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General Considerations

Multiple regression is a very useful extension of simple linear
regression in that we use several variables rather than just one
to predict a value on a quantitatively measured criterion vari-

able. It has become a very popular technique to employ in behavioral
research. Many researchers believe that using more than one predictor can
paint a more complete picture of how the world works than is permitted by
simple linear regression because constructs in the behavioral sciences are
believed to be multiply determined. Using only a single variable as a predic-
tor will at best capture only one of those sources. In the words of one author
(Thompson, 1991), multivariate methods such as multiple regression have
accrued greater support in part because they “best honor the reality to
which the researcher is purportedly trying to generalize” (p. 80).

Based on what we have already discussed regarding simple linear
regression, it may be clear that multiple regression can be used for pre-
dictive purposes, such as estimating from a series of entrance tests how
successful various job applicants might be. But the regression technique can
also guide researchers toward explicating or explaining the dynamics under-
lying a particular construct by indicating which variables in combination
might be more strongly associated with it. In this sense, the model that
emerges from the analysis can serve an explanatory purpose as well as a
predictive purpose.

As was true for simple linear regression, multiple regression generates
two variations of the prediction equation, one in raw score form and the
other in standardized form. These equations are extensions of the simple
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linear regression models and thus still represent linear regression. We will
contrast some differences between linear and nonlinear regression later in
the chapter.

The Variables in a Multiple Regression Analysis

The variables in a multiple regression analysis fall into one of two categories:
One of them is the variable being predicted; the others are used as the basis
of prediction. We discuss each in turn.

The Variable Being Predicted

The variable that is the focus of a multiple regression design is the one
being predicted. In the regression equation, as we have already seen for
simple linear regression, it is designated as an upper case Ypred. This variable
is known as the criterion variable but is often referred to as the dependent

variable in the analysis. It needs to have been assessed on one of the quan-
titative scales of measurement.

The Variables Used as Predictors

The variables used as predictors comprise a set of measures designated
with upper case Xs and known as the predictor variables or the indepen-

dent variables in the analysis.
You are probably aware that in many research design courses, the term

independent variable is reserved for a variable in the context of an experi-
mental study. Some of the differences in the typical nature of independent
variables in experimental and regression studies are listed in Table 5a.1.

Multiple Regression Research

If the research problem is expressed in a form that either specifies or implies
prediction, multiple regression becomes a viable candidate for the design.
Here are some examples of research objectives that imply a regression design:

Wanting to predict one variable from a combined knowledge of
several others
Wanting to determine which variables of a larger set are better
predictors of some criterion variable than others
Wanting to know how much better we can predict a variable if we
add one or more predictor variables to the mix

▼
▼

▼
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Table 5a.1 Some Differences in How Independent Variables are Treated in Experimental
and Regression Studies

Wanting to examine the relationship of one variable with a set of
other variables
Wanting to statistically explain or account for the variance of one
variable using a set of other variables

The goal of multiple regression is to produce a model in the form of a
linear equation that identifies the best weighted combination of indepen-
dent variables in the study to optimally predict the criterion variable. Its
computational procedure conforms to the ordinary least squares solution;
the solution or model describes a line for which the sum of the squared dif-
ferences between the predicted and actual values of the criterion variable is
minimal. These differences between the predictions we make with the
model and the actual observed values are the prediction errors. The model
can be thus thought of as representing the function that minimizes the sum
of the squared errors. When we say that the model is fitted to the data to
“best” predict the dependent variable, what we technically mean is that the
sum of squared errors has been minimized.

Because the model configures the predictors together to maximize
prediction accuracy, the specific weight (contribution) assigned to each
independent variable in the model is relative to the other independent vari-
ables in the analysis. Thus, we can say only that considering this particular

▼
▼
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Independent Variables

in Regression Study

Usually an enduring (e.g., personality)
characteristic of research participants.

All else equal, we would like them to be
uncorrelated, but they should be
correlated to some extent if that more
appropriately reflects the relationships in
the population.

Usually quantitatively measured variables.

Usually fully continuous if possible.

Independent Variables

in Experimental Study

Often actively manipulated but can also be
an enduring (e.g., personality)
characteristic of research participants.

Uncorrelated so long as cells in the design
have equal sample sizes; as cells contain
increasingly unequal sample sizes the
independent variables become more
correlated.

Usually nominal (qualitatively measured)
variables.

Usually coded into a relatively few levels or
categories.
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set of variables, this one variable is able to predict the criterion to such and
such an extent. In conjunction with a different set of independent variables,
the predictive prowess of that variable may turn out to be quite different.

It is possible that variables not included in the research design could
have made a substantial difference in the results. Some variables that could
potentially be good predictors may have been overlooked in the literature
review, measuring others may have demanded too many resources, and still
others may not have been amenable to the measurement instrumentation
available to researchers at the time of the study. To the extent that poten-
tially important variables were omitted from the research, the model is said
to be incompletely specified and may therefore have less external validity
than is desirable.

Because of these concerns, we want to select the variables for inclusion
in the analysis based on as much theoretical and empirical rationale as we
can bring to bear on the task. It is often a waste of research effort to realize
after the fact that a couple of very important candidate predictors were
omitted from the study. Their inclusion would have produced a very differ-
ent dynamic and likely would have resulted in a very different model than
we have just obtained.

The Regression Equations

Just as was the case for simple linear regression, the multiple regression
equation is produced in both raw score and standardized score form. We
discuss each in turn.

The Raw Score Equation

The multiple regression raw score equation is an expansion of the raw
score equation for simple linear regression. It is as follows:

Ypred = a + b1 X1 + b2 X2 + . . . + b
n

X
n

In this equation, Ypred is the predicted score on the criterion variable, the
Xs are the predictor variables in the equation, and the bs are the weights or
coefficients associated with the predictors. These b weights are also referred
to as partial regression coefficients (Kachigan, 1986) because each reflects
the relative contribution of its independent variable when we are statistically
controlling for the effects of all the other predictors. Because this is a raw
score equation, it also contains a constant, shown as a in the equation (rep-
resenting the Y intercept).
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All the variables are in raw score form in the equation even though the
metrics on which they are measured could vary widely. If we were predicting
early success in a graduate program, for example, one predictor may very
well be average GRE performance (the mean of the verbal and quantitative
subscores), and the scores on this variable are probably going to be in the
500 to 700 range. Another variable may be grade point average, and this vari-
able will have values someplace in the middle to high 3s on a 4-point grading
scale. We will say that success is evaluated at the end of the first year of the
program and is measured on a scale ranging from the low 50s to the middle
70s (just to give us three rather different metrics for our illustration here).

The b weights computed for the regression equation are going to reflect
the raw score values we have for each variable (the criterion and the pre-
dictor variables). Assume that the results of this hypothetical study show the
b weight for grade point average to be about 5 and for GRE to be about .01
with a Y intercept value of 46.50. Putting these values into the equation
would give us the following prediction model:

Ypred = 46.50 + (5) (gpa) + (.01) (GRE)

Suppose that we wished to predict the success score of one participant,
Erin, based on her grade point average of 3.80 and her GRE score of 650. To
arrive at her predicted score, we place her values into the variable slots in
the equation. Here is the prediction:

Ypred = 46.50 + (5) (gpa) + (.01) (GRE)

Ypred Erin = 46.50 + (5) (gpaErin) + (.01) (GREErin)

Ypred Erin = 46.50 + (5) (3.80) + (.01) (650)

Ypred Erin = 46.50 + (19) + (6.50)

Ypred Erin = 72

This computation allows you to see, to some extent, how the b weights
and the constant came to achieve their respective magnitudes. Although they
are all interdependent, we will arbitrarily start with the constant of 46.50 as a
given. Analogous to simple linear regression, this value would be Erin’s pre-
dicted success score if her GRE and grade point average were both zero, a sit-
uation, obviously, that would not exist empirically. This value of 46.50 is in the
regression equation simply to make the predicted value work out properly.

Now, recall that success, the Y variable, ranges between 52 and 75. So
how do you obtain Erin’s predicted score in the low 70s given a constant of
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46.5? Well, grade point average must be in the high 3s, so the b weight for
it will have to be high enough for the result of the multiplication to add a
decent number to 46.50. On the other hand, Erin’s GRE score is mid-600. To
predict a 72 in combination with grade point average, the GRE value has to
be substantially stepped down, and you need a multiplier considerably less
than 1 to make that happen.

Because the variables are assessed on different metrics, it follows that
you cannot see from the b weights which independent variable is the
stronger predictor in this model. Some of the ways by which you can evalu-
ate the relative contribution of the predictors to the model will be discussed
shortly.

The Standardized Equation

The multiple regression standardized score equation is an expansion of
the standardized score equation for simple linear regression. It is as follows:

Y
z pred = β1 X

z1 + β2 X
z2 + . . . + β

n
X

zn

Everything in this equation is in standardized score form. Unlike the
situation for the raw score equation, all the variables are now measured on
the same metric—the mean and standard deviation for all the variables (the
criterion and the predictor variables) are 0 and 1, respectively.

In the standardized equation, Yz pred is the predicted z score of the crite-
rion variable. Each predictor variable (each X in the equation) is associated
with its own weighting coefficient symbolized by β and called a beta weight,
standardized regression coefficient, or beta coefficient, and just as was true
for the b weights in the raw score equation, they are also referred to as par-
tial regression coefficients. These coefficients usually compute to a decimal
value, but they can exceed the range of ±1 if the predictors are correlated
enough between themselves.

Each βX combination represents the z score of a predictor and its asso-
ciated beta weight. With the equation in standardized form, the Y intercept
is zero and is therefore not shown.

We can now revisit the example used above where we predicted success
in graduate school based on grade point average and GRE score. Here is that
final equation but this time in standard score form:

Y
z pred = β1 Xz1 + β2 Xz2 + . . . + β

n
X

zn

Y
z pred = (.48) (gpa

z
) + (.22) (GRE

z
)
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We can also apply this standardized regression equation to individuals in
the sample—for example, Erin. Within the sample used for this study,
assume that Erin’s grade point average of 3.80 represents a z score of 1.80
and that her GRE score of 650 represents a z score of 1.70. We can thus solve
the equation as follows:

Y
z pred = β1Xz1 + β2Xz2 + . . . + β

n
X

zn

Y
z pred = (.48) (gpa

z
) + (.22) (GRE

z
)

Y
z pred Erin = (.48) (gpa

z Erin) + (.22) (GRE
z Erin)

Y
z pred Erin = (.48) (1.80) + (.22) (1.70)

Y
z pred Erin = (.864) + (.374)

Y
z pred Erin = 1.24

The Variate in Multiple Regression

As was discussed in the overview at the very start of the book, multi-
variate procedures typically involve building, developing, or solving for a
weighted combination of variables. This combination is called a variate.
In the case of multiple regression, we are dealing with a variate made up
of a weighted combination of the predictors or independent variables in
the analysis. The variate in this instance is the entity on the right side of
the multiple regression equation.

Although the variate may not be a measured variable, it is still important
in the context of multiple regression. It is often possible to view this variate as
representing some underlying dimension or construct (i.e., a latent variable).
In the preceding example where we were predicting success in graduate
school, the variate might be interpreted as “academic aptitude” indexed by
the linear combination of grade point average and GRE score. From this per-
spective, indicators of academic aptitude were selected by the researchers to
be used in the study. They then used the regression technique to shape the
most effective academic aptitude variate to predict success in graduate school.

Based on the previous example, the academic aptitude variate is built to
do the best job possible to predict a value on a variable. That variable is the
predicted success score. Note that the result of applying the multiple regres-
sion equation—the result of invoking the linear composite of the predictor
variables, the variate—is the predicted success score and not the actual
success score. For most of the cases in the data file, the predicted and the
actual success scores of the students will be different. The model minimizes
these differences; it does not eliminate them. Thus, the variable “predicted
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success score” and the variable “actual success score” are different variables,
although we certainly hope that they are reasonably related to each other.
The variate that we have called academic aptitude generates the predicted
rather than the actual value of the success score.

A Range of Regression Methods

The main work done in multiple regression is to build the prediction equa-
tion. This involves generating the weighting coefficients—the b weights
for the raw score equation and the beta coefficients for the standardized
equation—as well as the Y intercept for the raw score equation.

Several different methods are available to researchers to build the variate
or linear function; these can be organized into two groups or classes. One sub-
set of methods relies exclusively on statistical decision-making criteria built
into the computer programs to decide at which point in the process which
predictors are to be entered into the equation. These are ordinarily called, as
a class, statistical methods. The most popular of these statistical methods
include the standard, forward, backward, and stepwise methods although
others (not covered here), such as max R-squared and min R-squared, have
been developed as well. In using these methods, researchers permit the
computer program to autonomously carry out the analyses.

The other subset of methods calls for the researchers to determine
which predictors are to be entered into the regression equation at each
stage of the analysis. Thus, the researcher rather than the computer pro-
gram assumes control of the regression procedure. These researcher-based
decisions regarding order of entry are typically derived from the theoretical
model with which the researchers are working.

The Standard (Simultaneous) Regression Method

The standard regression method, also called the simultaneous or the
direct method, is what most authors refer to if they leave the method
unspecified. It is the most widely used statistical method. Under this
method, all the predictors are entered into the equation in a single “step”
(stage in the analysis). The standard method provides a full model solution
in that all the predictors are part of it.

The idea that these variables are entered into the equation simultane-
ously is true only in the sense that the variables are entered in a single
step. But that single step is not at all simple and unitary; when we look
inside this step, we will find that the process of determining the weights
for independent variables is governed by a complex strategy.
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The Example to Be Used

Rather than referring to abstract predictors and some amorphous
dependent variable to broach this topic, we will present the standard regres-
sion method by using an example with variables that have names and mean-
ing. To keep our drawings and explication manageable, we will work with a
smaller set of variables than would ordinarily be used in a study conceived
from the beginning as a regression design. Whereas an actual regression
design might typically have from half a dozen to as many as two dozen or
more variables as potential predictors, we will use a simplified example of
just three predictors for our presentation purposes.

We have taken our variables from a larger study in which we collected
data from 420 college students. The dependent variable we use for this
illustration is self-esteem as assessed by Coopersmith’s (1981) Self-Esteem
Inventory. Two of the predictors we use for this illustration are Tellegen’s
(1982) measures of the number of positive and negative affective behaviors
a person ordinarily exhibits. The third independent variable represents
scores on the Openness scale of the NEO Five-Factor Personality Inventory
(Costa & McCrae, 1992). Openness generally assesses the degree to which
respondents appear to have greater aesthetic sensitivity, seek out new expe-
riences, and are aware of their internal states.

It is always desirable to initially examine the correlation matrix of the
variables participating in a regression analysis. This gives researchers an
opportunity to examine the interrelationships of the variables, not only
between the dependent variable and the independent variables but also
between the independent variables themselves.

Table 5a.2 displays the correlation matrix of the variables in our
example. We have presented it in “square” form where the diagonal from
upper left to lower right (containing the value 1.000 for each entry) separate
the matrix into two redundant halves. As can be seen, the dependent vari-
able of self-esteem is moderately correlated with both positive and negative
positive affect but is only modestly correlated with openness. It can also be
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Table 5a.2 Correlation Matrix of the Variables in the Regression Analysis

Esteem PosAfect NegAfect NeoOpen

Esteem 1.000 .555 −.572 .221
PosAfect .555 1.000 −.324 .221
NegAfect −.572 −.324 1.000 −.168
NeoOpen .221 .221 −.168 1.000
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seen that positive and negative affect correlate more strongly with each
other than either does with openness.

Building the Regression Equation

The goal of any regression procedure is to predict or account for
the variance of the criterion variable. In this example, that variable is
self-esteem. At the beginning of the process, before the predictors
are entered into the equation, 100% of the variance of self-esteem is
unaccounted for. This is shown in Figure 5a.1. The dependent variable of
self-esteem is in place, and the predictors are ready to be evaluated by
the regression procedure.

On the first and only step of the standard regression procedure, all the
predictors are entered as a set into the equation. But to compute the weight-
ing coefficients (b weights for the raw score equation and beta weights for
the standardized equation), the predictors must be individually evaluated.
To accomplish this, and this is the essence of standard regression, each
predictor’s weight is computed as though it had entered the equation last.

The idea of treating each predictor as if it was the last to enter the model
is to determine what predictive work it can do over and above the predic-
tion attributable to the rest of the predictors. In this manner, standard
regression focuses on the unique contribution that each independent vari-
able makes to the prediction when combined with all the other predictors.
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Figure 5a.1 Self-Esteem Dependent Variable Prior to Regression Analysis
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The way in which standard regression assesses the unique contribution of
each independent variable is the key to understanding the standard method,
and we will go through the process here.

The Squared Multiple Correlation

We can demonstrate the dynamics of assessing the unique contribution
of each independent variable by focusing on how one of these predictors—
say, positive affect—is evaluated. In determining the weight that positive
affect will receive in the regression equation, the program momentarily
places the other predictors (negative affect and openness) in the equation.
This is illustrated by the diagram in Figure 5a.2.

Negative affect and openness are both entered into the equation simul-
taneously. Their relationship to the dependent variable, self-esteem, is shown
in the Venn diagram in Figure 5a.2. Two features of this depiction are impor-
tant to note at this point.

First, this diagram still represents a correlation. If the criterion variable
was shown with just a single predictor, you would immediately recognize a
representation of the Pearson (or any bivariate) correlation. The shaded
area would show the strength of the correlation, and its magnitude would
be indexed by r2.

The relationship shown in Figure 5a.2 is more complex than that. Three
variables, not two, are involved in the relationship. Specifically, we are look-
ing at the relationship of the criterion (self-esteem) to two predictors (neg-
ative affect and openness). When we have three or more variables involved
in the relationship, we can no longer use the Pearson correlation coefficient
to quantify the magnitude of that relationship—the Pearson r can index the
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Openness

Negative Affect

Self-Esteem

Figure 5a.2 Self-Esteem Variance Accounted for by Simultaneous Entering of
Negative Affect and Openness Predictors
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degree of relationship only when two variables are being considered. The
correlation coefficient we need to call on to quantify the degree of a more
complex relationship is known as the multiple correlation. It is symbolized
as an uppercase italic R.

A multiple correlation coefficient indexes the association of one variable
with a set of other variables, and the squared multiple correlation (R2),
sometimes called the coefficient of multiple determination, tells us the
strength of this complex relationship.

In Figure 5a.2, the shaded area—the overlap of negative affect and
openness with self-esteem—represents the R2 for that relationship. This R2

value can be thought of in a way analogous to r2; that is, it can be thought
of in terms of explained or accounted-for variance. In this case, we are
explaining the variance of self-esteem.

The R2 value represents one way to evaluate the model. Larger values
mean that the model has accounted for greater amounts of the variance
of the dependent variable. How large an R2 it takes to say that you have
accounted for a “large” percentage of the variance depends on the theoreti-
cal context within which the research has been done as well as prior research
in the topic area.

The second feature important to note in Figure 5a.2 is that negative
affect and openness overlap with each other. In Venn diagram format, an
overlap of the variables indicates a correlation between them. Here, the
two predictors do overlap but not by all that much (they correlate –.17).
The degree to which they correlate affects the beta weights these variables
are assigned in the regression equation, so the correlations of the predic-
tors become a matter of some interest to researchers using a regression
design.

The Partial Correlation and Covariance

With these two other variables in the equation for the moment, we
are ready to evaluate the contribution of positive affect. The criterion vari-
able or dependent variable is the focus of the multiple regression design.
It is therefore the variance of the dependent variable that we want to
account for or predict, and our goal is to account for as much of it as
possible with our set of independent variables. We face an interesting but
subtle feature of multiple regression in its efforts to maximize the amount
of dependent variable variance that we can account for. In the context of
multiple regression, our predictors must account for separate portions—
rather than the same portion—of the dependent variable’s variance. This is
the key to understanding the regression process.
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With negative affect and openness already in the model, and thus already
accounting for variance the amount of which is indexed by R2, positive affect,
as the last variable to enter, must target the variance that remains—the resid-

ual variance—in self-esteem. This is shown in Figure 5a.3, which is the same
diagram that was shown in Figure 5a.2 except that we have added a couple of
features to it. The shaded area in Figure 5a.3 is the variance of the dependent
variable (self-esteem) explained by the two independent variables. It is
indexed by R2. The remaining portion of the dependent variable variance is,
by definition, not accounted for by these two predictors. It is shown in the dia-
gram as the blank space in the circle representing self-esteem, and its value
must be 1 − R2. That is, it is the residual variance of self-esteem after negative
affect and openness have performed their predictive (correlational) work.

We have outlined that scallop-like shape showing the unexplained vari-
ance of self-esteem with negative affect and openness in the equation by
using a heavy line to make it easier to see and have labeled it as “unexplained
variance” in Figure 5a.3. In evaluating the contribution of positive affect, the
predictor currently under consideration, it is this residual variance of self-
esteem that positive affect must target. The question becomes how much of
this residual variance can positive affect correlate with on its own.

However strange this sounds, we are talking about the correlation
between positive affect and the residual variance of self-esteem when the
effects of negative affect and openness have been statistically removed, con-
trolled, or “partialled out.” Such a correlation is called a partial correlation.
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Figure 5a.3 Outlined Area of Unexplained Residual Variance for Self-Esteem
Known as (1 – R2)
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A partial correlation addresses the relationship between two variables when
the effects of other variables have been statistically removed from one of
them. In this sense, the variables already in the model are conceived of as
covariates in that their effects are statistically accounted for prior to evalu-
ating the relationship of positive affect and self-esteem.

Once the regression procedure has determined how much positive
affect can contribute to the set of predictors already in the model (how
much of the residual variance of self-esteem it can explain), the computer
starts the process of computing the weight that positive affect will receive in
the model. We will not get into that computational process here. Instead, we
have presented the situation depicting the results of those computations in
Figure 5a.4. In this figure, we have added the positive affect variable into the
predictor set. The “prediction work” that it does is shown in a darker cross-
hatched fill. Note that some of the prediction supplied by positive affect is
not accomplished by any other variable and that “other” of what positive
affect predicts for self-esteem is also predicted by negative affect.

Repeating the Process for the Other Predictors

After the computation of the b and beta weights for positive affect have
been made, it is necessary to evaluate another one of the predictors. Thus,
positive affect and another predictor are entered into the equation, and the
strategy we have just outlined is repeated for the remaining predictor. Each
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independent variable is put through this same process until the weights for
all have been determined. At the end of this complex process, the final
weights are locked in and the results of the analysis are printed.

We also know the value of R2 with all the variables in the equation. This
final R2 tells us how much variance of the dependent variable is accounted
for by the full regression model. By subtracting that value from 1 (1 – R2), we
can also ascertain how much of the dependent variable’s variance remains
unexplained; this is the residual variance of the dependent variable after the
regression model has accomplished its predictive work. Obviously, adding
the value of the coefficient of multiple determination (R2) to the residual
variance (1 – R2) results in a value of 1.00; this subsumes 100% of the vari-
ance of the dependent variable.

The Squared Semipartial Correlation

A Venn diagram suggesting the final solution is shown in Figure 5a.5. We
say “suggesting” because even with as small a set as three independent vari-
ables, it is difficult to draw all the relationships between them in only two
dimensions (we have not captured the correlation between positive affect
and openness). As a result, such a pictorial representation is at best an
approximation to the full mathematical solution, which we will present in
the next section of this chapter.

Despite the shortcoming of using the Venn diagram here, we can still
point out an important element of the solution. Note that we have used two
different types of shading in the figure, cross-hatching and slanted-line
fill. The total filled-in area, combining across all fill portions, represents
the total amount of self-esteem variance explained by the regression model,
a quantity indexed by R2.

In Figure 5a.5, the darker cross-hatched areas are associated with
explained variance resulting from the overlapping of predictors. Positive
and negative affect, for example, explain a common portion of self-esteem
variance, which is shown by the dark cross-hatched area between them.

The slanted-line areas are components of explained variance unique to
a single predictor; that is, there is no overlap with the other predictors in
those regions. This uniquely explained variance is indexed by another
correlation statistic known as the squared semipartial correlation. It
represents the extent to which variables do independent predictive work
when combined with the other predictors in the model. Such correlations
are, therefore, strongly tied to the specific regression model and may
not necessarily generalize if any of these predictors are combined with a
different set of predictors in a subsequent study.
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We can also evaluate how well the model works by examining the
squared semipartial correlations (Tabachnick & Fidell, 2001b). With the
squared semipartial correlations, you are looking directly at the unique
contribution of each predictor within the context of the model, and clearly,
independent variables with larger squared semipartial correlations are
making a larger unique contribution.

There are some limitations in using this statistic to compare the
contributions of the predictors. The unique contribution of each variable
in multiple regression is very much a function of the correlations of the
variables used in the analysis. It is quite likely, as we stated earlier, that within
the context of a different set of predictors, the unique contributions of these
variables would change, perhaps substantially. Of course, this argument
is true for the beta coefficients as well.

Based on this line of reasoning, one could put forward the argument
that it would therefore be extremely desirable to select predictors in a mul-
tiple regression design that are not at all correlated between themselves but
are highly correlated with the criterion variable. In such a fantasy scenario,
the predictors would account for different portions of the dependent vari-
able’s variance, the squared semipartial correlations would be substantial,
and the overlap of the predictors in Venn diagram format would be minimal.

This argument may have a certain appeal at first glance, but it is not a
viable strategy for both practical and theoretical reasons. On the practical
side, it would be difficult or perhaps even impossible to find predictors in
many research arenas that are related to the criterion variable but at the
same time are not themselves at least moderately correlated. On the theo-
retical side, it is desirable that the correlations between the predictors in a
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research study are representative of those relationships in the population.
All else equal, to the extent that variables are related in the study as they are
in the outside world, the research results may be said to have a certain
degree of external validity.

The consequence of moderate or greater correlation between the pre-
dictors is that the unique contribution of each independent variable may be
relatively small in comparison with the total amount of explained variance of
the prediction model, because the predictors in such cases may overlap con-
siderably with each other. Comparing one very small semipartial value with
another even smaller semipartial value is often not a productive use of your
time and runs the risk of yielding distorted or inaccurate conclusions.

Structure Coefficients

In our discussion of the variate, we emphasized that there was a differ-
ence between the predicted value and the actual score that individuals
obtained on the dependent variable. Our focus here is on the predicted
score, which is the value of the variate for the particular values of the inde-
pendent variables substituted in the model. The structure coefficient is
the bivariate correlation between a particular independent variable and the
predicted (not the actual) score (Dunlap & Landis, 1998). Each predictor is
associated with its own structure coefficient.

The numerical value of the structure coefficient is not contained in
the output of SPSS but is easy to compute with a hand calculator using the
following information available in the printout:

Structure Coefficient =
rIV × DV

R

where rIV × DV is the Pearson correlation between the given predictor and the
actual (measured) dependent variable and R is the multiple correlation. The
structure coefficient indexes the correlation between the predictor and the
variate; stronger correlations indicate that the predictor is a stronger reflec-
tion of the construct underlying the variate.

Summary of the Solution for

the Standard Regression Method Example

The results of the regression procedure for our simplified example are
displayed in Table 5a.3. For each predictor, we have shown its Pearson cor-
relation (r) with the dependent variable, its raw (b) and standardized (beta)
regression weighting coefficients, the amount of self-esteem variance it has
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uniquely explained (squared semipartial correlation), its structure coef-
ficient, and the t value associated with each regression weight. We will
discuss each in turn. The constant (the Y intercept) is shown in the last
line of the table.

The Regression Equations

Using the raw and standardized regression weights and the Y intercept
shown in Table 5a.3, we have the elements of the two regression equations.
We produce them below.

The raw score equation is as follows:

Self-esteempred = 56.66 + (2.89)(pos affect) – (2.42)(neg affect)
+ (.06)(open)

The standardized equation is as follows:

Self-esteemz pred = (.40)(pos affectz) – (.43)(neg affectz) + (.06)(openz)

Variables in the Equation

The predictor variables are shown in the first column of the table.
This represents a complete solution in the sense that all the independent
variables are included in the final equation regardless of how much they
contribute to the prediction model. Such a solution is considered atheoret-

ical because all the variables that were originally assessed are included in
the final solution.
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Table 5a.3 Summary of the Example for Multiple Regression

Squared

Semipartial Structure

Variable r b beta Correlation Coefficients t

Positive affect .55 2.89 .40 .14 .80 10.61*
Negative affect −.57 −2.42 −.43 .16 −.82 −11.50*
Openness .22 .11 .06 .00 .32 1.64
Constant 56.66
(Y intercept)

*p < .01.
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R2 and Adjusted R2

The shaded areas in Figure 5a.5 (the slanted-line areas together with
the darker cross hatched areas) represent the total amount of variance
accounted for by the prediction model. The computer printout shows the
actual value for R2. In the present case, this turned out to be .48 rounded
to two decimal places. Thus, the three predictors in this particular
weighted linear combination were able to explain about 48% of the variance
of self-esteem.

SPSS also prints an adjusted R2 value, which essentially tries to take into
account a bit of error inflation in the regular R2 value. Because it is a human
endeavor, there is always some error of measurement associated with any-
thing we assess. If this error is random, as we assume it to be, then some of
that measurement error will actually be in the direction of enhanced pre-
diction. Multiple regression, however, is unable to distinguish between this
chance enhancement (i.e., blind luck from the standpoint of trying to
achieve the best possible R2) and the real predictive power of the variables.
So it uses everything it can to maximize prediction—it generates the b and
beta weights from both true and error sources combined.

The problem for us is that in another sample the random dictates of
error will operate differently, and if the old weighting coefficients are
applied to the new sample, they will be less effective than they were in the
original sample. This overprediction is more of a problem when we have
relatively small sample sizes and relatively more variables in the analysis. As
sample size reaches more acceptable proportions (20 or more cases per pre-
dictor), the inflation of R2 becomes that much less of an issue. Nonetheless,
virtually every statistical program computes an adjusted value for R2. These
programs attempt to extract from the computed R2 value some portion of it
to which we can ascribe error and then subtract that out. We recommend
that you report the adjusted R2 value in addition to the uncorrected value.

The adjusted R2 is a statistical estimate of the shrinkage we would
observe if we were to apply the model to another sample. We can instead
approach the issue from an empirical perspective through the processes of
either cross-validation or double cross-validation. To perform a cross-
validation, we ordinarily divide a large sample in half (into two subsamples)
by randomly selecting the cases to be assigned to each. We then compute
our regression analysis on one subsample and use those regression weights
to predict the criterion variable of the second “hold-back” sample. The R2

difference tells us the degree of predictive loss we have observed. We can
also correlate the predicted scores of the hold-back sample with their actual
scores; this can be thought of as the cross-validation coefficient.
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Double cross-validation can be done by performing the cross-validation
process in both directions—that is, performing the regression analysis on
each subsample and applying the results to the other. In a sense, you obtain
two estimates of shrinkage rather than one. If the shrinkage is not excessive,
and there are few guidelines as to how to judge this, you can then perform
an analysis on the combined sample and report the double cross-validation
results to let readers know how generalizable your model is.

In the present example, the adjusted R2 value for this analysis is rounded
to .48, giving us virtually the same value as the unadjusted R2 (the actual R2

was .48257 and the adjusted R2 was .47883). That such little adjustment was
made is probably a function of the sample size to number of variables ratio
we used and the fact that we used a very small predictor set.

By virtue of our sample size (N = 420) the R2 of .48 obtained here is clearly
statistically significant. However, SPSS tests the efficacy of the model by an
analysis of variance. In this case, we can say that these three independent vari-
ables in combination significantly predicted self-esteem, F(3, 416) = 129.32,
p < .05, R2 = .48, adjusted R2 = .48. This information is part of the printout as
we will see in Chapter 5B.

We should also consider the magnitude of the R2 obtained here. One
would ordinarily think of .48 as reasonably substantial, and you should not
be terribly disappointed with R2s considerably less than this in your own
study. In the early stages of a research project or when studying a variable
that may be complexly determined (e.g., rate of spread of an epidemic,
recovery from a certain disease), very small but statistically significant
R2s may be cause for celebration by a research team.

Pearson Correlations With the Criterion Variable

The second numerical column in Table 5a.3 shows the simple Pearson
correlations between self-esteem and each of the predictors. We have briefly
described the correlations earlier. For present purposes, you can see that
the correlations between self-esteem and positive affect and openness are
positive. This was the case because each of these variables are scored in the
positive direction—higher scores mean that respondents exhibit more pos-
itive affective behaviors and that they are more open to new or interesting
experiences, respectively. Because higher scores on the self-esteem scale
indicate greater positive feelings about oneself, it is not surprising that these
two predictors are positively correlated with it. On the other hand, negative
affect is negatively correlated with self-esteem. This is also not surprising in
that individuals who exhibit more negative affective behaviors are typically
those who have lower levels of self-esteem.
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b and Beta Coefficients

The b and beta coefficients in Table 5a.3 show us the weights that the
variables have been assigned at the end of the equation-building process.
The b weights are tied to the metrics on which the variables are measured
and are therefore difficult to compare with one another. But with respect to
their own metric, they are quite interpretable. The b weight for positive
affect, for example, is 2.89. We may take it to mean that when the other vari-
ables are controlled for, an increase of 2.89 points on the positive affect
measure is, on average, associated with a 1-point gain in self-esteem.

Table 5a.3 also shows the Y intercept for the linear function. This value
of 56.66 would need to be added to the weighted combination of variables
in the raw score equation to obtain the predicted value of self-esteem for
any given research participant.

The beta weights for the independent variables are also shown in Table
5a.3. Here, all the variables are in z-score form and thus their beta weights,
within limits, can be compared with each other. We can see from Table 5a.3
that positive and negative affect have beta weights of similar magnitudes and
that openness has a very low beta value. Thus, in achieving the goal of pre-
dicting self-esteem to the greatest possible extent (to minimize the sum of
the squared prediction errors), positive and negative affect are given much
more weight than openness.

The Case for Using Beta Coefficients to Evaluate Predictors

Some authors (e.g., Cohen, Cohen, West, & Aiken, 2003; Pedhazur, 1982,
1997; Pedhazur & Schmelkin, 1991) have cautiously argued that at least under
some circumstances, we may be able to compare the beta coefficients with
each other. That is, on the basis of visual examination of the equation, it may
be possible to say that predictors with larger beta weights contribute more to
the prediction of the dependent variable than those with smaller weights.

It is possible to quantify the relative contribution of predictors using
beta weights as the basis of the comparison. Although Kachigan (1986) has
proposed examining the ratio of the squared beta weights to make this com-
parison, that procedure may be acceptable only in the rare situation when
those predictors whose beta weights are being compared are uncorrelated
(Pedhazur & Schmelkin, 1991). In the everyday research context, where the
independent variables are almost always significantly correlated, we may
simply compute the ratio of the actual beta weights (Pedhazur, 1982, 1997;
Pedhazur & Schmelkin, 1991), placing the larger beta weight in the numer-
ator of the ratio. This ratio reveals how much more one independent vari-
able contributes to prediction than another within the context of the model.
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This comparison could work as follows. If we wanted to compare the
efficacy of negative affect (the most strongly weighted variable in the model)
with the other (less strongly weighted) predictors, we would ordinarily limit
our comparison to only the statistically significant ones. In this case, we would
compare negative affect only with positive affect. We would therefore com-
pute the ratio of the beta weights (negative affect / positive affect) without
carrying the sign of the beta through the computation. This is shown below:

negative affect

positive affect

−.43 
= 1.075

.40

Based on this ratio (although we could certainly see this just by looking
at the beta weights themselves), we would say that negative and positive
affect make approximately the same degree of contribution to the predic-
tion of self-esteem in the context of this research study with the present set
of variables.

Concerns With Using the Beta

Coefficients to Evaluate Predictors

We indicated above that even when authors such as Pedhazur (1982,
1997; Pedhazur & Schmelkin, 1991) endorse the use of beta coefficient
ratios to evaluate the relative contribution of the independent variables
within the model, they usually do so with certain caveats. Take Pedhazur
(1997) as a good illustration:

Broadly speaking, such an interpretation [stating that the effect of
one predictor is twice as great as the effect of a second predictor] is
legitimate, but it is not free of problems because the Beta[s] are
affected, among other things, by the variability of the variable with
which they are associated. (p. 110)

Thus, beta weights may not be generalizable across different samples.
Another concern regarding using beta coefficients to evaluate predictors

is that beta weight values are partly a function of the correlations between
the predictors themselves. That is, a certain independent variable may pre-
dict the dependent variable to a great extent in isolation, and one would
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therefore expect to see a relatively high beta coefficient associated with that
predictor. Now place another predictor that is highly correlated with the
first predictor into the analysis and all of a sudden the beta coefficients of
both predictors can plummet. The first predictor’s relationship with the
dependent variable has not changed in this scenario, but the presence of
the second correlated predictor could seriously affect the magnitude of the
beta weight of the first. This “sensitivity” of the beta weights to the correla-
tions between the predictors, reflected in the beta values, places additional
limitations on the generality of the betas and thus their use in evaluating or
comparing predictive effectiveness of the independent variables.

Recommendations for Using Betas

We do not want to leave you completely hanging at this point in our treat-
ment, so we will answer some obvious questions. Should you use the beta
weights to assess the relative strengths of the predictors in your own research?
Yes. Should that be the only index you check out? No. The structure coeffi-
cients and the squared semipartial correlations should be examined as well.

Positive Versus Negative Weights

The positive and negative regression weights of the predictors reflect
the nature of their respective correlations with the dependent variable. This
makes sense when you recall that we are predicting self-esteem. The regres-
sion model tells us that greater levels of self-esteem will be predicted by the
combination of more positive affect and openness and less negative affect.
Thus, we should be adding the contribution of positive affect and openness
but subtracting the contribution of negative affect in predicting self-esteem.

Squared Semipartial Correlations

The fourth column of Table 5a.3 displays the squared semipartial
correlations for each predictor. These correlations are shown in the SPSS
printout as “part correlations” and appear in the printout in their non-
squared form. This statistic indexes the variance accounted for uniquely by
each predictor in the full model. What is interesting here, and this is pretty
typical of multiple regression research, is that the sum of these squared
semipartial correlations is less than the R2. That is, .14, .16, and .00 add up
to .30 and not to the R2 of .48.

The reason these squared semipartial correlations do not add to the
value of R2 is that the independent variables overlap (are correlated) with
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each other. Here, 30% of the variance is accounted for uniquely by the
predictors, whereas (by subtraction) 18% of the accounted for variance is
handled by more than one of them. We therefore have some but not a huge
amount of redundancy built into our set of predictors.

Using the squared semipartial correlations as a gauge of the relative
strength of the predictors results in an evaluation similar to the one we
made based on comparing the beta weights. From this perspective, positive
and negative affect are approximately tied in their unique contribution to
the prediction model under the present research circumstances.

The Structure Coefficients

The next-to-last column in Table 5a.3 shows the structure coefficients.
These needed to be hand calculated because SPSS does not provide them.
For each independent variable in the table, we divided the Pearson r repre-
senting the correlation of the independent variable and the dependent
variable (shown in the second numerical column) by the multiple correlation.
To illustrate, the square root of .48 (the R2 ) is approximately .69. For positive
affect’s structure coefficient, we divided .55 by .69 to obtain approximately .80.

The structure coefficients indicate that positive and negative affect
are reasonably highly correlated with predicted self-esteem and so are very
reasonable instances of (they correlate reasonably highly with) the variate.
In this example, using the structure coefficients as a basis to compare the
contribution of the predictors presents the same picture as those painted by
the beta weights and the squared semipartial correlations. Such consistency,
however, is not always obtained.

Beta coefficients and structure coefficients differ in at least two impor-
tant ways.

1. A beta coefficient associated with its predictor reflects the correla-
tions of that predictor with the other predictors in the analysis. A
structure coefficient does not take into account the degree to which
that predictor correlates with the other predictors.

2. Beta weights can exceed the range of ±1 when the predictors are
correlated with each other. Many researchers have a problem inter-
preting beta weights greater than unity. Structure coefficients are
bounded by the range ±1 because they are correlation coefficients,
thus making them pretty clearly interpretable.

Our recommendations are consistent with what we offered above
for beta weights. We concur with Thompson and Borrello (1985) that the
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structure coefficients are a useful companion index of relative predictor
contribution. Pedhazur (1982) notes that structure coefficients will show
the same pattern of relationships as the preregression correlations of the
predictors and the criterion. Because of this, Pedhazur is not convinced of
the utility of structure coefficients. In our view, by focusing on the correla-
tion between the predictor and the variate, we believe that structure coeffi-
cients may add a nuance to the interpretation of the regression analysis that
we think is worthwhile.

t tests

SPSS tests the significance of each predictor in the equation using
t tests. The null hypothesis is that a predictor’s weight is effectively equal to
zero when the effects of the other predictors are taken into account. This
means that when the other predictors act as covariates and this predictor is
targeting the residual variance, according to the null hypothesis the predic-
tor is unable to account for a statistically significant portion of it; that is, the
partial correlation between the predictor and the criterion variable is not
significantly different from zero. And it is a rare occurrence when every
single independent variable turns out to be a significant predictor. The
t tests shown in the last column of Table 5a.3 inform us that only positive and
negative affect are statistically significant predictors in the model; even with
our large sample size, openness does not receive a strong enough weight to
reach that touchstone.

Step Methods of Building the Model

Step methods of building the regression equation that we briefly cover here
are the forward method, the backward method, and the stepwise method.
These methods construct the model one variable at a time rather than all at
once as the standard method does. The primary goal of these step methods
is to build a model with only the “important” predictors in it. The methods
differ primarily in how they determine the importance of the predictors.

The Forward Method

In the forward method, rather than placing all the variables in the
equation at once, we add independent variables to the equation one vari-
able or step at a time. At each step, we enter the particular variable that adds
the most predictive power at that time. If we were working with the set of
variables we used to illustrate the standard regression method, negative
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affect would be entered first. We know this because, with no variables in the
model at the start and building the model one variable at a time, the variable
correlating most strongly with self-esteem would be entered first.

In the forward method, once a variable is entered into the model, it
remains in the model. For the next step, the variable with the highest partial
correlation (the correlation between the residual variance of self-esteem
and each remaining predictor with negative affect as a covariate) is entered
if that partial correlation is statistically significant. In this case, we will
assume that positive affect would be entered.

This process is repeated for each remaining predictor with the variables
in the model all acting as covariates. We would find, with negative and
positive affect in the model, that openness would not be entered; that is, it
would not account for a significant amount of the residual variance. Because
that is the entire set of predictors, the forward procedure would stop at the
end of the second step.

The Backward Method

The backward method works, not by adding significant variables to the
equation but, rather, by removing nonsignificant predictors from it one step
at a time. The very first action performed by the backward method is the
same one used by the standard method; it enters all the predictors into the
equation regardless of their worth. But whereas the standard method stops
here, the backward method is just getting started.

The model with all the variables in it is now examined, and the signifi-
cant predictors are marked for retention. Nonsignificant predictors are then
evaluated and the most expendable of them—the one whose loss would
least significantly decrease the R2—is removed from the equation. A new
model is built in the absence of that one independent variable and the eval-
uation process is repeated. Once again, the most expendable independent
variable is removed. This removal process and equation-reconstruction
process continues until there are only significant predictors remaining in
the equation. In our example, openness would have been removed at the
first opportunity. It is probable that the method would have stopped at that
point because both remaining predictors would almost certainly have been
significant predictors.

Backward Versus Forward Solutions

Backward regression does not always produce the same model as
forward regression even though it probably would have in our simplified
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example. Here is why: Getting into the equation in the forward method
requires predictors to meet a more stringent criterion than variables being
retained in the equation in the backward method. This creates a situation in
which it is more difficult to get into the equation than to remain in it.
Stringency or difficulty is defined statistically by the alpha or probability level
associated with entry and removal.

Predictors earn their way into the equation in the forward method by
significantly predicting variance of the dependent variable. The alpha level
governing this entry decision is usually the traditional .05 level. By most
standards, this is a fairly stringent criterion. When we look for predictors to
remove under the backward method, the alpha level usually drops to .10 as
the default in most programs. This means that a predictor needs to be
significant at only .10 (not at .05) to retain its place in the equation. Thus, an
independent variable is eligible to be removed from the equation at a par-
ticular step in the backward method if its probability level is greater than .10
(e.g., p = .11) but it will be retained in the equation if its probability level is
equal to or less than .10 (e.g., p = .09).

The consequences of using these different criteria for entry and removal
affects only those variables whose probabilities are between the entry and
removal criteria. To see why this is true, first consider variables that are not
within this zone.

If a variable does not meet the standard of p = .10, it is removed from
the equation. This variable would also by definition not meet the .05
alpha level criterion for entry either, so there is no difference in the
outcome for this predictor under either criterion—it is not going to
wind up in the equation in either the forward or backward methods.
If a variable does meet the .05 criterion, it will always be allowed entry
to the equation and will certainly not be removed by the backward
method; again, there is no difference in outcome for such a predictor
under either method.

Variables with probability levels between these two criteria are in a
more interesting position. Assume that we are well into the backward
process and at this juncture the weakest predictor is one whose proba-
bility is .08. This variable would not have been allowed into the equation
by the forward method if it were considered for entry at this point
because to get in it would have to meet a .05 alpha level to achieve
statistical significance.

However, under the backward method, this variable was freely added to
the equation at the beginning, and the only issue here is whether it is to be

▼
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removed. When we examine its current probability level and find it to be .08,
we determine that this predictor is “significant” at the .10 alpha level. It
therefore remains in the equation. In this case, the model built under the
backward model would incorporate this predictor but the model built under
the forward method would have excluded it.

The Stepwise Method

The stepwise method of building the multiple regression equation is
essentially a composite of the forward and backward methods. The step-
wise and forward methods act in the same fashion until we reach the point
where a third predictor is added to the equation. The stepwise method
therefore begins with an empty equation and builds it one step at a time.
Once a third independent variable is in the equation, the stepwise method
invokes the right to remove an independent variable if that predictor is not
earning its keep.

Predictors are allowed to be included in the equation if they signifi-
cantly (p = .05) add to the predicted variance of the dependent variable.
With correlated independent variables, as we have seen, the predictors in
the equation admitted under a probability level of .05 can still overlap with
each other. This is shown in Figure 5a.6.

In Figure 5a.6, predictor J was entered first, K was entered second,
and L was entered third. We are poised at the moment when L joined the
equation. Note that between predictors J and L, there is very little work
that can be attributed uniquely to K. At this moment, the squared semipar-
tial correlation associated with K (showing its unique contribution to the
prediction model) is quite small.

In the forward method, the fact that K’s unique contribution has been
substantially reduced by L’s presence would leave the procedure unfazed
because it does not have a removal option available to it. But this is the
stepwise method, and it is prepared to remove a predictor if necessary.
When the amount of residual variance that K now accounts for is examined,
let’s presume that it is not significant at the removal criterion of .10 (say its
p value is .126). K is thus judged to no longer be contributing effectively to
the prediction model, and it is removed from the equation. Of course,
as more predictors are entered into the equation, the gestalt could change
dramatically, and K might very well be called on to perform predictive duties
later in the analysis.

We have just described the reason that the entry criterion is more severe
than the removal criterion. It can be summarized as follows. If getting into
the equation was easier than getting out, then variables removed at one step
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might get entered again at the next step because they might still be able to
achieve that less stringent level of probability needed for entry. There is then
a chance that the stepwise procedure could be caught in an endless loop
where the same variable kept being removed on one step and entered again
on the next. By making entry more exacting than removal, this conundrum
is avoided.

Evaluation of the Statistical Methods

Benefits of the Statistical Methods

The primary advantage of using the standard model is that it presents a
complete picture of the regression outcome to researchers. If the variables
were important enough to earn a place in the design of the study, then they
are given room in the model even if they are not adding very much to the
R2. That is, on the assumption that the variables were selected on the basis
of their relevance to theory or at least on the basis of hypotheses based on
a comprehensive review of the existing literature on the topic, the standard
model provides an opportunity to see how they fare as a set in predicting
the dependent variable.

The argument for using the stepwise method is that we end up with a
model that is “lean and mean.” Each independent variable in it has earned
the right to remain in the equation through a hard, competitive struggle.
The argument for using the forward and backward methods is similar to one
used by those advocating the stepwise method. The forward and backward
methods give what their users consider the essence of the solution by
excluding variables that add nothing of merit to the prediction.
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Criticisms of the Statistical Methods

One criticism of all the statistical methods is that independent variables
with good predictive qualities on their own may be awarded very low weight
in the model. This can happen because their contribution is being evaluated
when the contributions of the other predictors have been partialled out.
Such “masking” of potentially good predictors can lead researchers to draw
incomplete or improper conclusions from the results of the analysis. One
way around this problem is for the research to exercise some judgment in
which variables are entered at certain points in the analysis, and this is dis-
cussed in the section titled “Researcher-Controlled Methods.” This issue is
also related to multicollinearity, a topic that we discuss later in the chapter.

The step methods have become increasingly less popular over the
years as their weaknesses have become better understood and as research-
controlled methods have gained in popularity. Tabachnick and Fidell
(2001b), for example, have expressed serious concerns about this group of
methods, especially the stepwise method, and they are not alone. Here is
a brief summary of the interrelated drawbacks of using this set of methods.

These methods, particularly the stepwise method, may need better
than the 20 to 1 ratio of cases to independent variables because there
are serious threats to external validity (Tabachnick & Fidell, 2001b).
That is, the model that is built may overfit the sample because a
different sample may yield somewhat different relationships (cor-
relations) between the variables in the analysis, and that could
completely change which variables were entered into the equation.
The statistical criteria for building the equation identify variables for
inclusion if they are better predictors than the other candidates. But
“better” could mean “just a tiny bit better” or “a whole lot better.”
One variable may win the nomination to enter the equation, but the
magnitude by which the variable achieved that victory may be too
small to matter to researchers.
If the victory of getting into the equation by one variable is within the
margin of error in the measurement of another variable, identifying
the one variable as a predictor at the expense of the other may
obscure viable alternative prediction models.
Variables that can substantially predict the dependent variable may
be excluded from the equations built by the step methods because
some other variable or combination of variables does the job a little
bit better. It is conceivable that several independent variables taken
together may predict the criterion variable fairly well, but step proce-
dures consider only one variable at a time.

▼
▼

▼
▼
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Balancing the Value of All the

Statistical Methods of Building the Model

The standard method works well if you have selected the independent
variables based on theory or empirical research findings and wish to exam-
ine the combined predictive power of that set of predictors. But because
they are functioning in combination, the weights of the predictors in the
model are a function of their interrelationships; thus, you are not evaluating
them in isolation or in subsets. The standard method will allow you to test
hypotheses about the model as a whole; if that is your goal, then that’s what
you should use.

The stepwise methods are intended to identify which variables should
be in the model on purely statistical grounds. Such an atheoretical approach
is discouraged by many researchers. On the other hand, there may be
certain applications where all you want is to obtain the largest R2 with
the fewest number of predictors, recognizing that the resulting model may
have less external validity than desired. Under these conditions, some
researchers may consider using a step method.

Before one decides that one of the statistical procedures is to be used,
it is very important to consider a researcher-controlled method of per-
forming the regression analysis. Although it does require more thoughtful
decision making rather than just entering the variables and selecting a
statistical method, the flexibility it affords and the control it offers more
than compensate for the effort it takes to run such analyses.

Researcher-Controlled Methods of Building the Model

Researcher-controlled regression methods are really variations on a theme.
In all cases, it is the researchers who specify the order of entry of predictors
into the equation. The main issue that researchers face is to determine how
many variables are instructed to enter the equation at any one time. Several
labels are applied to variations of researcher control: sequential analysis,

covariance analysis, hierarchical analysis, and block-entry analysis are
among the most common labels.

What makes this approach different from the statistical methods
described above is that instead of the computer program using statistical
criteria to make such entry decisions, the researchers determine which
variables they would like to propose as covariates. Selection of covariates
should have a solid rational basis in that the decision should be based on
a particular theory, or covariate selection should rest on a solid empirical
basis in which the research literature has shown the need to take into
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account the relationship(s) between the criterion variable and one or more
of the predictors.

For example, suppose we are interested in predicting performance on
the nursing multiple choice licensing examination. Specifically, suppose that
we want to determine the extent to which the time spent in various activi-
ties during their internships combines together to predict candidates’ exam
scores. Further suppose that we believe there is enough variation in the
reading skill of licensing candidates to want to statistically control for the
effects of reading skill on license exam performance in evaluating those
internship experiences.

If we have a measure of reading skill in addition to the time-spent survey
results for each individual, we will conduct the regression analysis so that the
reading variable is the first to enter the equation and thus we will use this
variable as a covariate. That forces the analysis to assign whatever variance in
test scores that it can to reading skill. We then enter the internship variables
simultaneously to account for whatever variance remains after reading skill
does its predictive (covariance) work. Causal hypotheses and mediating vari-
ables, which this example is on the borderline of addressing, can be directly
examined through the technique of path analysis, described in Chapter 14A.

Other possibilities for order of entry exist because we have now taken
control of the process. We can, for example, enter the predictors of our
choice into the equation one at a time. Once again, researchers should
determine the order of entry on the basis of some theory or at least on some
empirical basis, but as long as not too many orders are chosen, it may be
possible to test some interesting hypotheses. The main advantage of enter-
ing one variable at a time is to give precedence to predictors entered earlier
over predictors entered later. As you can imagine, doing such a sequential
analysis is a delicate matter. Several independent variables may actually
account for the same component of the dependent variables variance, but
only the earlier entered ones will actually get the credit for doing so. This
sort of hierarchical analysis works well with more developed theories.

Block-entry analysis, entering subsets of variables in a sequential man-
ner, is a variant of this general researcher-controlled methodology in that
one enters a set of variables rather than a single variable at a particular stage
of the analysis. For example, if we have variables K, L, M, N, O, P, Q, and R as
predictors of some criterion variable, we might wish to enter variables L, P,

and R together on a single step in the analysis. These variables are therefore
entered simultaneously (as described under the standard regression model)
where the effects of the other variables (and any variables already in the
equation) have been partialled out before the contribution of that variable
is computed. One can also enter blocks of variables and single variables at
various stages throughout the entire process.
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Block-entry analysis can serve at least two research functions. First, as
mentioned earlier in a criticism of the step procedures, several variables in
combination may predict better than any one of them taken in isolation.
Entering variables as a set (block) allows researchers an opportunity to
explore that possibility. Second, some variables in a study may either naturally
relate to each other or may all pertain to a general area of the content domain
and so may lend themselves to be entered as a block. For example, in pre-
dicting the strength of certain symptom patterns, one may want to enter
physical or medical variables before the more purely psychological variables.

In addition to exploring the theoretical consequences of varying the
order of entry of the predictors and in addition to determining the result of
using certain variables as covariates, several other issues can be broached by
using a sequential form of regression analyses. Here are two examples:

1. A very “expensive” variable achieved substantial weight in the model.
To collect data on this predictor might take a great deal of time, trou-
ble, funding, or some combination of these. It may be worthwhile to
ask if any variable on the sidelines could do almost as good a job but
work for cheaper research wages.

2. A set of variables received negligible weights in the model, but these
are easy to measure (e.g., they may be subscales of a single inven-
tory). Similar measures might have been weighted substantially but
could be more difficult to work with. It may make sense to investigate
the R2 consequences of replacing the latter with the former.

Outliers

As discussed in Chapter 3A and 3B, outliers are extreme scores on either the
criterion or the predictor variables. They are typically thought of as being
anomalous values, often three or more standard deviation units from their
respective means, that suggest possible problems with the measurement
instrument, the way the responses were recorded or transcribed, or the par-
ticipants’ membership in the population that was presumably sampled.

The presence of outliers can adversely affect (distort) the results of the
analysis. This distortion takes several different forms (Darlington, 1990). As
one example, consider the use of the least squares rule. Because this line-
fitting procedure calls for minimizing the squared distance between each
data point and the regression line, data points that are extremely far
removed from the mainstream have a rather disproportionate influence in
determining where the regression line is best placed. That is, because the
square of a large distance is extremely large, the regression line is drawn
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closer to the outlier to keep that squared distance as small as possible. This
is done, of course, at a sacrifice—the regression line no longer coincides
with the best-fitting location for all the other data points (excluding the
outlier). For this reason, most statisticians suggest that outliers should be
deleted prior to data analysis.

Researchers should also consider the possibility that the participants
whose scores are defined as outliers might actually have something in
common. For example, if most of the outliers represent older participants
in a sample that contained a good mix of ages, then age may suddenly
become an important variable to study.

Collinearity and Multicollinearity

Collinearity is a condition that exists when two predictors correlate very
strongly; multicollinearity is a condition that exists when more than two
predictors correlate very strongly. Note that we are talking about the rela-
tionships between the predictor variables only and not about correlations
between each of the predictors and the dependent variable.

Regardless of whether we are talking about two predictors or a set of
three or more predictors, multicollinearity can distort the interpretation of
multiple regression results. For example, if two variables are highly corre-
lated, then they are largely confounded with one another; that is, they are
essentially measuring the same characteristic, and it would be impossible to
say which of the two was the more relevant. Statistically, because the standard
regression procedure controls for all the other predictors when it is evaluat-
ing a given independent variable, it is likely that neither predictor variable
would receive any substantial weight in the model. This is true because at
the time the procedure evaluates one of these two predictors, the other is
(momentarily) already in the equation accounting for almost all the variance
that would be explained by the first. The irony is that each on its own might
very well be a good predictor of the criterion variable. With both variables in
the model, the R2 value will be appropriately high; if the goal of the research
is to maximize R2, then multicollinearity might not be an immediate problem.

When the research goal is to understand the interplay of the predictors
and not simply to maximize R2, multicollinearity can cause several problems
in the analysis. One problem caused by the presence of multicollinearity is
that the values of the regression coefficients of the highly correlated inde-
pendent variables are distorted. Often, they are quite low and may even fail
to achieve statistical significance. A second problem is that the standard
errors of the regression weights of those multicollinear predictors can be
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inflated, thereby enlarging their confidence intervals, sometimes to the
point where they contain the zero value. If that is the case, you could not
reliably determine if increases in the predictor are associated with increases
or decreases in the criterion variable. A third problem is that if multi-
collinearity is sufficiently great, certain internal mathematical operations
(e.g., matrix inversion) are disrupted and the statistical program comes to a
screeching halt.

Identifying collinearity or multicollinearity requires researchers to
examine the data in certain ways. A high correlation is easy to spot when
considering only two variables. Just examine the Pearson correlations
between the variables in the analysis as a prelude to multiple regression.
Two variables that are very strongly related should raise a “red flag.” As a
general rule of thumb, we recommend that two variables correlated in the
middle .7s or higher should probably not be used together in a regression
or any other multivariate analysis. Allison (1999b) suggests that you “almost
certainly have a problem if the correlation is above .8, but there may be
difficulties that appear well before that value” (p. 64).

One common cause of multicollinearity is researchers using subscales of
an inventory as well as the full inventory score as predictors. Depending on
how the subscales have been computed, it is possible for them in combina-
tion to correlate almost perfectly with the full inventory score. You should
use either the subscales or the full inventory score, but not all of them in the
analysis. Another common cause of multicollinearity is including in the
analysis variables that assess the same construct. You should either drop all
but one of them from the analysis or consider the possibility of combining
them in some fashion if it makes sense. For example, you might combine
height and weight to form a measure of body mass. As another example, you
might average three highly correlated survey items; exploratory factor analy-
sis, discussed in Chapter 12A, can be used to help determine which variables
you might productively average together without losing too much informa-
tion. A less common cause of an analysis failing because of multicollinearity
is placing into the analysis two measures that are mathematical transforma-
tions of each other (e.g., number of correct and incorrect responses; time
and speed of response); researchers should use only one of these measures.

Multicollinearity is much more difficult to detect when it is some
(linear) combination of variables that produces a high multiple correlation
in some subset of the predictor variables. We would worry if that correla-
tion reached the mid .8s but Allison (1999b, p. 141) gets concerned if those
multiple correlations reached into the high .7s (R2 of about .60). Many
statistical programs will allow you to compute multiple correlations for dif-
ferent combinations of variables so that you can examine them. Thus, you
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can scan these correlations for such high values and take the necessary steps
to attempt to fix the problem.

Most regression programs have what is called a tolerance parameter that
tries to protect the procedure from multicollinearity by rejecting predictor
variables that are too highly correlated with other independent variables.
Conceptually, tolerance is the amount of a predictor’s variance not accounted
for by the other predictors (1 – R2 between predictors). Lower tolerance val-
ues indicate that there are stronger relationships (increasing the chances of
obtaining multicollinearity) between the predictor variables. Allison (1999b)
cautions that tolerances in the ranges of .40 are worthy of concern; tolerance
values in the range of .1 are problematic (Myers, 1990; Stevens, 2002).

A related statistic is the variance inflation factor (VIF), which is
computed as 1 dividend by tolerance. A VIF value of 2.50 is associated with
a tolerance of .40 and is considered problematic by Allison (1999b); a VIF
value of 10 is associated with a tolerance of .1 and is considered problematic
by Myers (1990) and Stevens (2002).

Suppressor Variables

Suppressor variables, when included in regression equations increase R2,
but they accomplish this feat in a somewhat different way from what we
have already discussed. Suppressor variables often are not correlated par-
ticularly strongly with the criterion variable itself. Rather, they are correlated
in a special way with one or more of the other predictor variables, and that
is where they do their job.

A suppressor variable works its magic by correlating with what is usually
thought of as a source of error in another predictor (Darlington, 1990).
Pedhazur (1982) describes it well in saying that by correlating with the error
in another predictor, the suppressor variable helps purify that predictor
and thereby enhances its predictive power. Often, under these conditions,
this suppressor variable will then be given a negative weight in the equation
(assuming that the predictor it is partially suppressing is positively corre-
lated with the dependent variable). Tabachnick and Fidell (2001b) have pro-
vided the following rubric to help identify a suppressor variable:

The correlation between it and the criterion variable is substantially
smaller than its beta weight.

or

Its Pearson correlation with the criterion and its beta weight have dif-
ferent signs (p. 149).

▼
▼
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Other signs that you may have a suppressor variable in the equation are
offered by Pedhazur (1982):

It may have a near-zero correlation with the criterion variable but yet
it is a significant predictor in the regression model.
It may have little or no correlation with the criterion variable but is
correlated with one or more of the predictors. (pp. 104–105)

Conceptualizing how a suppressor variable does its work is not an easy
matter. Guilford’s example (Guilford & Fruchter, 1978) is better than most,
and we will present it to you as a way to exemplify this somewhat elusive
concept.

J. P. Guilford, one of the great pioneers in measurement and psycho-
metrics, did research for the Air Force during World War II to develop selec-
tion procedures for pilots. He speaks of a vocabulary test that slightly
negatively correlated with success in pilot training. His research team had
also used a reading test in the study (the trainees read passages and
answered questions about them), which turned out to correlate positively
with success in pilot training.

At first, it must have seemed odd that a vocabulary test slightly nega-
tively correlated with pilot success but that a reading test correlated posi-
tively with pilot training success. But Guilford soon realized that the reading
test correlated positively with pilot success not because it measured some
verbal skill but rather because of the content it presented to the trainees.
This content tapped into their experience with mechanical devices and their
ability to visualize information contained in the passages.

According to Guilford’s appraisal of the situation, the score these
trainees received on the reading test was a function of three factors—
mechanical experience, visualization, and, of course, verbal comprehen-
sion—only two of which (mechanical experience and visualization) were
viable predictors of pilot success. The third factor measured by the reading
test, verbal comprehension, did not predict success, something he already
knew from the results of his vocabulary test. This third factor in the reading
test actually represented, from the standpoint of predicting training success,
error variance.

Now consider the relationship between the vocabulary test and the
reading test. Roughly speaking, the vocabulary test was a measure of verbal
comprehension or something that correlated highly with it. From this per-
spective, the reading test and the vocabulary test share common variance.
But not just any variance, mind you. The variance they share is common to
what they both measure—verbal comprehension or its kin.

▼
▼
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How a suppressor variable works lies, in this example, with what happens
when you make use of the correlation between the vocabulary and reading
tests. If the vocabulary test was placed in the regression model together with
the reading test, even though it could not directly predict pilot success, it
would have the opportunity to correlate with that portion of the reading
test assessing verbal comprehension. By virtue of that correlation, it would
account for (statistically control for or negate) that portion of the reading
test’s variance attributable to verbal comprehension and thus make the read-
ing test a better predictor than it would be in the absence of the vocabulary
test. All that we would need to do is subtract that error variance out.

Based on this reasoning, Guilford (Guilford & Fruchter, 1978) tells us
that the “combination of a vocabulary test with the reading test, with a neg-
ative weight for the vocabulary test [to subtract out this variance accounted
for by the vocabulary test], would have improved predictions [of pilot
success] over those possible with the reading test alone” (p. 182). That is,
including the vocabulary test would have accounted for and subtracted out
the variance due to verbal comprehension in the reading test (which was
not contributing to the prediction of success anyhow), freeing up the other
components of the reading test (the parts assessing mechanical experience
and visualization) to more purely predict success in pilot training. In this
context, the vocabulary test would have operated as a suppressor variable.

Linear and Nonlinear Regression:

Completely Linear Models

The general regression model that we have been discussing thus far in
this chapter is one form of a linear model. For the purposes of this book, we
can distinguish between three types of regression models: a form we will
call completely linear, another form of linear model called intrinsically

linear (Pedhazur, 1982), and a form of nonlinear model called intrinsically

nonlinear (Pedhazur, 1982) or general curve fitting (Darlington, 1990).
In the completely linear model, both the variables specified by the

model (the dependent and the independent variables) as well as the para-
meters (the coefficients and the intercept) are in their “regular” form. We
then multiply each variable by its weight and add the results of that multi-
plication together (adding the constant in the raw score equation) to obtain
the predicted value of the criterion variable.

If there is only one predictor in the model, as is the case in simple linear
regression, the equation can be represented geometrically as a straight line
in two-dimensional space (in a space defined with X and Y axes). With two
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predictors in the model, the equation may be represented geometrically as a
tilted plane in three-dimensional space (illustrated well by Darlington, 1990).
If you think of a room in a house, the two predictor variables cover the floor
(the width and the length) of the room and the criterion variable is mapped
to the walls (height). Imagine a pitched and tilted ceiling to this room. This
ceiling is the plane described by the regression equation. Although it has one
more dimension to it than the straight line, it is still a completely linear model
composed of flat, straight surfaces. Models with more than two predictors,
even though we cannot easily picture them, are also linear in this sense.

Linear and Nonlinear Regression:

Intrinsically Linear Models

Another class of linear models has the same basic structure of completely
linear models in that (a) each variable has an associated coefficient, (b) we
multiply each variable by its coefficient to obtain its weighted value, and
(c) we add the results of that multiplication together (adding the constant in
the raw score equation) to obtain the predicted value of the criterion variable.

The difference between completely linear models and intrinsically linear
models is that in the latter, the variables themselves are not in their “regular”
or raw form; rather, they have been “altered” in some manner. In this sense,
we can say that the model is linear with respect to its parameters—in that the
regression weights are still in “regular” form and we add the weighted vari-
ables together to obtain the predicted score—but that the model is nonlin-
ear in its variables. We can think of an intrinsically linear model as one that
combines variables that are themselves not linear in the best weighted linear
combination to maximally predict the dependent variable.

Variables in an intrinsically linear model can be altered in several different
nonlinear ways. We will consider three types of alterations here: transforma-
tions of dependent and independent variables, dummy coding of indepen-
dent variables, and interactions between independent variables.

Transformations

A transformation is used either to bring the data more closely in line
with the underlying assumptions of regression or because it makes more
sense to frame the relationships between the predictor and criterion vari-
ables in terms of a transformed variable. We have already discussed a trans-
formation to a standardized scale (a z score transformation) that is routinely
performed by virtually every statistical program in computing a regression
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solution, although this type of transformation still keeps the variables in linear
form. Other transformations are generally applied to the dependent or crite-
rion variable, and still other transformations are generally applied to the inde-
pendent or predictor variables that convert them to a nonlinear form.

The most common transformation of the criterion variable (other than
standardizing it) is to use its natural logarithm as the value to be predicted
(Allison, 1999b). Such a transformation, which we described in Chapter 3A,
may help to reduce the degree of heteroscedasticity in the measure.

Another transformation of the dependent variable is a logit transfor-
mation, provided that the criterion variable is a proportion (Allison, 1999b).
If the criterion variable is symbolized by Y, then this transformation takes the
following form:

log of the expression [Y divided by (1−Y) ].

A common transformation of the predictor variables is to use a poly-
nomial function in which the value of one or more of the independent vari-
ables is raised to a power (e.g., X2). This is called polynomial or curvilinear

regression. A second-order polynomial function, known as a quadratic func-
tion, has the predictor raised to the second power. We might use this trans-
formation when we expect the criterion variable to first increase together
with the predictor and then to decrease with further increases in values of
the predictor variable. For example, using age as a predictor of physical
agility, we would expect agility to increase up to some age level but to then
show a decrease with further increases in age. A quadratic function has one
“bend” in the curve. In contrast, a cubic function (a third-order polynomial
in which a predictor X is raised to the power of 3) has two “bends” in the
functions and is substantially more complex to interpret. Most researchers
would not use a polynomial function in excess of third order.

An additional way to change a predictor variable is to subject it to log
transformation. We would tend to use this type of transformation where we
expect the criterion and predictor variables to increase together up to some
point but then further expect the dependent variable to level off with fur-
ther increases in the predictor. For example, in predicting income from edu-
cation, we might expect that higher income levels are associated with
increasingly more education up to some point but that more education
would not alter income level beyond some point (Allison, 1999b).

Dummy Coding

As we indicated in Chapter 4A, it is appropriate to perform a Pearson
correlation analysis with a dichotomously coded categorical variable. In the
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context of multiple linear regression, we could use such a variable as an
independent variable (or we could use it as the criterion variable in either a
logistic regression analysis as described in Chapter 6A or in a discriminant
function analysis as described in Chapter 7A). To include a dichotomously
coded variable as a predictor, we need to assign arbitrary numerical codes
to its categories; for example, we could use 1 (for the presence of some
property) and 0 (for the absence of some property). This process is called
dummy coding.

The interpretation of the results of the regression analysis—specifically,
the coefficient associated with the dichotomously coded variable—is based
on the difference between the two means when adjusted (statistically con-
trolling) for the other predictors in the model. For example, suppose that
we were using participation in high-risk sports as one of several predictors
of aggressiveness. We code those who have participated in high-risk sports
as 1 and those who have not as 0. In the regression analysis, we find that this
predictor is significant with a b weight of 12.50. We may then interpret this
value to indicate that, when controlling for the other predictors, those who
participate in such sports (those coded as 1) have aggression scores on aver-
age 12.50 greater than those who have not participated in high-risk sports.

A regression analysis requires the arbitrary categorical coding yield
interpretable results. Thus, we could not legitimately take a categorical vari-
able with three or more levels (e.g., eastern, midwestern, and western
regions); code the categories 1, 2, 3 (as examples); and include such a
coded variable in the regression analysis. The statistical procedure would
treat the values of 1, 2, and 3 as though they represented interval level mea-
surement where 3 designated more of some quality than 2 and 2 designated
more of some quality than 1. But because the categories are not quantita-
tively based (by definition), the results that you obtained will not make any
sense. Think of it like this if you are unconvinced: If the categories were
coded in all possible ways and you ran separate regression analyses for each
coding scheme, you would get widely different regression results. This indi-
cates that none of the coding schemes are appropriate.

At the same time, nominal variables with more than two categories often
make interesting and useful predictors. We simply need to dummy code
them appropriately to use them in a regression analysis. We do this by creat-
ing separate dummy variables to represent portions or levels of the nominal
variable. Each dummy variable will be a dichotomous (0, 1) coding of a sub-
category (level) of the main variable. Because the dummy variables need to
be orthogonal to (independent of) each other, the number of levels of the
variable we are allowed to use is one less than the number of categories we
have. Thus, with the three geographical regions mentioned above, we can
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create only two dummy variables (two regions coded 0 and 1) to represent
the main variable.

The category excluded from the dummy coding is, in a certain sense, the
focal point of the analysis; it is treated as the reference category with which
the other categories will be compared. This is because the regression weights
of the other categories are interpreted with respect to this reference cate-
gory. We can illustrate this by selecting for the sake of this example the east-
ern region as the reference category. We would then dichotomously code the
other two categories. If participants lived in the Midwest they would be
coded as 1; if they lived elsewhere they would be coded as 0. A similar cod-
ing scheme would be used for Westerners: If they lived in the West, they
would be coded as 1; if they lived elsewhere, they would be coded as 0.

Every participant receives a value on both of these dummy coded vari-
ables. If in the data file, the Midwest variable appeared first and the West
variable appeared second, we would know that a case with the combined
code 10 lived in the Midwest, a case with the combined code 01 lived in the
West, and a case with the code 00 lived in the East. Note that this last code
appears as a by-product of our coding scheme because with one less code
than we have categories (we use only two dummy variables to handle three
categories), we know that someone not falling into one of our two desig-
nated codes (someone without a 1 in one of the two fields) must be in last
category. In this way, creating a variable for all but one category is sufficient
to classify all the cases in the sample.

In the regression model, residing in the midwestern and western
regions are each predictors with their own regression weights. In our inter-
pretation, we use the eastern region, our reference category, as our base.
Suppose that we were predicting the number of times individuals changed
residences in the prior 5-year period and that region was one of many pre-
dictors. Assume that the raw regression weight for the midwestern region
was –4.50 and that the raw regression weight for the western region was
9.94. We would then say, when controlling or adjusting for the other vari-
ables in the model, that midwestern participants moved on average 4.5
times less than Easterners (the negative b weight tells us that it is less) and
that Westerners moved on average almost 10 times more than Easterners.

Selecting the category of the nominal variable to serve as the reference
group should be based on statistical or methodological factors. From a sta-
tistical perspective, the reference group should be one that, all else equal,
has a relatively large sample size (Allison, 1999b). This is because the mean
of the reference group will be involved in all the comparisons and should
therefore have as small a standard error as possible. From a methodological
perspective, the reference group should be the one with which it makes
sense to compare the other groups. If there is a “control” or “baseline”

188– –APPLIED MULTIVARIATE RESEARCH

▼

5A-Meyers-4722.qxd  5/27/2005  10:23 AM  Page 188



group in the nominal variable, that category would present itself as a strong
reference group candidate. If there is no such category, as was the case in
the example of geographic regions, then the choice is rather arbitrary.

Moderator Variables and Interactions

Consider the case where we have two predictors, X1 and X2. At the end
of the regression analysis, each predictor is associated with a regression
weight. For example, b1 is the coefficient of X1. This coefficient is essentially
an estimate of the slope of the function for X1 controlling for X2. An assump-
tion underlying such an interpretation is that the value of b1 is the same
across the range of X2.; that is, whether or not X1 and X2 are correlated, the
regression function for X1 is independent of X2. (Aiken & West, 1991). This
same reasoning can be applied to X2.

Now suppose that this independence assumption is not true. Instead,
the relationship between X1 and the criterion variable differs for different
levels of X2. With the relationship betweenX1 and the criterion depending on
the level of X2., the variable X2. is thought of as a moderator variable in that
we need to take into account the level of X2. in describing the relationship
between X1 and the criterion. When this is the case, we say that X1 and X2.
interact. Here are two examples of interactions that illustrate how different
relationships between one predictor and a criterion variable might be
expected at different levels of another predictor:

As predictors of the degree of liberal attitudes held by people, we
measure socioeconomic status and age. Let’s look at socioeconomic
status predicting liberal attitudes at two levels of age. Among younger
people, we might find that higher levels of socioeconomic status pre-
dict more liberalism; among older people, we might find that higher
levels of socioeconomic status predict less liberalism. If this was
found, we would say that age and socioeconomic status interact in
affecting (predicting) liberalism (Darlington, 1990).
In predicting the self-assurance of managers, we use as independent
variables how long participants have been managers as well as their
actual managerial ability. Let’s focus here on predicting self-assurance
from the number of years the managers have held such a position but
develop that prediction model separately for high and low ability
levels. We might find that high-ability managers become more self-
assured with increased time as a manager, but that managers with low
ability become less self-assured the longer they have been in the posi-
tion. Thus, time as manager and managerial ability would interact in
predicting self-assurance (Aiken & West, 1991).

▼
▼
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In the regression examples we discussed earlier in this chapter, the
independent variables always “stood alone” with their regression weights
either in their raw form or in some kind of transformed form. That is, we
have always dealt with situations where the regression coefficient was the
weight assigned to the predictor or some transformation of the predictor to
represent one element of the regression model. Interactions involve esti-
mating the coefficient (weight) of the product of two predictors. Usually,
these two predictors are also included separately in the model. Thus, at min-
imum, we would have X1, X2, and X1 × X2 as three predictors in the models.
In this structure, each would be associated with its own regression weight.
Our minimal model would then be as follows:

Ypred = a + b1 X1 + b2 X2 + b3 X1 X2

In the above equation, the term X1 X2 represents the interaction. The
two terms preceding it in the equation containing the stand-alone predic-
tors are known as the main effects of the variables; we thus can also address
or speak to the main effects of X1 and X2.

In the regression solution, if the coefficient associated with the inter-
action was statistically significant we must be careful about interpreting the
results of the stand-alone variables (the main effects). In the first example
above, it would be inappropriate to speak of the slope of socioeconomic
status in general (interpret the b coefficient associated with socioeconomic
status) because the nature of the relationship would depend on age; in the
second example, it would be inappropriate to speak of the overall slope
of time as a manager (interpret the b coefficient associated with time in
position) because the nature of the relationship depends on ability level.

When there is a significant interaction between predictors, it is neces-
sary to explore its nature in more detail. Essentially, this means that you
would examine the simple slopes, the slope of a predictor under different
levels of the other predictor. To illustrate this for the first example, we would
want to predict liberalism with socioeconomic status at different values of
age. In some situations, we might have a theoretical or practical reason for
selecting certain ages on which to focus. Under such circumstances, we
should use those particular ages in the regression model to determine the
slope (the regression coefficient) specific to those age levels. If there was
no theoretical basis to select particular ages, Aiken and West (1991) appear
to endorse the recommendation of Cohen et al. (2003) to use values corre-
sponding to +1 standard deviation, the median, and –1 standard deviation;
we would thus estimate the b coefficient at each of these three values in
the distribution. In our example, if the mean age was 36 and the standard
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deviation was 10, then the ages corresponding to these three locations
would be 26, 36, and 46. We would then estimate the b coefficient for
socioeconomic status at each of these three age levels. You should note that
this means generating separate regression models to represent the relation-
ship between the predictor (e.g., socioeconomic status) and criterion (e.g.,
liberalism) variables at each level (+1, 0, and −1 standard deviation units) of
the moderator variable (e.g., age).

With an interaction in the model, we should interpret the main effects
with great care. Allison (1999b), using an example of years of schooling and
age predicting income, makes this clear:

What you must always remember is that in models with interac-
tions, the main-effect coefficients have a special (and often not very
useful) meaning. The coefficient . . . for age . . . can be interpreted
as the effect of age when schooling is 0. Similarly, the coefficient . . .
for schooling can be interpreted as the effect of schooling when age

is 0. . . . In general, whenever you have a product term in a regres-
sion model, you should not be concerned about the statistical sig-
nificance (or lack thereof) of the main effects of the two variables in
the product. That doesn’t mean that you can delete the main effects
from the model. Like the intercept in any regression equation, those
terms play an essential role in generating correct predictions for the
dependent variable. (p. 168)

If the interaction term is significant, then we must focus our attention
on simplifying the interaction effect. That means examining the simple
slopes. If the interaction is not significant, then you should perform another
regression analysis without the interaction term being included. That model
will include only the main effects and can be interpreted in the ways
described earlier in this chapter.

We described the shape of the function in a two-predictor model to be
a plane—the roof of a room serves as a suitable image. In a model that
includes the interaction term of these two predictors, the surface can be
thought of as “warped” (Darlington, 1990). Imagine a room with walls of
different heights; represented geometrically, the roof that would be fitted
to such room would represent the surface of an interaction.

It has been argued (e.g., Aiken & West, 1991; Darlington, 1990) that
when interaction terms are included in the model, the predictor and the
moderator variables should be centered; that is, the mean of the variable
should be subtracted from each score on the variable to create a new (trans-
formed) variable representing a deviation score.
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Centering can reduce the chances of multicollinearity affecting the
analysis. But its primary function is to facilitate the interpretation of the
interaction (Aiken, 2005). The regression model that we ordinarily produce
showing us a significant interaction represents the situation for the case
where the predictor and moderator variables take on a value of zero. Yet it
is very often the case that zero is not a possible value for these variables, and
it is almost always the case that zero is not a representative value for these
variables. For example, scores on a Likert-type summative response scale
may have values of 1 through 5, and scores on many national administered
standardized exams (e.g., GRE) have scores ranging from 200 to 800. For
these measures, no one has achieved a valid score of zero.

To center the scores is to subtract the mean of the variable from each
value yielding a deviation score. For example, if the mean GRE verbal score
of the sample was 575, then a person whose original score was 600 would
have a deviation score of +25. The mean of the predictor will thus have a
transformed value of zero. When the predictor and moderator variables are
centered in this manner, the ordinary regression solution will still show the
prediction model appropriate for zero values of the predictor and modera-
tor variables, but now this centered zero value is the mean of each distribu-
tion. The result of centering is that the regression model now represents the
case for the typical score in the study.

In generating the regression lines for ±1 standard deviation from the
mean, the predictor and moderator variables should be recentered twice—
once at the value corresponding to +1 standard deviations and again at the
value corresponding to −1 standard deviation. For each recentering opera-
tion, a regression analysis should be conducted so that each of these two
functions can be obtained and the data points plotted.

Although centering is common practice, some authors have argued that
it may not be worthwhile (Kromrey & Foster-Johnson, 1998) for linear
regression. Our recommendation is to always center your predictor and
moderator variables as Aiken and West (1991) have suggested. The idea here
is that centering does not adversely affect the statistical analysis and, in our
view, has the added advantage of facilitating your interpretation of the
results in many circumstances.

Linear and Nonlinear Regression:

Intrinsically Nonlinear Models

There is a whole set of models that do not take a linear form and thus
cannot be analyzed through a procedure that uses ordinary least squares.
These models are best handled by other curve-fitting techniques. They are
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represented by equations of different forms. Darlington (1990) gives the
following example:

Ypred =
(b1X1 + b2X2)

(b3 X3 + b4 X4)

Allison (1999b) gives an example as well:

Ypred = 1 + A
x
B

One example of an intrinsically nonlinear model is when the dependent
variable is a nominal variable. Such a situation is sufficiently relevant to the
research conducted in the behavioral and social sciences that techniques
have been developed to deal with such situations. Two analytic approaches
to this nonlinear application, logistic regression and discriminant function
analysis, will be presented in chapters 6A and B and 7A and B, respectively.

Canonical Correlation Analysis

In multiple regression, we form a variate of the independent variables to
best predict the value of a single criterion measure. However, we are not
limited necessarily to using a single dependent variable in our study. It is
possible to assemble a set of dependent variables that can also be combined
together in some weighted array (variate) whose value can be predicted by
a weighted combination of independent variables. This is the realm of
canonical correlation.

Canonical correlation analysis, also referred to as multivariate multiple
regression (Lutz & Eckert, 1994), is a statistical test that assesses the rela-
tionship between two sets of continuous measured variables. Whereas one
set may be considered as the predictor variate, the other set may be deemed
the criterion, dependent, or outcome variate. These variates represent the
weighted combination of the values on the various predictor variables that
will correlate more highly with the criterion variate than any single predic-
tor variable alone.

The advantage of using linear combinations of variables for both the
predictor and criterion is that such a design increases the chances of dis-
covering relationships that single variable designs could not capture.
Canonical correlation in that sense is thus a potentially more powerful
design than multiple regression, just as a multiple regression design is
potentially more powerful than simple linear regression. This gain in power
with canonical correlation is noteworthy, of course, to the extent that the
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variables that are combined in the composite make theoretical sense
(Benton, 1991). If the composite dependent variate does make sense—if it
is interpretable in the context of the research problem—then it is possible
to characterize canonical correlation as Cooley and Lohnes (1976) have
done as “the simplest model that can begin to do justice to this difficult
problem of scientific generalization” (p. 176).

Canonical correlation analysis is an exploratory statistical method
(Tabachnick & Fidell, 2001b) as opposed to a confirmatory statistical proce-
dure. Exploratory analyses are used as theory-generating procedures,
whereas confirmatory analyses are treated as theory-testing procedures
(Stevens, 2002). We need to be careful when we interpret and attempt to
generalize results based on exploratory data analysis. Nunnally (1978) noted
that exploratory methods are neither “a royal road to truth, as some appar-
ently feel, nor necessarily an adjunct to shotgun empiricism, as others claim”
(p. 371). Exploratory results must be viewed with caution partly because the
relationships between the variates may not be replicated in other samples.

There is also the potential difficulty in the interpretation of the canoni-
cal function. Mulaik, James, Van Alstine, Bennett, Lind, and Stilwell (1989)
suggested that one difficulty in interpretation comes about because
researchers often lack prior knowledge about the underlying relationships
between the variables; they therefore have no basis on which to make an
interpretation of the result. It’s one matter to predict a single measured
variable from a set of independent variables—we do this informally regularly
during our daily life in the normal course of social interaction when we take
in information from a variety of sources to predict, say, how our friend liked
a meal at the new Korean restaurant that just opened near campus. We fully
expect that the set of predictor variables in this case is derived from quite
different parts of our friend’s life: the kind of food she ate as a child, the atti-
tudes of her parents toward new food, her experiences with different types
of restaurants when she started to date, how much traveling to different
parts of the country (or abroad) she has done, and so on. Generally, the pre-
dictor variate, although interpretable, is often and appropriately composed
of a diverse set of individual variables.

But it could be quite another matter to predict the value of a composite
dependent variable unless that composite really represented a conceptual
whole. We do have real-world experience in experiencing composite out-
come variables, and it does make sense to us in those contexts. For example,
we speak of a friend being “supportive” of us in when we experience a diffi-
cult time. “Support” is a judgment we make based on several factors relating
to our friend’s reactions to us, such as willingness to listen to us talk, being
physically present, saying certain reassuring things, offering solutions to
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problems, and maybe giving us a pat on the shoulder or a hug. And these
behaviors are probably weighted in our minds (the things we need the most
we probably weigh more when we figure out how supportive our friend was).
If all the outcome measures that we used in our research were that tightly
melded together to form variates that made such intuitive sense, perhaps
some of the potential difficulties in interpreting the canonical function would
be of less concern. But partly because canonical correlation is an exploratory
analysis and is therefore combining variables in the dependent variate that
may not have been combined before and that may therefore not produce a
variate that is easily assimilated, canonical analysis is often viewed by some
“as a last-ditch effort, to be used when all other higher-level techniques have
been exhausted” (Hair, Anderson, Tatham, & Black, 1998, p. 444).

Added to this concern about potential interpretation matters, it is also
possible that the measured variables employed for the predictor or criterion
variables may represent different dimensions. To the extent that this is true, it
is possible that more than one linear function relating the predictors and the
criterion could emerge. Thus, it is possible that more than one solution to
canonical correlation may be put forward, adding an extra layer of complexity
to such a design. Although these functions are determined sequentially and
are uncorrelated with one another (Stevens, 2002), it is vital that researchers
have a reasonably thorough understanding of the content domain they are
studying so that they can interpret multiple and independent functional
relationships between the independent and dependent variates.

Canonical correlation, although never having been used as frequently as
some other techniques such as multiple regression, tends to be used even
less often today. In contemporary research, structural equation modeling
has gradually replaced canonical correlation analysis (Maruyama, 1998).
Structural equation modeling inherently determines statistical significance
of the canonical function coefficients and structure coefficients, which is not
easily accomplished in conventional canonical analysis (Thompson, 1984).
We discuss the topics of structural equation modeling in the last three sets
of chapters in this book.
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