be preferredefsburces are independent, and the other if there i

dependence.
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I. CAPTURE-RECAPTURE METHOD

Coefficients of covariation
The coefficients of covariation indicate the direntof the dependencies between lists.

To simplify their interpretation, “standardized”afticients that can range from -1 to +1 are also
presented. These provide a guide to the degreelaas the direction of the dependencies
between lists..

Percent ascertained (exhaustiveness)

Percent ascertained (exhaustiveness) is the pageent the estimated total number of cases that
appear in a specific list. As an estimate of §%69confidence limits, the number of listed cases is
expressed as a percentage of the upper and lowkdeace limits of the total. The percent
ascertained is calculated separately for each agimof the total number of cases, if two are
displayed.

If there are two sources of data, the percent tsned may be an overestimate if the sources are
positively correlated, and an underestimate if #ueynegatively correlated.

The percent ascertained may be interpreteskasitivity(the percentage of all ascertainable true
cases who are included in the list) if all listedes are true cases or if all lists have the same
positive predictive value.

METHODS

Estimated total number of cases

If there are two sources of data, the program Géagpman's low-bias modification (1948, 1951) oflP=in's
estimator of the total number of cases(N). Thenfda is:
N=[n1+1)(n2+1)/(m+1)]-1

and the formula for its S.E. is

SE =V{[(n1 + 1)(n2 + 1)(n1 - m)(n2 - m)] / [(m + 1)2(m D]}
where nl and n2 are the numbers of cases in list&l 2 respectively.

m is the number of cases appearing in both lisidlligt 2.
Two alternative confidence intervals are displaysate based on the standard error of the estimatdrone on the
Poisson distribution. Following a recommendatigrSieber (1982), the latter interval may be prefeitéhe overlap
between the lists is small (if m < 50) and, adwelis less than 0.1(nl) or less than 0.1(n2),the former interval in
other instances.
The 95% confidence interval based on the standaod is computed by a log transformation methoda@h987,
formula 11):

[F+(N-F)/C]to[F+ (N-F)C].
where F=nl+n2-m

C = exp{1.96 *V[log(1 + SE/ (N - FP]}.
For numbers over 100, the Poisson confidence iatés\an approximate interval computed by the fdemyrovided

by Rothman and Boice (1982: 29: formulae 17 and E) smaller numbers, exact Fisher's intervasgaovided,
using tabulated values (Altmazt al. 2000: Table 18.3)).

If there are three or four sources of data, thgmm uses the sample-coverage approach to cagitaipture analysis
proposed by Chao and Tsay (1998) and describeetail thy Chacet al (2001).

For three sources, formula 10 in the latter papevides an estimator for independent sources, amiulae 12 and 13
provide estimators for dependent sources. Thergnogises formula 12 if the sample size is adeqaatbformula 13
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I. CAPTURE-RECAPTURE METHOD

if it is not. For this purpose, a sample coverafg5% or more is regarded as adequate, as suddastemulation
studies by Chaet al (1996). The sample coverage is estimated by atingpthe proportion of cases (in each list
separately) that also appear in one or more oigteyr ind averaging these proportions (formulaF®rmula 13
provides a “one-step” estimator that can be reghedea lower bound for positively dependent samjgled an upper
bound for negatively dependent samples. Sincelsimpthods of accurately computing standard eamsot
available for these estimators, approximate confidentervals are displayed, arrived at by treatiiregestimated
number of cases as a Poisson variate (using a lamnexact intervals: see above); this is appederif the event (the
disease) can be regarded as relatively rare.

If there are four sources of data, the computataimilar, using formulae 14 to 17 (Chebal 2001).
Coefficients of covariation

Coefficients of covariation, based on whicheveinestor (Chacet al;: 2001: formula 12 or formula 13) is displayed,
are computed by formula 13a.

“Standardized” coefficients that can range fromto-*1 are also displayed. For this purpose, #gative coefficients
remain unchanged, since their lower bound is -fe positive coefficients are divided by the uppeurs for the pair
of sources under consideration; this upper boumésed on the arbitrary assumption that wheneeasa is found in
only one of the two lists, it would be found in thilher one also. The “standardized” coefficienty/ioe easier to
interpret, although with the caveat (Chao, personaimunication) that since this upper bound dependbe data, it
cannot serve as a standard basis from a statiptigall of view; the coefficients can become extrignterge, without a
universal bound.

Percent ascertained (exhaustiveness)

Percent ascertained (exhaustiveness) is the pageeof the estimated total number of cases thaapp a specific
list. If there are two sources of data, the ediineof its confidence interval uses the S.E.-bassinator of the total,
and if there are three or four sources of datedtgidence interval is computed separately for esstimator of the
total.
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J1. EQUAL-SIZED CLUSTERS

J1. ESTIMATION OF PREVALENCE, USING EQUAL-SIZED
CLUSTERS

This module estimates the prevalence of a diseasther attribute from observations iclaster
samplewith equal-sized clusters.

The clusters may be groups of subjects or groups@br more observations made on each
subject. The size of the clusters, and the numbgihsthe attribute under study (the number of
"hits" in each cluster) must be entered. Clustesy be entered separately, or clusters with similar
findings can be entered together. Optionallysize of the population to which the study refers
can be entered, to permit application of a finiv@ydation correction that reduces the width of the
confidence intervals; this is unnecessary if thrafga includes less than 5% of the population
(Cochran 1977: 66: 25).

The program displays the estimated prevalence, ¥@#%, 95%, and 99% confidence intervals
computed by four methods, those of Cochran, L@isBet al, and Paul and Zaihra. The standard
error anddesign effecfsee below) based on each procedure is repofteerate of homogeneity
or intraclass correlation coefficre, which can range up to 1, is also displayed; iha measure of
the similarity of the elements in a cluster.

The clusters in a cluster sample may be randonéetszl groups of subjects, or groups of two or
more observations made on the same subject atadifféames or at different body sites, e.g. in
each eye or on various tooth surfaces.

The procedure may be used for a random or neacnarsdmple of clusters selected in more than
one stage, e.g. clusters of households selectddmay from communities chosen by a systematic
procedure in which the probability of selectiomprisportional to the community's size, as in EPI
(Expanded Program on Immunization) surveys (Beretett 1991).

The prevalence of a history of the occurrencegifan disease in the members of a cluster sample
in a given period can, if the information is suiiatly valid, be used as an indication of the
incidence during that period (Rothenbetgl 1985).

The program displays the estimated prevalence faspeortion, or per 1,000, etc.) with 90%, 95%,
and 99% confidence intervals computed by four mi#ththose of Cochran, Lui, Fleissal, and
Paul and Zaihra, and the standard error and desiigct based on each procedure. dhsign

effect orvariance inflation factoris the ratio of the variance to what the variawoeld be if this
were a simple random sample, and it provides aicatidn of the loss of precision due to the use
of a cluster sample. Thate of homogeneifyor intraclass correlation coefficientvhich can range
up to 1, is also displayed; this is a measure @kihmilarity of the elements in a cluster. In wmls
circumstances there may be anomalous resultsxéongele when many of the clusters contain a
single observation, the rate of homogeneity magdgative, and the design effect less than 1.
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METHODS

The point estimate of the prevalence is the ratih® total number with the attribute under studlytte combined
number in the clusters.

UsingCochran's procedurghe variance of the prevalence is computed byda 3.34 of Cochran (1977: 66); since
the clusters are equal in size, this is equivatefrmula 3.30. If the size of the populatioreigered, a finite

population correction]l —f , is applied in these formulaé;s the ratio of the sample size to the size ofptbieulation.
If f =1, the variance is zero (Armitageal 2002: 96).

The 90%, 95%, and 99% confidence limits are contpate
p £ t(SE)
where p=prevalence
t = the two-tailed critical value of Studert'atalpha= 0.1, 0.05, or 0.01, withC(1) degrees of freedom.
C = number of clusters
SE = standard error

Lui's procedureuses a logarithmic transformation for estimatingfaence intervals (Lui 2004: formula 1.12). het
size of the population is entered, the variance irs¢his formula is multiplied by the finite pogation correction (see
above), to avoid unduly conservative estimateshdfsample encompasses the whole population atti@nee is zero
(Armitageet al.2002: 96). The standard error is derived fromdidgrmula 1.8.

In the procedure described Bieisset al. (2003: 441-444: formulae 15.2 and 15.3), the altiss correlation
coefficient is estimated by formula 15.4 . If #iee of the population is entered, the programipligs the variance
(formula 15.3) by the finite population correctisee above), to avoid unduly conservative estimatéshe sample
encompasses the whole population, the variancerés(Armitageet al. 2002: 96).

The interval estimation described by Paul and za{B008) in their method C2 uses their variancméda 4, after
adjusting the estimated probability of ‘yes’ obsions by adding 0.5 to the numerator and 1 taltheominator, as
explained at the foot of page 4210.

For each procedure, the program reports the stdregtear (the square root of the variance calculbtethat procedure)
and the design effect. Tlaesign effecis the ratio of the variance to the variance singple random sample of the
same size (Cochran 1977: formula 3.11, p. 52), wlsicomputed as

[(N-n)/N][p(Q-p)/ (n-1)] if Nwas entered, or

p(1-p)/(n-1) if Nwas not entered
where N = size of population

p = proportion with the attribute under study

n = size of sample
In the Fleiss procedura,is used in the denominators, tfot— 1)
If n=N, the variance is zero (Armitage al. 2002: 96), and the design effect is not computed.

Therate of homogeneit§intraclass correlation coefficiehts computed from the one-way ANOVA components MSB
and MSW (the between-cluster and within-clusteamsquares) by the formula (Ridaital 1999)

(MSB-MSW) / [(MSB + MSW) M - 1)]
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J2. ESTIMATION OF PREVALENCE, USING DIFFERENTLY-
SIZED CLUSTERS

This module estimates the prevalence of a diseasther attribute from observations iclaster
samplewith differently-sized clusters.

The clusters may be groups of subjects or groups@br more observations made on each
subject. The sizes of the clusters, and the nusnbigh the attribute under study (the number of
"hits" in each cluster) must be entered. Clustesy be entered separately, or clusters with similar
findings can be entered together. Optionallysize of the population to which the study refers
can be entered, to permit application of a finiv@ydation correction that reduces the width of the
confidence intervals; this is unnecessary if thrafga includes less than 5% of the population
(Cochran 1977: 66: 25).

The program displays the estimated prevalence, ¥@#%, 95%, and 99% confidence intervals
computed by four methods, those of Cochran, LigjsBet al, and Paul and Zaihra. The standard
error anddesign effecfsee below) based on each procedure is repofteerate of homogeneity
or intraclass correlation coefficie, which can range up to 1, is also displayed; iha measure of
the similarity of the elements in a cluster.

The clusters in a cluster sample may be randoniéctsl groups of subjects, or groups of two or
more observations made on the same subject atadiffames or at different body sites, e.g. in
each eye or on various tooth surfaces.

The procedure may be used for a random or neacnarsdmple of clusters selected in more than
one stage.

The prevalence of a history of the occurrencegif’an disease in the members of a cluster sample
in a given period can, if the information is suiiatly valid, be used as an indication of the
incidence during that period (Rothenbetgl 1985).

The program displays the estimated prevalence ffaspeortion, or per 1,000, etc.) with 90%, 95%,
and 99% confidence intervals computed by four mi#ththose of Cochran, Lui, Fleissal, and
Paul and Zaihra, and the standard error and desigct based on each procedure. dhsign

effect orvariance inflation factoris the ratio of the variance to what the variawoeld be if this
were a simple random sample, and it provides aicatidn of the loss of precision due to the use
of a cluster sample. Thate of homogeneifyor intraclass correlation coefficientvhich can range
up to 1, is also displayed; this is a measure @kihmilarity of the elements in a cluster. In wmls
circumstances there may be anomalous resultsxéongele when many of the clusters contain a
single observation, the rate of homogeneity magdgative, and the design effect less than 1. The
mean cluster size is displayed, together with thested mean used in calculating the rate of
homogeneity.
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METHODS

The point estimate of the prevalence is the ratih® total number with the attribute under studlytte combined
number in the clusters.

UsingCochran's procedutghe variance of the prevalence is computed bydide 3.34 of Cochran (1977: 66); if the
clusters are equal in size, this is equivalenbtnfila 3.30. If the size of the population is eatk a finite population

correction 1 —f , is applied in these formulaé;s the ratio of the sample size to the size ofpbyeulation. 1ff = 1,
the variance is zero (Armitags al. 2002: 96).

The 90%, 95%, and 99% confidence limits are contpate
p £ t(SE)
where p=prevalence
t = the two-tailed critical value of Studert'atalpha= 0.1, 0.05, or 0.01, withC(1) degrees of freedom.
C = number of clusters
SE = standard error

Lui's procedureauses a logarithmic transformation for estimatingfaence intervals (Lui 2004: formula 1.12). het
size of the population is entered, the variance irs¢his formula is multiplied by the finite pogation correction (see
above), to avoid unduly conservative estimateshdfsample encompasses the whole population atti@nee is zero
(Armitageet al.2002: 96). The standard error is derived fromdidgrmula 1.8.

In the procedure described Bieisset al. (2003: 441-444: formulae 15.2 and 15.3), the altiss correlation
coefficient is estimated by formula 15.4 . If #iee of the population is entered, the programipligs the variance
(formula 15.3) by the finite population correctisee above), to avoid unduly conservative estimatéshe sample
encompasses the whole population, the variancerés(Armitageet al. 2002: 96).

The interval estimation described by Paul and za{B008) in their method C2 uses their variancméda 4, after
adjusting the estimated probability of ‘yes’ obstions by adding 0.5 to the numerator and 1 taltheominator, as
explained at the foot of page 4210.

For each procedure, the program reports the stdregteor (the square root of the variance calculbtethat procedure)
and the design effect. Tlaesign effecis the ratio of the variance to the variance singple random sample of the
same size (Cochran 1977: formula 3.11, p. 52), wlsicomputed as

[(N-n)/N][p(Q-p)/ (n-1)] if Nwas entered, or

p(1-p)/(n-1) if Nwas not entered
where N = size of population

p = proportion with the attribute under study

n = size of sample
In the Fleiss procedura,is used in the denominators, tfot— 1)
If n=N, the variance is zero (Armitage al. 2002: 96), and the design effect is not computed.

Therate of homogeneit§intraclass correlation coefficiehts computed from the one-way ANOVA components MSB
and MSW (the between-cluster and within-clusteamsquares) by the formula (Ridaital 1999)
(MSB-MSW) / [(MSB + MSW) M - 1)]

whereM is an adjusted mean cluster size, computed ferphipose by the formula fa0 in Ridoutet al (1999).
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J3. ESTIMATION OF PREVALENCE, USING A STRATIFIED
SAMPLE

This module estimates the prevalence of a diseasther attribute from observations in a
stratified sample

The prevalence in the total population from whicl samples were drawn is estimated, with its
standard error and 90%, 95% and 99% confidencevalte For each stratum, the required entries
are the size of the sample, the prevalence, ansizbeof the stratum in the population. The use|of
approximate population data (e.g., based on anendus) will usually have little effect on the
results. If standard errors for the prevalencdb@nsamples cannot be computed from the above
data (e.qg. if cluster samples were used), staretaods should be entered.

The program estimates the prevalence in the togallation from which the samples were drawn
(with 90%. 95%, and 99% confidence intervals), gsireights based on the relative sizes of the
strata in the total population. Both the prevaéeper 1000 (etc.) and the estimated total number o
cases are displayed.

If standard errors (per 1000 etc.) are enteredetfi@ather than the prevalence data and numbers in
the strata) are used as the basis for the computatia standardrror and confidence intervals for
the overall prevalence

METHODS

The overall prevalence (the prevalence proporticihé population) ig (Nip; / N)

where N; = number in stratum i of the population
pi = prevalence in stratum i

N=XN

If standard errors are not entered, the variant¢heobverall prevalence is computed by formula ®68ochran
(1977), and its square root is reported as thedatanerror. The last term in this formula is repdypPrQn/ (Nh - 1),
as recommended by Cochran (p. 108), except imtpeobable instance thaf, (the sample size in stratum is 1,
whenprh / Ny is used.

If standard errors are entered for the stratastiwedard error of the overall prevalence is combate/ Z(V\/izsz)

where W, =N;/ N
s = standard error in stratum i

Confidence intervals for the overall prevalenceestimated by the formula P+zS
where P = overall prevalence

S= standard error of overall prevalence

z=1.6449, 1.96, or 2.5758 for 90%, 95% and 99%rirmtls, respectively.

The overall prevalence proportion and its confidelimits are multiplied by the total populationesio provide
estimates of the overall number of cases; theséarsrare rounded off to the nearest integer.
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J4. ESTIMATION OF PREVALENCE, USING POOLED
SAMPLES

This module estimates the prevalence of a diseasther attribute from observationspooled
samplesusing the results of tests (e.g. for the presehem infective agent) conducted on

samples containing material from a number of irdinals. Prevalence is estimated at an individual
level, with its 90%, 95%, and 99% confidence indsv A number of different methods are used,
depending on whether or not the sensitivity anatifpgy of the test are taken into account,
whether or not sensitivity and specificity are ased to be known for certain, and whether or nat
the number of individuals per pool is constant.

Pooled samples are aggregations of individual $ssnp pooled sample may contain (for
example) meat or other material from differenhaels, or a number of eggs or fish, etc. Apparent
prevalence at an individual level is estimated ftbenumber and size of the pools, and the test
result for each pool. The estimates of prevaleneaipwardly biased, generally negligibly so if the
number of pools exceeds 30. Bias is less if tieeaelow true prevalence (less than 10%), a large
number of pools, and a small number of samplepgpel; clustering may result in substantial bias.
Confidence intervals for prevalence are generallyawer if there are more pools or if the pools
are smaller, and they are much wider if the prewadas high. It is assumed that simple random
sampling was used (otherwise, the estimated camdeldntervals are too narrow), and that the
sensitivity of the test for a pool is about the saas for individual samples (Cowliegal. 1999,
AusVet Animal Health Services 2004, Williams andffitb2001).

The sensitivity and specificity of the test areumssd to be 100%, unless other values are entered.
Sensitivity and specificity are taken as fixed.(ikenown for certain), unless the sizes of the
samples in which they were determined are alsa@shte

If all the pools are of the same size, and theisem$sumed to be perfect, the program provides a
maximume-likelihood estimate of individual-level pedence and its asymptotic confidence
intervals (based on large-sample theory; MethotlQawvling et al) and exact (maximum-
likelihood estimate) confidence intervals that eseputed by two methods (Method 3 of Cowling
et al, and the method used by Williams and Moffitt 2D0The exact intervals are preferable if the
sample size is small.

If the pools are of the same size, and sensitoritgpecificity is less than 100%, the program
provides asymptotic and exact confidence interfdisthods 4 and 5, respectively, of Cowlieiy

al). But if the sizes of the samples in which seusjtiand specificity were determined are entered,
asymptotic confidence intervals are estimated byhibid 6 of Cowlinget al

If the pools are of different sizes, confidenceiaals are estimated by the method used by
Williams and Moffitt 2001), which assumes 100% sty and specificity.

If all tests are positive (whether the pool sizaesor not), the program reports the minimal

prevalence, assuming that there is only one pesgample in each pool (Method 1 of Cowletg
al. 1999); the maximal prevalence is of course 100%.
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If all the pools are of the same size, which is whis is most marked (Hepworth and Watson
2009), a bias-corrected estimate of prevalencengpated."

In a study of an infective agent in specimens fedreep, comparisons with individual sampling
showed that Method 3 of Cowlirgg al. and the Williams-Moffitt method provided accuraied
reasonable estimates of true prevalence in alumtsts, although (because they do not allow for
imperfection of the tests) they were found to usdeémate the true prevalence (Toribio and
Sergeant 2007).

METHODS

The methods used for estimating individual-levehpprevalence and confidence intervals are desdrity Cowling
et al. (1999) (Methods 1 to 6) and Williams andffitio(2001).

In Methods 2, 4,and 6, confidence limits are bas®d normal approximation; if the computed lowanfedence limit
is below zero it is changed to zero.

In Methods 3 and 5, exact confidence intervalsodtained by assuming a binomial distribution far tumber of
positive pools, using thi distribution (Fleiss et al. 2003, pp 25-26).

Iterative methods are used in the Williams-Moffittaximum-likelihood) method; in occasional instastee upper
confidence limit estimated by this method presantsmputational difficulty, and it is then estincitesexp[In(P) *

2 — InQL)], whereP = prevalence and = lower confidence limit. Such estimates are mdnkeh asterisks. In other
instances, the estimation is halted because of atatipnal difficulties.

Methods 4 and 5 are used only if the proportiopasitive pools is greater than the assumed fals@iyp®rate, and
less than or equal to the assumed sensitivityhelj are inappropriate for estimating a specifisficence limit , the
limit is replaced by “??” in the output.

The bias-corrected estimate of prevalence uses¢tieod proposed by Burrows (1987) and recommenged b
Hepworth and Watson (2009: formula 5).
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K. SAMPLE SIZE
(TO ESTIMATE PROPORTION/RATE/MEAN, OR FIND CASES)

This module computes the sample size requiredstomating a proportion, prevalence rate, or
mean; it is applicable teimple random samplesstratified random samples andcluster
samples It also computes the size of the random samggjeired incase-finding in order to
identify a given number of subjects with a givegedise or other attribute.

The data required for estimating a proportion, pkence rate, or mean include the desired
confidence level (e.g. 95%) and the acceptable @reo, half the total width of the desired
confidence interval). The assumed true proportiate, or (for a mean) S.D. or coefficient of
variation, and the acceptable difference, mustibered. The program then computes the sample
size needed to obtain an estimate with the chos#yapility of being within the chosen distance
from the true value.

If the size of the population from which the samigléo be chosen is entered, a finite population
correction (Cochran 1977: 24) is made; this redticesequired sample size; it has little effect if
the sampling fraction is below 5%.

Optionally, the expected percentage of selectepesishexpected to be lost because of refusal to
participate or other reasons can also be entéfbd.computed sample size is adjusted by first
inflating it (if necessary) to allow for losses (@i of course does not compensate for possible
selection bias), and then rounded up to the neatesie number (which may produce apparent
small inconsistencies in the results).

In some instancagraphs are displayed as well as numerical results.

If a single sample is to be used for several puepos.g. for estimating the prevalence of different
diseases, separate size computations should bealmhéhe largest sample size selected.

Simple random samples

For a random sample to estimateraportionor prevalencethe assumed true value in the
population is required; if this cannot be gues&esl (or 500 per 1,000, etc.) should be entered (thi
is a 'worst-case scenario’ that maximizes the sasipk). Two results are displayed. The first,
based on the method usually used, assumes thattdpertion or prevalence that is entered is
correct; the second (Fleissal 2003: 34-36) assumes that it is a rough estinaaie caters for a
range of true proportions or prevalences.

In addition to reporting the sample size approprfat the specific proportion or rate that was
entered, the program displaygraph showing the sample sizes required for a rangeuef t
proportions or rates under the specified conditi@esifidence level, acceptable error, and maybe
percentage of losses and population size). Fgrgptions, this is a full range, from 0 to 1:
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Fequired sample size
100
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True proporion

For rates, the graph shows the sample sizes reloirérue values ranging from half to double the
assumed value, under the specified conditionsagsumed rate of 20 per 1.000 produced the
following graph, appropriate for true rates fromt@@t0 per 1000:

Required sample size

1000

I:I T T T T I T T T T I T T T T I

10 20 an 40
True rate per 1000

For estimating anean the assumed true S.D. or coefficient of variafibie S.D. as a percentage

of the mean) in the population is required, togethith the acceptable error (which must be
entered as a percentage of the mean if the caeffiof variation is entered). The computations
involve large-sample approximations and may undienese required sample sizes (Kupper and
Hafner 1989); as pointed out by Kelley (2007), “tomfidence interval width is a random variable
that will fluctuate from sample to sample”, andeofthas less than the desired width. A graph
shows the sample sizes required, under the specifieditions (confidence level, acceptable error,
and maybe percentage of losses and populationfsiza)true S.D. ranging from half to double the
assumed value that was entered:

Fequired sample size
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If the coefficient of variation and acceptable ewre entered, the program computes the required
sample size, using the conventional formula. It miap report the sample size needed for 99%
assurance that the required confidence intervainotl exceed the required width, as computed by
the AIEP (accuracy in parameter estimation) appr@avocated by Kelley (2007); this is done if
the requirements fall within the scope of Kelletgbles (namely: coefficient of variation between
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5% and 50%, acceptable error between 0.5 and 1l@d«ca@nfidence level 90%, 95%, or 99%); the
program reports the sample sizes listed in théesalising interpolation where necessary. A graph
shows (in red) the sample sizes computed by thal dsumula for the specified conditions
(confidence level, acceptable error, and maybegpe¢age of losses and population size) for a true
coefficient of variation ranging from half to ddalihe assumed value that was entered:, and may
also show (in green) the sample sizes computethbyAIEP method, for a coefficient of variation
ranging up to 50%.

Required sample size Required sample size
4004

200

|:|||||||||||||||| Dlll T T ]

T T
0.4 0.6 ns 1.0 0.4 0.6 ns
Coefficient of variation Coefficient of variation

Stratified random samples

If a stratified random sample is to be used, theufaiion size in each stratum is required, together
with the assumed proportion, rate or S.D. in edctisn.

Three sample sizes are computed, based respedaivphpportional allocation(i.e., using the
same sampling fraction in each stratum), presuoptichal (Neymann) allocatigrand (optionally)
low-cost optimal allocation Neymann allocation reduces the variance of stienate by

increasing the sampling fraction in a stratum whkeevariance is larger, and decreasing it where
it is smaller (Cochran 1977: 99). Low-cost optimiéocation takes account of the average cost
per subject in each stratum (which must be entéted option is required) as well as the
variance; it reduces the sampling fraction in atatn where the cost is high.

For each method of allocation, the required nunabsubjects in each stratum is reported as well
as the total sample size; if costs are enteredpthécost is also computed.

If the aim is to estimate proportions, rates or msda different population subgroups, a separate
sample size computation should be conducted fdr salegroup.

Cluster samples

For a cluster sample, it is assumed that the clustesubjects are equal-sized and randomly
selected, as in the cluster surveys advocated b@WHxpanded Programme on Immunization
(Bennettet al 1991), which use clusters drawn from communitiesse probability of selection is
proportional to their size. The required sampte $ larger than for a simple random sample.

In addition to the desired confidence level (e%49 and acceptable difference, an estimate of the
design effecor rate of homogeneitsnust be entered. The program then computes thplsaize
needed to obtain an estimate of the proportionjgbeece or mean with the chosen probability of
being within the chosen distance from the true eallne sample size is rounded up to the nearest
whole number. (The design effect is the ratiohef variances of the values estimated from a
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cluster sample and from a simple random samplbeeo$ame size. The rate of homogeneity,
intracluster correlation coefficierjBennettet al 1991; Cochran 1977: 241], expresses the degree
of similarity of cluster members. If a rate of hageaoeity is entered, the program computes the
design effect.)

It is generally necessary to guess the designtaffe@ate of homogeneity, on the basis of
published values observed in similar studies (udiegsame cluster size) in similar populations.
Design effects of 2 or more are not uncommon.tudiss of conditions with a fairly uniform
distribution in the population, such as blindnéisis, safe to assume a design effect of say 1.6; bu
for estimating the prevalence of a condition thaghtbe highly clustered, such as active
inflammatory trachoma, a much larger design eff@ar more) should be specified. To be on the
safe side, enter a high value, e.g. a design affeé®t Rates of homogeneity generally range from
close to zero (say 0.02) to about 0.4.

Optionally, the size of the population can alse@btered, to permit a finite population correction.

The program reports the sample size required, Bod@s appropriate) the required number of
clusters or cluster size.

In addition, twographsare displayed, showing the required number oftetsor cluster size. The
left-hand graph shows the number of clusters oclirgter size required under the specified
conditions (confidence level, acceptable differemsaybe percentage of losses, and design effect
or rate of homogeneity) if the true value of thegartion, prevalence or S.D in the population is
anywhere from half to double the assumed valuee right-hand graph shows the required
number of clusters or cluster size under the siecdonditions (confidence level, acceptable
difference, and maybe percentage of losses) itlsemed proportion. prevalence or S.D. is
correct, and the design effect is anywhere betwadrand double the value entered (or derived
from the rate of homogeneity).

IF DESIGN EFFECT =2 IFS.D.=4

Clusters needed (size: 300 Clusters needed (size: 300

10

\

]
=

1 2 3 4
True 5.0. Design effect

[
e
(=3}
[mm)

For a stratified cluster sample, a separate sasiptecalculation for each stratum is recommended
(Bennettet al 1991). The precision of the overall study (afteighting the results in accordance
with the sizes of the strata) will then be somevgraater than in individual strata.

Case-finding

To estimate the size of the random sample needediar to identify a given number of subjects
with a specific attribute (Lee 1993), choose a arfce level (e.g. 95%) and enter the estimated
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prevalence of the attribute and the required nurobsubjects. The sample size is rounded up to
the nearest whole number.

Graphs

If a graph is displayed, the charted values careaé by clicking on the line. Since the curves use
interpolation, these values may not coincide pdsfedth the reported results. Accuracy can be
enhanced by “zooming” - any segment of a curvebmamagnified by pressingtrl and clicking

on the graph, and then drawing a rectangle tormithe required segment. The graph can be
printed, copied to the clipboard for pasting elsesehor saved in a bitmap (.BMP) file.

METHODS

Simple random samples

To estimate @roportion or rate(converted to a proportion), formulae for the gi2eof a simple random sample are
provided by (among others) Zar (1998: formula 2%.35

n=pqgZ/d?
where p = the assumed proportion

q=p-1

z = two-tailed normal deviate (e.g. 1.96 for a 958afaence level)

d = half the width of the desired confidence intérva
The alternative procedure, assuming that thegraportion or rate is only roughly known, is debed by Fleis®t
al. (2003: 34-36). Note that there is a misprinteit formula 2.29: th&y» in the right-hand term should E%qlz.
The formula incorporates a continuity correctionlike the Zar formula), and this boosts the requsample size.

If the assumed standard deviatian) (s enteredthe sample sizen] required for estimating meanis
n=s.t*/d? (zars formula 7.7)

where t = the two-tailed critical value of Student’sith n-1 degrees of freedom
d = half the width of the desired confidence intérva

If the assumed coefficient of variand@\{) is entered, the usual formula is
n=CVt/D?

where D = half the width of the desired confidence intereadpressed as a percentage of the mean.
An iterative procedure is used to estimiafier use in the above formulae.

The AIPE (accuracy in parameter estimation) procedescribed by Kelley (2007) is based on a confidenterval
for the coefficient of variation, formed by estiimat a noncentrality parameter, followed by an itieeaprocess.
Sample sizes are obtained from Kelley's Tables an@ 3, using harmonic interpolation (Zar 19983pp10) in both
dimensions where necessary; this is here lessunatecthan linear interpolation. Interpolated skngizes are least
accurate if the coefficient of variation is largedéor the acceptable error is small. After integpioin, the sample size
is rounded up to the nearest whole number, aftéingallowance for expected losses (see below)nifef
population correction is not made.

To apply &finite population correctionn is divided by [1 +1§ — 1) /N ] (Zar's formulae 7.12 and 24.35)
where N = population size

The required number is rounded up to the nearestewiumber, after making allowance (if necessary}tie
percentage of expected los$e%) by multiplying the number by

1/[1- L/ 100)].
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Stratified random samples

The samplesize for estimating a proportion or ratesing a stratified random sample (impportional or optimal
[Neymann] allocationwith a finite population correction) is computeylformulae 5.65 and 5.66 [witWnchanged
to WH of Cochran (1977). The desired variantss fixed at
2

d 727
where dis the acceptable difference and

zis the 2-tailed normal deviate corresponding ®dbsired confidence level.
For optimal allocation the sample size in each stratum is estimateddmi@n's formula 5.60; and fproportional
allocation by apportioning the total sample size in accocdanith the relative sizes of the strata. The iregu
number in each stratum is then rounded up to theesewhole number, after making allowance (if seaey) for
expected losses (see above). The numbers reduitkee strata are then summed to provide revisgohates of the
total sample size.

A similar approach is used for estimatingraportion or rateusing low-cost optimal allocation; Cochran's fofanu
5.66 is used, but replacing the numerator of thenfita for nO with

Y[Wiev(pici) / V(Cost)] » Z[WieV(pigi)* v (Cost)]

where W, p, g, and Costrefer to the values in a specific stratum.

The proportion of the low-cost sample allocated &pecific stratum is

[WieV(pigi)/~(Cost)] / 2(Wiev (pigi)/~/(Cost)

In addition, the data entered for the strata amlxined to compute the overall population size &edaverall
proportion or rate, which are then used to estirtteeaequired size (with a finite population cotiee) of a simple
random sample, ignoring the stratification.

The sample sizior estimating a meaunsing a stratified random samplgy (proportional or optimal [Neymann]
allocation with a finite population correction) is computegformulae 5.47 and 5.48 of Cochran (1977). Tésréd
variance V is fixed at

(d/2)2,
where dis the acceptable difference

zis the 2-tailed normal deviate corresponding ®dasired confidence level.
For optimal allocation the sample size in each stratum is estimatedday@n's formula 5.26; and fproportional
allocation by apportioning the total sample size in accocdanith the relative sizes of the strata. The iregu
number in each stratum is then rounded up to theesewhole number, after making allowance (if seaey) for
expected losses (see above). The numbers reduitiee strata are then summed to provide revistohates of the
totals.

A similar approach is used ftow-cost optimal allocationbut using the formulae on pages 91 and 92 of Mose
(2002).

In addition, the data entered for the strata amlined to compute the overall population size &edaverall mean,
which are then used to estimate the required siith & finite population correction) of a simplendom sample,
ignoring the stratification; this is done by Zddsmula 7.7 (Zar 1998: 105), using a value estimated by an iterative
procedure; the S.D. (in the total population) ibatsed is the square root of the pooled variance:

pooled variance X[(SD;)%(Ni - 1] / X[Ni - 1]

where SBP=S.D. in stratumi
N; = size of stratum i

Cluster samples

For a cluster sample (without a finite populati@mrection), the sample size is the required sizeafsimple random
sample (computed by the above formulae), multiptigdhe design effect E. If the rate of homogegnkitis entered,
E is calculated as follows, using the cluster &iz8ennettet al 1991):

E=1+(U-1H
To apply a finite population correction for estimata proportion or rate, the sample size S isutated as follows
(Baras M, personal communication):

S=BN / [B(N-1) + B]
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where B=Z+P(1-P)+E
P = estimated proportion with the attribute
N = population size
D = acceptable difference

Case-finding

To identify a given number R of subjects with adfie attribute (Lee 1993), the sample size S is:
S=[(V-U)/2PF

where U =-Z{[P(1 - P)]}

V =v(U” + 4PR)
P = assumed proportion in population
Z = standard normal variate corresponding todanfidence level); e.g. 1.645 for 95%.
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L1. APPRAISAL AND USE OF “YES-NO” SCREENING AND
DIAGNOSTIC TESTS AND MEASURES

This module is applicable to “yes-no” screening diajnostic tests, and to measures of the
presence or absence of any attribute, not nechgsaatisease. [The term “disease” will here be
used to refer to whatever attribute or outcomeeleor measure aims to indicate.] It is applicat
to tests that yield a range of results, if a sel@écutting-point is used. The module can also
appraise a risk marker(indicative of an increasethability that the disease will occur, rather th
an increased probability that it is present).

The required entries are sensitivity, specificayd (if confidence intervals are required) the siz¢
of the samples in which they were measured; agrradtively, the numbers of positives and
negatives in samples with and without the disease.

The program appraises the validity of the test easare by computingensitivity and specificity
(if not entered)chance-corrected sensitivity and specificityMartin and Femia's chance-
corrected measuresfalse positive and negative ratesrouden's index thediagnostic odds
ratio, likelihood ratios for positive and negative tests, atallback-Leibler distances.

The program also provides results that apply toofiskee test or measure in a group or populati
with a known prevalence of the disease or othgetaattribute. If these results are required, the

prevalence can be entered or (optionally) compfrted the sizes of the samples in which validity

was appraised; the latter option assumes thatoimbdined samples are representative of the
population. The additional results are fuest-test probabilities, predictive value several
measures ofjain in certainty (measures of the change that the test can be expiecmake in the
clinical estimate of the probability that the diseds present or absent), thenbers of tests per
caseidentified, thepercentage agreementand a series of alternatikappas that take account of
the relative importance attached to false negatwesto false positives. graph shows the
relationship of the predictive values of positivelaegative results to the prevalence of the
disease or other target attribute.

An option is offered for theomputation of post-test probabilities from theslikood ratio,
without entering sensitivity or specificity . Thsfor use by clinicians who know a test’s
likelihood ratio and wish to decide whether the iedikely to improve the certainty of diagnosis
enough to warrant its performance. The pretestglitity must be entered. The program compu
the post-test probability and thegain in certainty; agraph shows their relationship to the prete
probability.

An option is also offered for estimating theevalence of the diseasgor other outcome attribute
from the frequency of positive test results. Ihftdence intervals are required, this requiresyent
of the size of the sample in which the test waslyses well as the sizes of the samples in whic
validity was measured. @raph shows the relationship between prevalence anfighaency of
positive test results.
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Sensitivity, specificity, and false positive and ne gative rates

Sensitivityand thefalse negative rateefer to the frequency of positive and negativelltss
respectively, in subjects who (according to a “getehdard) have the disease (or other attribute).
Specificityand thefalse positive rateefer to the frequency of negative and positisiits,
respectively, in subjects without the disease.

In some instances the program revises the enteraitisity or specificity value to make it
consistent with a whole-number numerator. Thdoige if the entered value differs from the
sensitivity or specificity obtained by rounding itemerator (calculated from the entered value and
the size of the sample in which it was determiriedhe nearest integer.

“Chance-corrected” measures of sensitivity and spec ificity

“Chance-corrected” measures of sensitivity and iipeg (proposed by Brenner and Gefeller

1994) make allowance for the occurrence of chagoeeaent between the test result and the true
status. In a test for the presence of a diseas#l{er attribute), chance-corrected sensitivity is
defined as the proportion of positive results, agypeople with the disease, that can be attributed
to the presence of the disease rather than to ehahance agreement being estimated by the false
positive rate. Similarly, chance-corrected spettifiis the proportion of negative results, among
people without the disease, that can be attribiatékde absence of the disease rather than to chanc
(estimated by the false negative rate). A vallevbeero means that sensitivity or specificity is
lower than might be expected by chance. These mesado not take disease prevalence into
account.

Martin and Femia's chance-corrected measures

These chance-corrected measures of agreementsa@ @a Martin and Femialeltamodel

(Martin and Femia 2004, 2008) The program estim#te ‘Overall indeX, which is the chance-
corrected percentage of "Diseased, test +ve" Blioddiseased, test -ve" pairs among all pairs of
observations) - i.e., it is a chance-correctedxratelogous to the percentage agreement - and its
two components , namely tikbance-corrected percentage of agreemauitis respect to diseased
subjects ("Diseased, test +ve" pairs, as a pergerttall pairs),and the chance-corrected
percentage of agreements with respect to nondidesasdgects ("Nondiseased.,test -ve" pairs, as a
percentage of all pairs). It also provides measaféhe raters'conformity with the diagnosis,
namely the chance-corrected percentage of truéiymsatings among diseased subjects (which is
analogous to sensitivity) and the chance-correggéedentage of true negative ratings among
nondiseased subjects (which is analogous to spigifiThe measures are asymptotic estimators.
Negative indices may be regarded as zero. Apprdeistandard errors are estimated separately
for studies where the numbers of diseased and seasitd were fixed, or not fixed, in advance.

The estimator of total agreement may sometimesebeptive, providing a non-zero value when
there is no agreement (Martin and Femia 2008). iffaig be suspected if it is similar to either of
the agreement indices and "the marginals are untadbin the same direction” (e.g., the column 1
total exceeds the column 2 total, and the row dl ®tceeds the row 2 total). A warning message
is displayed if the latter condition applies.

If the prevalence of the disease or other targebate (i.e., the pretest probability of its prese)

is entered or computed, the program also estintlage’predictivity' of positive and negative test
results. These indices are the chance-correctgmbpron with the target attribute, among those
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with positive results; and the chance-correctegprtion who do not have the target attribute,
among those with negative results. They are ana®gothe positive predictive value and the
negative predictive value. If the prevalence oftdrget attribute is estimated from the study
sample, the S.E.s of the measures are estimated.

Youden’s index

Youden's indeis the sum of sensitivity and specificity (expesbais proportions) minus one. If
expressed as a percentage it has been termedetheetp gain in certainty" (Connell and Koepsell
1985). Itis the expected total net gain in cettgias a proportion of the maximum possible gain
(see below)., and has been termed the “maximunoptiopal reduction in expected regret”, i.e.
the maximum possible reduction of diagnostic uraiety, whatever the pretest probability of the
disease (or other attribute) (Hilden and Glaszi®86). A Youden's index of 0 means that the test
outcome is independent of the presence of the shs@ad the test is useless. If Youden's index is
less than 0, the test is misleading.

Thearea under the ROC cur¥e computed from Youden'’s index (Hilden and Glasz1996), for
each study and for the combined (Mantel-Haensatitnate. The area under the ROC curve
expresses the probability that the test will cdtya@ank a randomly chosen person with the
disease and a randomly chosen person without sleask. Its value is 50% if the test does not
discriminate. As a rough guide, an area of 97%nore indicates excellent discriminatory power;
an area of at least 92% very good discriminatowygroand an area of at least 75% good
discriminatory power (Simon 2004).

Diagnostic odds ratio

The diagnostic odds ratio (Glasal 2003) is a measure of the discriminatory powea tést,

taking account of both sensitivity and specificapd without distinguishing between the effects of
sensitivity and specificity. It is the ratio ofetlodds in favour of a positive result in subjecthw

the disease (or other attribute) to the odds indawf a positive result in subjects without the
disease. Itis equivalent to the ratio of thelik@od ratios for positive and negative test result

A diagnostic odds ratio (DOR) of 1 or less meards the test has no discriminatory value. The
DOR rises with increasing sensitivity or specificitising steeply as sensitivity or specificity
becomes near perfect (Glas et al. 2003), and negahiinity if both sensitivity and specificity are
100%. If both are 70%, the DOR is 5.4; if both 8086, the DOR is 16; if both are 90%, the DOR
is 81; if both are 95%, the DOR is 361; and if bata 99%, the DOR is 9801.

If the four cell frequencies (true and false pwei and negatives) are known, and any is zero, an
adjusted DOR is shown, after adding 0.5 to eadHhregjuency.

Likelihood ratios
The likelihood ratio is the ratio of the prevalemée specific result in subjects with the dise@se
other attribute) to its prevalence in people withive disease. Likelihood ratios are calculated fo

positive and negative test results.

A value greater than 10 or less than 0.1 indicdtatsthe test will provide convincing diagnostic
evidence, effectively “ruling in” or “ruling out” diagnosis, and a value greater than 5 or below
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0.2 provides strong diagnostic evidence; wheretiilikelihood ratio is between 0.5 and 2 the
test has little or no effect on the certainty afghiosis (Jaeschlat al. 1994).

Kullback-Leibler distances

Kullback-Leibler distances, which are measurehefdiscrepancy between two probability
distributions, can be used as measures of thetextevrhich performing a test can be expected to
alter the odds in favour of correct decisions ilifrg in" positives or in "ruling out” negativeé\s
suggested by Lee (1999), this may be helpful imasibns where a choice must be made between
tests. The computation does not require informadioout the pretest probability.

Post-test probabilities and predictive value

If the prevalence of the disease or other tartjebate (i.e., the pretest probability of its peaese)

is entered, the program estimatespbst-test probabilityf its presence (conditional on the test
result). It reports thpositive and negative predictive valuéise predictive value of a positive or
negative test). The positive predictive valuéhis proportion with the target attribute, among
those with positive results; and the negative mted value is the proportion who do not have the
target attribute, among those with negative results

Confidence intervals are estimated by two methods,of which (Zou 2004) takes account of the
variability of the pretest probability (prevalencahd is applied only if the size of the sample in
which prevalence was appraised is entered. Cordelamervals are estimated only if the size of
the “diseased” sample and the size of the “notadisd” sample are available.

The indices displayed in graphs are the prediatalae of a positive test and the predictive value
of a negative test.

Gain in certainty

If the prevalence of the disease (or the pretedigbility of its presence) is entered, the program
provides several measures of the gain in certagstylting from performance of the test (Connell
and Koepsell 1985). The gain in certainty is thange that the test can be expected to make in
the clinical estimate of the probability that theedse is present or absent. Where possible,
confidence intervals are provided.

The gain in certainty is the difference betweenptestest probability — that is, the likelihood,

based only on the known or assumed prevalencethigiatient has or does not have the disease —
and the post-test probability, based on informatienved from the test. Gain in certainty is
computed separately for positive and negativerésstlts. In each instance it is expressed both as
a net difference and as a percentage of the presasability of the presence or absence of the
disease. The total gain in certainty is also caeghuaking account of the probabilities of postiv
and negative results. It is expressed both a$ difference and as a percentage of the maximum
possible gain in certainty. The separate contigibgtof positive and negative results to this
percentage are displayed.

The gain in certainty is determined by sensitivifyecificity, and the prevalence of the disease in
the subgroup in which the test is to be used (lysaapecific clinic population, or patients with a
specific pattern of clinical manifestations); therg of an erroneous estimate of prevalence may
yield very misleading results. Only the total gain is uninfluenced by prevalence.
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The confidence intervals for post-test probabdgi@ed measures of gain in certainty are based on
the assumption that the estimates of sensitivityspecificity are subject to random error but
prevalence is a known fixed quantity. A negatiaéue for the lower confidence limit of any of

the measures of gain in certainty indicates a @seren certainty.

In addition to the above measures, the predictiversary index (PSI) recommended by Linn and
Grunau (2006) is computed, with its 95% confideimterval. This is a measure of total net gain in
certainty, and is claimed to be especially usefd clinical setting.

Numbers of tests per case identified

As a guide to the potential cost of a screeninganm (e.g. in terms of inconvenience or
resources), DESCRIBE reports two numbers: the nuwitests required to identify one case, and
the number of positive tests per case identifiedese numbers are valid only if the test is applied
in a population with the prevalence that is entenedomputed from the sample sizes entered.

The total economic cost of a projected screeningnam is the first number multiplied by the cost
of a screening test, plus the second number mielifdy the cost of the confirmatory
investigations required when a screening test $&ipe, plus setting-up costs and overhead
expenses.

Percentage agreement

The percentage of subjects whose test result d@aavith their true status is sometimes called the
“index of validity” (Taube 1986). It is valid onifthe test is applied in a population with the
prevalence that is entered or computed from theokagsizes entered.

Unlike kappa(see below), the percentage agreement makes neaalbe for chance agreement.
Kappa

A set of alternative weightddappas is computed, showing the agreement between sheetsult

and the true status, after allowing for chanceegent. The weights express the relative
importance (“clinical cost”, undesirability) attaedhto false negatives and false positives (Bloch
and Kraemer 1989, Kraemetral 2002). At one extreme, false positives arensgghas being

100 times more undesirable than false negativesntlght be an appropriakappafor a

diagnostic test that aims to provide definitiveqdrthat a disease is present. At the other extreme
false negatives are regarded as being 100 times nmalesirable than false positives; this might be
appropriate for a screening test that aims to dihgossible cases.

Thekappavaluesapply only to a target population with the disepsar/alence that is entered or
computed from the sample sizes entered.

Prevalence of the disease
Theprevalence of the diseagar whatever other attribute the test aims todat#i) in a target

population is estimated from the prevalence oftpasresults in the population, on the assumption
that the sensitivity and specificity values arelagaple to this population, whether these values
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were measured in samples of diseased and nondissalgiects from this population or from
similar populations. The expected prevalencesuaf and false positive results are reported.

The prevalence of the disease is not estimatéxdiptevalence of positive tests is less than the
false positive rate, if the false positive rateasedas the test’'s sensitivity., or if sensitivity\ised)
plus specificity (revised) = 100%.

Two approximate 95% confidence intervals are cdetmhwone that takes the sensitivity and
specificity to be known constant values , and @oenfputed if the sizes of the samples in which
sensitivity and specificity were appraised are matethat takes account of uncertainty in the
estimation of sensitivity and specificity.

Graphs

If the prevalence of the disease (or other att#)us entereda graph is displayed, showing the
predictive values of positive and negative resuttselation to prevalence, for prevalences ranging
from half to (if possible) double the value thaergered (or derived from the sample sizes
entered). Here is an example:

Predictive value % — of pos.test — of neq. test

80
60

i
P | T T

T T
10 60 80
Prevalence per 100

If the frequency of positive test results is erdera graph is displayed, showing the computed
prevalence of the disease (or whatever other at&ithe test points to) and the computed
prevalence of true positive results (i.e. the piewee of cases detected by the test), in relation t
the frequency of positive test results. The gaméen the curves represents the cases missed by
the test (false negative results). The range ayspl for the prevalence of positive test results
extends from half the value entered by the useth@highest value associated with a disease
prevalence of zero, whichever is higher) to twloe value entered by the user (or the lowest value
associated with a disease prevalence of 100%, ewehs the lower). Here is an example:

Per 1000 — Prevalence — True sve
500
I] T T T T n'_ll;\.'n T T T T | T T T T | T T T T |
300 400 500 600
Positive test results per 1000

If the option for thecomputation of post-test probabilities from thelikood ratiois selecteda
graph is displayed, showing the post-test proldgishi of the disease (or whatever other attribute
the test points to) and the net gain in certaititg Gbsolute difference between the pretest and
post-test probabilities %), in relation to the pettprobability %. The range displayed for the
pretest probability extends from half the valuesesd by the user to (if possible) twice the value
entered by the user. Here is an example:
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% —— Post-test probability — Net gain
30
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Pretest probability

In each of these graphs, the charted values cagaldeby clicking on the relevant line. Accuracy
can be enhanced by “zooming” — any segment of \weatein be magnified by pressi@gyl and
clicking on the graph, and then drawing a rectatglautline the required segment. The graph can
be printed, copied to the clipboard for pastingelsere, or saved in a bitmap (.BMP) file.

METHODS

Sensitivity, specificity, and false positive and ne gative rates

The formulae are:
sensitivity =a/ (a + c)
specificity =d / (b + d)
false positive rate b/ (b +d)
false negative rate &/ (a + )

where a = frequency of positive results in subjects in whihe disease [or other attribute] is present
b = frequency of positive results in subjects in whitva disease [or other attribute] is absent
¢ = frequency of negative results in subjects in mitibe disease [or other attribute] is present
d = negative results in subjects in whom the disgasether attribute] is absent

Confidence intervals are based on the Wilson ghaee(Newcombe and Altman 2000: 46-47).

If the sample sizes on which sensitivity and speitifare based are entered, the sensitivity ocifipiy that is
entered is revised, to make it consistent with aledmumber numerator, if the entered value diffeven the
sensitivity or specificity obtained by rounding itsmerator (calculated from the entered value hadize of the
sample in which it was determined) to the neardgsgier. The revised value is the sensitivity @cécity computed
from the rounded-off numerator.

Chance-corrected measures of sensitivity and specif icity

The formulae fochance-corrected measures of sensitivity&ad specificitySp?) (Brenner and Gefeller 1994)
are:

Sé=1+[(Se-1)/S@,orl-LRN

Sp=1+[(Sp-1)/ Sq,or1-1/LRP
where SeandSp= sensitivity and specificity (expressed as prtipos).

LRNandLRP = likelihood ratios (see below) for, respectivetggative and positive results
Negative corrected values (indicating less thamchaxpectation) are reported as zero.

Confidence intervals are derived from the confideimtervals of the likelihood ratios.

Martin and Femia's chance-corrected measures

Formulae for the asymptotic estimators for charmeectedoverall agreementthe overall index), foagreementvith
respect to "yes" and "no" responses,donformity for predictivity, and for their variances, are provided by Martin
and Femia (2008: Table 6). Before computation,ddiged to each of the four cells in the 2 x 2 tablenprove the

performance of the estimators. The formulae useddtrulating S.E.s depend on whether or not thebars of
"diseased" and "nondiseased" are fixed in advance.
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Youden's index

The formula forYouden's indeis
Se+Sp-1
where @ andSp= sensitivity and specificity (expressed as prtpaos).

The formula for its confidence interval is provideglyouden (1950) and cited by Salmi (1986). Itpppriate if the
numbers of diseased and nondiseased are at least@@ the index is not very close to zero or.one

Thearea under the ROC cunig
(Youden’s index + 1) / Hilden and Glasziou 1996, formula 26).

Diagnostic odds ratio

The formula is

Se* Sp/ (1 -S9 /(1 -Sp, orad/ bc.

The 95% confidence limit is estimated from the dtad error of the log odds ratio (Newcombe and Atra000,: 60-
62).

If a, b, c or dis zero, 0.5 is added to each leefalculating the odds ratio and its standard éfoomulae 5.20 and
5.33 of Fleiss 1981).

Likelihood ratios

For a positive result, the likelihood ratio 8e/ (1 -Sp

and for a negative resultit{d - S / Sp

whereSeand Sp = sensitivity and specificity (expressegraportions).

Formulae for confidence intervals for the likelilotios are provided by Sullivan (1990). They teestandard
error of the log of the ratio (formula 27 of Flek893).

Kullback-Leibler distances
Formulae are provided by Lee (1999).
Post-test probabilities and predictive value

The predictive value % of a positive test (the gest probability % of the disease, after a positiesult) is
(Se.DB / [Se.DP+ (1 -Sp(1 - DP)] x 100
and the predictive value % of a negative test ih-test probability % of absence of the diseafter a negative
result) is
(1 -DP) * Sp/[(1 -DP) * Sp+DP * (1 - Sa] * 100;
where DP is the disease prevalence (known or assumed)essga as a proportion.
SeandSp= sensitivity and specificity (expressed as prtipaos).

The post-test probability % of the disease afteegative result is
100% — predictive value % of a negative test.

Confidence intervals are estimated by the methedsribed by Fleisst al (2003: 156 and 712) and Zou (2004).

The former method provides results very close ts¢hof the procedure (Monsaetral 1991) used in earlier versions
of this program. For confidence intervals for nagapredictive values, appropriate changes areentadhe

published formulae. To avoid zero division, 0.adk&led to cell values if necessary when computngitvity and
specificity.

Zou's method, which is a modified logit procedua&es account of variability of the pretest prdhigb In its

computation, 0.3 is added to humerators and Odgbt@minators when calculating the pretest proltplslensitivity,
and false positive rate.
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If a positive or negative predictive value is 1QG#e corresponding upper confidence level is thieel00%.
Gain in certainty

Gain in certaintyis computed by formulae provided by Connell and sl (1985). Confidence intervals are
estimated by substituting the confidence limitstfa relevant post-test probability (using the prbae of Fleiss et al.
2003) or (for the expected total net gain in cattgifor Youden’s index in the formulae for gaindertainty.

The predictive summary indds computed a®VP + PVN - 1 (Linn and Gruneau 2006), and expressed as a
percentage, where PVP is the predictive valuepifsitive test and PVN is the predictive valueaafegative test. Its
95% confidence interval is estimated by a formumalagous to that used for Youden’s index (YoudeBid)9and is
appropriate if the number s with positiive and riegetest results are at least 20, and if the irndaot very close to
zero or one.

Kappa
The formula for alternative weighté@ppa is in the footnote to Table Il of Kraemetral. (2002).
Prevalence of the disease
The formula for pevalence of the diseager other target attribute) (Rogan and Gladen 198
Prevalence =t(+ Sp— 1) / Se+ Sp—1)
where t = prevalence of positive tests
SeandSp= sensitivity and specificity (expressed as prtipos).

A computed prevalence of less than 0 is chang@d and one of more than 100% is changed to 100%.

Confidence intervalfor the prevalence are based on the two variameeuiae provided by Rogan and Gladen (1978:
75) and (also) by Greiner and Gardner (2000).

Theprevalence of true positive resuisscomputed as Prevalence x Sensitivity, and ithisubtracted from the total
prevalence of positive results to provide finevalence of false positive results
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L2. COMPARISON OR USE OF TWO SCREENING OR
DIAGNOSTIC TESTS

This module is applicable to “yes-no” screening drajnostic tests for the presence or absenc
a disease (or any other attribute) that have bpprased against a “gold standard” that defines
subject as a “case” or a “noncase”. It is appleab tests that yield a range of results, if @k&an

cutting-point is used. The program compares this t@and appraises the validity of the combing
tests. [The term “disease” may refer to whateteibaite the test or measure aims to indicate.]

The basic entries are the test results in samplesses and noncases. If the tests were used ir
same subjects, the paired results (e.g., “Testgkipe, Test B negative”) are required.

If the tests were used in the same subjects arld sgandard” tests were used for all subjects, t
prevalence of the disease in the target group pulation can be entered (otherwise, the combi
samples are taken to be representative of thettgrgep). Also, the weight to be given to false
negatives (FNs), relative to the weight given tedgositives (FPs), can be entered. The weig
express the relative undesirability (“costs”) ofd=dhd FPs. FNs should be given a large weigl
the aim is to detect all cases, and a small wefighé aim is to establish a definitive diagnosis.
a weight is not entered, equal weight is givenNis Bnd FPs.

If the two tests were used in the same subjectsgoid standard” tests were used for all subjec
the program reports theharacteristics of the tes{sensitivity, specificity, false positive rate,
Youden'’s index, diagnostic odds ratios, likelihoatos, and post-test probabilities) and provids
acomparison of sensitivities, false positive rateand specificities. Two indices that take
account of the weights given to FNs and FPs areigeed risk (“expected loss”) andkappa,with
significance tests for the differences betweertekts. Anequivalence tests offered, comparing
the proportions of correct results in relationte tgold standard”; this requires paired data.(e.(
“Test A correct, Test B incorrect”); the bounds‘efuivalence” must be defined, by specifying
the largest difference that is to be regarded gkgilele (e.g. 0.05). Sensitivity, specificity and
post-test probability are computed for twmnbined testsdone in parallel or in either sequence.

If the two tests were used in the same subjectsgold standard” tests were restricted to subjec

with positive results, the program providesomparison of sensitivities, false positive rateand
specificities. If these findings do not clearly indicate that oest is preferabldsP: TP ratios
(false-positive:true-positive ratipare provided.Relative sensitivity and the relative false positi
rate are computed for tltembined testsdone in parallel or in sequence.

If the two tests were used in different subjedischaracteristics of the teststhat are reported
are sensitivity, specificity,. chance-correctedss@rity and specificity, Youden's index, diagnast
odds ratios, and likelihood ratios. The prograowvples acomparison of sensitivities, false
positive rates, and specificities.
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Characteristics of the tests

Sensitivityrefers to the frequency of positive results inesagndpecificiyy and thefalse positive
rate refer to the frequency of negative and positislts, respectively, in noncases.

If the tests were appraised in different samplessiivity and specificity must be entered, and the
program may revise the entered value to make gistant with a whole-number numerator. This
is done if the entered value differs from the snsi or specificity obtained by rounding its
numerator (calculated from the entered value aadite of the sample in which it was
determined) to the nearest integer.

“Chance-corrected” sensitivity and specificifgneasures proposed by Brenner and Gefeller 1994)
make allowance for the occurrence of chance agneebatween the test result and the true status.
It is the proportion of positive results, amongesgghat can be attributed to the presence of the
disease rather than to chance, chance agreemagtdstimated by the false positive rate.
Similarly, chance-corrected specificity is the ppdn of negative results, among noncases, that
can be attributed to the absence of the disedserrditan to chance (estimated by the false
negative rate). A value below zero means thatite@hsor specificity is lower than might be
expected by chance. These measures do not taleséeipeevalence into account.

Youden's indebs the sum of sensitivity and specificity (expessas percentages) minus 100. It
has been termed the "per cent gain in certaintgh(@ll and Koepsell 1985). It is the expected
total net gain in certainty, as a proportion of th@ximum possible gain (see below)., and has been
termed the “maximum proportional reduction in expdaegret”, i.e. the maximum possible
reduction of diagnostic uncertainty, whatever thetgst probability of the disease (or other
attribute) (Hilden and Glasziou 1996). A Youdendeax of 0 means that the test outcome is
independent of the presence of the disease, antdghis useless. If Youden's index is less than 0O,
the test is misleading.

Thediagnostic odds ratigDOR) is the ratio of the odds in favour of a pesi result in cases to

the odds in favour of a positive result in noncadess equivalent to the ratio of the likelihood
ratios for positive and negative test results. ighiDOR means that the odds of a positive test are
relatively high in cases. A value of 1 or less neethat the test has no discriminatory value. The
DOR rises with increasing sensitivity or specificitising steeply as sensitivity or specificity
becomes near perfect (Glas et al. 2003), and negahiinity if both sensitivity and specificity are
100%. If both are 70%, the DOR is 5.4; if both 8286, the DOR is 16; if both are 90%, the DOR
is 81; if both are 95%, the DOR is 361; and if bata 99%, the DOR is 9801.

Thelikelihood ratiois the ratio of the prevalence of a specific resutases to its prevalence in
noncases. Likelihood ratios are calculated foitp@sand negative test results.

Thepost-test probabilityf the disease, which is conditional on the pet{eobability (i.e., the
disease prevalence in the target group or populatiefers to the probability if the test is positi
(unless otherwise stated) or negative. The priedioalue of a positive test, or positive predietiv
value, is the post-test probability of the diseasel the predictive value of a negative test, or
negative predictive value, is the post-test prdiigtaf absence of the disease.
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Comparison of sensitivities, false positive rates, and specificities

If the tests were applied to the same subjects fairéd results are entered), the program
computegelative sensitivity, relative specificity, and tletative false-positive ratethat is, the
ratios of the values for Test A to the values fesflB, with 95% confidence intervals for the
former two indices. A test that has a higher gefitsi than the other, without having a higher
false-positive rate than the other, can be regaadquteferable (ignoring considerations of cost,
convenience, etc.). Also, the program dsigsificance testfor the differences between the
sensitivities and between the specificities.

According to computer simulations (Chegigal. 2000), the relative sensitivity estimate is
unbiased if the true number of cases (diseaseeédspexceeds 30, and the relative false-positive
rate if the number of noncases exceeds 200. Tiedence intervals are adequate if the number
of cases or noncases exceeds 150.

If the tests were applied to different subjects, phogram reports the differences between the two
sensitivities, between the two specificities, betwéhe two false-positive rates, and between the
chance-corrected versions of the indices, withrtB&% confidence intervals.

Risk (“expected loss”) and kappa

If the two tests were used in the same subjectSgoid standard” tests were used for all subjects,
two indices that take account of the weights giteeRNs and FPs are provided (Bloch 199igk
(“expected losy and kappa with significance tests for the differences betwéhe tests.

“Risk” expresses the probability that a test willgl false results (positive or negative), whereas
kappaexpresses the test's desirable properties (afolapility of false results)Kapparanges
from 1 (no expected loss), through 0 (the loss etqukby chance alone) to -1 (more loss than
expected by chance).

Both indices apply to use of the test in a groupapulation with a specific defined disease
prevalence; this might be 40%, for example, inlacted tertiary hospital population, and only 1%
in a primary care setting. The assumed diseas@lprece should be entered, unless the combined
samples of cases and noncases are representatineetafget population.

The comparisons based on the two indices may beceegb to yield similar conclusions, unless the
probabilities of positive findings are very diffatdfor the two tests. The significance tests are
based on normal approximations, and should beetlesith caution if samples are small; this
applies especially to the tests kappa

FP:TP ratios

If the tests were applied to the same subjects;dmid standard” tests were done only if results
were positive, FP:TP ratios (false-positive:trueipee ratios) may be computed. They are not
provided if a comparison of sensitivities and fgissitive rates clearly suggests that (ignoring
considerations of cost, convenience, etc.) onadestperior to the other, e.g. with a higher
sensitivity and a lower false positive rate, ahi total number of subjects tested is not entered.

The FP:TP ratio (Choc#t al. 1997) is an estimate of the number of extra fatsstives that
would be detected in a target population with andef disease prevalence when the test with a
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higher sensitivity is used, for each extra truatpasfound, in comparison with the other test.
Estimates are provided for disease prevalence8,d( 10, 5 and 1 per 1000, and a formula is
provided for making estimates for other prevalences

The FP:TP ratio may be helpful if a test attaitsgier sensitivity at the expense of a higher false
positive rate; the ratio then expresses the tréid®de considered when deciding which test to
use.

The estimates of FP:TP ratios assume that thedesiadependent, and that all subjects who are
negative on both tests are non-diseased.

Equivalence test

This test compares the two tests with respectdin gfroportions of results (positive or negative)
that accord with the “gold standard” (Las al 2002), after entry of the largest difference thdo
be regarded as negligible (e.g. 0.05). Pairedal&taequired (e.g., “Test A correct, Test B
incorrect”).

Two null hypotheses are tested. These are thetingpes that there is more than a specified
“negligible” difference in each direction — i.ehat the first proportion is more than negligibly
higher than the first, and that the second is nttwae negligibly higher than the first. If botksts
yield significant results, this supports the al&ives to the null hypotheses, namely that both
these one-sided differences are negligible — thahe proportions are equivalent. If only one tes
is significant, this indicates that one proportismt least as high as the other. The largereof th
two P values is displayed as the P value for thivatence test (Liet al 2002).

Combined tests
If the two tests were used in the same subjeasptbgram appraises a combination of the tests.

If “gold standard” tests were used for all subjesensitivity, specificity and the post-test
probability of positive results for a combinatiohtioe tests are computed, conditional on whether
the overall result is seen as positive if eithst i positive, or only if both tests are positive.
These are the approaches sometimes ter®BtN' (“ SRecific: Positive result rule$N disease”)

or “Believe the positive”, andSNOUT (“ SeNsitive: Negative result rule®UT disease”) or
“Believe the negative”. For the first approachealative results are presented, depending on
whether both tests are always done, or whetheopeance of Test A depends on the result of
Test B orvice versa The second approach is conditional on performarfidoth tests

If “gold standard” tests were restricted to sulgegith positive results, the program computes the
relative sensitivity and relative false positiater of the combined tests (taking the result as
positive if either test is positive) , in companseith each test separately. The results apply to
performance of both tests in parallel, or to perfance of both tests only if the first is negative.

METHODS

Characteristics of the tests

The formulae are:
Sensitivity =a/ (a + )
Chance-corrected sensitivity 100 + [Se- 100) / S
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Specificity =d / (b + d)

Chance-corrected specificity100 + [Sp- 100) / S¢

False positive rate &/ (b + d)

Youden's index Se+ Sp— 100

Diagnostic odds ratio Se* Sp/ (1 -S9 / (1 -Sp

Likelihood ratio for a positive result Se/ (100 -Sp

Likelihood ratio for a negative result(200 -S¢g / Sp

Post-test probability (positive test) S€.DB / [Se.DP+ (1 -Sp(1 - DP)]

Post-test probability (negative test)Sp(DB / [(1 - S@DP) + SH1 - DP)]
where a = positive result in subjects in whom the disdas®ther attribute] is present

b= positive result in subjects in whom the diseaseofher attribute] is absent

¢ = negative result in subjects in whom the disg¢asether attribute] is present

d = negative result in subjects in whom the disg¢asether attribute] is absent

Se andSp= sensitivity and specificity (expressed as peiages).

DP is the disease prevalence per 100
Negative chance-corrected values (indicating less thance expectation) are reported as zero.

If the tests were done in different samples, tmsisigity or specificity that is entered may beisad, to make it
consistent with a whole-number numerator. Thidoise if the entered value differs from the senigytior specificity
obtained by rounding its numerator (calculated ftbmentered value and the size of the sample iohwhwas
determined) to the nearest integer. The revis&dbva the sensitivity or specificity computed fréhe rounded-off
numerator.

Comparison of sensitivities, false positive rates, and specificities.

If the tests were done on the same subjects, McN&sts are used to appraise their differencesnsisvity and
specificity (Chocket al 1997).

Relative sensitivity and the relative false positrate, and their 95% confidence intervals, aremded by formulae
1to 3 of Chengt al (2000). Relative specificity is derived from ttetative false positive rate.

Confidence intervals for the differences in seniitj in false positive rates, and in specificitgdased on the
Wilson procedure (Newcombe and Altman 2000: 46-47).

Risk (“expected loss”) and kappa
Formulae are provided by Bloch (1997).

Estimation and comparison ogk are based on formulae 3-8 if the combined sangiesaken to be representative of
the study population, and on formulae 9-15 if safgasamples of cases and non cases are used.

Estimation and comparison képpaare based on formulae 18-20 or (if separate sangbleases and non-cases are
used) formulae 21-26. There are two misprint§ormula 25 the multiplier

(pi - 1 +r)/(1 - pi) should be changed (@i - 1 +r)/pi; and in the formula for P2 (page 88§p2should be
changed to (1 S).

FP:TP ratios

FP:TP ratios for target populations with variousyaences are estimated by formula 3.9 of Creack (1997. This
formula requires estimates of the numbers of casdsnoncases with two negative findings in the $adpopulation
(d* andD*, respectively).

The number of cases with two negative findingsstingated by the formula
d*=p-c|/a
where a = cases with both tests positive
b = cases with only Test A positive
¢ = cases with only Test B positive.
This is based on the assumption that the two &estindependent when applied to the cases.
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The number of noncases with two negative findilys, is estimated by subtracting the sum total of ectisjwhose
results are entered, plds, from the total number of subjects tested.

Equivalence test

The program uses a test based on restricted maxlikelthood estimation (RMLE), without a continuitprrection.
This method, described by Nam (1997), has beemated and recommended by ldual (2002), who explain how
to replace the standard errors in the basic foren(ftrmulae 4 and 5) with RMLE-based values.

Combined tests

The relative sensitivity of the combined tests;amparison to Test A or Test B, is calculated hydilng the number
of true positives for the combined tests withtikenber of true positives for test A or B. Diffeterumbers of true
positives for the combined tests are used, depgrah whether both tests are used or whether peaioce of the

second test is conditional on the result of th&t.fir

Relative false-positive rates are calculated instn@e way, using the numbers of false positives.
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L3. META-ANALYSIS OF STUDIES OF A"YES-NO"
SCREENING OR DIAGNOSTIC TEST

This module is for use in meta-analyses of studig¢be sensitivity and specificity of a "yes-no"
screening or diagnostic test. It compares and amslihe study findings. It can be applied to
measures of the presence or absence of any agtrifmit necessarily a disease. It can be used f

test that yields a range of results, if a singléanm cut-point is used to determine whether trst te

is positive or negative..

Optionally, the studies can be divided into categgre.g. in accordance with differences in the t
procedure, the characteristics of the subjecteguality of the study. The program then
analyses each group of studies separately, asawalhalysing the total set of studies. The progt
can also appraise the effect of a covariate ometbtés accuracy.

The required entries are sensitivity, specificatyd the sizes of the samples in which they were
measured; that is, the number of "cases" (subyeatstruly have the disease or attribute, accord
to some "gold standard") in whom sensitivity wasaswged, and the number of "noncases" in

DI a
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whom specificity was measured. Optional extragfaestudy category (1, 2, etc.) and a covariate.

The program compares the studies with respeckttettt'sensitivity, specificity, likelihood

ratios for positive and negative result8agnostic odds ratio, Youden’s indexand thearea
under the ROC curve It displays forest plots for sensitivity, spedify, the diagnostic odds ratig
and Youden'’s index, permitting visual appraisaheferogeneity, as well as providing tests and
measures of heterogeneity.

Overall values of the measures of test performaneeomputed, for use if the differences are
deemed small enough to justify this. For sensyti\gpecificity, and Youden’s index, it provides
pooled and precision-weighted estimates; for Ih@did ratios (for positive and negative results)
provides pooled, precision-weighted.,Mantel-Haehgeed-effect) and Dersimonian-Laird
(random-effects) estimates; for diagnostic oddssat provides pooled, Mantel-Haenszel, and
Dersimonian-Laird estimates.

Therelationship between sensitivity and specificitys demonstrated in a scattergram, and a
summary ROC curvésummarizing this relationship) is fitted to tih&a. The discriminative
capacity of the test is summarized by @teindex, which is the value of sensitivity and spedy
at the point where (according to the summary RO@&)uhese two proportions are equal. If the
are two or more groups containing 10 or more stjdhee significance of differences between th
Q* values is tested.

To permit appraisal dhe effect of a covariatethe program computes a linear regression equa
that includes the covariate, and uses it to progigeaph comparing diagnostic odds ratios
predicted from regression equations that do andodlanclude the covariate, as well as a graph
comparing separate ROC curves computed for eadly diaking the covariate into account).
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L3. META-ANALYSIS: “YES-NO” TEST

Sensitivity and specificity

To permit appraisal of the heterogeneity of thesgetities and specificities reported in different
studies, the ranges of their values are reportedst plots are displayed (see example, below), and
tests and measures of heterogen@@ge below) are provided. The graphs show 95%d=mce
intervals, and results based on small samples (lB@jeand larger samples are shown in different
colours. Here is an example:

SENSITIVITY %
100 1' T 1' | b
ﬁﬂi | | + |
o 5 1w
Study no.

Optionally, a list of sensitivities and specifiesi with their 95% confidence limits is displayed.
The sensitivities and specificities may differ blig from the entered values, as the program
recalculates them to reduce the effect of roundiffig-

Two overall summary sensitivity and specificitywas are computed and displayed in the graphs
(on the right, in red and blue), with their 95% fidence intervals. One overall value is obtained
by pooling the studies’ results (which is equivaterweighting them by sample size), and the other
by weighting them by the inverse of their variang@gcision-weighting).

The overall values may be useful if there is litteterogeneity, but otherwise their appropriateness
has been questioned, especially in view of theipibisgthat different studies may use different
criteria (e.g., different degrees of abnormality) he presence of the disease or other attribute
under study (Irwiget al. 1995). Sensitivity and specificity are generailyersely correlated, and
meta-analytic procedures that take account of betisitivity and specificity, such as the use of
likelihood ratios, diagnostic odds ratios, or a susmy ROC curve, are recommended.

Relationship between sensitivity and specificity

The program reports the correlation between seitgiand specificity (Spearmanito), and
provides a scattergram (see example, below) dematingt the relationship between sensitivity and
the false positive rate (100% minus specificity).the scattergram, results based on samples of
different sizes are shown in different colours.

SENSITMTY %
10075, o ——
!/}F *
I] 1IL T T T I T T T I T T T I
0 20 40 60
FALSE POSITIVE RATE %

A summary ROC curve superimposed on the scattergram. This is\gectitted to the data, that
demonstrates the trade-off between sensitivityspatificity. It is based on the principle thatrthe
is a linear relationship between the logit of sevity and the logit of the false positive rategth
program uses an equation based on ordinary unvegidgbast-squares regression (Mostesl.
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1993), a method that generally provides similat (i identical) results to those using other
regression equations; the unweighted analysisheadisadvantage that more importance is not
given to larger studies, but it avoids a possilée bf a weighted analysis, which tends to give
more weight to less to studies reporting less amyufirwig et al.1995). The regression
coefficients and their standard errors are repperd the significance of theeta(slope)
coefficient is tested.

The closer the curve comes to the top left corfdnegraph, where both sensitivity and specificity
are 100%, the better the test. For comparisorgridyeh also displays a dotted line representing the
curve of a completely nondiscriminatory test. @optest will have a ROC curve close to this line.

The ROC curve is a useful way of combining heteneges test results, on the assumption that the
differences are due to variation in the threshakisd to define positive and negative results; snles
this is so, its advantage is open to question (Beék1a).

Q* index

TheQ* index, which is the value of sensitivity and spiedy at the point where (according to the
summary ROC curve) these two proportions are equay, be used as a summary measure of the
discriminative capacity of the test (Mosstsal 1993: appendix). Its value and estimated stahdar
error are reported, and it is shown in the scath@ngas a small circle (see example, above).
Unless the ROC curve is anomalous, Q* is the patimthich the curve shoulders most closely to
the desirable top left corner, although this maybeoreadily apparent because of the use of
different scales in the X and Y axes of the graph.

Q* should be used with caution, since in some &itna it may lead to misinterpretation (Stengel
et al.2003); it hardly distinguishes highly sensitive baspecific tests from worthless procedures,
and tests with poor sensitivity may yield similar v@alues, regardless of their specificity.

If there are two or more groups containing 10 orergiudies, the significance of the differences
between theiQ* values is tested.

Likelihood ratios

The likelihood ratio is the ratio of the probalyildf a specific result in cases to its probability
noncases. The program computes likelihood ratippdsitive and negative tests (positive and
negative likelihood ratios) for each study, angors the overall ranges. Tests and measures of
heterogeneity (see below) are provided. Optionallyst of the positive and negative likelihood
ratios is displayed.

Four overall summary measures are reported for idaathood ratio, with their 95% confidence
intervals. Their use may be considered justi@abthere is little heterogeneity.

The first overall value is obtained by simply poglithe studies' primary results; the second is
based on precision-weighting (weighting by the meeof the variance), and is not recommended if
there are studies with small numbers of subjectikthe likelihood ratio is close to zero (Lui 2004
69); the third is a Mantel-Haenszel (fixed-effezg}jimate, and the fourth is a Dersimonian-Laird
(random-effects) estimate. The fixed-effect eateris based on a homogeneity assumption,
whereas the random-effects estimate takes accobuneaplained sources of between-study
heterogeneity. But in situations where the randdfeets estimate leads to important changes in
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inferences, there is often so much heterogenestyttte value of both the fixed-effect and random-
effects estimates is questionable (Rothman andnGnee 1998: 667).

A likelihood ratio greater than 10 or less thani@dicates that the test will provide convincing
diagnostic evidence, and a value greater thanbglomw 0.2 provides strong diagnostic evidence,
whereas if the likelihood ratio is between 0.5 arttie test has little or no effect on the certaofty
diagnosis (Jaeschiat al. 1994).

Diagnostic odd ratios

The diagnostic odds ratio (DOR) is a measure ektg discriminatory power that takes account of
both sensitivity and specificity, but without drgguishing between the effects of sensitivity and
specificity. It is the ratio of the odds in favaefra positive result in subjects with the dise@se
other attribute) to the odds in favour of a positresult in subjects without the disease, and is
equivalent to the ratio of the likelihood ratios fmsitive and negative test results. A value of 1
less means that the test has no discriminatoryevaline DOR rises with increasing sensitivity or
specificity, rising steeply as sensitivity or sgetly becomes near perfect (Glas et al. 2003), and
reaching infinity if both sensitivity and specifigiare 100%. If both are 70%, the DOR is 5.4; if
both are 80%, the DOR is 16; if both are 90%, tka&R0s 81, if both are 95%, the DOR is 361; and
if both are 99%, the DOR is 9801.

The program computes the diagnostic odds ratiedch study, reports the overall ranges, displays
a forest plot (see example, below), and provitdets and measures of heterogeneiytionally, a

list of the diagnostic odds ratios is displayedhe Graphs show 95% confidence intervals, and
results based on samples of different sizes anershodifferent colours. Mantel-Haenszel and
random-effects estimates are shown in red and blue.

Reasonable consistency of the diagnostic oddssratiggests that they could have originated from
the same ROC curve (Deeks 2001a).

DIAGNOSTIC ODDS RATIO
1000 \ +
100 + P
10
| T T T T | T T T T | T T T
0 5 10
Study no.

Youden'’s index

Youden's indebs the sum of sensitivity and specificity (expessas percentages) minus 100. It
has been termed the "per cent gain in certaintgh(@ll and Koepsell 1985), and is the “maximum
proportional reduction in expected regret”, i.e thaximum possible reduction of diagnostic
uncertainty, whatever the pretest probability @& tlisease (or other attribute) (Hilden and Glasziou
1996). A Youden's index of 0 means that the tektarue is independent of the presence of the
disease, and the test is useless; if Youden's iizdess than 0, the test is misleading.

An advantage of the use of Youden’s index in met@yees is that it is not much affected by

differences between studies in the threshold dmgipoint used to distinguish between diseased
and healthy subjects, i.e. by the use of diffedaiinitions of the disease (Bohniegal 2007).
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The program computes Youden’s index and its 95%iadence interval for each study, reports the
overall ranges, displays a forest plot (see exanigllow), and provides a Mantel-Haenszel
estimate The graph shows 95% confidence intervals, andtsebaked on samples of different
sizes are shown in different colours; the Mantegihtzel estimate is shown in red.

YOUDEN'S INDEX
1.0
¥ + N } ol
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| T T T T T T T T | T T T T | T
] 5 10 15
Study no.

Thearea under the ROC cur¥e computed from Youden'’s index (Hilden and Glasz1996), for
each study and for the combined (Mantel-Haensatitnate. The area under the ROC curve
expresses the probability that the test will catya@ank a randomly chosen person with the disease
and a randomly chosen person without the diselés®alue is 50% if the test does not
discriminate. As a rough guide, an area of 97%nore indicates excellent discriminatory power;
an area of at least 92% very good discriminatowygroand an area of at least 75% good
discriminatory power (Simon 2004).

Effect of a covariate

The program permits entry of a covariate that mélyence the test’'s accuracy. This might be (or
example) a numerical measure of some characteoifstiee subjects or of the quality of the study.
The program then fits a regression equation tl@tides the covariate to the data (using least-
squares regression, without weighting). This @quas used to predict a diagnostic odds ratio for
each study, for comparison with the diagnostic adtis predicted from a regression equation that
does not include the covariate. The exponentith@fegression coefficient for the covariate is
reported, as an indication of the multiplicativéeet of the covariate on the diagnostic odds ratio
(Deeks 2001b) .

If the studies have been divided into two categoiae three or more ordered categories that can be
regarded as equally spaced, it may be helpfulgeatthe analysis, entering the category number
as a covariate. If there are two categories —ssudith and without some feature — the exponential
of the regression coefficient for the covariateigates the multiplicative effect of the featuretba
diagnostic odds ratio.

The pairs of odds ratios are shown in a graphheifvalues do not coincide, as in the following
figure, this indicates that the covariate affebtstest’'s accuracy. The odds ratios based on model
that do and do not include the covariate are shiavpurple and yellow respectively. The graph
also shows the observed diagnostic odds ratiosfcaoded according to sample size) if they
differ from the predicted values, and (on the figiantel-Haenszel and random-effects estimates.

Observed and predicted diagnostic odds ratios
10
1 e o * oy +
0.1 a a] o o
0.01
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As suggested by Moses$ al(1993), the regression equation is also usedoasia for a separate
ROC curve for each study, taking account of theealf the covariate in the study together with
the information in the summary ROC curve. Theseeasj which are displayed in a graph (colour-
coded in accordance with sample size), will beelmssuperimposed if the covariate has little or
no effect on accuracy. In the following examples tovariate is seen to have a strong effect.

SENSITIVITY %
100

I] LI I | I 1T 1T I LI I LI L I T T

0 10 20 30 40
FALSE POSITIVE RATE %

Heterogeneity tests and measures

The heterogeneity tests (for sensitivity, spedyidikelihood ratios, and diagnostic odds ratios)
should be interpreted with caution, since their gois low; if the result is significant at the 0.05
level, the hypothesis of homogeneity can be regediat "a high p-value ... does not show that the
measure is uniform, it only means that heteroggneitvas not detected by the test" (Rothman and
Greenland 1998: 276).

Two measures of heterogeneity are provided: H astpiared, with their approximate 95%
intervals. An H value of less than 1.2 suggesseabe of noteworthy heterogeneity, whereas a
value exceeding 1.5 suggests its presence, etlem Iifeterogeneity test is not significant. |-
squared expresses the proportion of variationdllatbe attributed to heterogeneity rather than to
sampling error; a value greater than 50% may bsidered substantial heterogeneity (Higgins and
Green 2006).

Graphs

The forest plots and the scattergram describedeabrrdisplayed for the total set of studies aind (i
the studies have been grouped) for each groupudiest. The graphs comparing predicted
diagnostic ratios and comparing ROC curves ardalisfd only if a covariate has been entered.

It is not possible to “zoom” or read the valueshase graphs by clicking. The graphs can be
printed, copied to the clipboard for pasting elsesehor saved in bitmap (.BMP) files.

A graph may disappear if the program is minimized then restored. To recover it, click on
“Next graph” or “Back”, and then return to the ragd graph.

METHODS

To remove the effect of rounding-off of the entesedsitivities and specificities, they are recalted after rounding
their numerators (calculated from the entered dzfap the nearest integer.

Sensitivity and specificity
Confidence intervals for the individual sensitigtiand specificities, and for the overall valudsutated from the

studies' pooled numbers of true and false positivel negatives, are computed by the Wilson sestartethod
(Wilson 1927), as described by Newcombe and Alt(@2800:46-7).
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The precision-weighted overall values are calcdlatethe formula

Py =2 (W.P) / 2W
and its 95% confidence intervals are
Pw - (1.96 / VXW) andP,, + (1.96 VX W)
where W = 1/ variance oP; =N; / PQ;
Pi = sensitivity =a/ (a + C) (calculated after adding 0.5 &andc if either is 0)
orspecificity =b / (b + d) (calculated after adding 0.5 eandd if either is 0)
Q=1-Pi
a = positive result in subjects in whom the disdasether attribute] is present
b = positive result in subjects in whom the disdas®ther attribute] is absent
€ = negative result in subjects in whom the disg¢asether attribute] is present

d = negative result in subjects in whom the disg¢asether attribute] is absent
N; = a + c (for sensitivity) orb + d (for specificity).

Heterogeneity is tested by contingency table aisma(ar 1998; 488-489). If the sensitivities oesfficities are all
zero, or al 100, 0.0000001 is added to a zero devadon to avoid division by zero.

The correlation between sensitivity and specifidtyneasured by Spearman’s rank correlation caeiffficho,

allowing for ties (Siegel and Castellan 1988: 23432 using an adaptation of the SPEAR proceduRrésset al.

1989: 538-539. If there are 30 or fewer studies,significance of rho is appraised by the useiti€al levels for one-
tailed P = 0.10, 0.05, 0.025, 0. 01, 0.005, an@D(@iegel and Castellan 1988: Table Q). If tle@eeover 30 numbers,
at-test is used (Siegel and Castellan 1988: 243nédet Presst al 1989: formula 13.8.2, p. 537).

Summary ROC curve and Q*

The summary ROC curve is based on an ordinary-sepsires regression equation (Irneigal 1995: formula 1). .
Before computation, 0.5 is added to each of the dells in the table to deal with the possibilifyzero cells, as
suggested by Moses al. (1993) and Devillet al (2002); this correction biases the curve congiedy, reducing the
test's discriminatory capacity. In rare instantles,ROC curve cannot be computed..

The regression equation is:
D=a+pS
where D = log(diagnostic odds ratio) = logitPR) - logit(FPR)
S=logit(TPR + logit(FPR)
TPR= sensitivity
FPR= false positive rate
a, B = regression coefficients

Using the regression coefficients, a valudBRis then computed for each valueF#¥R (Moseset al 1993: formula

1), and the results are plotted on a graph whoss are sensitivity and the false positive ratee Jignificance off
(the slope coefficient) is tested by formula 7.1&omitageet al (2003).

The ROC curve does not extend beyond the highestreéd false positive rate.
Q* and its standard error are computed by the forenptavided by Mosest al. (1993: 1314)
Likelihood ratios
The likelihood ratios for a positive teétRP) and for a negative tefitRN) are ratios of proportions, and the estimation
of confidence intervals for overall values and hageneity tests are based on procedures applitabétios of
proportions (risk ratios).

LRP = sensitivity / (1 - specificity)

LRN= (1 - sensitivity) / specificity

If sensitivity or specificity is 0 or 100%, 0.5aslded to the numbers of positive and negative bestye computation.

Thepooled LRP and LRBEre based on the totality of the cumulated prinnasyilts.
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Their 95% confidence intervals use the log of tkelihood ratio (Fleiss 1993, formula 29-35; L@, formula 4.2):
95% CI = exp(lod(R) - 1.965) to exp(log(R) + 1.965

where S=standard error of logR) =v[1/a—-1 /@a+c)+1/b—-1/ (b+d)]

LR=LRPorLRN

a = true positives (fotRP) or false negatives (fdfRN)
b = false positives (foLRP) or true negatives (fdtRN)
c = false negatives (fdrRP) or true positives (fotPN)
d = true negatives (fdtRP) or false positives (fotRN)

For theprecision-weighted estimatesd their confidence intervals, the logs of eaadyss LR values are weighted by
the inverse of their variances (Fleiss 1993, foaaul, 2, 4; Lui 2004, formula 4.9).

TheMantel-Haenszel estimate$ the overall likelihood ratios are computed bynfiulae 4.10 to 4.12 of Lui (2004),
and theDersimonian-Laird estimatby the formulae provided by Deeks (1999) and Detlsd. (2001).

Theheterogeneityestsare based on a comparison with the Mantel-Haemrstighate (Deeks 1999, Deedtsal. 2001),
and use the adjustment suggested by Ligditd. (1998) (formula 4.14 of Lui (2004). The heterogiénindex and-
squaredare based on the unadjusted test statistic (L4 2fdbrmula 4.13).

Diagnostic odds ratios

The diagnostic odds ratio is each study is calediasad / bc
where a = positive results in cases, plus 0.5
b= positive results in noncases, plus 0.5
¢ = negative results in cases, plus 0.5
d = negative results in noncases, plus 0.5
Its standard error and 95% confidence intervakatienated by the logit method (Morris and Gardr@d@ 61).

Thepooled diagnostic odds ratis based on the totality of the cumulated dathe Miantel-Haenszel estimagand its
95% confidence interval are computed by formulamvigied by Deeks (1999) and Deeksal. (2001), and the
Dersimonian-Laird estimatand its 95% confidence interval by formulae 70e7&leiss (1993).Heterogeneitys
tested by formula 22 of Fleiss (1993).

Youden’s index

The formula forYouden's indeis
Se+Sp-1

where  ®andSp= sensitivity and specificity (expressed as prtpos).

The formula for its confidence interval is provideyl Youden (1950) and cited by Salmi (1986). kjpropriate if the
numbers of diseased and nondiseased are at leat®@ the index is not very close to zero or.one

The Mantel-Haenszel estimator is computed by foanlland its confidence interval is based on fdamu of
Bohninget al. (2007).

Thearea under the ROC cunig(Youden’s index + 1) / HHilden and Glasziou 1996, formula 26).
Effect of a covariate

The regression equation that includes the covafitseset al 1993) is:
D=a+pS +yC
where D = log(diagnostic odds ratio) = logitPR) - logit(FPR)
S=logit(TPR + logit(FPR)
C = covariate
TPR= sensitivity
FPR= false positive rate
a, B,y = regression coefficients
Before computing TPR and LPR, 0.5 is added to e&the four cells in the table.
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The equation is computed by an adaptation of AbaiasiaSalih’s Fortran MULREG multiple-regression paorg
(Salih 2003), and standard errors of the regressiefficients by formula 17.5.3 of Snedecor andi€an (1980).

Using this equation, a ROC curve is computed fehesiudy, as described by Mosgsal (1993: 1310). A value of
TPRis computed for each value BPR (Moseset al 1993: formula 1), substituting + yC) for A,and g for B, in the
formula and the results are plotted on a graph whose ageseasitivity and the false positive rate. Oamagily the
curves are not shown because the computation esqjieigs of a negative number.

Heterogeneity measures
Themeasures of heterogeneitil andl-squared are described by Higgins and Thompson (2062)s computed by

Higgins and Thompson's formula 6, and increaseld todicating absence of heterogeneity, if it ldsm 1. A test-
based interval is computed by Method IHsquaredand its 95% interval are computed fréimby formula 10.
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L4. APPRAISAL AND USE OF SCREENING/DIAGNOSTIC
TESTS WITH A RANGE OF RESULTS

This module is applicable to screening and diagotssts that yield a range of results. The test
results may be quantitative (e.g. the concentraifasubstance in the blood, or the number of
diagnostic criteria or symptoms present) or quiha(ordered categories, e.g. "no disease"”,

"possible disease", "probable disease”, and "defitisease”). The test may be for the presence or
absence of any attribute, not necessarily a disbas¢he program uses the term "disease" to refer

to whatever target attribute or outcome the teasdo indicate.

Thedirection of the test - that is, whether a high test rgsaints tothe presence of thiarget
attribute or to its absence - must be specifiedvafning is shown if the data appear to be
inconsistent with this direction.

The observed frequencies of each result, in subjeith and without the disease (according to the

“gold standard” diagnosis), are required. If tasults are qualitative, they must be allocated
numbers that express their sequence (e.g. 1,t2,)3iegrouped ("binned") quantitative results
(e.g. “5t0 9.99”) are entered, the lower limit m@gyentered as a label for the group. Groups of
tests with the same result can be entered togethegch test can be entered separately; the lat
option may be convenient if individual (ungroupgdpntitative measurements (e.g. laboratory
results) are to be entered.

The prevalence of the disease in the target papaoldte. the pretest probability in the subjects
tested, is required. If it is not entered, itssimated from the sample data, on the assumptain t
the combined samples are representative of thettpapulation. The required confidence level
(for confidence intervals for the ROC curve) carchanged from its default value of 95%.

The program displaysROC curve, with confidence bounds, and computesdtea under the
ROC curve, with its standard error, confidence interval, arghificance. Partial areas under
the ROC curvefor specified ranges of specificiye also computed, with their standard errors
significance.Measures of test performancere provided for specific test results (multilevel
measures), for ranges of results (stratum-spatifiasures), and after dichotomizing the test
results as “negative” or “positive” (using everyspible cutpoint). For each cutpoint, the progrg
computessensitivity specificity thediagnostic odds ratioYouden's indexandlikelihood ratiosfor
positive and negative results, with the correspogdost-test probabilitiesKullback-Leibler
distancesare used to estimate the extent to which thectesbe expected to alter the odds in
favour of correct decisions in "ruling in" positever in "ruling out" negatives. Thaptimal cut-
point is determined by two alternative methods, botimgakccount of the relative importance
allocated to false negatives and false positives.

ROC curve
The ROC curve (receiver operating characteristigglative operating characteristics curve) is

displayed in a graplsée beloyw The curve shows the association between tlie tEnsitivity (as
a measure of the presence or absence, as appeopfitte disease or other target attribute) and
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false positive rate (100% minus specificity %).eTdurve is drawn as a series of straight lines
joining the points representing the test's sensitand its false-positive rate at successive cut-
points, i.e., for every result entered (althoughaarcase-like curve might sometimes be more
appropriate). The point on the curve closest ¢otdip left corner of the graph is the point where
the sum of sensitivity and specificity is highédte closer this point is to the top left corneg th
better the test, assuming that false negativesasel positives are equally important.

The ROC curve is not influenced by the prevalerfidb@disease in the target population.

A global confidence banis displayed for the ROC curve, unless there enef than 30 subjects
with or without the disease; the lines are truntatiethe edges of the graph, and occasionallleif t
confidence interval is very wide, the whole of thgper line will be outside the area of the graph.
This band is a simultaneous joint confidence refiorsensitivity and the false positive rate
(Campbell 1994), using the one-sample KolmogorovrSon test statistic. The confidence level
generated by this procedure is actually the sqofattee nominal confidence level that is requested
(e.g. 90.25% if a confidence level of 95% is reqes but empirical tests indicate that the nominal
confidence level is generally achieved (MacskasslyRrovost 2004). The method is conservative;
at any point the confidence interval for sensiyivet wider than the confidence interval computed
only for that single (preselected) point. The hssshould be used with caution if the data in the
two groups are not continuous and there are masy@ampbell 1994).

In addition to the ROC curve (shown in red) andjltsbal confidence band (blue), the graph shows
the straight line (in gray) that indicates absenfogiscriminatory capacity.

Sensitiity ¥ ROC CURVE
100
D | T T T | T T T | T T T | T T T | T T T |
0 20 40 60 80 100
False positive rate %

The values can be read by clicking on the grapbcufacy can be enhanced by “zooming” — any
segment of a curve can be magnified by presStnigand clicking on the graph, and then drawing a
rectangle to outline the required segment. Thplgcan be printed, copied to the clipboard for
pasting elsewhere, or saved in a bitmap (.BMP) file

Area under the ROC curve

The area under the ROC curve expresses the pribp&idt the test will correctly rank a randomly
chosen person with the disease and a randomly elpeseon without the disease. Its value is 50%
if the test does not discriminate. As a rough guah area of 97% or more indicates excellent
discriminatory power; an area of at least 92% g&gd discriminatory power, and an area of at
least 75% good discriminatory power (Simon 2004).

If the area exceeds 50%, its difference from 50%sgted.
The standard error of the area under the curveitamdnfidence interval, are reported. The

standard error is a slightly conservative estinfidEnley and McNeil 1982). The confidence
interval is approximate, unless the sample sizernyg large.
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L4. SCREENING AND DIAGNOSTIC TESTS WITH A RANGE OF RESULTS

The area under the curve may be a biased meastire t&st’'s accuracy if the “gold standard” is a
scale or set of ordered categories rather thanheottimy, and an arbitrary dichotomy was used
when entering the test results, or if two cutpomése used (for defining subjects with and without
the disease, respectively) and subjects betwese thépoints were omitted from the analysis
(Obuchowskiet al. 2004). (An appropriate estimator of accuracyuiee with a nondichotomous
“gold standard” is provided by module D3 of the R&ketc program.)

Partial areas under the ROC curve

When comparing tests, a comparison of the glolmsaunder their ROC curve may not be
sufficiently informative, since the difference beln the curves may vary in different ranges, and
the global areas under the curves may be the slinoeigh there are differences in particular
regions, or even if the curves cross. The progtarefore computes and compares partial areas
under the ROC curve. These are provided (withr #tandard errors) for specificity ranges of 70
to 100%, 80 to 100%, and 90 to 100%. They exgresgprobability that a test in the given
specificity range will correctly rank a randomlyosen person with the disease and a randomly
chosen person without the disease. Significantested by a comparison with chance expectation
(i.e., with 4.5%, 2%, and 0.5% for the respectipectficity ranges). Standard errors and
significance are not computed if the partial asesmaller than chance expectation.

The computed partial areas may not always conforitim tive impression provided by the graph,
since they are computed only from the sensitividiethe cut-points (i.e., they are based on a
staircase-like curve), whereas in the graphs thtpare joined by straight lines.

Partial areas are not computed if the data appdag tnconsistent with the specified direction of
the test.

Other measures of test performance

Thelikelihood ratiois the ratio of the prevalence of a specific resusubjects with the disease (or
other target attribute) to its prevalence in peeptbout the disease. A value greater than 10 or
less than 0.1 suggests that the test can provigérmng diagnostic evidence, effectively "ruling
in" or "ruling out" a diagnosis; a value greateartlb or below 0.2 can provide strong diagnostic
evidence; whereas if the likelihood ratio is betw@e5 and 2 the test has little or no effect on the
certainty of diagnosis (Jaeschideal 1994). Likelihood ratios are used to estimatepibst-test
probability of the disease, taking account of is-fest probability (i.e., its prevalence in sukgen
which the test is to be used).

Likelihood ratics are computed for each specific result (multileuedlinood ratios) if there are not
more than 25 levels, and (if results are enteredtfteast four levels) for successive ranges of
results (stratum-specific likelihood ratios). Foe atter purpose, the total range is divided into
two to eight strata (depending on the number clleentered), each spanning the same number or
almost the same number of levels. The likelihodasdor a range between two points corresponds
to the slope of the ROC curve between those p@Giisi 1998). “Not calculated” is displayed for
ranges where zeros prevent the computation.

For each cut-point that can be used to dichotothiseresults as “positive” or “negative”, the
program computesensitivity specificity thediagnostic odds ratioYouden's indexand the

likelihood ratios for positive and negative results, with th@h% confidence intervals (binary
likelihood ratios), and the correspondipgst-test probabilities-or these purposes a positive result
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is defined as a result at or above the cutpoird fifgh test result points to presence of the deea
or below the cutpoint (if a high test result poittsabsence of the diseasggnsitivityrefers to the
prevalence of positive results (using the specifigdpoint) in subjects who have the disease (or
other target attribute), argpecificityrefers to the prevalence of negative results jesats without
the disease. The likelihood ratio for positive tesat a specific cutpoint represents the slopmfro
the origin to a specific point on the ROC curve ¢C1098).

Thediagnostic odds ratigDOR) is a measure of the discriminatory powea tést (using the
specified cut-point), taking account of both sewityt and specificity, and without distinguishing
between the effects of sensitivity and specificillyis the ratio of the odds in favour of a posati
result in subjects with the disease (or otherlattd) to the odds in favour of a positive result in
subjects without the disease. A value of 1 or lesans that (using that cut-point) the test has no
discriminatory value. The DOR rises with incregssensitivity or specificity, rising steeply as
sensitivity or specificity becomes near perfectaGet al. 2003), and reaching infinity if both
sensitivity and specificity are 100%. If both a4, the DOR is 5.4, if both are 80%, the DOR is
16; if both are 90%, the DOR is 81; if both are 9%8& DOR is 361; and if both are 99%, the DOR
is 9801.

Youden's indeffor a specific cut-pointis the sum of sensitivity and specificity (expexsas
percentages) minus 100. If has been termed threcEme gain in certainty” (Connell and Koepsell
1985).

Thepost-test probabilityf presence of the disease (which has obviolisyuti clinical situations
where the test is used to establish or rule ouagnasis), conditional on the test result, is cotagu
from the pretest probability and the likelihoodat

The likelihood ratio and post-test probability ag reported if results are entered separatay (i.
in separate lines) for subjects with and withoet disease.

Kullback-Leibler distances

Kullback-Leibler distances, which are measurehefdiscrepancy between two probability
distributions, are computed to indicate the extenthich performing a test can be expected to
alter the odds in favour of correct decisions ilifrg in" positives or in "ruling out” negativeé\s
suggested by Lee (1999), this may be helpful imasibns where a choice must be made between
tests. The computation does not require informadioout the pretest probability.

Optimal cut-point

The program provides two methods for the choicanobptimal cut-point (i.e. the cut-point that
minimizes errors). Both methods provide cut-pothtg vary with the weights allocated to false
negatives and false positives to express the velatidesirability or cost of the two kinds of error
More weight should be given to the avoidance cfdalegatives (i.e., to sensitivity) if the aimas t
detect all cases, and to false positives i.e. c{Bpiy) if the aim is a definitive diagnosis dii¢
presence of the disease. The optimal cut-point@dpends on the pre-test probability of the
disease; it is thus the cut-point that minimizegested costs (deaths, financial, etc.) in the targe
population.
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The choice of the optimal cut-point is based onstesitivities and specificities in the study
sample, which (especially if the sample is smaHlyraf course not be the same as those in other
target populations, even with the same pre-tegigiitity (Altman 2000).

The first method is based on the ROC curve, andélend on a comparison of the Youden indices
at all possible cut-points. The two methods maypnovide identical results. Perkins and
Schisterman(2006) state that the second methodhvgmovides the cut-point that maximizes the
overall correct classification rate , is in some&wmstances preferable.

METHODS

When the results are dichotomized, a positive tésdefined as a result at or above a given I&fal high test result
points to presence of the disease) or a resultlaglow a given level (if a high test result poitdsabsence of the
disease). "Disease" refers to whatever attributmutcome the test aims to indicate.

Up to 1000 lines of data can be entered.
ROC curve

The ROC curve is drawn by joining the points maghine test's sensitivity and false positive ratsuatessive cut-
points (i.e., for very result entered).

The global confidence band is a simultaneous onfidence region based on the identification dejpendent global
confidence intervals for sensitivity and the fgt&sitive rate, using the Kolmogorov-Smirnov one-gimnstatistic.

The Kolgomorov-Smirnov critical values of d andf@r ¢he numbers of subjects with and without treedse,
respectively) at the required confidence levelideatified from Table B9 of Zar (1998) or, if themee more than 40
subjects in the group, computed by a formula giveZar (p. App85) [the second of the formulae citean Miller
(1956)]. The method is illustrated by Hollanded &Nolfe (1999). For each cut-point, a rectangliieight 2d and
width 2e is in effect created, centred on the paiatking the test's sensitivity and false positate; the top left
corners of these rectangles are joined to fornugiper confidence limit, and the bottom right cosnare joined to
form the lower confidence limit; the lines are qoep to stay within ROC space (Campbell 1994, Maskand
Provost 2004).

Area under the ROC curve

Formulae for computing the area under the ROC can¢kits standard error (SE) are provided by HaalelMcNeil
(1982: Table II). The method is based on the Wittostatistic, and is equivalent to the method gitfire trapezoidal
rule; it provides an area slightly lower than thased on a maximum-likelihood technique, and aelastandard error,
yielding a conservative confidence interval.

Confidence limits for the area are estimating bgiagl or subtracting z.SE, where z = 1.96 for 95%th, etc.

The difference between the area under the curvé@#id(representing no discrimination) is testedheyformula
(Beck and Schultz 1986)

z =(W-0.5)/SEw
where W = area under curve

SEw = its standard error.

Partial areas under the ROC curve
These areas are computed by a nonparametric m@thadg et al. 2002: formula 5). The areas and #tandard
errors are computed by the simple computationatgaore described by Hanley and McNeil (1982), gldocount

only of those levels where the test’s specificétjsf in the designated range.

The difference between the area under the curvehendrea c representing no discrimination is tebtethe formula
(Beck and Schultz 1986)
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z =(W-c)/SEw
where W = area under curve
SEw = its standard error
¢ = 0.045, 0.02, or 0.005, for specificity rangé30-100%, 80-100%, or 90-100% respectively.

Other measures of test performance

The likelihood ratio is the proportion of diseasedbjects who have test results at a given levil argiven range,
divided by the proportion of nondiseased subjedts the same test result (Simel et al. 1991). Thkedihood ratios are
ratios of proportions, and the estimation of t8&%b6 confidence intervals are based on procedumggable to ratios
of proportions (risk ratios), using the formulalgies 1993, formula 29-35; Lui 2004, formula 4.2):

95% CI = exp(log(LR) - 1.96S) to exp(log(LR) ©&S)
where LR = likelihod ratio

S = standard error of log(LR)¥1/aa—1 /Td+1/bb—1/Th]
At a given cut-point,

sensitivity =a / (a + c)

specificity =d / (b + d)

false positive rate =b /(b +d),or 1 —sp

diagnostic odds ratio = Se * Sp / (1 - Se) / 8p)

Youden's index =Se + Sp-1

likelihood ratio = Se / (1 - Sp) (conditional opasitive result)

(@r- Se ) / Sp (conditional on a negative result)

where a = frequency of positive results in sulgj@ciwhom the target attribute is present

b = frequency of positive results in subjects lmowm the target attribute is absent

¢ = frequency of negative results in subjects liom the target attribute is present

d = frequency of negative results in subjectslom the target attribute is absent

Se = sensitivity

Sp = specificity

LR = likelihood ratio

PTP = pretest probability (prevalence)
Post-test probability = post-test odds / (1 + fest odds)
Where post-test odds := pretest odds x LR

pretest odds = PTP / (1 — PTP)

Kullback-Leibler distances
Formulae are provided by Lee (1999). Results nétto "with disease" or "without disease" frequea@re omitted.
Optimal cut-point

The best cut-point based on the ROC curve andaseness to the top left corner of the graph ccuailrere a line with
the slope
m=[WFR1 -PTP]/ [WFN.PTR
touches the ROC curve (Zweig and Campbell 1993)
where WFN= relative weight given to undesirability of falsegatives
WEFP = relative weight given to undesirability of falgesitives.
This point is determined by identifying the cut4poihat maximizes the value
Se-m(1 -Sp

Based on Youden indices, the best cut-point isghathich the Youden index is highest (after adygsit for the
relative wetghts given to the undesirability osfahegatives and false positives, and for preva)¢Rerkins and
Schisterman 2006). The point is determined bytiflémg the point that minimizes the value

(1 - WFN/WFP * prevalence * (1 - sensitivity))({L - prevalence) * (1 - specificity)).
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L5. COMPARISON OF SCREENING/DIAGNOSTIC TESTS THAT
YIELD A RANGE OF RESULTS

This module permits an exploratory comparison af s@reening or diagnostic tests that yield a
range of results; the test results may be quangtée.g. the concentration of a substance in the
blood, or the number of diagnostic criteria or syomps present) or qualitative (ordered categorié
e.g. "'no disease", "possible disease", "probalseadie”, and "definite disease"). The tests may
for the presence or absence of any attribute, @cgéssarily a disease, but the program uses the
"disease" to refer to whatever target attributeudicome the tests aim to indicate.

Thedirection of the tests (do high test results point to thespnce or the absence of the target
attribute?) must be specified. A warning is shafithe data seem to be inconsistent with this
direction. The direction must be the same for heglts, or the analysis will be flawed.

Thedata to be enterednclude the results of the tests and (optionathg, prevalence of the

disease and (if both tests were applied to the samjects) correlation coefficients between pair
test results. For each test. the observed fregeenteach result, in subjects with and withoet th
disease (according to the “gold standard” diagnoare required. If the results are qualitative,
they must be allocated numbers that express tbguence (e.g. 1, 2, 3 etc.); if grouped ("binned

guantitative results (e.g. “5 to 9.99”) are entetbd lower limit may be entered as a label for the

group. An option is provided for the separateyeatrthe results of each test, in turn; this may b
convenient if individual (ungrouped) quantitativeasurements (e.g. laboratory results) are to
entered.

An option is offered for the entry of only the aseader the two curves, with their standard erro|
and (optionally) with correlation coefficients. dprogram then only compares the two areas.

For each test, the program displayR@C curve, with confidence bounds, and computesétea
under the ROC curve with its standard error, confidence interval, aighificance Partial areas
under the ROC curvefor specified ranges of specificiiyye also computedvleasures of test
performance are provided for each specific test result (meNl measures), for ranges of resuli
(stratum-specific measures), and after dichotorgitie test results as “negative” or “positive”
(using each possible cut-point). For each cut-pdive program computes sensitivity, specificity,
the diagnostic odds ratio, Youden's index, andihked ratios for positive and negative results,
with the corresponding post-test probabilitiéaillback-Leibler distances are used to estimate
the extent to which the testsscan be expecteddothk odds in favour of correct decisions in
“ruling in" positives or in "ruling out" negativeg.he optimal cut-points are determined by two
alternative methods, both of which take accounthe relative importance allocated to false
negatives and false positives.

The program also providesatistical tests comparing the two testsThese compare the areas
under the ROC curves (includireguivalence tests the partial areas under the ROC curves, an
the sensitivities of the two tests at given speitiis. A graph is provided, showing both tests’
ROC curves, and displaying the significance ofdifterences between sensitivities.
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Data to be entered

For each test. thieequencies of each resuih subjects with and without the disease, areired.

If the results are qualitative, they must be altedaaumbers that express their sequence (e.g31, 2,
etc.). If grouped ("binned") quantitative resigsg. 5 to 9.99) are entered, the lower limit may b
entered as a label for the group. An option ivigked for the separate entry of each result of each
test; this may be convenient if individual quaniita measurements (e.g. laboratory results) are to
be entered.

Theprevalenceof the disease in the target population, i.e pife¢est probability in the subjects
tested, is required. If it is not entered, itssimated from the sample data, on the assumptain th
the combined samples are representative of thettpapulation. The requiraabnfidence level
(for confidence intervals for the ROC curves) carchanged from its default value of 95%.

A "same subjectstheck-box is provided, to be marked if the tesgsenconducted on the same
subjects. The correlation coefficients (known ssuaned) between the results of the paired tests
can then be entered; module D1 of PAIRSetc mayskd to compute these coefficients. If they
are not entered, the program will display a sesfegsults based on alternative degrees of
correlation. A warning is shown if the "same setge check-box is marked but the numbers of
subjects are not the same for the two tests; thlysia is not aborted, as the tests may have been
applied to overlapping, but not identical, groupsubjects.

ROC curves
A ROC curve (receiver operating characteristiceetative operating characteristics curve) for

each test is displayed in a graph (see below). clinees are not influenced by the pretest
[probability (prevalence) of the disease in thgeapopulation.

Sensitiaty % ROC CURVE TEST A Sensitiaty 2 ROC CURVE TESTEB
1I]I]—_| 100 =t
ﬂ—| T T T | T T T | T T T | T T T | T T T | D—| T T T | T T T | T T T | T T T | T T T |
0 20 40 60 a0 100 1] 20 40 60 80 100
False positive rate % False positive rate %

In each graph, the curve shows the associationdegtthe test's sensitivity (as a measure of the
presence or absence, as appropriate, of the diseasiger target attribute) and its false positive
rate (100% minus specificity %). Each curve (shanvred for Test A and blue for Test B) is
drawn as a series of straight lines joining thenfsorepresenting the test's sensitivity and itsefal
positive rate at successive cut-points, i.e., f@rgresult entered (although a staircase-likeeur
might sometimes be more appropriate). The poirthercurve closest to the top left corner of the
graph is the point where the sum of sensitivity gpecificity is highest. The closer this pointas t
the top left corner, the better the test, assurtiagfalse negatives and false positives are gquall
important.

As seen above, a global confidence band is displégegreen) for the ROC curve; it is not shown
if there are fewer than 30 subjects with or withia disease. Lines are truncated at the edges of
the graph, and occasionally, if the confidenceruakis very wide, the whole of the upper line will
be outside the area of the graph. The band imaltsineous joint confidence region for sensitivity
and the false positive rate (Campbell 1994), utliegone-sample Kolmogorov-Smirnov test
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statistic. The confidence level generated byphi€edure is actually the square of the nominal
confidence level that is requested (e.g. 90.25&cibnfidence level of 95% is requested), but
empirical tests indicate that the nominal confidelevel is generally achieved (Macskassy and
Provost 2004). The method is conservative; atpamyt the confidence interval for sensitivity is
wider than the confidence interval computed onhtli@t single (preselected) point. The results
should be used with caution if the data in the gn@ups are not continuous and there are many ties
(Campbell 1994).

In addition to the ROC curve and its global conficke band , the graph shows the straight line (in
gray) that indicates absence of discriminatory ciya

The values can be read by clicking on the grapbcufacy can be enhanced by "zooming" - any
segment of a curve can be magnified by presStnigand clicking on the graph, and then drawing a
rectangle to outline the required segment. Thplgcan be printed, copied to the clipboard for
pasting elsewhere, or saved in a bitmap (.BMP) file

Area under the ROC curve

The area under each test's ROC curve expresspsotbability that the test will correctly rank a
randomly chosen person with the disease and a magaiosen person without the disease. Its
value is 50% if the test does not discriminate.aAsugh guide, an area of 97% or more indicates
excellent discriminatory power; an area of at €28t very good discriminatory power, and an
area of at least 75% good discriminatory power (®ir2a004).

If the area exceeds 50%, its difference from 50%sted.

The standard error of the area under the curveitamonfidence interval, are reported. The
standard error is a slightly conservative estinfidEnley and McNeil 1982). The confidence
interval is approximate, unless the sample sizerng large.

The area under the curve may be a biased meastire t&st’'s accuracy if the “gold standard” is a
scale or set of ordered categories rather thanheottimy, and an arbitrary dichotomy was used
when entering the test results, or if two cutpomése used (for defining subjects with and without
the disease, respectively) and subjects betwese thépoints were omitted from the analysis
(Obuchowskiet al. 2004). (An appropriate estimator of accuracyuiee with a nondichotomous
“gold standard” is provided by module D3 of the R&ketc program.)

Partial areas under the ROC curve

When comparing tests, a comparison of the glolmsaunder their ROC curve may not be
sufficiently informative, since the difference been the curves may vary in different ranges, and
the global areas under the curves may be the sliinoeigh there are differences in particular
regions, or even if the curves cross. The progtarefore computes and compares partial areas
under the ROC curve. These are provided (withr #tandard errors) for specificity ranges of 70

to 100%, 80 to 100%, 90 to 100%. They expresptbbability that a test in the given specificity
range will correctly rank a randomly chosen pemstih the disease and a randomly chosen person
without the disease. Significance is tested byraparison with chance expectation (i.e., with
4.5%, 2%, and 0.5% for the respective specifiatyges). Standard errors and significance are not
computed if the partial area is smaller than chaxgectation.
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The computed partial areas may not always confoitim tive impression provided by the graph,
since they are computed only from the sensitividiethe cut-points (i.e., they are based on a
staircase-like curve), whereas in the graphs thtpare joined by straight lines.

Partial areas are not computed if the data appdag tnconsistent with the specified direction of
the test.

Kullback-Leibler distances

Kullback-Leibler distances, which are measurehefdiscrepancy between two probability
distributions, are computed for each test, to iatdiche extent to which the test can be expected to
alter the odds in favour of correct decisions ilifrg in" positives or in "ruling out” negativeé\s
suggested by Lee (1999), this may be helpful whelmogce must be made between tests. The
computation does not require information aboutgiretest probability.

Other measures of test performance

Thelikelihood ratiois the ratio of the prevalence of a specific resusubjects with the disease (or
other target attribute) to its prevalence in peeptbout the disease. A value greater than 10 or
less than 0.1 suggests that the test can provigéramng diagnostic evidence, effectively "ruling
in" or "ruling out" a diagnosis; a value greateartlb or below 0.2 can provide strong diagnostic
evidence; whereas if the likelihood ratio is betw@e5 and 2 the test has little or no effect on the
certainty of diagnosis (Jaeschideal 1994). Likelihood ratios are used to estimatepibst-test
probability of the disease, taking account of is-fest probability (i.e., its prevalence in sukgen
which the test is to be used).

Likelihood ratics are computed for each specific result (multileyledlihood ratios) and (if results
are entered for at least four levels) for successanges of results (stratum-specific likelihood
ratios). For the latter purpose, the total rangéivgled into two to four strata (depending on the
number of levels entered), each spanning the saméer or almost the same number of levels.
The likelihood ratios for a range between two pordrresponds to the slope of the ROC curve
between those points (Choi 1998).

For each cut-point that can be used to dichotothiseresults as “positive” or “negative”, the
program computesensitivity specificity thediagnostic odds ratioYouden's indexand the
likelihood ratiosfor positive and negative results (with th@i% confidence intervals) and the
correspondingost-test probabilitied-or these purposes a positive result is definedrasult at or
above the cutpoint (if a high test result pointptesence of the disease) or below the cutpoiat (if
high test result points to absence of the dise&saisitivityrefers to the prevalence of positive
results (using the specified cut-point) in subjedi® have the disease (or other target attribute),
andspecificityrefers to the prevalence of negative results bjesits without the disease.The
likelihood ratio for positive results at a specifigtpoint represents the slope from the origin to a
specific point on the ROC curve (Choi 1998).

Thediagnostic odds ratigDOR) is a measure of the discriminatory powea tést (using the
specified cut-point), taking account of both sewityt and specificity, and without distinguishing
between the effects of sensitivity and specificillyis the ratio of the odds in favour of a posati
result in subjects with the disease (or otherlattd) to the odds in favour of a positive result in
subjects without the disease. A value of 1 or lesans that (using that cut-point) the test has no
discriminatory value. The DOR rises with incregssensitivity or specificity, rising steeply as
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sensitivity or specificity becomes near perfectazét al. 2003), and reaching infinity if both
sensitivity and specificity are 100%. If both af®4, the DOR is 5.4; if both are 80%, the DOR is
16; if both are 90%, the DOR is 81; if both are 958& DOR is 361; and if both are 99%, the DOR
is 9801.

Youden's indeffor a specific cut-pointis the sum of sensitivity and specificity (expexsas
percentages) minus 100. If has been termed threcgme gain in certainty” (Connell and Koepsell
1985).

Thepost-test probabilityf presence of the disease (which has obviolisyuti clinical situations
where the test is used to establish or rule ouagnadsis), conditional on the test result, is cotagu
from the pretest probability and the likelihoodat

The likelihood ratio and post-test probability awd reported if results are entered separatay (i.
in separate lines) for subjects with and withoet disease.

Optimal cut-points

The program provides two methods for the choicamobptimal cut-point (i.e. the cut-point that
minimizes errors) for each test. Both methods igl@eut-points that vary with the weights
allocated to false negatives and false positivexpoess the relative undesirability or cost of the
two kinds of error. More weight should be givertiie avoidance of false negatives (i.e., to
sensitivity) if the aim is to detect all cases, &mdhalse positives i.e., (specificity) if the aima
definitive diagnosis of the presence of the disedd®e optimal cut-point also depends on the pre-
test probability of the disease; it is thus themoint that minimizes expected costs (deaths,
financial, etc.) in the target population.

The choice of the optimal cut-point is based onsthresitivities and specificities in the study
sample, which (especially if the sample is smakyraf course not be the same as those in other
target populations, even with the same pre-tegigiitity (Altman 2000).

The first method is based on the closeness of jgaich on the relevant ROC curve (expressing
sensitivity and specificity, and taking accountlod relative weights) to the top left corner of the
graph (where sensitivity and specificity are highe3he second method selects the point at which
Kraemer'qquality index(a form of weighted kappa that measures the cheoigected agreement
between a test and a criterion) reaches its higladse; the values at the selected cut-points are
reported.

Statistical tests comparing the two tests

In addition to displaying a graph for each tegraph showing both ROC curves is displayed, to
permit visual comparison. Triangular markers, shav5% intervals at the bottom of the graph,
are colour-coded to indicate the presence and defrgtatistical significance (adjusted for
multiple testing; see below) between the sensigiwiof the two tests: red if P < 0.001, blue if P <
0.01, green if P <0.05, and gray if P > 0.05.
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Sensitivity % ROC CURVES — 4L —B
100
1] LI | M‘%‘#‘#“#ﬂ
0 20 40 60 80 100
False positive rate %

The values can be read by clicking on the grapbcufacy can be enhanced by "zooming" - any
segment of a curve can be magnified by presStnigand clicking on the graph, and then drawing a
rectangle to outline the required segment. Thplgcan be printed, copied to the clipboard for
pasting elsewhere, or saved in a bitmap (.BMP) file

Statistical tests are performed, comparing thesawneder the ROC curves, the partial areas under
the ROC curves, and the sensitivities of the tvetstat given specificities.

Thedifference between the global areas under the t@& Rurvess tested by the method of
Hanley and McNeil (1983); one-tailed and two-tailRegalues are reported. If the tests were
applied to the same subjects an adjustment is nbagded on the correlation coefficients between
the paired results, if these were entered. Ifatation coefficients were not entered, a table of
alternative P values is displayed, relating toedéht possible levels of correlatian;(in the table,

r refers to the mean of the correlation coefficiggarson or Kendall) for the paired test results in
the diseased and the correlation coefficient ferghired results in the non-diseased (the latter
correlation coefficient is usually lower). Testjusting for correlation are not done if the meén o
the two areas under ROC curves is less than 0.7.

Thesignificance tests comparing the partial areas urtle two ROC curvesfor specificity

ranges of 70 to 100%, 80 to 100%, and 90 to 100@&wc@nservative if the tests were applied to the
same subjects, since they do not take accountssilgle correlation between the results. These
comparisons are not done if the data appear todmmsistent with the specified direction of the
two tests.

Thedifference between the sensitivitefghe two tests, i.e.. the vertical differencéneen the two
ROC curves, is tested at fixed specificities atiBgérvals from 5% to 95%. The values required for
this purpose are estimated by interpolation. [Déffié statistical tests are used, depending on
whether correlation coefficients for the pairedutesswere entered (because tests A and B were
applied to the same subjects). If these coeffisiarere entered, the significance test takes atccoun
of the correlation between results. The P valuesdjusted for multiple testing, using Hommel's
procedure (1988). Two-tailed P values are reported

The tests comparing partial areas for a given fipggirange may not be consistent with those
computed at fixed specificities within this rangace the former are computed only from the
sensitivities at the cut-points (i.e., they aredolgn a staircase-like curve), whereas the latter u
interpolation (i.e., they are based on the strdigbs joining the points).

Equivalence tests
Statistical tests to appraise the equivalence ofdgveening or diagnostic methods may be helpful
when a decision is required concerning the intrtdoof a new method (say a cheaper or more

convenient one) in place of a standard methodgusia area under the ROC curve as an indicator
of accuracy.
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The program performs two one-tailed tests, eadingethe noninferiority of one method. The null
hypothesis is that the selected method is lesgaiecthan the other method (i.e., that the area
under its ROC curve is smaller than the area uthdeother ROC curve), and a low P value
indicates that the method is as accurate as, o asmurate than, the other method. Interest will
usually lie in the test for the noninferiority dfet new method in comparison with the standard
method. If both one-tailed tests yield significeegults, the two methods can be regarded as being
equivalent in their accuracy.

For the purpose of these tests, the size of tlierdifce (between areas under the curve) that can be
regarded as negligible (the maximum acceptablerdiffce) is defined first as 5%, and then as 1%.

The tests are not done if there is a significafiedince (P < 0.05) between the areas under the
ROC curve.

If correlation coefficients between the pairedutessare entered, the tests are repeated, takéng th
correlation into account.

METHODS

When the results are dichotomized, a positive tésdefined as a result at or above a given I&fal high test result
points to presence of the disease) or a resultlaglow a given level (if a high test result poitdsabsence of the
disease). "Disease" refers to whatever attributmutcome the test aims to indicate.

Up to 1000 lines of data can be entered.
ROC curve

The ROC curve is drawn by joining the points maghtine test's sensitivity and false positive rateuatessive cut-
points (i.e., for every result entered).

The global confidence band is a simultaneous anfidence region based on the identification dejmendent global
confidence intervals for sensitivity and the fgbasitive rate, using the Kolmogorov-Smirnov one-glnstatistic.

The Kolgomorov-Smirnov critical values dfande (for the numbers of subjects with and withoutdisease,
respectively) at the required confidence levelideatified from Table B9 of Zar (1998) or, if themee more than 40
subjects in the group, computed by a formula givweZar (p. App85) [the second of the formulae citeen Miller
(1956)]. The method is illustrated by Hollanded &olfe (1999). For each cut-point, a rectangldneight 21 and
width 2e is in effect created, centred on the point markirgtest's sensitivity and false positive rate;tthp left
corners of these rectangles are joined to fornugiper confidence limit, and the bottom right cosnare joined to
form the lower confidence limit; the lines are goep to stay within ROC space (Campbell 1994, Maskand
Provost 2004).

Area un*ROC curve

Formulae for computing the area under the ROC can¢kits standard erro8E) are provided by Hanley and McNeil
(1982). The method is based on the Wilcoxon statiahd is equivalent to the method using the afal rule; it
provides an area slightly lower than that based oraximume-likelihood technique, and a larger stash@aror,

yielding a conservative confidence interval.

Confidence limits for the area are estimated byragldr subtractin@.SE wherez = 1.96 for 95% limits, etc.

The difference between the area under the curvé@#d(representing no discrimination) is testedhayformula
(Beck and Schultz 1986)
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z = (W-0.5) /SE,
where W = area under curve
SE, = its standard error.

Partial areas under the ROC curve

These areas are computed by a nonparametric m@thadget al 2002: formula 5). The areas and their standard
errors are computed by the simple computationatgaore described by Hanley and McNeil (1982), gldocount
only of those levels where the test’s specificétjsf in the designated range.

The difference between the area under the curvehendrea representing no discrimination is testadthe formula
(Beck and Schultz 1986)

z =(W-c)/SE,
where W= area under curve

SE, = its standard error

¢ =0.045, 0.02, or 0.005, for specificity range§0§100%, 80-100%, or 90-100% respectively.

Other measures of test performance

Thelikelihood ratiois the proportion of diseased subjects who hasterésults at a given level or in a given range,
divided by the proportion of nondiseased subjedts the same test result (Sinetlal. 1991). The likelihood ratios are
ratios of proportions, and the estimation of t8&%b6 confidence intervals are based on procedumggable to ratios
of proportions (risk ratios), using the formulalgjgs 1993, formula 29-35; Lui 2004, formula 4.2):

95% CI = exp(log(LR) - 1.96S) to exp(log(LR) ©6&S)
where LR = likelihod ratio

S = standard error of log(LR)¥1 /aa—1 Mq+ 1 /bb—1/T,]
At a given cut-point,

sensitivity =a/ (a + ¢)

specificity =d / (b + d)

false positive rate 8/ (b +d), or 1 —sp

diagnostic odds ratio Se* Sp/ (1-S9 /(1 -Sp

Youden's index Se+ Sp-1

likelihood ratio =Se/ (1 - Sp (conditional on a positive result)

@ - Se) / Sp(conditional on a positive result)

where a = frequency of positive results in subjects in whitie target attribute is present

b = frequency of positive results in subjects in whihe target attribute is absent

¢ = frequency of negative results in subjects in mtbe target attribute is present

d = frequency of negative results in subjects in mtibe target attribute is absent

Se= sensitivity

Sp= specificity

LR = likelihood ratio

PTP = pretest probability (prevalence)
Post-test probability = post-test odds / (1 + plest-odds)
Where post-test odds := pretest oddER

pretest odds PTP/ (1 -PTP)

Kullback-Leibler distances
Formulae are provided by Lee (1999). Results wnétto "with disease" or "without disease" freques@reomitted.

Optimal cut-points

Based on the closeness of each point on the rdl&@@ curve to the top left corner of the grapte best cut-point
occurs where a line with the slope

m=[WFF1 -PTP)]/[WFN.PTR
touches the ROC curve (Zweig and Campbell 1993)
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where WFN = relative weight given to false negatives
WFP = relative weight given to false positives.
This point is determined by identifying the cut4piaihat minimizes the value

1-Sp+(1-S8/m

Based orKraemer's quality indiceshe best cut-point is the point at which the bigthvalue is attained by the index,
which is computed by the formula (Furukagteal 1997)
W(Prp+.Prr..Ky o) + (1 -W)(Prp..Prr+.Koo) / [W(Prp+.Ptr)) + (1 -w)(Prp..Prr)]
wherew = the weight given to sensitivity
. 0.2 if more weight is given to sifietty (avoidance of false positives),
0.5 if equal weight is given to ejfieity and sensitivity, and
0.8 if more weight is given to siéimity (avoidance of false negatives),
Pro. andPrp. = the probability of having or not having the dise
and (for each possible cut-point)
Prr. andPry. = the probability of having or not having a pogttest result
Ky 0= sensitivity -Prr. / Pry.
Ko,0 = specificity -Prr./ Prr.

Statistical tests comparing the two tests

The test comparing thglobal areas under the ROC curvgsanley and McNeil 1983) uses the formula:
z= (A1- Ay / V(SE? + SB? - 2R.SE.SE)

where A; andA, = areas under the two ROC curves (Hanley and Mcd&2)
SE, andSE = standard errors of areas under the two ROC cyrasley and McNeil 1982)
R = measure of correlation between the two ROC aurve

R (which is taken to be zero if the tests were adsténed to different subjects) is a function oftfa& mean of the
areas under the ROC curves and (b) the mean ofvtheorrelation coefficients (Pearson or Kendalhe for the
paired test results in the diseased and one fguahied results in the non-diseased. It is derfvech Table 4 of
Hanley and McNeil (1982), using interpolation irthvdirections. The lowest mean area includedimttble is 0.7,
and P values allowing for correlation are not shdvthe mean area is less than this.

The comparisons of thegartial areas under the two ROC curvygtanley and McNeil 1983) use a large-sangiest:
z= (A1 - A)) I V(SE? + SE)

where A; andA; = the corresponding partial areas under the tw@€ RQrves
SE, andSE = standard errors of the partial areas undenmtheROC curves.

To comparesensitivities at given specificitiethe values are first determined by interpolatietween the reported
values. At each specificity level, the numberraétpositives (for each test) is computed, and thanded off to the
nearest integer. A significance test is then peréal. If correlation coefficients between the pdiresults were not
entered, &hi-square test is used, with Haber's continuity ativae, as modified by Ghent (Zar 1998: 494-495nfula
23.9 and footnote). If correlation coefficientsrerentered, the formula provided by Fleissl. (2003: 54: formula
3.5) is used, but with the addition of a covariateren in the denominator (Warburtehal. 2002):

z=abspA-pB) /V(pg* (1 /nA+ 1/nB) - 2r(sA.sB
where (at each level of specificity)

pA andpB = sensitivities of tests A and B

p = pooled estimate of sensitivity

q=1-p

nA andnB = numbers of diseased and nondiseased

sAandsB = standard errors of sensitivities of tests A Bnd

a[pA(1 - pA) / (NA- 1)] andV[pB(1 - pB) / (NB - 1)]
r = mean of the correlation coefficients for therpditest results in the diseased and thedis@ased.

The P values are then adjusted to allow for mdttpkting, using the procedure described by Honih®&8).

Equivalence tests

The one-sided tests for appraising the noninfayiarf each method are described by Obuchowskil (2004):
z=[(Ar—A) - D)] /Vand
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z=[(A,-A)-D] /V
where A; andA, = areas under the two ROC curves (Hanley and Mcd&2)
D = maximum acceptable difference (0.05 or 0.01)
V = variance of difference betwedpandA,
Vis here defined E;[Q(SEl2 +SB? - 2R.SE.SE)
where SE andSE = standard errors of areas under the two ROC suitanley and McNeil 1982)
R = measure of correlation between the two ROC aufsee above).
R is taken to be zero if correlation coefficientsrevnot entered.
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M1. PLOTTING OF AN EPIDEMIC CURVE BASED ON DATA

This module can draw an epidemic curve plottingadbeurrence of cases of a disease (or other
incidents) over time. It can be used to provid@agoing record of an outbreak in progress, sin
the data that are entered are saved in a disfofilater retrieval and updating.

If data are entered, the required dates are (jaligrthe dates of onset of the disease. Dates can

be entered in any order, for single or groupeds;amed can be repeated. The day of the month
need not be entered if monthly or annual dataabetplotted, and the month need not be enter

if annual data are to be plotted (the date is thkan as mid-month or mid-year). Other dates c

be entered and marked in the graph: namely thead&weposure (in the instance of a common-
source outbreak) and other key dates (e.g. theothatéhich intervention commenced). The valu

od
n

1S4

eS

of a covariate (e.g. temperature) dates can alsmtezed for plotting. Data can be plotted by days
weeks, months (i.e., successive 30-day periodgkgans (successive 365-day periods). The graph

extends from the first case (or a prior date ofosxpe, if entered) to the last case.

If the date of exposure is entered, the prograrartephe minimum and average latent (incubation)

periods (until occurrence of the first case andl tim¢ peak incidence, respectively). If a covagiat
is entered, the correlation of the covariate wiitidence is reported.

Epidemic curve

The following example represents an outbreak afatidus hepatitis in individuals attending a lu
at which a contaminated drink was consumed. (Pétlil. 1972).

10-
=
u* 1 1 T | 1 1 1 1 | 1 T 1 1 | 1 1 1 1 I 1 1 1 1 | 1 1 T 1 | 1 1 1 1 | T 1 1
L] 10 15 20 25 30 35
DAYS

The numbers of cases can be read by clicking ogréqgh. Accuracy can be enhanced by

au

"zooming" (pressingtrl and clicking, and then drawing a rectangle to ntlaekrequired segment).

The graph can be printed, copied to the clipboardaved in a bitmap (.BMP) file.

METHODS

Correlation of the covariate with incidence

Spearman's rank-order correlation coefficidmat is computed by formula 13.8.5 of Pregsal (1989: 537), after using
interpolation (if necessary) to obtain covariatiuga for the dates of disease onset; the signifearf the coefficient is
tested by formula 13.8.Rhois not computed if the covariate is entered foreiethan three dates.
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M2. PLOTTING OF AN EPIDEMIC CURVE BASED ON A MODEL

This module can plot an epidemic curve based ompls Reed-Frost model or on a more
elaborate SIR (Susceptible-Infective-Removed) dRSBusceptible-Exposed-Infective-Remove
model. It may be used to demonstrate the effddtsecsize and immunity status of the group or

population, and other factors, on the expectedescbpn epidemic. The models are deterministi

The models apply to diseases that are transmitt@adovidual-to-individual contact. They assun
that contacts are random, that the group or papulé& homogeneous, and that it is closed; no
allowance is made for additions, e.g. for birti$iey also assume that recovery from the diseas
followed by immunity. Only the SEIR model takesaignt of a possible latent period, during
which an infected individual is not yet infectious.

In theReed-Frost mode] computation is based on the expected occurrehaasg each
successive time unit (defined as the average pdaodg which a case is infectious), and the
model is particularly appropriate if the infectiquariod is short. In the other two models, chang
are estimated on a day-by-day basis.

The basic information required for all three modslthe size of the group or population, the
prevalence of immunity at the start, and the nunalbeases (at least 1) at the start.

The Reed-Frost model also requires entry of thbadsiity that a case will have an effective
contact, defined as a contact with another indi@idsusceptible or not) that would transmit the

disease if the individual contacted was susceptibls probability is assumed to be the same for

cases. Optionally, the average number of daysguvhich a case is infectious can be entered,
that the curve can be plotted by days rather tlyassubcessive time units.

The more elaborat8IR modelandSEIR modelrequire entry of the average duration of
infectiousness, and the average number of effecomacts (as defined above) in a day. For the
SEIR model, the average duration of the latentopes also required.

The graph based on the Reed-Frost model displayshiiinging numbers of individuals who are
susceptible who are infectious (labelled as "cgsagtl who are immune.

The graphs based on the SIR and Seir models difpashanging numbers of individuals who a
susceptible, who have a latent infection (SEIR rhod#), who are infectious (labelled as
"cases"), and who are no longer infectious (labledie "removed").

The estimated total number of cases, the peak lereseg and the date of the peak are reported,
the immunity level required to prevent an epide(thiethreshold herd immunity) is computed.
If a SIR or SEIR model is used, thasic reproductive ratiois reported.
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Reed-Frost model

The following specimen graph is based on the Reedtimodel. The graph displays the expected
prevalence of susceptible individuals, cases (trdas individuals), and immune individuals
(deaths are included in the immune group). Optioriarmation on the duration of the infectious
period was entered. permitting the curves to bagady days, as in this example, rather than by
“time units”. Only the dots in the graph are basaccomputed results; they express the expected
prevalence at the end of the specified day or time Values along the connecting lines should be
treated with reserve.

Number | — Susceptible — Cases — Immune |
1000

The numbers of cases can be read by clicking ogréqgh. Accuracy can be enhanced by
"zooming" (pressingtrl and clicking, and then drawing a rectangle to ntlaekrequired segment).
The graph can be printed, copied to the clipboardaved in a bitmap (.BMP) file.

SIR model

The graph (see example, below) displays the exggutalence, day by day, of susceptible
individuals, cases (infectious individuals), andiuduals who have been "removed" (recovered
and hence immune, or dead). It covers the whaiegef the epidemic (until the number of cases
is zero), to a maximum of 1000 days. If the expegirevalence of cases is relatively low, part or
all of the "susceptible" curve may be off the clfag in this example). Curves are not displayed if
the disease will not spread.

Number | — Susceptible — Cases — Removed |
4000
2000
I]_ ||||||||||||||||||||||||||||||||||||||||||
0 10 20 3o 40 a0 60 70 80 90
DAYS

The curves plotted by the program should be regeadeapproximations. Numbers are rounded
off to the nearest integer before plotting (humhm®w 0.5 are displayed as zero), and a
smoothing (flattening) procedure is used to elirtertae irregularities that sometimes occur.
Computational problems may prevent applicatiorhefrhodel, usually when the average number
of effective contacts per day is very high.
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The numbers of cases can be read by clicking ogréqgh. Accuracy can be enhanced by
"zooming" (pressingtrl and clicking, and then drawing a rectangle to ntlaekrequired segment).
The graph can be printed, copied to the clipboardaved in a bitmap (.BMP) file.

SEIR model

The graph (see example, below) displays the exggut/alence, day by day, of susceptible
individuals, individuals with a latent infectiondinyet infectious), cases (infectious individuals),
and individuals who have been "removed" (recovaratihence immune, or dead). It covers the
whole period of the epidemic (until the number a$es is zero), to a maximum of 1000 days. If
the expected prevalence of infection is relatively, part or all of the "susceptible" curve and/or
the "removed"” curve may be off the chart. Curvesrat displayed if the disease will not spread.

Number | — Susceptible — Cases — Removed |
5000
I] 1 1 1 1 I 1 1 1 T I 1 1 1 1 I T 1 1 1 I T 1 1 1 I 1 1 1 1 I 1 1 1 1
0 10 20 3o 40 50 60
DAYS

The curves plotted by the program should be regeadeapproximations. Numbers are rounded
off to the nearest integer before plotting (humhmr®w 0.5 are displayed as zero), and a
smoothing (flattening) procedure is used to elirtertae irregularities that sometimes occur.
Computational problems may prevent applicatiorhefrhodel, usually when the average number
of effective contacts per day is very high.

The numbers of cases can be read by clicking ogréqgh. Accuracy can be enhanced by
"zooming" (pressingtrl and clicking, and then drawing a rectangle to ntlaekrequired segment).
The graph can be printed, copied to the clipboardaved in a bitmap (.BMP) file.

Basic reproductive ratio

The basic reproductive ratio (Ro) is the averagabmer of secondary cases caused by one
infectious individual in a totally susceptible pdgtion. If it is less than 1, the disease will not
spread. Its value is 2-3 for influenza, 2-5 fdD& and SATS, 4-7 for mumps, 5-7 for polio and
rubella, 6-7 for diphtheria and smallpox, and 12di8measles and pertussis.

Threshold herd immunity

If the Reed-Frost model is used, the threshold leffenmunization required for herd immunity
(i.e., to prevent spread) is computed from the sfzbe group or population and the probability of
an effective contact. There may be a discrepastyden this level, which is what is required to
prevent spread to at least one case, and the plotted for a given level of immunity, where a
fraction of a case (0.5 or more) is rounded upn® case.
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If a SIR or SEIR model is used, the threshold l@femmunization required for herd immunity is
computed from the basic reproductive ratio, antbisinfluenced by the size of the group or
population.

METHODS

Reed-Frost model

At successive times subsequent to the start, tineulae are
S[t] = S[t-1] — C[t]
C[t] = S[t-1] (1 -Q°"*)
I[t] = I[t-1] + C[t-1]
where S = number of susceptibles
C = number of cases
| = number immune [or dead]
t = number of time units after the start, each timi lbeing the average duration of infectiousnessiyerted
to days if this duration is entered)
P = probability that a case will have a contact tat (if with a susceptible person) transmit thease
Q=1-P

SIR model:

The curves are based on the following three difféaéequations (Smith and Moore 2001), integrdtgdhe fourth-
order Runge-Kutta method (Pretsal 1989: 602-507):

For susceptibles|t]:

ds/dt=-b.s[t].i[t], with an initial values[0] of (N-c-m) /N;
for cases (infectiousit] :

di / dt=b.S[t].i[t] - Kk.i[t], with an initial valuei[0] of C;
for removed (immune or deadatt] :

dr / dt = k.i[t], with an initial valuer[0] of m;
where N = size of group/population

¢ = number of cases at staitl/

m = proportion immune at start

b = average number of effective contacts in a day

k = 1/ average duration of infectiousness in days

t = number of days after the start

Computed numbers are rounded off to the nearesjentbefore plotting.
SEIR model

The curves for susceptible individuals, latent détifens (not yet infectious), and cases (infectimalviduals) are based
on the following three differential equations (seg. Heesterbeek and Roberts 2000: formulae 1t3diting p
[births, deaths] as zero), integrated by the feorder Runge-Kutta method (Prestsal. 1989: 602-507):

For susceptibles|t] :

ds / dt = -b.s(t).i(t), with an initial value s(6) (N - ¢ - m) / N1;
for latent cases (infected but not infectivf],:

de / dt= b.s[t].i[t] - a.(I[t], with an initial valuei[0] of C;
for cases (infected)|t] :

di /dt=a.l[t] - k.i[t] , with an initial valuei[0] of C;
where N = size of group/population

¢ = number of cases at staitl/

m = proportion immune at start

b = average number of effective contacts in a day

k = 1/ average duration of infectiousness in days
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a =1/ average duration of latent period in days
t = number of time units after the start

The numbers of removed (immune or dead) individufls, are obtained by subtraction:

] =N-=s[t] =I[f] —i[t]
Computed numbers of cases are rounded off to theesEinteger.

Basic reproductive ratio

The formula for the basic reproductive raRois
b /k

where b = average number of effective contacts in a day
k = 1/ average duration of infectiousness in days

Thrteshold herd immunity

The threshold level of immunization required forchenmunity is
1-(1/Ro0)

where Ro= basic reproductive ratio.

If the Reed-Frost model is used, the threshold lef/enmunization is the level required to produtdeast one case,
using the formula

1—(1 /PN)
where P = probability that a case will have a contact et (if with a susceptible person) transmit theedse

N = size of group/population
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