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Preface

Cognitive neuroscience is an exciting, multidisciplinary field aimed at
understanding some of the most fundamental questions about what it means
to be human: how our thoughts, feelings, motivations, and actions arise and,
specifically, how they relate to the structure and activity patterns of the brain.
The field of cognitive neuroscience has its roots in numerous fields of
scientific endeavour throughout the twentieth century and before, but really
came into its own in the late 1980s and early 1990s with the advent of non-
invasive forms of brain imaging and neurostimulation. It so happens that the
first non-invasive PET neuroimaging studies of cognition came out while I
was in high school, and the first demonstrations of functional MRI were
published soon after I started my undergraduate education. The potential of
these tools fully captured my imagination and offered me a unique
opportunity to study the relationship between mind and brain. I eagerly
pursued the opportunities that I was fortunate to have, including doing my
undergraduate honours thesis with Dr Mike McIntyre at the University of
Winnipeg and National Research Council of Canada on an fMRI project only
three years after the technique was developed. I was then lucky to pursue
graduate education at the University of Oregon with Dr Helen Neville, a
highly regarded ERP researcher who had just started working with fMRI and
opened innumerable doors for me to learn from top people in the field,
through collaborations at the National Institutes of Health and the McDonnell
summer institute in cognitive neuroscience. My formal training culminated
with a postdoctoral fellowship at the University of Rochester, where I was
mentored by Daphne Bavelier, Elissa Newport, and Ted Supalla where, not
only did I gain further experience with fMRI, but strong critical thinking and
analytical skills that are at least as valuable as technical skills in any
neuroimaging or other experimental technique.

As much as the power and promise of the methods of cognitive neuroscience
excited me for what they could tell us about the relationship between brain
and mind, I was equally fascinated by their technical aspects, and the broad
cross-disciplinary collaboration and knowledge required to make them work.
This included physics, physiology, biochemistry, computer science,



mathematics, and statistics, as well as cognitive science. I also recognized
that as useful as the techniques are, they all have limitations, and – while it
takes significant work to master any one technique – in approaching
questions from the perspective of a cognitive neuroscientist, it was important
to understand what each technique had to offer, and have a variety of
technical tools in one’s toolbox, rather than being ‘an fMRI person’ or ‘an
ERP person’. Moreover, simply being an informed and critical consumer of
the cognitive neuroscience literature requires a reasonably deep knowledge of
the strengths and limitations of each technique, in order to be able to critically
evaluate the information in a study and determine for oneself whether the
conclusions are valid, as well as to relate those findings to research using
other techniques.

I have had the privilege of being able to pass on my knowledge and passion
for the techniques of cognitive neuroscience to hundreds of students and
colleagues over my career, through my lab, workshops, and, most
systematically, an undergraduate (and sometimes graduate) class for
psychology and neuroscience students entitled ‘Research Methods in
Cognitive Neuroscience’. While I initially taught the class around my
strengths, it quickly became apparent both that students had an appetite to
learn about the full range of cognitive neuroscience techniques, and that I had
a duty to give more even and balanced coverage to them all. In doing so,
however, a significant barrier was that there was no textbook that provided
uniform and consistent coverage of all the techniques, and many available
materials assumed relatively high levels of background in areas such as
physics, mathematics, and/or physiology and chemistry that could not be
guaranteed among the people who wanted to learn about and use these
techniques. While there are excellent texts on some specific techniques (most
notably Steven Luck’s An Introduction to the Event-Related Potential
Technique [MIT Press, 2014], and Huettel, Song, and McCarthy’s Functional
Magnetic Resonance Imaging), these were too long and detailed for a course
surveying a wide range of techniques, and were not matched by equivalent
texts on the other techniques. I toyed with the idea of writing an introductory
textbook to the techniques of cognitive neuroscience, but was, to be honest,
somewhat intimidated by the prospect. Then one day, Michael Carmichael
from Sage met with me on a routine sales visit and, hearing me complain
about the fact that no publisher had a book suitable for my class, encouraged



me to write the book, and provided extensive support through the process of
drafting an outline and proposal for the book, including soliciting anonymous
feedback from colleagues that helped further refine and shape the book you
now hold in your hands. While the book took significantly longer – and is
significantly longer – than initially planned (by approximately three years
and 100,000 words; I now understand why editors are frequently described as
‘long-suffering’), it is with no small amount of satisfaction and pride that I
present it to you now.

In writing this book, I had in mind a range of readers, from undergraduates to
faculty members, who are interested in the techniques of cognitive
neuroscience and want to know more about them. Naturally, as a broad
overview, this book cannot hope to make one an expert in any particular
technique, nor go into the level of detail that a book devoted to one technique
could do. As well, I have written this book for people coming from a wide
range of backgrounds who may find the techniques of cognitive neuroscience
useful, including psychology, linguistics, economics, business, information
systems, computer science, etc. As such, I have tried to assume very little in
the way of specific scientific background. This means that some readers may
find the text at times basic or redundant with their previous training, and at
other times lacking sufficient depth or precision. I have intentionally tried to
limit the number of mathematical formulae or detailed descriptions of
biochemical pathways, preferring instead to focus on allowing a conceptual
understanding that – while glossing over details – hopefully is never factually
incorrect. With that said, any inaccuracies are entirely my own and I eagerly
invite any feedback from my readers that will make the second edition better.

While I have tried for relatively even coverage of techniques, this is not
entirely realized in that some topics do receive more treatment. The first
technique covered is EEG/ERP, and this receives two chapters, while most
other techniques receive only one. While admittedly, this is in part due to my
extensive experience with ERP, it is also because in the context of this
technique, many concepts and fundamental topics are introduced that are
essential for understanding the later chapters. It is also worth noting in this
context that, from a pedagogical perspective, this book is very much intended
to be read in the order it is printed, because later chapters assume, and build
on, knowledge first presented in earlier chapters. I also elected to cover MRI



across a total of five chapters – including two on fMRI and one on the basic
physics of how MRI works – because MRI, and in particular fMRI,
comprises the large majority of cognitive neuroscience studies published to
date. Beyond simply meaning that this topic is likely of great interest to many
readers, it means that the technique is rich in the variety of experimental
designs and approaches to analysis that one may encounter, necessitating a
fair amount of space to do them justice.

There are also numerous topics that are not covered in this book. In part,
decisions to exclude topics were made to keep the length of the book
reasonable, and to allow it to actually see the light of day in print! As well, I
have chosen to focus on non-invasive techniques, even though there are a
number of invasive techniques that fall squarely within the domain of
cognitive neuroscience, such as intracranial EEG and optical imaging
performed during neurosurgery. I have also chosen to provide very little
coverage of lesion-deficit techniques, primarily because, from a pedagogical
perspective, these are often covered in a separate course on neuropsychology
in undergraduate curricula. Likewise, although I view computational
modelling as a critically important area of cognitive neuroscience, it is neither
an imaging nor a stimulation technique, and is commonly covered in separate
courses. Another limitation is that, while I have used examples of published
studies to demonstrate different techniques, this book focuses more on
methods than applications. Relatedly, I have not covered topics such as real-
time neuroimaging and brain–computer interfaces, and given relatively little
coverage to others, such as multimodal imaging, primarily due to space and
time constraints. The field of cognitive neuroscience is burgeoning, and this
book is intended only to provide a first taste, and to form a groundwork for
your understanding of the techniques – how they work and what their
strengths and limitations are. I hope that it excites you and encourages you to
use these techniques to make new discoveries, expand human knowledge,
and make the world a better place.

August 2018
Halifax, NS
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How to Use This Book





1 The Organization of the Brain and How
We Study It



Learning Objectives
After reading this chapter, you should be able to:

Define the scope and objectives of the field of cognitive neuroscience.
Identify the fundamental types of cells in the brain, and how they communicate with each
other.
Describe the basic organization of the brain, across micro-, meso-, and macro-anatomical
scales.
Explain the value of measuring behaviour in understanding both cognition and brain
activity.
List the various brain imaging and stimulation methodologies covered in this book, and
categorize them based on the type of data they measure.



Introduction
Cognitive neuroscience is the field of study aimed at understanding how the
brain produces thoughts, emotions, and behaviour. By and large, this field
focuses on human beings specifically, and – given the general reluctance that
most humans express to having their heads cut open – relies primarily on
non-invasive methods for characterizing brain activity and structure. The field
of cognitive neuroscience is quite new; although humans have a long-
standing interest in the thoughts and behaviours of themselves and others, the
idea that ‘There could be a human neurobiology of normal cognitive
processes’ (Gazzaniga, 2018) was realized only three decades ago.
Specifically, in 1988 a group of researchers from Washington University and
the University of Oregon published the first studies of human cognition using
positron emission tomography (PET) – a form of brain imaging that
allowed researchers to localize changes in blood flow in the brain, using
radioactively labelled oxygen (Petersen, Fox, Posner, Mintun, & Raichle,
1988; Posner, Petersen, Fox, & Raichle, 1988). Prior to this, the only ways to
study brain activity in healthy, living humans employed EEG, which
involves measuring brain electrical activity via electrodes attached to the
outside of the head (or a related technique, MEG; however, this was
restricted to a very small number of labs). Although as we will see in this
book EEG is an extremely valuable tool, it does not provide accurate
information as to where in the brain activity originates, and so left many
unanswered questions. Other tools existed for studying brain–behaviour
relationships, but these necessarily involved unhealthy brains, such as
neuropsychological studies of people with developmental disorders or
acquired brain damage, and direct electrical recordings from the surface of
the brain made during neurosurgery.

A few scant years after the publication of the first PET studies, a number of
other techniques were established for studying brain activity non-invasively,
including functional MRI (fMRI) and near-infrared optical imaging
(fNIRI), as well as transcranial magnetic stimulation (TMS) for non-
invasively and transiently perturbing brain function. These all contributed to
the development of the new field of cognitive neuroscience, which was
codified with the establishment of a dedicated, peer-reviewed scientific



journal – the Journal of Cognitive Neuroscience – in 1989, and the first
meeting of the Cognitive Neuroscience Society in San Francisco in 1993.
These milestones were, however, the fruition of work going back decades
earlier by trailblazers who were willing to ask the hard questions, and seek
answers even within the extremely limiting constraints of existing
technologies. Perhaps most importantly, these early investigators were
willing to transcend the traditional disciplinary boundaries of cognitive
psychology on the one hand, and neurophysiology and neuroanatomy on the
other. As Michael Gazzaniga, founding editor of the Journal of Cognitive
Neuroscience, wrote in the Editor’s Note to its inaugural issue,

Those cognitive scientists interested in a deeper understanding of how
the human mind works now believe that it is maximally fruitful to
propose models of cognitive processes that can be assessed in
neurobiologic terms. Likewise, it is no longer useful for neuroscientists
to propose brain mechanisms underlying psychological processes
without actually coming to grips with the complexities of psychological
processes involved in any particular mental capacity being examined.
(Gazzaniga, 1989: 2)

This book focuses on these and other techniques that have revolutionized our
understanding of the human brain, and the nature of human thoughts,
feelings, and actions. These techniques have fascinated me for many years,
dating back to when I was in high school and saw the pioneering PET
research mentioned above reported in Discover magazine. In a fit of
characteristic nerdiness, I remember bringing that issue of the magazine to
school to show my friends, and my disappointment that they were not nearly
as excited about it as I. Nevertheless, my interest persisted and I had the
opportunity to first work with functional MRI during my undergraduate
degree in 1995–96, thanks to the enthusiasm of my supervisor, Dr Michael
McIntyre, and the National Research Council of Canada. Mike in turn
connected me with Dr Helen Neville at the University of Oregon, who
accepted me as a graduate student and provided me with amazing
opportunities to learn EEG and fMRI, and connect with pioneering
researchers from around the world. Among the many things I learned from
Helen were that, as amazing as the tools of cognitive neuroscience are, they



are only small windows into the workings of the brain, and are highly fallible.
In consequence, it is vital to always question your data, inspect it closely (and
repeatedly) for errors, and remember that results are only as good as the
experimental design, and even then always very much subject to
interpretation. Simply obtaining a result does not make it true.



From Cells to Networks
Although our interest in cognitive neuroscience is in linking the brain with
cognition and behaviour, as a first step it is critical to have an understanding
of the organ we are studying and, in particular, of the levels of organization
of the brain that we are able to study with the tools of cognitive neuroscience.
This book will be most understandable if the reader has some prior
background in both psychology and neuroscience; however, in this section
we will review the bare essentials. This is intentionally a very simplified
account and readers are encouraged to consult an introductory neuroscience
textbook for a more detailed explanation.



Structural Units
The adult human brain weighs approximately 1.5 kg and is composed of
roughly 86 billion neurons (nerve cells), and a roughly equal amount of non-
neuronal cells (Herculano-Houzel, 2009; Purves et al., 2017). Neurons are the
key players in the transmission of information throughout the brain and the
body, forming synapses with other neurons so that electrical signals can be
transmitted from one neuron to another. The non-neuronal cells are
predominantly glia, which were traditionally viewed as ‘helper’ cells
supporting neuronal functions (such as modulating activity), but which in
recent years have come to be appreciated as important functional units in the
brain as well (Magaki, Williams, & Vinters, 2017; Verkhratsky & Kirchhoff,
2007) and, as we will see, are also critical to generating the signal we
measure with fMRI.

Neurons are, however, the main actors in cognitive function. There are many
different types of neurons in the brain. One dominant type of neuron found in
the cerebral cortex of humans (as well as most other mammals, birds, fish,
and reptiles) is the pyramidal cell. Pyramidal cells are found primarily in
brain structures supporting higher cognitive functions, including the cerebral
cortex, amygdala, and hippocampus (Spruston, 2008), making them of
particular relevance for cognitive neuroscience – although all types of
neurons are no doubt important for brain function and cognition.
Nevertheless, we will focus on pyramidal cells here to exemplify neuronal
structure and function. As illustrated in Figure 1.1, pyramidal cells typically
have a cell body or soma, from which extends a single axon that branches
extensively, sometimes along its entire length and in other cases only at the
end (the tuft). These branches are called dendrites, and these are where the
majority of connections (both input and output) are made with other neurons.
Dendrites also branch out from the soma, with the apical dendrites being
those along the axon, and basal dendrites branching directly off the soma.
Functionally distinct roles have been identified for different regions of
pyramidal cells at an even finer-grained level, with several distinct
subregions of both the apical and basal dendritic regions (Spruston, 2008).

Figure 1.1 Pyramidal neurons from different parts of the brain, including



layers of the cerebral cortex (leftmost two images; indicated by Roman
numerals) and the hippocampus (rightmost three images). Labels on the right
side indicate different regions of the cells. Reprinted from Spruston, 2008
with permission of Springer Nature

Neurons are densely connected with other neurons, over both short and long
distances. It is these patterns of synaptic connections that allow the brain to
carry out its complex representations and computations. Neurons
communicate by way of both electrical and chemical transmission. At rest,
neurons are electrically polarized, meaning that the electrical potential
within the cell is negative relative to the space around the cell. Electrical
potentials are covered in detail in Chapter 2, but for now we can simply say
that there is potential for electrical charge to move between the outside and
inside of the neurons (in the form of ions such as sodium, potassium, and
calcium). A primary way for neurons to transmit information is to ‘fire’, or
generate an action potential, in which case ion channels on the neuronal
membrane open and allow the electrical charge inside the neuron to
equilibrate with that outside the neuron – a phenomenon known as
depolarization. This change in electrical potential starts at the soma and
propagates down the axon, ultimately resulting in the neuron’s firing being
communicated to other neurons it is connected to. Importantly, axons are
typically covered in a fatty coating called myelin, which serves as electrical
insulation to both increase the speed of electrical transmission, and prevent
the signal’s strength from weakening along the length of the axon. The
myelin sheath is actually provided by a specific type of glial cell, called
oligodendrocytes. Figure 1.2 shows an example of an action potential
travelling from a neuronal cell body, down its axon to the terminal where it



communicates with another neuron.

Figure 1.2 A schematic illustration of two neurons connected via a synapse

The connections between neurons are called synapses, but it is important to
understand that neurons are not directly physically connected to each other,
but rather are separated by gaps, as shown in Figure 1.2. Thus when an
electrical signal reaches the end of the axon, it does not directly propagate to
the connected neurons. Instead, an arriving action potential triggers the
release of chemical messengers called neurotransmitters. These chemicals
are released by presynaptic (‘sending’) neurons to signal postsynaptic
(‘receiving’) neurons by fitting into receptors: molecular structures on the
neuronal membranes (outer walls of the cells) that fit the molecular shape of
the neurotransmitter analogous to how a key fits a particular lock. The
primary neurotransmitter used by neurons to excite other neurons (an
excitatory neurotransmitter) is glutamate. There are three primary types of
glutamate receptors: N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA), and kainate. Although all three
receptor types are activated by glutamate, they differ in the types of cells and
locations on cells that they occur, and their names reflect the fact that they
can be selectively activated by specific chemicals other than glutamate –
meaning that certain drugs can modulate the activity of one type of glutamate



receptor with little or no effect on the other types. Using such drugs is a
common way to investigate the role of particular neurotransmitters and
receptors in brain function and cognition. Drugs that selectively target a
particular type of receptor are called agonists for that receptor. In contrast,
drugs that selectively block a receptor (meaning that the normal
neurotransmitter will not activate that receptor) are called antagonists.

Not all neurotransmission is excitatory; many neurons actually inhibit other
neurons, making them less likely to fire. The primary inhibitory
neurotransmitter in the brain is gamma-aminobutyric acid, or GABA, for
which there are two primary types of receptors (with much more logical
names than the glutamate receptors): GABAA and GABAB. In addition, there
are other classes of chemicals, called neuromodulators and neurohormones,
that affect neuronal activity. These act like neurotransmitters in the sense that
they modulate neuronal function via receptors on the neurons. They differ
from neurotransmitters in that rather than serving to communicate a transient
action potential from one neuron to another at a very small scale across a
synaptic junction, they are in many cases released into the intracellular space
and act to modulate the function of larger numbers of neurons, making them
more or less likely to fire in response to other inputs. Neuromodulators and
neurohormones also act over longer time scales; while neurotransmitters act
specifically at local synaptic junctions and are typically reabsorbed very
quickly either by the neurons, or by surrounding glia (which then ‘recycle’
the neurotransmitters and send them back to the neurons), neuromodulators
and hormones have longer lifetimes in the intracellular space prior to
absorption or breakdown. Neuromodulators include serotonin, dopamine,
norepinephrine, and acetylcholine, although some of these also act as short-
acting neurotransmitters in some cell types and brain regions.
Neurohormones function similarly to neuromodulators, and indeed the lines
between the two are somewhat blurry, with different authors sometimes using
one or the other to refer to the same chemical (Peres & Valena, 2011).
However, neurohormones tend to refer to chemicals that are
neuromodulatory, but produced in organs other than the brain and then travel
through the body to the brain to modulate neural activity. In addition to the
neuromodulators listed above, neurohormones include oxytocin, oestrogen,
testosterone, vasopressin, insulin, and cortisol.



Networks of Neurons
Given the billions of individual neurons in the brain, it is not surprising that
they form extremely complex, interconnected networks. The number of
neurons connected to (that is, forming synapses with) another neuron varies
widely by type and location of the cells, but estimates of around 10,000
connections per neuron are common. Within the cerebral cortex – the part of
the brain that plays a primary role in most cognition (see next section) – there
are many distinct regions that can be defined by the types and relative
densities of cells present, the types of connections they have, and many other
parameters. Even within a brain region, the cerebral cortex can be divided
into distinct layers based on the locations and types of cells and connections.
Typically six layers are defined within the cerebral cortex, although this may
be further broken into sub-layers. This complex, layered organization of the
cortex was first documented by Ramón y Cajal, who received the Nobel Prize
in Physiology or Medicine for his work in 1906 (shared by Camillo Golgi,
who invented the staining technique that made Cajal’s work possible). Two
of Cajal’s drawings illustrating the laminal (layered) structure of the cerebral
cortex are shown in Figure 1.3. Some layers are dominated by long-range
inputs from other brain regions, while other layers contain horizontal cells –
neurons with short-range connections that serve primarily inhibitory
purposes.

Figure 1.3 The laminar (layered) structure of the cerebral cortex, as
illustrated by early anatomists. In all drawings, the outer surface of the cortex
is at the top, and the bottom of the drawings is the white matter underlying
the cortex. The top and bottom left drawings are by Spanish neuroanatomist
Ramón y Cajal, using the Golgi staining method. The large cells are
pyramidal neurons, arranged in a consistent manner with their axons running
perpendicular to the cortical surface. Note how the bottom layers are
dominated by long-range axonal connections to other brain areas, whereas the
top layer contains more short-range, local connections to nearby cells. Middle
layers contain medium-range connections. The drawing on the bottom right is
by English anatomist Henry Gray, comparing three different types of stain (as
indicated at the bottom of the drawing). These show how the cortical layers
are differentiated based on the type and density of cell bodies, as well as the



type and density of axonal connections. All images are in the public domain



Critical to brain function is the fact that synapses are not static, but dynamic
connections. That is, synapses are not merely present or not, but the strength
of a connection can vary widely. By ‘strength’ here we mean the extent to
which the postsynaptic neuron’s activity is affected by input from the
presynaptic neuron. Not only can the strength of connections vary between
synapses, but even for a given synapse, the strength can change over time.
This is thought to be the most fundamental mechanism of learning, first
hypothesized by Donald O. Hebb (Hebb, 1949) and made famous by the
phrase, ‘neurons that fire together, wire together’ (commonly called the
‘Hebb rule’). Hebb hypothesized that the strength of a synaptic connection
was strengthened every time the firing of one neuron led soon thereafter to an
action potential in a neuron it formed a synapse with. This was later
demonstrated in living cells, in a process now known as long-term
potentiation (LTP). The weakening of synaptic connections is conversely
known as long-term depression (LTD).

In addition to these mechanisms, we now have evidence that neural
connections can be modulated in many other ways. These include the fact
that dendritic spines – the individual outgrowths on dendrites that form
synapses – can grow and retract back on a scale of hours or even minutes,
meaning that in addition to changing the strength of connections, synapses
can literally appear and disappear with experience. Although such ‘synaptic
pruning’ was long known as a key process in development – by which
synaptic connections not strengthened by experience were eliminated – it is
now recognized that this occurs on very short time scales and even in adult
brains. As well, some brain regions, such as the hippocampus, are actually
able to grow new neurons even in adulthood – in contrast to the older dogma
that such neurogenesis occurred only in the early stages of brain
development.



Levels of Organization
If we accept the basic estimates provided in the previous sections of 86
billion neurons in the brain, each with 10,000 connections to other neurons –
and recognizing that such estimates are very approximate at best, and belie
vast variability among brain regions, cell types, development and ageing
within individuals, and perhaps even greater variability due to genetic and
environmental variables between individuals – we could estimate roughly 86
trillion neuronal connections in an adult human brain. This is such an
extremely complex structure for a human mind to even fathom trying to
understand, made only exponentially more complex by the fact that the
activity and even microstructure of the brain changes moment-to-moment on
time scales as short as milliseconds. When we think about trying to
characterize ‘brain activity’ with current state-of-the-art neuroimaging tools,
we must first recognize how limited, fallible, and possibly even misleading
this task is. Techniques such as EEG measure brain electrical activity with
millisecond-level accuracy, but from at most a couple of hundred electrodes
(and typically only dozens). In other words, we are attempting to sample 86
trillion dynamic connections with perhaps 64 sensors. Another technique,
functional MRI, allows us to image changes in physiological activity in the
living brain down to the level of 1 mm or less, yet even with this resolution
each 1 mm3 sample contains perhaps 100,000 neurons. Moreover, fMRI
signal is a measurement of oxygen in small blood vessels, not a direct
measure of any aspect of neuronal activity; how changes in oxygen relate,
exactly, to the electro-chemical activity of neurons is poorly understood at
best. Put simply, any of the methods discussed in our book – which are the
best humanity has to offer at this time – are capable only of gross
generalizations and best guesses concerning the true nature of brain activity.
It is – to use a metaphor I heard from Dr Evelyn Schaefer, who attributed it to
Dr Ulrich Neisser – as if we are attempting to determine what a massive
factory does, based on knowing only what raw materials go in, what outputs
emerge, and what we hear from a microphone held to the outside of the
factory walls.

Figure 1.4 The lobes of the cerebral cortex, and major subcortical divisions
of the brain. Also labelled are two major sulci that separate different lobes:



the central sulcus separates the parietal and frontal lobes, while the Sylvian
fissure separates the temporal lobe from the frontal and parietal lobes

Fortunately for us the situation is not quite so dire, as the techniques we do
have provide us with richer insights than a single microphone outside a
factory – however limited they still may be. Moreover, although neurons
comprise the cellular-level units of brain organization, it turns out that the
brain is also organized at larger scales, including ones that the techniques
introduced in this book are well-suited to measure. We can think of the brain
as having at least three scales of organization: ‘micro’, ‘meso’, and ‘macro’.
The macro-scale is that of the lobes of the cerebral cortex (frontal, parietal,
occipital, and temporal, see Figure 1.4), and other large, anatomically well-
defined structures such as the hippocampus, cerebellum, pons, and so on. At
this scale we can make gross generalizations of function, as are often seen in
information aimed at the general public or children, such as ‘the occipital
lobe is for vision’, ‘the frontal lobe is for thought and action’, or ‘the
hippocampus is involved in memory’. While all of these statements are true,



they are too general to be of real use in cognitive neuroscience because they
mask more fine-grained – and critically important – details. However, by and
large cognitive neuroscience focuses on activity in the cerebral cortex, which
is the most evolutionarily advanced part of the brain, and the one that plays
the largest role in many aspects of cognition. However, this is not to discount
the important roles of other parts of the brain, which also play necessary roles
in many aspects of cognition.

At the other extreme is the micro-scale, where we have individual neurons
(and sub-neuronal levels such as the study of neurotransmitters or subregions
of neurons), cortical layers, and micro-structures such as columns. Cortical
columns are clusters of neurons typically tens of microns in size, with
distinct patterns of local connectivity running through the layers of the
cerebral cortex, perpendicular to the outer surface of the brain. Columns have
particular, repeating arrangements in a cortical area, which act as functional
units. For example, in the primary visual cortex there are neurons that are
tuned (that is, show the strongest response) to lines located in a particular part
of the visual field, with a particular orientation. Similarly tuned neurons
cluster in columns, such that within a region of cortex sensitive to a particular
part of the visual field, there will be distinct columns tuned to lines of
different orientations.

In between the macro- and micro-scales is the meso-scale of organization –
the level of functionally and anatomically distinct ‘brain areas’. This level of
organization was first systematically documented by German neuroanatomist
Korbinian Brodmann in his 1909 book Localization in the Cerebral Cortex
(Brodmann, 1999 for English translation), based on his microscopic
examination of slices of brain tissue stained to highlight cellular structures.
Brodmann noted that the types of cells, how they were distributed across the
layers of the cerebral cortex, and other micro-anatomical organizational
factors differed across the brain, forming localized regions of consistent
organization that were typically in the order of a few centimetres in size.
Brodmann hypothesized that these systematic differences in
cytoarchitecture must reflect differences in the functions that the different
brain areas served. Brodmann’s original map, along with an example of a
cortical section showing the boundary between two cytoarchitectonically
distinct areas, is shown in Figure 1.5.



Figure 1.5 The original map of cytoarchitectonically defined cortical areas
(left), published by Korbinian Brodmann in 1909. Areas are indicated by
numbers and distinguished by filling with different symbols in the map. The
bottom panel shows an example of a slice through the layers in the occipital
cortex. The arrows indicate the boundary between areas 18 (left) and 17
(right); area 17 is the primary visual cortex, commonly referred to as V1. All
images are in the public domain



Although these characterizations were based on anatomical work, generally
performed post mortem (with the exception of the recent neuroimaging
work), the notion of meso-scale organization was corroborated with work in



the field of neuropsychology, which examines relationships between
localization of acquired brain damage (for example, from stroke or injury)
and functional deficits that can be measured through cognitive or other
behavioural tests. This was first exemplified by Paul Broca, who in 1865
reported the case of a patient who had sustained brain damage and as a result,
the only word he could utter was ‘tan’. However, aside from this language
deficit the person seemed otherwise cognitively intact, and was able to
function relatively normally in his everyday life. After the patient died, Broca
performed an autopsy and identified the inferior frontal gyrus in the left
hemisphere as the localized site of brain damage, as shown in Figure 1.6.
This led Broca to conclude that this brain region was the localized ‘speech
centre’, and more generally that the brain was organized into functionally
distinct areas (Broca, 1865).

Figure 1.6 The brain of Paul Broca’s patient ‘Tan’ (actually named M.
Leborgne), extracted post mortem and showing the lesion to the left inferior
frontal gyrus. Photograph by Bruno Delamain, reprinted from Dronkers,
Plaisant, Iba-Zizen, and Cabanis, 2007 with permission of Oxford University
Press

This notion of regional organization of the cerebral cortex was controversial
into the early part of the twentieth century. In part, this was due to reactions
against the nineteenth-century pseudoscience of phrenology – which also
proposed localized meso-scale function, but conspicuously avoided



systematic, scientific testing of hypotheses, and assumed that more
‘developed’ functions resulted in bumps on the skull due to the size of the
brain regions responsible. In the twentieth century, more principled
arguments and scientific evidence were brought to bear, most prominently
through the work of Karl Lashley (1929) that involved lesioning the brains of
animals such as rats. Lashley’s findings suggested that large parts of the
cerebral cortex could be damaged without affecting learning and memory,
leading him to propose the principle of ‘mass action’ in which learning and
memory functions were broadly distributed in the brain, rather than localized.
Relatedly Lashley proposed ‘equipotentiality’, the idea that any part of the
cortex could assume the functions of another if an area were damaged.

In spite of Lashley’s ideas, further work along the lines Brodmann pioneered
were carried out in the twentieth century by Vogt and Vogt (Vogt & Vogt,
1919), von Economo and Koskinas (Economo & Koskinas, 1925), and
others. This work confirmed the existence of this meso-scale level of brain
organization, based on cytoarchitecture and also myeloarchitecture (the
microscopic structure of myelinated fibres; for example, the relative
occurrence, distribution, and density of nerve fibres running horizontally,
vertically, and/or diagonally within the cortex – as illustrated in the rightmost
panel of Figure 1.3). Brodmann originally identified 43 cytoarchitectonically
distinct areas within each cerebral hemisphere; subsequent work increased
this number to between 150–200 areas, and recent neuroimaging work has
similarly put the estimate at 180 (Glasser et al., 2016), as shown in Figure
1.7. This meso-scale level of organization is largely what we are able to
examine with the non-invasive methods of cognitive neuroscience described
in this book. Henceforth we will refer to meso-scale regions defined by
cytoarchitecture, myeloarchitecture, or functional imaging simply as ‘cortical
areas’.

Figure 1.7 A contemporary cortical parcellation scheme produced by Glasser
and colleagues (2016). Unlike most prior maps, which were based on post-
mortem microscopic examination of stained tissue, this map is solely based
on multiple measures derived from MRI scans in living humans, including
both structural and functional information. This approach resulted in
parcellation of each cerebral hemisphere into 180 distinct cortical areas.
Reprinted from Glasser et al., 2016 with permission of Springer Nature



While the existence of such cortical areas is now widely accepted, their
definition is still a subject of debate and active investigation. There are many
possible ways to define a cortical area, including modern automated and
computational versions of Brodmann’s cytoarchitectonic approach,
myeloarchitecture, the distribution of different neurotransmitter receptors,
gene expression patterns, functional neuroimaging measures, and others.
Different approaches will result in different borders between areas and even
the number of areas. Recent work has attempted to merge multiple measures
using advanced machine learning algorithms (Glasser et al., 2016). What we
do know is that the meso-scale of organization does not map onto macro-
scale gross anatomy in a systematic way. That is to say, although a given area
will not be in the cerebral cortex of one individual and the hippocampus of
another, within the cerebral cortex the exact location of an area may show
considerable inter-individual variation. Thus the approach that was used in
the early days of functional neuroimaging, of using the major sulci (folds)
and gyri (bumps) on the cerebral cortex, has been shown to be invalid.
Although major sulci, such as the central sulcus (separating the frontal and
parietal lobes) and Sylvian fissure (separating the temporal from the frontal
and parietal lobes) are universally present in healthy human brains, many
smaller sulci vary considerably. We return to this important fact in later
chapters, but for now it is an important detail to keep in mind.

The nice thing about the meso-scale anatomical and functional organization



of the cortex is that it corresponds to the scales that we can visualize using
non-invasive neuroimaging methods. However, this is not to say that there is
not organization at a more fine-grained level within cortical areas, because
indeed there is (for example, the micro-scale and cortical columns mentioned
above). Indeed, with advanced high-resolution techniques such as fMRI,
researchers have been able to image aspects of micro-level organization such
as the closely interleaved areas of primary visual cortex that receive selective
input from each eye – ocular dominance columns. As well, even without
‘pushing the envelope’ of spatial resolution in fMRI or other techniques, it
is possible not just to image the activity of a particular cortical activity, but
examine how this activity changes with experimental manipulations, or see
regional variations within it. A recent trend in fMRI research is using
‘multivariate’ approaches to analysis that look not just at the level of
activation in a region, but for systematic patterns of response across the
region (for example, some pixels of the image may be consistently high in
activation, while others are consistently mid-range, and yet others have
consistently low levels of activation). In other words, we can ask more than
simply whether a brain area, as a whole, is sensitive to experimental
manipulations, but identify unique patterns of activation within that area.
Work in this area has demonstrated that even for a given category of stimuli
(for example, faces), individual exemplars of that category (individual faces)
reliably evoke distinct patterns of activity.

Finally, a criticism that has often been levelled at functional neuroimaging is
that it is simply ‘neo-phrenology’ – that labelling a particular cortical area as
subserving a particular function does not provide particularly deep insights
into how the brain functions. One concern is that in any given experiment,
typically a number of brain areas are shown to be active using a technique
like fMRI. Furthermore, across studies we often see the same brain area
activated by very different tasks and stimuli, suggesting that many areas may
serve more than one function. For example, the left inferior frontal gyrus is
typically associated with the function of speech production, in line with
Broca’s discovery mentioned earlier (indeed, this area is often called ‘Broca’s
area’). However, it is also associated with processing grammar in language,
and in non-linguistic tasks such as learning to press buttons in a particular
sequence. The challenge for cognitive neuroscientists is to determine whether
this is because the area performs some sort of computations that are common



to all of these tasks; because there are anatomically distinct subregions
subserving different functions; because there are overlapping or interleaved –
but distinct – sets of neurons subserving different functions; or because the
same cells within the area support very distinct functions under different task
conditions. This latter possibility is one of several reasons why work in
cognitive neuroscience has shifted from the relatively simple ‘neo-
phrenological’ approach to also looking at connectivity – how different brain
areas work in concert with each other through their organization in larger
networks of regions. The study of network-level connectivity is being
pursued both through studies of the anatomical, structural connections
between regions (the connectome), and through functional connectivity.

Thus broadly speaking, work in elucidating the organization of the human
brain can be seen as involving a number of approaches, which can be pursued
individually or multiply in any given study or research programme. The first
approach is segregation, in which distinct areas are identified and associated
with particular functions. Another approach is connectivity, in which the
connections between segregated areas are identified. Each of these
approaches can in turn employ either structural or functional methods.
Finally, functional integration (Friston, 2011) aims to combine these
approaches to yield a more complete account of brain function, involving
how networks of regions work together to support cognition. The ultimate
goal would be to understand the areas involved, how they are connected, and,
finally, how information flows through the network over time.



Studying the Organization of the Brain
While this entire book is about methods for studying the organization of the
brain, this section lays the groundwork by providing a broad overview of the
different classes of methods used in this endeavour. Notably, I have chosen to
start with behavioural methods because ultimately in cognitive neuroscience
we wish to understand the relationships between brain activity, cognition,
emotion, and overt behaviour. Long before we had high-tech brain imaging
methods, humans were studying cognition by making systematic
measurements of overt behaviour. This included approaches such as
systematically manipulating the stimuli and/or task instructions given to
research participants, and quantifying their responses using means such as
response times, accuracy judgements, and ratings. While on their own these
tell us little about the brain areas or networks involved in the performance of
such tasks, they are nonetheless critical tools for understanding brain activity.
Most cognitive phenomena are best characterized, defined, and measured
using behavioural methods, and these data have led to the development of
quite advanced theories of how the mind works. Such theories can then be
tested and refined using brain imaging or stimulation methods. However,
without a detailed understanding and description of the phenomena at the
cognitive level, it would be very challenging to design – let alone interpret –
meaningful studies of brain activity. For this reason, behavioural methods
form the foundation of cognitive neuroscience, and are a critical
consideration in the design of any neuroimaging or neurostimulation
experiment. If behaviour is not measured during a study, the results may well
be uninterpretable, or at least open to multiple interpretations. Among the
many considerations are that assumptions about how people are performing a
task (or how well they are performing it – or even that they are performing it)
may be incorrect if performance data is not recorded, and as well
performance may vary from person to person, or systematically between
groups, in ways that are critical to interpretation of the imaging results. For
example, people might naturally perform a task in one of two rather different
ways (for example, different strategies), or one group of people (for example,
older adults or children) may perform slower, and/or find the task more
challenging, than the young adults that comprise the sampled population for
many studies.



Behavioural Methods

Reaction Time Methods
Reaction time (RT; also called ‘response time’) studies – sometimes referred
to as ‘mental chronometry’ – evolve measuring the amount of time it takes
for someone to make some sort of overt response. Often this is a button press
made by a finger, but it can also be any other type of muscle activity (for
example, a foot tap, or a smile), the onset of speech, or really any other overt
behaviour whose onset timing (or in some cases, offset) can be accurately
measured. By far the most common type of RT study involves pressing a
button, either on a computer keyboard or a specialized ‘button box’. While
individuals may vary in how quickly they can press a button, what is
typically of interest in an experiment is how RT compares between different
experimental conditions. For example, perhaps the simplest type of RT
measure (which is often called ‘simple reaction time’) is having participants
press a button whenever they detect a very brief flash of light, with the
flashes presented at random intervals so as not to be overly predictable. If we
ask people to perform this task as quickly as possible, then we can argue that
the resulting RT, averaged over some number of trials, is a reasonably
accurate measure of how long it takes for the person’s retinal cells to detect
the flash of light, communicate this to the visual cortex, and then for the
information to travel from the sensory (visual) cortex to the motor cortex
(which controls body movements), and for the motor cortex signal to be
transmitted via peripheral nerves to the finger muscle to make a response
(one might posit at least one additional process in the middle, whereby the
visual information is evaluated and a decision to press the button is made). In
other words, we have a measurement of the timing of brain activity based not
on measuring the brain activity directly, but via the end result of the brain
activity: a button press.

Of course, this simple RT measure has limitations as to what it can tell us
about brain activity. For one, we cannot differentiate between the amount of
time required for visual perception versus for initiating the motor response
(or any intermediate steps), and as well we cannot separate the timing of



brain activity from the time it takes for the signal to travel from the motor
cortex to the finger. However, by adding more experimental conditions, we
can gain much stronger insights. For example, if rather than simply detecting
a flash of light, we present either a horizontal or vertical line on the screen
(varying this randomly from trial to trial), and ask participants to press
different buttons depending on the orientation of the line, then we can
compare this to the simple reaction time condition (where all stimuli are the
same, and no discrimination is required) by subtracting the average RT from
the simple detection task from the average RT for the orientation judgement
task. This is the subtraction method described earlier in this chapter: the
difference in RT tells us how much time it took for the brain to make this
judgement, independent of the other task-related factors like simply detecting
the stimulus and preparing and executing a motor response.

RT differences can be exceedingly sensitive in some experimental paradigms.
For example, in studies of attention the difference in RT between conditions
may be as little as 10 ms (or even less), but over a large number of trials the
variability in RT is so small that statistically reliable effects can be obtained.
This sensitivity comes at a cost though: we are sensitive both to differences
between conditions that are intended by the experimenter, and unintended
ones as well. This is a critical consideration for any experimental design –
thinking through all of the possible differences between experimental
conditions, and trying to match them as closely as possible. For instance, in
the example above we were comparing RTs in the horizontal/vertical line
task with simple RTs to flashes of light. However, it is possible that making
even simple decisions about the presence or absence of a line takes more (or
less) time than making simple decisions about the presence/absence of a flash
of light. Therefore, to isolate the time required for our judgement task, our
control condition should involve a line detection, rather than flash detection.
Another important consideration concerns psychological factors rather than
just the physical properties of the stimuli. For example, if people find one
type of stimulus or task more interesting than another, then the RTs may
reflect both the intended differences between stimuli/tasks, and also the
influence of attention.

Accuracy Measurements



The other staple measure of behavioural experiments in cognitive science is
accuracy. This is, quite simply, whether the participant makes a correct
response or not. ‘Correct’, of course, depends on the experimental context. In
the simple RT paradigm described in the previous section, a correct response
is one that follows a flash of light. Even in this simple paradigm ‘accuracy’
has some complexity to it, because it’s possible that a participant could press
the button even when there was no flash of light. This could happen for
several reasons, including an ‘itchy trigger finger’ (that is, a response the
person immediately realizes is wrong), a false detection (thinking they saw
the stimulus when they did not), or a failure to follow the instructions (for
example, someone who for whatever reason does not feel inclined to perform
the task well, but instead presses the button randomly or continuously – as
sometimes happens with students required to participate in experiments for
class credit). Therefore it is important firstly to define a ‘response window’:
minimum and maximum times after the stimulus in which to consider that a
response was actually triggered by that stimulus. As well, in simple detection
tasks it is often a good idea not to simply categorize responses as ‘correct’
and ‘incorrect’, but into four categories: hits (correct responses), misses
(failing to respond when a response should have been made), false alarms
(making a response when no response should have been made), and correct
rejections (not responding when a response was not required). If the task
involves different response contingencies – different responses to different
stimuli, such as in the line orientation judgement task described in the
previous section – it may be sufficient to classify each response as ‘correct’
or ‘incorrect’; however, it may also still be worthwhile to determine the
number of misses for each condition, or perform other analyses of errors. For
example, if there are more than two response options, there might be
systematic patterns in the types of errors people make.

In neuroimaging studies in particular, tasks that provide measures of accuracy
can serve a different (or additional) purpose: ensuring that participants are
actually paying attention and doing what the experimenter expects. In many
neuroimaging studies experimenters include very easy tasks simply to ensure
that the participant is paying attention to the stimuli. By keeping an eye on
behavioural responses during the study, the experimenter can ensure that the
participant is performing the task (and thus not asleep or otherwise
inattentive), and hopefully performing it accurately as well. It is common in



neuroimaging studies to report behavioural results that, on their own, provide
little or no insight into how participants were performing the task. Rather,
their primary purpose is to ensure that participants are paying attention to the
stimuli, and performing the task in the way that the experimenters expect. In
other cases, the interpretation of the neuroimaging data is bolstered by also
demonstrating an expected pattern of differential accuracy across conditions.

Other Response Types
While accuracy and RT are the ‘workhorse’ measures in a large number of
cognitive behavioural studies, any number of other types of measures are also
available. For example, rather than binary ‘yes/no’ type responses, one may
have a wider range of response options, such as ratings. A common form of
rating scale is the Likert scale, which consists of a set number of response
options (often five or seven) that run along a particular dimension. For
example, one could ask people how much they like a variety of foods, and for
each food the response options on a five-point Likert scale might be ‘dislike
strongly’; ‘somewhat dislike’; ‘neutral’; ‘somewhat like’; and ‘like strongly’.
Likert scales are an example of a discrete (or ordinal) rating scale, that is,
one with a fixed set of levels that the person must choose among. If greater
sensitivity is desired, another option is an analogue scale, in which the
possible responses are essentially continuous over a range. Again using the
example of food preference ratings, rather than five discrete possible values,
we could present the participant with a line with ‘0’ at one end and ‘100’ at
the other, and ask them to simply point, or click with a mouse, at the spot
along the scale that reflects their feeling about each food. Continuous scales
are more sensitive, but in many cases Likert scales are sensitive enough for
the purpose at hand (though scales with more possible levels – such as 11 or
12 – tend to be more sensitive and less skewed than with fewer options;
Grant et al., 1999).

Another category of response type is verbal responses, such as naming a
picture or repeating a list of memorized words. Many software packages can
automatically compute response times based on when the onset of a vocal
response is detected by a microphone, as well as saving the actual response to
an audio file. While these are relatively easy to implement in behavioural
studies, in neuroimaging research verbal responses can be trickier. For



example, MRI scanners are extremely loud (on the order of 90 dB, which is
at the upper limits of hearing safety – indeed, hearing protection is required
inside an MRI scanner) and so it is often impossible to hear what participants
are saying during a scan. However, noise-cancelling microphones have been
used in this situation. In EEG, contractions of facial muscles – as occur
during speech – can create artifacts in the data that make it more challenging
to isolate the brain activity. A strategy that has been used to address this issue
is delayed responses. For example, one could ask participants for verbal
responses at the end of each MRI scan, although these are typically many
minutes long and so this introduces a memory component as well, which may
affect the results. In EEG, one could simply impose a short delay before
asking for a vocal response, since typically the EEG activity of interest lasts
for only a second or so after a stimulus.

A variety of other manual responses are possible as well. For example, Limb
and Braun (2008) studied brain activity during musical improvisation by
having experienced jazz pianists perform on a specially designed piano
keyboard during fMRI scanning. Similarly, drawing has been studied using
fMRI by having people draw using either a special electronic tablet, or
simply paper and pencil, during fMRI scans (Gowen & Miall, 2007; Saggar
et al., 2015). Other studies use motion capture, which provides three-
dimensional tracking of a person’s body (or parts thereof, such as the hands).
This can be accomplished either via one or more cameras, or by sensors
attached to various parts of the body. Motion capture can be valuable if the
interest is not simply in the start or endpoint of a movement, but on variables
occurring during the movement, such as the path or speed of a hand
movement.

Ultimately, the choice of the behavioural measure(s) are determined by the
needs of the study, but in neuroimaging the techniques themselves may
impose certain limitations that require creative solutions to obtaining the
desired measures. These issues, in particular the limitations imposed by
different techniques, are discussed in greater detail in the chapters that
follow.

Psychophysics



A special class of behavioural studies dealing with perception are those of
psychophysics. This field was established in 1860 with the publication of
Gustav Fechner’s Elemente die Psychophysik, in which he defined
psychophysics as ‘an exact theory of the functionally dependent relations of
… the physical and the psychological worlds’ (Fechner, 1966: 7). In other
words, Fechner sought to systematically relate psychological phenomena
(perception) with physical ones (stimuli). Typical psychophysics experiments
focus on individuals’ abilities to detect simple stimuli or make discrimination
judgements between them. For example, a person might be asked to sit in a
dark room, stare at a blank screen, and press a button every time a flash of
light is detected. By varying the brightness of the flash, one can determine the
person’s threshold for detection in terms of light intensity (Simpson, Braun,
Bargen, & Newman, 2000; Simpson, Newman, & Aasland, 1997). In a
discrimination experiment, one might have to determine which of two tones
is louder, with the difference in loudness being systematically manipulated to
find the threshold. Determining thresholds is usually done using a staircase
method, in which the intensity (or difference in intensities, for discrimination
experiments) is initially set below the expected threshold (making it
undetectable), and then raised on subsequent trials until the participant can
reliably detect it. Then, the staircase direction is reversed and the stimulus
intensity is systematically lowered again until the participant can no longer
detect it. This reversal process is repeated several times, and the threshold
value is typically set to be the intensity level at which the person is able to
accurately make the detection/discrimination 50% of the time.

Fechner and other psychophysicists sought to derive ‘laws’ or formulae
relating perceptual judgements to stimulus intensity. For example, based on
earlier work by E.H. Weber, Fechner defined ‘Weber’s Law’ as a principle
by which ‘the magnitude of the stimulus increment must increase in precise
proportion to the stimulus already present, in order to bring about an equal
increase in sensation’ (Fechner, 1966: 54). Fechner found that this principle
generalized to different senses, such as detecting flashes of light or changes
in weight – that it was not the absolute magnitude of the change (in
brightness or weight) that determined people’s ability to discriminate two
stimuli, but the relative magnitude of the change. Thus the threshold for
discriminating between two very small weights may be a matter of a few
grams, whereas the threshold for discriminating between two much heavier



weights would be much larger, on the order of tens or hundreds of grams.

While psychophysics is a relatively specialized domain of experimental
psychology and cognitive science, it has wider relevance in areas such as
neuroimaging. First of all, although general psychophysical principles or
‘laws’ generalize across individuals (indeed, most psychophysics studies
focus on a large number of trials using only two to three individuals),
individuals’ thresholds can differ considerably. Thus in some cases it may be
important to perform psychophysical threshold measurements prior to
starting an experiment proper, to determine the appropriate stimulus levels
for each individual so as to equate their performance and, as much as
possible, subjective experience. As well, neuroimaging studies of
psychophysical paradigms can be interesting and informative because we
would expect that there is some relationship between perceptual experience
and brain activity, which we might be able to measure. For example, some
brain areas may respond in an intensity-dependent manner to stimuli – even
when the stimuli are below the threshold for conscious perception – whereas
other brain areas may respond only when a stimulus is consciously perceived.
More mechanistically, psychophysical methods have been used to
characterize the nature of brain responses and how they change with
systematic manipulation of stimuli. For example, an early study employing
visual psychophysics by Boynton and colleagues (Boynton, Engel Glover, &
Heeger, 1996) was one of the first to carefully and systematically characterize
how the fMRI response to individual stimuli varied as a function of stimulus
parameters such as contrast and duration. This study provided valuable
insight into the nature of the fMRI response that helped propel the field of
fMRI forward.



Neuropsychology
From behavioural methods we now move to briefly cover the different
classes of methods to study brain activity more directly. First among these,
historically, is neuropsychology – or as it is now more commonly described
in the research literature, lesion-deficit studies. Some of humankind’s earliest
insights into the brain as the seat of the mind and consciousness came from
observations of people with brain damage, and the altered patterns of
behaviour, thought, and consciousness that accompanied these. Throughout
most of the twentieth century, lesion-deficit studies comprised the majority of
sources of information we had about how cognitive processes related to
different brain areas. This included studies of people with acquired brain
injury (for example, through an accident, stroke, or other event), people who
had undergone neurosurgery (for example, for the treatment of epilepsy, or
tumour removal), or people who had a progressive or degenerative disease
that specifically affected particular brain regions (for example, Alzheimer’s
or Parkinson’s disease). In general, as implied by the name, lesion-deficit
studies involve trying to determine how specific functional deficits are
systematically related to damage (lesions) to particular brain regions. This
line of inquiry provided significant insights into the functional organization
of the human brain, and led to many influential theories of brain organization
and cognitive function in domains such as language, memory, and movement.
By and large, these results were confirmed with the advent of non-invasive
brain imaging techniques such as PET and fMRI, leading many researchers in
the early days to question why these expensive, high-tech imaging techniques
were even necessary!

However, neuroimaging techniques have proven to have numerous
advantages over lesion-deficit studies. One important limitation of much of
the lesion-deficit literature in the twentieth century was the fact that the
techniques available for characterizing lesion location were quite limited.
While structural MR imaging was introduced in the 1980s, it took time to
become widely available and used in hospitals; prior to that, the ‘gold
standard’ technique for imaging the structure of the brain non-invasively was
computed tomography (CT) scanning, which is essentially an X-ray of the
head. CT scans have limited resolution and contrast (the ability to distinguish



between different types of tissue), making identification and localization of
lesions somewhat approximate. In particular, because scans were generally
printed on film and evaluated ‘by eye’, most of the localization and
generalization across individual patients was done qualitatively rather than in
any systematic or quantifiable way. In other cases, no imaging was available
and studies were limited to inferring lesion location from patterns of
symptoms, such as simply knowing which cerebral hemisphere was affected
(based on symptoms such as which side of the body showed motor deficits,
or whether language – typically reliant on the left hemisphere – was
affected). These limitations were unsatisfying at best, and in some cases it
became apparent that very similar patterns of symptoms or deficits could
result from damage to different parts of the brain. Another limitation of these
studies was that, by definition, the subjects all had some sort of brain
pathology. While this was exactly what made them scientifically interesting,
it also meant that the symptoms observed could have resulted either from the
obvious location of brain damage, or from other areas of damage that might
not have been as obvious. As well, people may have partly recovered from
the effects of the brain damage, possibly by recruiting different areas to serve
a particular function, or some sort of ‘re-wiring’ of the brain. Finally, most
causes of brain damage do not affect brain areas randomly, which might be
considered optimal from a scientific perspective. That is, if any brain area is
equally likely to experience a lesion, then across the population we would
have equal insight into the functions of all areas. However, diseases such as
Alzheimer’s have very characteristic patterns of brain damage, and even the
damage caused by stroke is non-random. Rather, significant
functional/cognitive deficits are most likely to occur with strokes involving
larger blood vessels in the brain, and these are located in quite consistent
locations across individuals. This means that we are able to derive more
informative data from strokes about parts of the brain underlying these major
arteries than about other, more distal areas.

With the advent and increasingly widespread availability of structural MRI
and computerized methods of image analysis, lesion-deficit studies have
entered a new era with increasing precision and reliability. The power of this
approach, known as voxel-based lesion-symptom mapping (VLSM), was
first described by Bates and colleagues (2003) in a paper investigating
aphasia – a broad category of dis-orders characterized by acquired language



deficits following brain injury. Bates and colleagues took a group of people
suffering from aphasia and had a neurologist trace the extent of each patient’s
brain lesion on their structural MR image. The brain images were then
overlaid (using a method that compensated for differences in the size and
shape of the brains), and for every point in the brain, patients were assigned
to one group if they had a lesion there, and another group if they did not. The
researchers then performed statistical tests between these two groups using a
variety of language assessments as the outcome measure. As shown in
Figure 1.8, the results showed that people who had deficits in speech
production had the greatest lesion overlap in the left insula (the area tucked
behind the frontal and temporal lobes), whereas people who had deficits in
speech comprehension showed the most lesion overlap in the left posterior
temporal lobe. Since then, the technique has been further refined and applied
to a wide variety of different patient populations, allowing much more
systematic insight into how brain damage affects cognition. While this does
not mitigate other issues such as the potential other effects of pathology or
compensation, it is a great improvement over the older and much more
approximate techniques.

Figure 1.8 Example of voxel-based lesion-symptom mapping (VLSM) from
Bates and colleagues (Bates et al., 2003). The top row shows correlations
between lesion locations and deficits in speech production (fluency), in two
slices through the brain, across a group of 101 people who had suffered a left
hemisphere stroke and had some language deficits. The red areas are those
that showed the most consistent relationship between lesion location and
fluency deficits. The bottom row shows a similar correlation for the symptom
of impaired auditory comprehension of speech, indicating that distinct lesion
locations are associated with different functional deficits. Reprinted from
Bates and colleagues, 2003 with permission of Springer Nature





Non-Neural Physiological Responses
Before turning to brain imaging proper, it is worth noting that there are a
number of ‘covert’ methods that can be used to assess people’s responses to
stimuli without requiring that they make an overt, conscious response. One
class of such measurements are generally called physiological (or
psychophysiological) and include heart rate, respiration rate, skin
conductance, skin temperature, and blood pressure. These parameters are
under partial control of the autonomic nervous system, meaning that changes
in these measures can indicate generalized arousal. These measures are
somewhat nonspecific, in that such arousal can occur for several reasons,
including stress, heightened attention or alertness, excitement, or as a result
of certain drugs. However, in a controlled experimental context interpretation
may be more constrained and these measures may provide an informative
complement to other behavioural or neuroimaging measures.

Another measure that is frequently used in cognitive science studies is eye
tracking. In essence, eye tracking is any technique that tracks the direction of
a person’s gaze over time. In cognitive science/neuroscience applications,
this is typically done using specialized, high-speed cameras that shine
infrared light on the eye and measure its reflectance. This method is able to
isolate the pupil of the eye from the surrounding cornea, and use these
features to track the movements of the pupils. Eye trackers can be stationary,
typically placed on or near the computer monitor that the participant is
viewing, or head-mounted, which works better for non-computer-based,
‘real-world’ situations as the participant is able to move their head in any
direction without losing line-of-sight between the camera and their eyes. An
example of a head-mounted eye tracker is shown in Figure 1.9.

Figure 1.9 An example of a head-mounted eye tracker. The cameras are the
black objects seen underneath each eye, which are aimed at, and remain in a
fixed position relative to, each eye as the person moves their head. This
allows for relatively natural movement. Other eye trackers are mounted on a
computer or desk, and are effective only when the participant’s head stays in
a relatively consistent position, so that a direct line of sight between the eye-
tracker camera and the eyes is maintained. Photo courtesy of Dr Raymond



Klein, Dalhousie University. Used with permission

A first step in eye tracking is to perform a calibration in which the person is
directed to focus their gaze on different locations in space in front of them
(typically positions on a computer monitor). Once this is done, the eye
tracker can identify where the person is looking with very high precision. A
high-speed camera is required, taking an image at least 60 times per second,
and often much faster (compared to standard video cameras that typically
sample at 30 frames per second or less). This is necessary because most eye
movements are not smooth, but are rather ‘jumps’ from one location to
another (called saccades), which typically occur over very short time periods
of about 200–250 ms. Eye tracking has found many uses in cognitive science,
from investigating how reading occurs in real time to understanding how
attention relates to the location of fixation. It has the advantage over most
other overt forms of behaviour (such as button presses) in that eye
movements often occur automatically or reflexively, and so can be used as a
relatively non-invasive and covert means of assessing human performance.
Another, somewhat more prosaic application of eye tracking is to ensure that



people’s gaze stays fixated on the point that the experimenter intends. For
example, many studies of attention require participants to focus on a central
fixation point on a screen, while attending ‘covertly’ to stimuli that occur
elsewhere on the screen. Thus eye tracking can be used to ensure that fixation
is actually maintained, and to alert the participant, and/or discard data, on
trials when the desired fixation location is not maintained.

Another measure that can be obtained with eye-tracking equipment is
pupillometry, the practice of measuring the diameter of the pupil. The pupil
is the black centre of the eye, which is actually the opening that allows light
to reach the retina. While its diameter adjusts automatically in response to
changes in lighting, it is also influenced by a person’s general arousal,
similarly to skin conductance or other physiological measures.



Brain-Imaging Methods
We now turn to brain-imaging methods. While detailed discussion of these
methods comprise the majority of this book, it is helpful at the outset to
consider them collectively, so as to appreciate their relative merits and
limitations. There are (at least) four important dimensions on which the
different techniques vary. One is whether they measure brain structure or
function. Structural techniques provide information about the anatomy of the
brain. Since all brain activity relies on the structural ‘matrix’ of the brain,
understanding brain structure is important. However, structure tends to be
relatively stable over time, at least at the macro-anatomical scale (although as
noted earlier, structure at the subcellular level has been documented to
change over minutes and even seconds). Functional methods, on the other
hand, capture some aspect of the moment-to-moment changes in some aspect
of the physiological functioning of the brain and, in the context of cognitive
neuroscience, typically about cognitive function as well.

Another dimension on which methods vary is the measured parameter. This
is true both of structural and functional methods. For example, there are
several types of structural imaging that can be performed using MRI scanners
that are sensitive to very different aspects of brain anatomy, such as the
density of cell bodies, or the presence of myelin (a fatty coating around
neuronal axons, as discussed earlier and later in this chapter), or the
orientation of connections between different brain areas. Functional imaging
methods encompass an even wider range of physiological measures. Some,
including EEG and MEG, are sensitive to the electrical activity of neurons.
Since neurons communicate using electrical signals, this is considered a
relatively ‘direct’ measure of brain activity (although the measurements are
aggregates of the activity of large numbers of neurons, often from multiple,
distinct areas). Other techniques are indirect, and require inferences between
the measured variable and brain activity. For example, fMRI is sensitive to
the concentration of oxygen in blood vessels in the brain. It turns out that
oxygen levels tend to increase in relatively localized areas in response to
increases in neuronal electrical activity, but nonetheless fMRI does not
measure neuronal activity directly. Indeed, there is a very complicated
relationship – involving a complex cascade of biochemical events – between



increased neuronal activity and these localized changes in blood oxygenation.

The last two important dimensions are more continuous, as opposed to the
categorical ones discussed so far. These are temporal and spatial resolution.
Temporal resolution refers to the time scale that a technique is sensitive to
changes over. Structural techniques obviously will generally have lower
temporal resolution than functional techniques, since the parameters they
measure change more slowly. Even among functional techniques, however,
there is considerable variability in temporal resolution that is imposed both
by what parameter is being measured, and how it is measured. For example,
EEG has extremely high temporal resolution – EEG systems are capable of
taking 10,000 measurements per second, and many important changes in
neural activity can occur over the course of tens or even a few milliseconds.
In contrast, although an fMRI image can be obtained in 100 ms or less, in
common practice it takes 1–2 s to obtain a scan of the entire adult brain,
meaning that the ‘sampling rate’ of fMRI is orders of magnitude slower than
EEG. However, this is not as terrible as it might seem, because the blood
oxygenation changes that fMRI measures occur over much slower time scales
than electrical activity – typically several seconds.

Finally, spatial resolution refers to the level of spatial precision that a
technique affords. While fMRI has lower temporal resolution than EEG, it
has much higher spatial resolution. EEG is measured from electrodes placed
on the outside of the head, typically using somewhere between 3 and 256
electrodes (64 being a common electrode count in cognitive neuroscience).
Because of the relatively low number of sensors, and also the fact that
electrical signals are distorted by the skull, localizing sources of electrical
activity in the brain with EEG is challenging at best, and in optimal
circumstances may be on the order of 1 cm (although often the resolution is
much worse). In contrast, fMRI can localize activity with millimetre-level
precision (or even sub-millimetre with advanced techniques), and the biggest
spatial limitation of this technique is not the ability of the hardware, but the
fact that the blood oxygenation changes that are measured change over a
larger spatial area than the actual neural activity. Ultimately, there is no one
best neuroimaging technique, nor is there a ‘magical combination’ of
techniques that can unequivocally characterize all aspects of brain structure
or function. Rather, cognitive neuroscientists must choose their tools based



on a number of considerations, including the question at hand, their
knowledge and experience, and available hardware (most of which is very
expensive to purchase, and often to run as well). In some cases, researchers
conduct multimodal neuroimaging studies by combining multiple
techniques, such as EEG and fMRI. These may be done simultaneously;
however, there are often practical constraints that make this challenging, and
so in some cases the same experiment is performed on the same participants,
once using one technique and once using another.

Structural Methods
The primary technique used to characterize human brain structure non-
invasively is MRI. MRI scanners are, in very simple terms, sensitive to the
concentration of water in the body relative to fat and other materials. The
primary source of contrast (visual differences) in structural MRI is indeed
between fat and water: the cerebral cortex – the outer layer of the brain, often
referred to as ‘grey matter’ – contains primarily cell bodies that have a high
proportion of water, while the underlying ‘white matter’ is mostly composed
of connections between brain areas that are covered in a fatty coating known
as myelin. The brain floats in cerebrospinal fluid (CSF), which has an even
higher concentration of water than grey matter. Thus a typical structural MR
image will show clear visual distinctions (contrast) between grey matter,
white matter, and CSF. Cognitive neuroscientists often use structural MRI as
a primary measure to investigate factors such as the thickness of the cerebral
cortex, or the integrity of white matter. These parameters can be affected by
different disease states, as well as changing over the course of the lifespan.
Advanced mathematical techniques have also been developed to characterize
the shape of brain areas in quantifiable ways. It is also standard to acquire a
structural MR image from every individual in a functional MRI study. This is
because fMRI images are optimized to detect blood oxygenation changes, but
this comes at the expense of good contrast between grey and white matter,
and (generally) lower spatial resolution than structural MR images. Thus
having a separate, optimized structural MRI scan aids in anatomical
localization and especially in the necessary process of ‘warping’ each
individual’s uniquely sized and shaped brain to a standard template for
averaging or comparison across individuals. Structural MRI scans are
similarly useful for other imaging techniques, such as MEG and optical



imaging, as well as in neurostimulation studies, for the anatomical precision
they provide.

Another structural measure commonly used is diffusion-weighted imaging
(DWI), which can be used to infer the orientation of nerve fibres within the
white matter. The white matter contains a large number of different
connections between brain areas, and DWI can be used to identify different
tracts, and characterize parameters such as their integrity and thickness. DWI
is an indirect measure, in that what it is actually sensitive to is the diffusion
of water molecules. Because the myelin sheath around neuronal axons is high
in fat, water does not cross the sheath, but instead preferentially diffuses
parallel to the orientation of the axons.

Direct Functional Methods
The oldest non-invasive neuroimaging technique is electroencephalography,
or EEG. This involves the application of electrodes to the outside of the head,
which provide measurements of electrical activity coming from the brain. As
already noted, EEG has exquisite temporal resolution; however, it also has a
number of significant limitations. For one, the brain is not the only source of
electrical signal picked up by EEG electrodes. A number of physiological
artifacts, including contractions of face, neck, and shoulder muscles, eye
blinks, and in some cases heartbeats all generate electrical signals that tend to
be significantly larger than the brain signals. This can make it challenging to
separate brain from non-brain signals. As well, numerous sources of
electricity in the environment around the person can be picked up by the
electrodes, creating additional artifacts. Another important limitation of EEG
is that electricity conducts very well through the brain, and typically many
brain areas generate electrical activity simultaneously. EEG electrodes
measure the sum of all of this activity, which makes it difficult to separate
signals that originated in different parts of the brain. This is made more
difficult by the fact that the skull is a very poor conductor of electricity,
which means that brain signals are both attenuated and blurred spatially,
creating further challenges for localization. For these reasons, the primary
strength of EEG is in its temporal resolution, as well as our amassed body of
knowledge associating particular features of the EEG signal with specific
cognitive processes. This allows researchers to characterize the timing and



nature of some cognitive operations. This is typically done by time-locking
the EEG signal to particular events of interest, such as the onset of stimuli,
and then averaging together the time-locked data from numerous trials in an
experiment. This helps isolate the brain activity that is reliably elicited by the
stimuli, from noise that occurs randomly from trial to trial. When we analyse
such time-locked EEG data it is usually called event-related potentials
(ERP) or evoked potentials.

As a side note, it is worth mentioning that some cognitive neuroscientists
question – or explicitly reject – the application of the term ‘neuroimaging’ to
EEG, because of the limitations in localizing activity inside the brain. While
this is an excellent topic to debate at the pub over a few beers, I
unequivocally include EEG as a neuroimaging technique for several reasons.
First of all, EEG data are typically represented and interpreted visually, either
as time-varying waveforms from each electrode, or as maps of the head
showing the strength of electrical potentials across the scalp. These are
unarguably images. Moreover, the name ‘electroencephalography’ includes
the root ‘graph’, the Greek word for writing – so EEG is a visual
representation of electrical activity originating from the head. Finally, it is far
more convenient and expedient to refer to ‘brain imaging techniques’ than to
have to say something along the lines of ‘brain imaging techniques and EEG’
or ‘neuroimaging techniques and that other measure of functional brain
activity that some people refuse to call neuroimaging’.

A related technique is magnetoencephalography, or MEG. This is based on a
fundamental physical principle, known as Ampère’s circuital law or, more
informally, the right-hand rule. This describes the fact that any time an
electrical current flows through a conductor (such as the brain), a
corresponding magnetic field is produced. Thus MEG uses extremely
sensitive magnetic field detectors to measure the correlates of the electrical
activity that EEG measures. Although they measure closely related signals,
MEG has some advantages over EEG. Most notably, the skull does not affect
magnetic fields as it does electrical current, and furthermore magnetic fields
drop off sharply with increasing distance from their sources. For these
reasons, localizing the sources of MEG activity within the brain tend to be
more accurate with MEG than EEG, thus affording MEG better spatial
resolution while at the same time preserving the excellent temporal resolution



of EEG. Nonetheless, localizing the sources of MEG signals relies on certain
assumptions and inferences, and so its spatial resolution is lower and less
accurate than fMRI in most cases. MEG systems are also much more
expensive to obtain and maintain than EEG systems, making MEG a far less
commonly used technique. Both EEG and MEG can be considered ‘direct’
measures of neural activity.

Indirect Functional Methods
Indirect functional methods are those that infer brain activity through
measurements of other physiological processes that are in some way
influenced by neuronal activity. By far the most widespread of these (and
indeed, of cognitive neuroscience techniques in general) is functional MRI
(fMRI). As already noted, this technique uses an MRI scanner (involving
strong magnetic fields and radio waves) to measure the concentration of
oxygenated blood (or more precisely, the ratio of oxygenated to
deoxygenated haemoglobin – the molecule that transports oxygen throughout
the body) within the brain, with millimetre-level spatial resolution. Although
its temporal resolution is somewhat limited – primarily by the relatively slow
nature of the ‘haemodynamic’ response relative to electrical activity – fMRI
is nonetheless able to characterize changes in activity over relatively short,
and cognitively meaningful, periods of time in the order of a few seconds.

In addition to fMRI, however, there are several other non-invasive, indirect
measures of brain action that are commonly used. One is functional near-
infrared optical imaging (fNIRI). This involves shining near-infrared light
directly on the head using optical fibres, and measuring the transmitted light
at nearby (2–3 cm) locations. Because the skull and other tissues of the head
are relatively transparent to infrared light, the light is able to pass through to
the brain and be reflected out again. Measurements of this transmitted light
can be used to estimate the concentration of different chemicals in the brain.
In fNIRI, the primary focus is on haemoglobin, and so fNIRI measures a
signal closely related to that of fMRI. However, fNIRI has much poorer
spatial resolution than fMRI because at safe intensities the light can only
penetrate a few centimetres into the brain. As well, there are practical
constraints on the number of ‘optodes’ used for transmitting and measuring
light that limit spatial resolution over the surface of the scalp. However,



fNIRI has some advantages over fMRI in that whereas fMRI requires very
expensive hardware and imposes significant constraints due to the use of
magnetic fields and radio waves (for example, many people with metal
implanted in their bodies are ineligible for MRI), fNIRI is relatively
inexpensive and has fewer constraints on who it can be used with. Indeed,
one of the best use cases for fNIRI is with infants and very young children,
who might not do well in an MRI scanner (which is very loud, and requires
one to lie extremely still, and alone, in a small tube). Because it measures
essentially the same physiological process as fMRI, fNIRI has similar
temporal resolution. However, there is a second, less commonly used
approach to fNIRI that has much higher temporal resolution – on the order of
EEG or MEG. Often called event-related optical signal (EROS), this
measurement of the ‘fast’ optical signal is relatively poorly understood but
seems to be caused by changes in the size of neurons that occur when they
fire. The cells swell up, decreasing the space between cells (extracellular
space) and altering light transmission as a result.

Finally, there is positron emission tomography (PET), which preceded
fMRI by several years, and was thus the first non-invasive technique to
provide accurate, high-resolution pictures of physiological processes
occurring in the brain. However, PET measures the emission of radioactivity,
and as such requires that a radioactive substance be introduced into the body,
typically via injection or inhalation. While the levels of radioactivity used in
PET scans are very safe, this limits the number of scans an individual can
have in any given period of time, and also discourages many people from
wanting to participate in studies, either due to a fear of radioactivity (or
unnecessarily ingesting foreign substances more generally), or to not wanting
injections. Functional PET imaging originally relied on radioactively labelled
oxygen, and so the measurements were of oxygenated blood flow through the
brain. However, fMRI quickly supplanted PET for several reasons, including
the lack of a need to introduce a foreign substance into the body (fMRI relies
on ‘intrinsic contrast’ – one that occurs naturally). As well, PET
measurements of blood oxygenation have very poor temporal resolution, with
each scan taking approximately 90 s and requiring time between each scan
for the radioactive tracer to ‘wash out’ before the next scan. During each 90 s
period only one experimental condition can occur, and so this makes
experiments slow and tedious at best, and in some cases impossible if there is



a need to examine randomly intermixed conditions, events that occur on very
fast time scales, or other factors. In spite of these limitations, PET has found
continued – if limited – use in cognitive neuroscience owing to the fact that
many other chemicals besides oxygen can be radioactively labelled. These
include various neurotransmitters, neuromodulators, and psychoactive drugs.
While temporal resolution is still limited, PET is the only non-invasive
technique that allows us to track the time course and spatial distribution of
neuropharmacological agents in the brain, providing it with a unique niche in
the cognitive neuroscientist’s toolbox. As well, combined PET–MRI scanners
have recently been developed that allow one to simultaneously obtain both
types of data, making possible studies that combine structural imaging with
fMRI measures of brain activation and neuropharmacological tracing using
PET.



Manipulating Brain Activity
In addition to the bevy of neuroimaging techniques available, cognitive
neuroscientists are also able to directly manipulate brain activity using
neurostimulation techniques. These fall into two general types: magnetic
and electrical stimulation. It is worth noting as well that many different drugs
and other chemical compounds can be used to manipulate brain activity, and
indeed often in much more targeted and specific ways than using non-
invasive electrical or magnetic methods. However, these are considered
invasive and fall outside the scope of this book.

Transcranial magnetic stimulation (TMS) relies on Ampère’s circuital law
(the right-hand rule) to induce very brief, but strong, electrical currents in the
brain using a strong magnetic field. The stimulator is called a ‘coil’ because it
contains many windings of copper wire through which a strong electrical
current is passed. This creates a magnetic field which, when placed against a
person’s skull, induces an electrical current in the brain directly underneath.
TMS has very high spatial precision, with the maximum stimulation
occurring in an area of only a few cubic centimetres directly under the coil
and dropping off quite sharply with distance. Depending on how it is applied,
TMS can have inhibitory or facilitative effects on brain function, which last
from seconds to up to an hour or more after stimulation. One common
application of TMS is to use an inhibitory protocol to create ‘transient brain
lesions’; that is, to briefly disrupt the activity of a target brain area. From this,
one can make inferences about the function of the area. While this could also
be done using a neuroimaging technique to see if the area ‘lights up’ during a
particular task, TMS has the advantage of demonstrating not only that the
area is activated during the task, but that its activation is critically necessary
for performance of that task. TMS can also be used to facilitate activity in a
particular brain area, which can be of interest in training studies to improve
cognitive performance, or in rehabilitation to improve recovery from a brain
injury. As well, repeated TMS sessions over days and weeks have shown
efficacy in treating some neurological and psychiatric conditions such as
depression.

The other common type of non-invasive neurostimulation is transcranial



electrical stimulation (tES). This involves passing a very weak current
between two electrodes attached to the head, with the targeted brain area in
between them. The currents in this case are far weaker than those used in
TMS, and indeed tES is often referred to as ‘neuromodulation’ rather than
stimulation, to reflect the comparatively moderate effects it has on brain
activity. Like TMS, tES can have either inhibitory or facilitative effects on
brain activity, depending on the parameters used for stimulation. However,
the inhibitory effects would not be described as ‘transient lesions’ because
they do not completely disrupt activity in an area. Rather, tES tends to alter
activity in weaker, but still measurable ways. There are also a number of
distinct types of delivering tES. The most common is direct current
stimulation (tDCS), which involves simply passing a fixed level of current
between the electrodes for a set period of time (typically 5–10 minutes).
Another is alternating current stimulation (tACS), which involves modulating
the current up and down sinusoidally. This is often used to entrain electrical
brain activity, as it has been found (by combining tES with EEG) that certain
brain rhythms can be induced or entrained using this technique. Finally,
random noise stimulation (tRNS) involves alternating the strength of current
randomly from moment to moment, rather than in a systematic sinusoidal
fashion as in tACS. While less commonly used than the other techniques,
tRNS seems to have similar effects to tDCS, but some evidence suggests the
effects of tRNS are stronger and longer-lasting.

An important point to note about TMS and tES is that they are not actually
measurements, but rather ways of influencing brain function. For this reason,
experiments involving these techniques necessarily rely on one or more
additional techniques to provide quantitative measurements of the effects of
stimulation. Often these are behavioural measures such as RT, but as well
studies may combine stimulation with some form of neuroimaging to more
directly assess the effects of stimulation on brain activity.

Summary

Cognitive neuroscience is a field of research focused on understanding relationships
between mind and brain – how brain activity relates to cognitive functions such as memory,
attention, reasoning, and language. The brain is organized, structurally and functionally, on
multiple levels – which we can broadly classify as micro-, meso-, and macro-scale. Non-
invasive cognitive neuroscience techniques operate primarily on the meso-scale of
functionally and anatomically distinct regions approximately a few centimetres in surface



area on the cerebral cortex. A variety of tools and techniques are available to cognitive
neuroscience researchers, and can be classified on at least four dimensions, including
whether they are reveal primarily structural or functional information; the physiological
parameter they measure; their temporal resolution; and their spatial resolution. These
include ‘direct’ measures of brain electrical activity (and its magnetic correlate), and
‘indirect’ measures such as of blood oxygenation. As well, there are neurostimulation and
neuromodulatory techniques that allow researchers to manipulate brain activity in specific
brain regions. The effects of neurostimulation can be excitatory/facilitative, or
inhibitory/disruptive. In addition to using one or more neuroimaging and/or stimulation
techniques, it is important in cognitive neuroscience studies to accurately measure and
characterize behaviour during data acquisition. This is both to ensure that participants are
performing the tasks intended, and in the manner intended. As well, behavioural measures
can reveal important variability between tasks and/or individuals, which can significantly
influence measures of brain activity and the effects of neurostimulation.

Things You Should Know

Cognitive neuroscience is the field of study that aims to understand the neural bases
of cognition, emotion, and behaviour. It is a relatively young field that was enabled
by the development of non-invasive neuroimaging techniques late in the twentieth
century and continuing to this day.
The primary cell types in the brain are neurons and glia. Neurons play the primary
role in cognition, emotion, and action, while glia play largely supporting roles.
However, glia are critical to normal brain function as well. Neurons communicate via
electrochemical signalling. Chemical neurotransmitters and neuromodulators are the
primary means of communication between neurons (and between neurons and glia).
These chemical messengers modulate the electrical potential of neurons, and when a
neuron ‘fires’ by generating an action potential, this is propagated along the neuron
electrically, triggering the release of neurochemicals to signal other cells.
The organization of the brain can broadly be described at three levels. The ‘macro’
scale is that of whole lobes, such as parietal and occipital. This is generally too broad
for cognitive neuroscientific purposes. The ‘meso’ scale refers to brain regions that
may be defined on the basis of differences in fine-grained cellular and connectivity
architecture, and/or functional specialization. This is the primary scale of focus in
cognitive neuroscience. The ‘micro’ scale is that of individual neurons, cortical
columns, and other anatomical elements within a functionally or structurally defined
brain region. In general, the non-invasive techniques of cognitive neuroscience lack
the spatial resolution to study activity at the micro-anatomical scale.
In empirical research, cognitive processes are generally operationally defined in
terms of behavioural measures, such as the time it takes to make a response (response
or reaction time – RT) and accuracy. Since the goal of cognitive neuroscience is to
relate brain activity to cognition, it is critical to understand the cognitive processes
under investigation, and to obtain behavioural measures to accompany the
neuroimaging or neurostimulation data. Without behavioural measures, most
cognitive neuroscientific data is challenging to interpret. It is far preferable to
measure behaviour than to assume that particular cognitive operations are occurring
in an experiment. Exceptions to this include studies of brain structure, and of brain
activity during resting states.
There are many types of non-invasive tools used in cognitive neuroscience today.



These can be broadly categorized based on whether they measure structural
parameters, provide direct measures of electromagnetic brain activity, provide
indirect measures of brain activity such as blood oxygenation, or modulate brain
activity by electrical or magnetic stimulation.
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2 Research Methods and Experimental
Design



Learning Objectives
After reading this chapter, you should be able to:

Explain what independent and dependent variables are, and what contrasts between levels
of a variable are.
Explain the logic and value of subtractive and additive factors designs.
Describe how multiple variables can be systematically manipulated in factorial and
parametric designs, and distinguish between the two.
Explain why manipulating psychological conditions is preferred to comparing between
different physical stimuli in neuroimaging experiments.
Describe the difference between within- and between-subjects designs.
Explain the concept of statistical power and its relationship to sample size.
Explain the difference between forward and reverse inference in interpreting neuroimaging
results.
Identify key ethical issues raised by cognitive neuroscience.



Introduction
Before digging into the ‘meat’ of this book – detailed explanations of each
cognitive neuroscience method – it is important to lay some groundwork in
the fundamental methods of experimental design for cognitive neuroscience.
If you have previously conducted research in experimental psychology,
cognitive science, or a related field – or taken a general research methods
class in this area – you may be able to give this chapter a quick overview as a
refresher. If you do not have such a background, however, understanding the
material in this chapter is the foundation on which all the other chapters rest.

We start by defining variables, and then covering the simplest experimental
designs, in which we compare two levels of a single variable. We then
expand this to include multiple variables as well as increased numbers of
levels of a given variable, and continuous variables. We move on to
discussing some basics of experimental setup and control. In addition to basic
experimental design, we touch briefly on statistics. While teaching statistical
analysis is beyond the scope of this book, there are some basic concepts and
considerations that are necessary for understanding how neuroimaging data
are analysed and interpreted. As in the rest of the book, I have focused here
on conceptual understanding rather than formulae or other technical details –
so those without prior training in statistics need not be afraid! Finally, we
conclude with a discussion of research ethics, and in particular aspects of this
topic that are unique to cognitive neuroscience. Our ability to peek inside the
brain, both at structure and function, and to link this with thought raises a
number of important ethical and privacy issues that everyone should consider
as the techniques of cognitive neuroscience find an increasing role in larger
society.



Basic Experimental Designs



Variables
Fundamentally experimentation in cognitive neuroscience involves the
manipulation of one or more variables – specific, well-defined dimensions or
properties that can have different values. For example, if we wish to compare
brain responses to loud and quiet auditory tones, then ‘loudness’ (or to use a
fancier term, ‘amplitude of the tone’) is the variable and the levels are ‘quiet’
and ‘loud’. However, we would not simply want to define the levels
qualitatively and subjectively as ‘quiet’ and ‘loud’; rather, we would like to
quantify the loudness variable in an objective way. This is because a
fundamental tenet of empirical research is that it be carefully and
systematically documented, and replicable – meaning that when we report on
the study, we should describe our methods in sufficient detail that the reader
could replicate the experiment and (hopefully) the results. The volume of
auditory stimuli is typically quantified in deciBels (dB) and so we might
define as levels of our variable 40 dB for ‘quiet’ and 70 dB for ‘loud’.

An important thing to keep in mind is that there are, broadly speaking, two
types of variables. Continuous variables are those whose values vary on a
continuum. For example, the brightness of a visual stimulus is a continuous
variable; images do not get brighter or darker in discrete steps, but rather in a
continuous fashion. In contrast, categorical variables (also called factors)
are variables that have discrete levels. For example, if we are doing an
experiment with words, we could have one category of nouns, and one
category of verbs. Words do not vary on a continuum of ‘more noun-y’ to
‘more verb-y’ – they are one or the other (admittedly, some words can act as
both a noun or a verb in different contexts, but we will avoid linguistic
minutiae for the sake of explanation here). In many cases though, for the
purposes of an experimental design we might choose to treat a continuous
variable as categorical, so that we can compare between set levels. This is
what was done in the example in the first paragraph of this section: although
the loudness of a sound is a continuous variable, we somewhat arbitrarily
defined discrete categories of ‘loud’ and ‘quiet’ sounds. In this case we
operationally defined our categories of loudness based on specific values on
an otherwise continuous scale.



Another dimension on which we can define variables is with respect to their
role in a given experiment. Independent variables are ones that are
explicitly and intentionally manipulated by the experimenter. In the example
above, we were interested in how human participants differ in their responses
to the loud versus quiet stimuli, so loudness was an independent variable.
Independent variables can be discrete or continuous; often continuous
variables are operationalized as discrete levels for the purposes of an
experiment (as in our example of quiet and loud stimuli), because it is
conceptually and/or pragmatically simpler to do so. That is to say, on the
conceptual side it can be easier to talk about ‘loud versus quiet’ than ‘a range
of loudness’; on the pragmatic side, it is easier to create and run a study with
only two levels of loudness than trying to develop stimuli that capture the full
range of human hearing. Naturally, however, the choice of continuous or
categorical variable heavily depends on the actual research question. While
stimuli are one way that experimenters can manipulate independent variables,
there are other ways as well. For example, one could keep the stimuli present,
but have participants perform two different tasks on the stimuli, and compare
how task affects the outcome. It is also important to note that an independent
variable can be defined as a property of a given individual, rather than a
stimulus or task. For example, we could compare the performance (or brain
activation) between a group of people with a particular disease (for example,
Alzheimer’s disease) and a group of neurologically healthy people (typically
called a control group). In this case, which group an individual was would
be an independent variable. While not ‘manipulated’ by the experimenter in
the sense of causing some people to develop Alzheimer’s disease, this would
nonetheless be a variable that was designed and controlled by the
experimenter in performing the recruiting for the study.

At a minimum, an experiment requires at least two levels of one independent
variable, since experimentation depends on systematic manipulation of
variables, combined with measurements of the resulting outcome of that
manipulation. This leads us to the other classification: as well as at least one
independent variable, an experiment requires at least one dependent variable
– a response that we measure from the subject. Dependent variables are so-
called because they are ‘dependent’ on the experimental manipulation (that
is, the independent variable). As described in the previous chapter, in a
cognitive neuroscience experiment this could be a button press (for example,



press one button for quiet tones, and another for loud ones), from which we
could derive RT and/or accuracy, or some measure of brain activation. For
the most part, dependent variables in cognitive neuroscience experiments are
continuous measures, whether they be RT, or brain activation as measured by
some imaging method. One notable exception to this, however, is accuracy –
in many studies, a response is either ‘correct’ or ‘incorrect’, and never
something in between.



Subtractive and Additive Factors Designs
The experimental design described in the previous section – in which we
compare the magnitude of a dependent variable between two levels of an
independent variable (or, we could say, two conditions) – is the most basic
and fundamental method in cognitive neuroscience and perhaps cognitive
psychology more generally; the subtraction method. This approach was
invented by the Dutch experimental psychologist F.C. Donders in the
nineteenth century. The basic premise of the subtraction method is that if we
hold all possible variables constant except for one which we manipulate (for
example, loudness of the tone), then the difference in our dependent measure
(be it response time or brain activation or whatever) represents the effect of
the experimental manipulation.

An important thing to always keep in mind is that the subtraction method
relies on the assumption of pure insertion – that inserting the additional
cognitive process (or more generally, the experimental manipulation) does
not alter any other aspects of how the person performs the task. For example,
if one were interested in face perception, one might contrast brain activation
when people are viewing faces with a control condition in which blurred or
otherwise scrambled images of faces were presented – to control for
activation associated with visual perception generally, rather than faces
specifically. However, because faces are inherently more interesting to look
at than fuzzy, scrambled blobs, people might pay more attention to the faces,
creating a violation of pure insertion – because the control condition differs
from the target condition in both visual features, and the amount of attention
that the images attract.

The logic of the subtraction method is extended in additive factors designs,
which involve several conditions in which variables of interest are
systematically manipulated. For example, in one of the first non-invasive
neuroimaging studies ever published, Steve Petersen, Mike Posner, and
colleagues (Petersen et al., 1988) used additive factors to investigate brain
areas involved in word reading. This used PET imaging (see Chapter 11) to
measure activation levels in specific parts of the brain using radioactively
labelled oxygen. While the interest was in brain areas involved in reading



words, it turns out that word reading involves multiple cognitive processes,
including (at least) visual perception, letter recognition, whole-word
recognition, mapping letters to their associated sounds, and ultimately
recognizing the meaning of the word (semantic processing). Thus simply
contrasting words with a black screen in a subtractive design would reveal
brain areas involved in word recognition, but it would be impossible to
distinguish areas specifically involved in accessing word meanings from
areas involved in visual perception more generally, or from areas specialized
for letter recognition or letter-to-sound mapping.

Petersen and colleagues’ study thus involved several conditions designed to
incrementally engage different processes involved in reading, based on
careful consideration of what these processes might be. The key subtraction
contrasts between these conditions are shown in Figure 2.1. In the top row of
the figure, areas active during passive word perception were isolated by
subtracting signal recorded during a ‘fixation’ condition in which people
viewed a blank screen. Different areas were activated for auditory
presentation of the words (primarily in the superior temporal cortices) versus
visual presentation (occipital cortices). However, when the passive perception
condition was subtracted from a condition in which people had to repeat the
words they heard or saw (second row of the figure), very similar areas of the
motor cortex were activated. Since the sensory perception of words was
present in both the passive and repeat aloud conditions, activation associated
with this level of processing was subtracted out. The next higher order of
contrast was aimed at identifying areas involved in semantic processing. For
this, the researchers contrasted activation between simple repetition of each
word, and generating a verb in response to a noun (for example, if BREAD
was presented, the participant might say ‘eat’). This highlighted activation in
the left inferior frontal gyrus (historically referred to as Broca’s area, based
on Broca’s original findings with his patient ‘Tan’, described in the previous
chapter) – again, regardless of whether presentation was auditory or visual.
As well, motor cortex was absent in this contrast, because speaking aloud
was common to both tasks. The final row in the figure shows a contrast
designed to test whether ‘semantic processing’ in a general sense activates a
specific brain area, across different tasks and contrasts. Thus in the bottom
row, we see the results of two different contrasts both designed to subtract
simpler sensory and motor activations from semantic processing. The result



was that indeed, a similar left frontal region was active in both semantic
tasks.

Figure 2.1 Results of a series of contrasts in an additive factors design.
Panels (a) and (b) show the contrast of passively hearing (a) or seeing (b)
words relative to baseline condition of simply seeing a fixation point.
Although no anatomical underlay is shown, the auditory stimuli primarily
activated superior temporal cortex bilaterally (primary auditory cortex),
whereas visual stimuli primarily activated primary visual cortex in the
occipital lobe. The next level of contrast used passive perception as the
control condition, subtracted from repeating the words aloud. Here, similar
patterns of activation were seen for auditory (c) and visual (d) presentation
formats. The third contrast used repeating aloud as the control condition for
generating a verb based on the heard (e) or viewed (f) noun. Thus each level
of the contrast is designed to isolate one additional cognitive operation. The
bottom two panels are two different contrasts designed to tap into semantic
(meaning-related) processing, by using two different tasks that both require
processing the meaning of the word relative to control conditions designed to
isolate the semantic from lower-level processes. Adapted from Petersen et al.,
1988 with permission of Springer Nature



Although from a contemporary psycholinguistic perspective, the details of
the stimuli and tasks used in Petersen and colleagues’ study could be (and
have been, in later studies) improved upon, the logic of the additive factors



method is sound and remains central to experimental design in cognitive
neuroscience. In spite of this, the logic is not universally well-understood or
implemented, and numerous manuscripts are rejected by journals specifically
because this logic was not understood or followed carefully enough (or
reviewers thought of possible confounds that the researchers had not
anticipated or could not control). This often leads to ambiguity as to whether
the experimental contrast really isolates brain areas associated with the
process that the authors claim.



Factorial Designs
Factorial designs involve the systematic manipulation of two or more
experimental factors. One can think of a simple subtractive design as
manipulating a single factor (the difference between the two conditions) that
has two levels (control and experimental). A factorial design is simply an
expansion of this to manipulate multiple variables, typically in a systematic,
fully crossed design – meaning that each possible combination of variables
is tested. This is easily conceptualized visually, as shown in Table 2.1. The
most obvious application of factorial designs is simply to test the effects of
multiple variables in a single experiment. For example, if one were studying
word processing, one could ask which brain areas showed differences
between reading nouns and verbs, and also the effects of word frequency –
whether less commonly occurring words require more brain activation
associated with word retrieval than more frequent words. One could do two
separate subtraction design experiments, one contrasting nouns and verbs,
and the other contrasting low- with high-frequency words; however, it would
be a more efficient use of resources to conduct a single experiment testing
both these variables.

Table 2.1 

The more powerful feature of factorial designs, however, is what they buy the
experimenter in terms of generalizability. Certain unresolvable questions
could arise when trying to interpret these two separate experiments. For
example, in the noun/verb experiment, the researcher would need to choose
what frequency of words to use – perhaps only high-frequency ones, or



perhaps a mixture of frequencies (matching, of course, the frequencies of the
words in the noun and verb conditions). Similarly, for the frequency
experiment one would need to decide what types of words to use. Of course,
one could use a mixture of words in each experiment, or make an arbitrary
decision, but one would not know the extent to which the results of each
experiment depended on the choice of words made. It could be, for example,
that the difference in activation between high- and low-frequency words is
greater for nouns than verbs. One easy way to test for this is a factorial
design.

Factorial designs offer both greater experimental efficiency (in terms of being
able to test multiple variables in a single experiment), and greater
generalizability of the results. Imagine that we conducted a 2 × 2 factorial
design experiment to investigate these same questions. The design of this is
shown in Table 2.2. In this fully crossed design, high- and low-frequency
nouns and verbs are all presented, leading to four experimental conditions.
(Note that because all the stimuli are words, we do not really need a separate
control condition, such as consonant strings – our interest is specifically in
the contrast between words of differing type and frequency, not how these
compare to non-word stimuli.) In analysing the results, we could look for a
main effect of word type, which would be the difference in activation
between nouns and verbs, averaged over (or, ‘collapsed across’) the two
levels of frequency. Likewise, the main effect of word frequency would be
obtained by contrasting high- with low-frequency words, collapsed across
nouns and verbs. In both these cases, we would be confident that these
activation maps generalized across word frequency (in the noun–verb
contrast) and word type (in the frequency contrast). Moreover, we could test
whether there were interactions between these two variables – this addresses
the question posed above of whether nouns and verbs show different
frequency effects. For example, to determine whether frequency differentially
affects the two word types, one could examine the simple contrast between
high- and low-frequency nouns and, separately, the contrast between high-
and low-frequency verbs. One could also ask whether noun–verb differences
exist, say, only for low-frequency words by contrasting low-frequency nouns
with low-frequency verbs. In behavioural research, it is common to examine
the formal test of the interaction effect in an analysis of variance (ANOVA),
and then if the interaction is significant, follow this up with post hoc tests



(the simple contrasts referred to above, for example, between high- and low-
frequency nouns only). However, in neuroimaging it is more common to
simply conduct and report the post hoc tests without reporting the interaction
test. This is in part because, usually, the researcher has specific hypotheses
concerning the interactions, so conducting these tests is justified regardless of
whether the interaction term is significant; a significant interaction term is not
usually informative on its own. Rather, a significant interaction just indicates
some difference beyond the main effects that would need to be followed up
by post hoc tests anyway.

Table 2.2 

Factorial designs clearly offer certain advantages over simple subtractive
designs. However, as in all neuroimaging studies, it is important to not let the
design get too complex. In behavioural research, it is not uncommon to have
numerous factors and several levels of each. However, attempting to analyse
and interpret such designs can get very complicated, especially in a
neuroimaging context where there are the added dimensions of space
(different locations in the brain, determined by the spatial resolution of the
technique) and/or time. Thus it is often better to use simpler factorial designs
and conduct multiple studies, rather than investing significant time designing
and running ‘the ultimate study’ only to find when it’s time to analyse the
data you can’t make any sense of the results.



Parametric Designs
Parametric designs are another approach that can give the experimenter a
greater understanding of the relationship between an experimental
manipulation and brain activation. Parametric designs involve investigating
how activation changes as some experimental variable (parameter) is changed
over a range of levels. For example, in studying visual perception, parametric
manipulations could include varying the size, contrast, or brightness of a
stimulus, while holding all other parameters constant. Subtraction designs are
essentially the simplest sort of parametric design, with only two levels of a
parameter. However, if one increases the number of levels of the parameter,
additional insight is possible. For instance, if one wished to know which
brain areas were sensitive to the luminance of a visual stimulus, one could
simply conduct a subtraction-design experiment contrasting a brighter with a
dimmer stimulus. While this would identify areas sensitive to this contrast, it
would tell us relatively little about the response properties of these areas –
how the areas respond to other levels of the stimuli. If we doubled the
brightness of the ‘bright’ stimulus, would we see double the level of brain
activation? By using a parametric design, we could manipulate brightness
over a range of levels to determine whether there was a simple linear
relationship between brightness and activation levels, or a more complex
relationship (recall from the previous chapter that psychophysics research has
revealed that human perception indeed actually operates on a logarithmic,
rather than linear scale). One might also find that some brain areas have
optimal rates or levels of stimulation, such that as the experimental parameter
increases, brain response increases up to the optimal level of this parameter,
and then begins to decrease (an inverted-U shaped function).

Another example of the use of parametric designs is in studies of learning,
where either time or performance on the task to be learned are used as the
parameter of interest. The simplest approach to conducting a learning study is
to perform a scan prior to the learning experience, and a second scan
afterwards. This would identify areas that change in activation from what we
might call the ‘naïve’ state to the ‘educated’ state. Some brain areas might
show reduced activation after learning (perhaps due to more efficient
processing), whereas others might show increased activation (due to their



performing a function they are now trained to handle). However, such a
pre/post design would hide many potentially interesting mechanisms
involved in learning; some brain areas might be involved only in the learning
process, such that they are not activated prior to learning, nor once the task is
mastered. For example, a brain region called the anterior cingulate gyrus
(among others) is involved in detecting errors in performance, which is
critical to learning – since awareness of errors is a signal that leads to
improved performance. Thus prior to learning, we might not see anterior
cingulate activation because participants didn’t know that they were making
errors on the task, and in the post-learning scan, participants’ performance
might be error-free and thus again anterior cingulate activation would not be
observed, even though it was critical to the learning process. Thus pre/post
scanning might not highlight these areas at all. However, if we performed
brain imaging not only pre- and post-training, but also at regular intervals
during the learning process (or even continuously, if the learning task could
be performed in the scanner over a reasonable period of time), then we would
be able to characterize not only what changed from the naïve to the educated
state, but how changes evolved over time. Brain areas involved in learning
might show interesting patterns such as linear increases or decreases over
time. Ideally, one would record behavioural performance during all of the
scans as well, so that one could examine correlations between brain activation
and performance.

Even outside of learning tasks, behavioural data can be the key to an
insightful parametric design, using either a within- or between-subjects
design. In a within-subjects design, one could correlate brain activity with a
behavioural parameter such as reaction time, subjective ratings of the
emotional valence (intensity) of a variety of images, or some other parameter.
Thus rather than coding the parametric ‘level’ of each stimulus beforehand
and using the same set of levels for all participants, one could use a range of
stimuli expected to elicit a range of responses, and use the behavioural data
from each individual to analyse their data.

An example of this approach is an fMRI study by Bode and colleagues
(2018) that looked at decision making. Typically, decisions are made faster
when they are easier to make – for example, when deciding what a picture is
showing, it is easier to make this decision if the picture is clear than if it’s



degraded in some way, such as if it is blurry. A simple parametric
manipulation to identify brain areas associated with making decisions about
noisy images could thus manipulate the quality of the stimuli (for example,
low-medium-high); however, since response times (RTs) are correlated with
how difficult it is to make a decision, the results would be a combination of
brain areas involved in making the decision, and those involved in planning
the response after the decision had been made. Therefore Bode and
colleagues examined correlations between fMRI signal and both quality of
the stimuli (amount of noise in the image), and, separately, RTs. Critically, in
examining the correlation with RTs, the researchers held the noise level in the
stimuli constant, so that this would not confound the results (so the variability
in response time was the natural trial-to-trial variability in RT, rather than the
noise-related variability). The results, shown in Figure 2.2, demonstrated that
indeed several brain areas (such as the inferior parietal lobe and middle
frontal gyri) were present in both correlations, suggesting that their
correlation with stimulus quality was related to planning motor responses.
However, other areas, such as the superior and inferior frontal gyri, did not
show correlation with RT and thus could be more confidently associated with
the decision-making process that occurs prior to planning the motor response.

Figure 2.2 Example of a parametric fMRI study design in which correlations
with both an experimentally controlled factor and behavioural results were
conducted and compared. The top panel shows brain areas whose BOLD
response was modulated by stimulus quality (the amount of noise added to
images of objects, which was low, medium, or high). Response times (RT)
are on average slower when the images are noisier. The bottom panel shows
areas whose BOLD response was modulated by RT, within each level of
stimulus quality. In other words, the variation in RT was due to random trial-
to-trial variance, unrelated to the level of noise in the stimuli. Several brain
areas showed similar modulation in both cases, indicating that the stimulus
quality-related modulation could be attributed to time involved in preparing a
response, rather than identifying the images in the presence of noise.
However, some areas were modulated by stimulus quality but not RT,
suggesting that they may be more directly involved in object recognition in
the presence of noise. Adapted from Bode et al., 2018 with permission of
Elsevier



Parametric approaches can also be useful in between-subjects designs. In this
case, rather than correlating brain activity with some within-subjects
parameter, like stimulus intensity or time, activity is correlated with a
variable that varies across individuals. For example, in studies of second
language learners, variables such as the age at which the second language
was learned, or the fluency achieved in that language, could be used as
parameters. Although it is also common to simply group people into groups
(for example, early learners versus late learners), statistical analyses are more
sensitive (often by a factor of 30–50%) when a parametric or correlational
approach is used to analyse the data than when data that vary over a
continuum are ‘lumped’ into two categories, often based on a fairly arbitrary
cut-off.

Another application of parametric designs is to determine which brain areas
are not sensitive to a particular experimental manipulation. In a classic study,
Price and colleagues (1992) presented participants with auditory speech
played at different rates. The superior temporal gyrus (auditory cortex)



showed a steady increase in activation level with increasing speech rate.
However, Wernicke’s area (an area at the junction of the temporal and
parietal lobes long associated with speech comprehension) showed consistent
activation across all speech conditions relative to a baseline condition, with
no modulation by speech rate. This pattern of results led the authors to
conclude that while the auditory cortex is sensitive to low-level parameters of
auditory stimuli, such as speech rate, Wernicke’s area responded in a rate-
independent fashion. This supported the hypothesis that Wernicke’s area is
involved in higher-level comprehension processes but not lower-level
sensory decoding, since comprehension was comparable across the different
rates of speech presentation.



Experimental Set-up and Control
In any study in experimental psychology or cognitive science, careful control
over the conditions of the experiment – such as the stimuli used, the
instructions given to the participant, and so on – are vital for the data to be
interpretable. Likewise, experimental manipulations – such as the factors
defining different experimental conditions – need to be systematic and
carefully measured and controlled. This is one of the most fundamental tenets
of empirical science in general, and certainly in the domain of studying
human minds and behaviour, since humans are inherently sensitive to these
factors. In cognitive neuroscience, if anything even tighter control is often
required. One important reason for this is that the brain is exquisitely
sensitive to many things, including physical properties of stimuli, that may
not affect the behavioural outcomes of an experiment. For example, imagine
an experiment in which participants hear the names of different objects (for
example, fish; rock) and have to determine for each word whether the object
is living or not (commonly called an ‘animacy judgement’). It may be the
case that the spoken words were not all recorded at the same time, and
perhaps on average the words for animate objects are louder in the
experiment than those for inanimate objects. As long as all the words were
audible, this would probably not affect people’s ability to discriminate
between animate and inanimate words, and so this systematic difference
between stimulus categories – while not optimal – might not be a significant
cause for concern in a behavioural study (although even there, one could
speculate that RTs might be faster for louder stimuli). However, in a brain-
imaging study this systematic difference in loudness could have much larger
effects, because areas of the auditory cortex respond more strongly to more
intense sounds. Thus the brain activity recorded in this experiment would
likely be different between the animate and inanimate stimulus conditions –
however, it would be challenging to know which brain areas showed
differences due to the intended experimental manipulation (animacy) and the
unintentional physical difference between the stimuli (loudness). Although
one could propose that any differences in the auditory cortex were
attributable to the differences in loudness, whereas differences in other brain
areas were due to the experimental manipulation, this would be at best shaky
ground. This is because loudness might affect brain activity in other areas,



and conversely it is theoretically possible that animacy affected auditory
cortex activity. Moreover, with some techniques such as EEG, we cannot
easily or reliably ascertain the exact brain areas generating the recorded
activity, so we would not even be able to apply this rationale.

The importance of this consideration was enshrined as the Hillyard Principle
by author and researcher Steve Luck, in honour of his PhD supervisor Steve
Hillyard (who also trained my PhD supervisor, Helen Neville, and numerous
other groundbreaking ERP researchers). The principle is, ‘Always compare
brain activity elicited by the same physical stimuli, varying only the
psychological conditions’ (Luck, 2014). This principle is an ideal that
cognitive neuroscientists should endeavour to follow whenever they can,
controlling stimuli as tightly as possible and, if feasible, counter-balancing
stimuli across conditions (so that the same stimulus is used in every
condition). Of course, this is not always possible – in many cases inherent,
fundamental differences between stimuli are exactly what defines the
experimental conditions and/or phenomena of interest. However, even in
those cases experimenters should think deeply and carefully about this issue,
and figure out how to minimize the possible influence of physical differences
between stimuli across experimental conditions. As well, if such differences
exist and cannot be controlled for, analyses should be performed to determine
whether there were effects of these systematic differences. In some cases,
additional control conditions or even experiments might be required to
determine the effects of such physical differences.



Between- and Within-Subjects Designs
As we have learned, any experiment requires some contrast between levels of
one or more variables. In neuroimaging experiments, at a bare minimum we
would need to compare brain activity between two conditions. Often one of
these is considered the ‘experimental’ condition – or the condition of interest
– and the other is the ‘control’ condition which serves as a reference or
baseline for the comparison. For example, in Petersen and colleagues’ (1988)
PET experiment discussed above under ‘Subtractive and Additive Factors
Designs’, one contrast was between false fonts and consonant strings – so
false fonts served as the control condition and consonant strings as the
experimental condition for that contrast. This (and indeed, all the contrasts in
Petersen et al.’s study) would be considered a within-subjects comparison,
because each individual participant experienced both conditions.
Alternatively, some experiments include between-subjects comparisons, in
which different participants experience different conditions. With virtually all
neuroimaging techniques – certainly those that measure functional activation,
as opposed to structural imaging methods – within-subjects contrasts are
necessary because these techniques produce measurements that are in
‘arbitrary units’. That is to say, the absolute value of an individual
measurement is meaningless in its own right; it is only meaningful in
comparison to a measurement made under some other experimental condition
(or baseline condition). Furthermore, with any neuroimaging technique,
individuals vary (often widely) in both their baseline measures of activity,
and in the size of the effects of an experimental manipulation. Thus within-
subjects contrasts give us the most (and sometimes only) accurate measures
of the effects of an experimental manipulation.

Within-subjects designs are thus generally the most powerful and convincing
designs. This is true even in non-neuroimaging experiments, simply because
each individual acts as their own control. In contrast, between-subjects
designs are subject to concerns that the two groups of individuals being
compared might vary along many important dimensions. While it is common
practice to try to match groups on factors such as age, sex, and education
level, there are so many possible influences on behaviour and brain activation
that this still leaves open many possibilities for systematic, and



uncharacterized, differences between the groups. Thus while the researcher
would like to conclude that any difference observed between groups is due to
the experimental manipulation, there are inevitably many other possible
explanations for the difference.

With this said, however, it is important to recognize that there are many
situations in which between-subjects designs are unavoidable. For example,
difference between individuals may be precisely the subject of an
investigation. This is true in the case of studies of people who have a
particular disease or condition – very often studies of such populations
compare them to a control group of healthy people. Obviously, unless it were
possible to obtain measurements both before and after the onset of the
disease, a within-subjects design would be impossible. Another case in which
between-subjects designs may be required is if an experimental manipulation
is expected to have lasting consequences that could impact the results of
further experimentation. For example, if one wanted to compare the effects of
a drug with those of a placebo, one might need to use a between-groups
design if, once people had taken the drug, it would be obvious to them
whether they received drug or placebo (such as with many psychoactive
drugs). Likewise, if one were comparing two different methods of teaching a
skill, one would require a between-subjects design because people could not
un-learn the skill after learning it one way. A final case is where
neurostimulation is used. The effects of neurostimulation often last for 30–60
minutes or more – and the durations vary between individuals. Thus, if one
wanted to compare the effects of different stimulation parameters, without
requiring participants to spend many hours in the lab, or come back to the lab
on many different days, one might opt for a between-subjects design.

Finally, there is no reason not to have both between- and within-subjects
manipulations. For example, if we are comparing between groups (a
between-subjects design), we might also have several experimental
conditions, and contrasts between them, that each person in each group
experiences. These are called mixed designs.



Statistical Power and Replicability
It is strongly recommended that anyone venturing into cognitive neuroscience
take several statistics classes, and this is a topic that is outside of what can
reasonably be covered in the present book. However, there are some
fundamental topics that any consumer of the cognitive neuroscience literature
should be familiar with. First of all, any measurement we make is subject to
variance – that is, whether we are measuring response times or brain
activation or anything else, each measurement is likely to be somewhat
different (and sometimes very different) from the other measurements, even
from the same individual under the same experimental conditions. There are
numerous causes of variance, including the fact that our measurement
instruments are sensitive to variables beyond our control, and the fact that
biological systems (such as those controlling everything from button presses
to brain activity) are influenced by a vastly greater number of variables than
we can ever hope to control or even measure in a given experiment. Thus in
virtually every experiment, we are not interested in any single measurement,
but in the average across multiple measurements of each type, for each
experimental condition, etc. In computing statistics to determine whether our
measurements differ between experimental conditions, we would calculate
the average (also called the mean) for each condition, and also the variance
around each of these average values. In some cases it may be that the mean
values in two conditions differ, but when we consider the variability in our
measurements, we lack the confidence to declare that the two mean values
are truly, reliably different. For us to declare a difference to be ‘statistically
significant’, we need to have confidence not only that the means differ, but
that they are sufficiently different, given the variance, that it is likely that if
we repeated the experiment, we would obtain a similar difference.

The notion of statistical significance can be misleading, however. A
significance value is typically reported as p – the probability that the result
obtained in the experiment could happen by chance, if a large number of
replications of the experiment were conducted. In many areas of psychology
and cognitive neuroscience, the threshold for statistical significance is set at
p<.05, meaning that the likelihood of obtaining the result by chance is less
than 5 in 100. What is misleading about this value is that for a given



experiment, the p value is calculated based only on the data collected in that
particular experiment. Thus the p value is entirely dependent on the random
sample of people who participated in the experiment, and likely many other
random factors as well (such as the time of day when the experimenter was
running the study, the time of year, where the experiment was conducted,
etc.; in a neuroimaging experiment, the quality of data from an individual
might be influenced by how well the EEG electrodes were attached, how still
the person lay in the MRI scanner, and related factors). Thus if the
experiment were replicated, the mean and variance measures obtained would
doubtless be different from the first study, and it is quite possible that they
would not achieve statistical significance the second time around.

The depth and significance of this issue has recently received great attention
in experimental psychology and other fields, and has been dubbed the
replicability crisis – the fact that numerous statistically significant findings
published in academic journals have not been subsequently replicated. One
important factor driving this is that statistically significant results are
typically more interesting than non-significant ones, and so they are much
more likely to be published in journals – especially because one factor that
many scientific journals use to determine whether or not to publish a paper is
the anticipated ‘impact’ of the finding (Ioannidis, 2005). This is called
publication bias and likely means that there are vast numbers of experiments
that have never been published – and may even contradict published and
widely accepted results – because the results were not statistically significant.
This is not to say that all non-statistically significant results should be
published, as there are many other reasons why a significant effect might not
be obtained, such as methodological flaws. However, it is an important
consideration and one that has been identified as problematic in
neuroimaging studies as well as in behavioural sciences.

One important factor in determining statistical significance is the number of
samples (measurements) obtained in an experiment. In general, variance
decreases as the sample size increases, typically in an exponential fashion –
meaning that, as an approximation, we get a precipitous drop in variance
going from one to ten samples, but in going from ten to 100 samples we don’t
get a ten-fold drop in variance, but only approximately an equivalent decrease
to that obtained in going from one to ten. In other words, more data is better,



but we get diminishing returns with increasing numbers of samples. The
concept of statistical power is a formalized way of estimating the sensitivity
of an experiment to the sample size or, put another way, power calculations
can be used to estimate how much data would be needed to obtain a
statistically significant effect of a given size. However, power calculations
are – like p values – entirely dependent on the data that have been collected,
and so are in essence mere guesses than may help guide researchers, but
provide no real guarantees. The existence of publication bias further means
that power calculations based on published results may be overly optimistic
with respect to the size of the effect and the number of participants needed in
future studies (Anderson, Kelley, & Maxwell, 2017).

While it is not possible in this short account to fully discuss these issues, let
alone provide solutions (and indeed, these are ‘moving targets’ that are under
intense, ongoing discussion in the scientific community), there are a couple
of key points to take away. First of all, in designing a study one needs to be
aware of the issues around statistical power, and consider the available
evidence from the prior literature in determining both the number of trials to
include in each experimental condition, and the number of individual
participants to include. Perhaps the greatest issue in the neuroimaging
literature around statistical power is that all neuroimaging methodologies
require specialized, expensive equipment, and many neuroimaging
techniques involve very high per-participant costs (for example, MRI
scanning often costs approximately US$500 per hour, with an hour being the
typical time required for each participant in the scanner). As well these are
often shared facilities with many researchers competing for access. Thus
there may be practical constraints that make it challenging to recruit large
numbers of participants. As well – and primarily for the reasons described
here – historically many neuroimaging studies have used relatively small
numbers of participants, leading to a perception in the field that these low
numbers are acceptable. However, this is rapidly changing and there is now a
much greater awareness and sensitivity within the neuroimaging community
to issues of power and sample size (Button et al., 2013a, 2013b; Cremers,
Wager, & Yarkoni, 2017; Luck & Gaspelin, 2016; Mumford, 2012; Mumford
& Nichols, 2008).



Interpretation and Inference
The results of any experiment are open to interpretation, and (as anyone who
has had a manuscript peer-reviewed knows) it is usually the case that
different interpretations are possible, if one makes different assumptions.
This is true of any data in cognitive neuroscience, and is perhaps exacerbated
relative to behavioural measures due to the fact that all of the measures we
have of brain activity and structure are indirect and inferential in one or more
ways. For example, fMRI measures blood oxygenation and not electrical
activity, and although EEG does measure electrical activity, this is averaged
at the scalp electrodes from many different regions of the brain. Interpretation
is certainly facilitated by good experimental design, sufficient statistical
power, the use of appropriate analysis methods, and a solid understanding of
the literature. Nonetheless, it is critical to always remember that we are
making inferences, and that we need to question our assumptions.

One very common approach to data interpretation in cognitive neuroscience
is reverse inference. This term, first introduced to the neuroimaging
literature by Poldrack (2006), refers to the practice of inferring that a
particular cognitive process was engaged, based on the observation of
activation in a particular brain area. This is in contrast to ‘forward inference’,
in which the design of the experiment isolates a specific cognitive process,
and the pattern of brain activation observed in the experiment is taken to
reflect that cognitive process. For example, if we contrast brain activation,
using fMRI, between two conditions – one in which people see moving dots,
and another in which the dots are stationary – we would interpret the areas
that are more active during visual motion as being those that support the
cognitive process of perceiving visual motion.

Reverse inference typically occurs when experiments are less constrained, or
when a brain area is identified as activated that was not necessarily predicted
a priori. For example, imagine that we performed an fMRI experiment of
spatial working memory, in which people had to remember the locations, and
order, of a series of stimuli shown on a screen. In one condition the stimuli
were all white squares, and in the other condition each square was a different
colour. Imagine that in the contrast between the conditions, our fMRI data



showed stronger activation in two brain areas for the coloured squares
relative to the white ones: in a region of the occipital lobe, and in the left
inferior frontal gyrus. Based on prior literature, the occipital activation could
be predicted, as there is a region of the visual cortex that specifically
responds more strongly to coloured than non-coloured stimuli. However, the
frontal activation would be more surprising, because this region is not
typically associated with colour perception. However, this region – often
labelled ‘Broca’s area’ – is often activated in tasks involving speech
production (even ‘covert speech’ in which people say words ‘in their head’
rather than aloud). Thus – by reverse inference – we might conclude that,
because in the ‘colour’ condition the squares were all different colours,
participants adopted a strategy of covertly saying the names of the colours as
memory aid. In other words, we are relying on the results of past
neuroimaging studies to obtain a post-hoc interpretation of our data.

It is important to stress that there is nothing inherently wrong with reverse
inference. Indeed, in the absence of strong predictions about the outcomes of
the data – as in exploratory or very novel study designs – or in the presence
of unexpected regions of activation, reverse inference is sensible and
represents a type of abductive reasoning in which the most likely cause is
inferred, based on an observed result and an informed understanding of the
possible causes of the result (Poldrack, 2011). However, often reverse
inference is found in the ‘Discussion’ section of journal articles reporting on
neuroimaging experiments, and often the basis for the inference is a very
selective review of the past literature. It is thus very easy for an author to be
biased by the set of papers they happen to have read, or other prior beliefs.
Poldrack (2006, 2011) has noted that there are far superior ways of
performing reverse inference than simply relying on one’s own knowledge or
intuition. This is through the use of large, online databases of past
neuroimaging results. One in particular is the Neurosynth database
(http://neurosynth.org; Yarkoni, Poldrack, Nichols, Van Essen, & Wager,
2011). To create this database, researchers developed a way of extracting
both the activation patterns from published neuroimaging studies, and an
automated text analysis to identify key terms in the paper to characterize the
activation patterns (for example, ‘memory’, ‘language’). Using this database,
one can perform a more principled reverse inference, by getting actual data
on which types of tasks or cognitive operations are commonly found to

http://neurosynth.org


activate a brain region. This is not a perfect method, in particular because
some brain areas show very high ‘base rates’ of activation across many
studies, tasks, and cognitive operations, as shown in Figure 2.3. Thus
interpretation of activation via reverse inference within these regions in
particular should be made cautiously, if at all. Conversely, other brain regions
activate under much more specific conditions, allowing more reliable
inference. In general, the important thing to remember here is that while we
might colloquially think of particular brain areas subserving specific
functions in a very neo-phrenological way, we must be aware of our biases
and the limitations of our knowledge. We must both carefully distinguish the
conclusions we derive from forward versus reverse inference, and be
especially sceptical of both our own, and others’, interpretations based on
reverse inference – especially if it is of the ‘casual’ form.

Figure 2.3 Base rates of activation across nearly 3,500 published fMRI
studies. The colour scale indicates the proportion of studies reporting
activation in a given region. Reprinted from Yarkoni et al., 2001 with
permission of Springer Nature



Ethical Considerations
Cognitive neuroscience research holds great promise for humanity: we hope
that by better understanding relationships between mind and brain, we may
gain greater insight into what it means to be human, and the principles and
factors that lead to different patterns of thought and behaviour, and also the
ability to better diagnose and treat brain-based conditions. At the same time,
this research raises many ethical considerations. Some are relatively generic
considerations in any research involving human beings. For example, the
Canadian Tri-Council Policy Statement: Ethical Conduct for Research
Involving Humans (Canadian Institutes of Health Research et al., 2014)
defines three core principles for the ethical conduct of research: respect for
persons, concern for welfare, and justice (the obligation to treat people
fairly). In virtually every country and research institution, researchers are
bound by a code of ethics such as this, and must submit proposed research for
review by an independent body (such as an institutional review board or
research ethics board) prior to initiating the research, to ensure adherence to
ethical principles. While some researchers may consider this a nuisance, such
oversight was developed in response to numerous documented cases of
unethical research occurring in academic and other institutions. While some
of these clearly reflected a lack of respect for the rights of research
participants, in other cases the violations reflected factors that the researchers
had not considered, and/or perspectives on the cost–benefit ratio of the
research that were skewed by researchers’ own interests or unconscious
biases. Ethics review boards thus serve a vital role in protecting research
participants – and ultimately researchers and institutions – both from
malfeasance, and unintended or even unappreciated potential consequences
of the research.

Core to ethical research involving humans is that participants should provide
free and informed consent to participate in the research. This means that,
prior to conducting the research, the researchers should inform potential
participants as to what will happen in the study, and any possible risks or
undesirable consequences (as well as any potential benefits). Potential
participants must also be given the opportunity to ask any questions they
have, and demonstrate a clear understanding of any risks (in other words, a



researcher should engage in the informed consent process with the potential
participant, rather than simply instructing them to read and sign a consent
form). They must also be informed that their participation in the experiment
is voluntary, and that they can discontinue their participation at any time
without penalty (or of any limits on voluntariness or discontinuation – for
example, if the study involves administering a drug, it may not be possible to
stop the effects of the drug immediately, but the participant may request that
the experimenter stop making measurements). While some types of deception
may be justifiable in certain cases – such as when certain knowledge might
bias people’s behaviours or the research outcomes – these must always be
clearly indicated to (and approved by) the review board, and participants
should be informed of the deception as soon as reasonably possible (such as
immediately at the end of the experiment).

In cognitive neuroscience, additional, specific ethical considerations arise that
are not necessarily present in other areas of research with human subjects.
This has led to the establishment of neuroethics as a field of scholarly study,
with its own society and journal. While all of the techniques covered in this
book are considered safe when performed in accordance with established best
practices and safety guidelines, some do carry greater risk than one might
experience in one’s day-to-day life. For example, PET scanning involves
introducing radioactive substances into the body, and transcranial magnetic
stimulation involves strong electrical stimulation that can cause unpleasant
muscle contractions and, in people with certain risk factors, generalized
seizures. Moreover, participating in neuroimaging research may have
indirect, but significant, consequences. For example, MRI studies produce
high-resolution images of the brain’s structure and physiology. It is possible
– and indeed, occurs with some non-trivial frequency – that a previously
undiagnosed disease could be identified in the course of an MRI study
involving an otherwise healthy individual (Illes & Borgelt, 2009; Morris et
al., 2009). While most people might be happy to have an early diagnosis of a
serious condition, there may be other, less desirable consequences. For one, if
the condition is serious but untreatable, people may experience despair and
reduced quality of life that would otherwise have been delayed until the
condition became symptomatic. As well, diagnosis of a ‘pre-existing
condition’ can preclude people from obtaining life insurance, or significantly
increase costs associated with health and life insurance (Anonymous, 2005;



Illes, Desmond, Huang, Raffin, & Atlas, 2002).



Neuroethics
Another dimension of ethical consideration in cognitive neuroscience
research is largely more future-oriented, but non-trivial even in the present
day. That is, as we gain greater insight into how the brain functions, and the
ability to interpret brain imaging scans with greater precision, we approach an
era in which we can literally ‘read’ people’s minds. This presents significant
considerations around privacy and people’s rights to keep their thoughts to
themselves – an emerging area known as neuroprivacy (Hallinan,
Friedewald, Shutz, & de Hert, 2014; Ienca, 2015; The Committee on Science
and Law, 2005). Already we have seen published ‘neuromarketing’ studies
investigating whether brain responses can be used to predict consumer
behaviour. In one high-profile study (McClure, Li, Tomlin, Cypert,
Montague, L. & Montague, P., 2004), researchers compared brain activation
patterns when people tasted the soft drinks Coke® and Pepsi®, either with or
without brand labels, and found that the labels significantly impacted brain
activation patterns. This, and subsequent research, have raised concerns that
marketers could use brain imaging to influence consumer behaviour and
cause people to make decisions that they otherwise would not make, that
have detrimental long-term consequences.

In addition to neuroprivacy, another significant consideration is the potential
to use brain-imaging and neuro-stimulation techniques to alter human
thoughts and behaviour. While this may have obviously beneficial
implications, such as the treatment of psychiatric conditions and neurological
diseases, it could also find more sinister uses. For example, such techniques
could be used to cause people to comply, against their will, with institutional
or governmental desires. More seemingly benignly, some neurostimulation
studies have suggested that these techniques can actually boost cognitive
performance, in domains such as learning and memory. This raises concerns
around a neural ‘arms race’ or driving greater inequality, as some people
choose – or are simply able to afford to choose – to be enhanced, while others
do not or cannot make that choice (Hyman, 2011). These and other topics
have engendered significant and lively ongoing discussion and debate, and
provide an important societal context that anyone working in the field of
cognitive neuroscience should be familiar with.



Summary

This chapter focused on fundamental concepts in experimental design that cut across all
neuroimaging techniques and disciplines within cognitive neuroscience. Any experiment
requires the systematic, controlled manipulation of independent variables by the
experimenter, and the measurement of dependent variables. Dependent variables in
neuroimaging studies are typically whatever measure of brain activation the technique
provides, while in behavioural studies these are typically RT, accuracy, or whatever
behaviour the researcher is measuring. The simplest experimental designs use the
subtraction method to identify the difference between two conditions (two levels of an
independent variable); the additive factors method expands this to include more levels of a
variable, and/or additional variables, that are contrasted to isolate different cognitive
processes. Designing experiments is a ‘human intelligence task’, meaning that it is crucial
for the experimenter to think deeply through the experiment, and have good operational
definitions of the cognitive processes under investigation. The experimenter must think of
how best to isolate a particular process, and critically about what factors might confound the
results or lead to alternative interpretations, because there is very often no gold standard or
quantitative way to determine whether an experimental design makes sense or not, other
than through the application of logic and critical thinking.

In all experiments it is important to limit the number of variables manipulated, but this is all
the more true in neuroimaging studies due to the rich, complex data provided by these
techniques. As well, some brain areas and cognitive processes are very sensitive to factors
that might not be as critical in designing behavioural experiments, such as the physical
properties of the stimuli. The ideal experimental design follows the Hillyard Principle, in
manipulating only the psychological/task conditions of the experiment, while keeping the
physical stimuli constant. While this is not always possible, it is always critical to consider
how unintended or seemingly incidental differences between conditions could influence the
outcomes of an experiment. It is also generally best to design within-subjects experiments,
so that participants act as their own control and the influence of individual differences on
the effects of the experimental manipulation are minimized. This is, however, subject to
practical limitations and so sometimes between-subjects designs are necessary.

In any experimental design it is also crucial to think about the kinds of effects that are
predicted, their magnitude, and the amount of variance in the measurements that will be
obtained. Any cognitive neuroscience experiment will be analysed using statistics, and
making strong claims about the results of a study – and expecting that these results would
generalize or replicate in other studies – is dependent on having sufficient statistical power.

Finally, we covered ethical issues in cognitive neuroscience, including research ethics and
domain-specific considerations of neuroethics. The ability to measure and even manipulate
brain activity creates a number of considerations that are not encountered in other areas of
behavioural or human science. These include both incidental findings of previously
undiagnosed disease, and the implications of being able to gain some insight into – or even
manipulate – an individual’s private thoughts and feelings by way of their brain activity.

Things You Should Know



Independent variables are those manipulated by the experimenter, while dependent
variables are the outcomes that are measured in an experiment. Experiments focus on
how contrasts (differences) between levels of one or more independent variables
affect the dependent variable.
Subtractive and additive factors designs can isolate a particular cognitive operation
by examining a contrast in which all factors are held constant, differing only in the
presence or absence of the cognitive operation investigated. Doing this properly
depends on careful, logical reasoning on the part of the experimenter.
Factorial designs involve contrasts between two or more levels, of each of two or
more independent variables. Such designs are critical if the experimenter predicts that
the variables interact; that is, that the effects of manipulating one variable depend on
the other variable. Parametric designs involve measuring the dependent variable over
a range of levels of one or more independent variables. Generally speaking, factorial
designs involve the manipulation of categorical variables, whereas parametric
designs involve the manipulation of continuous variables.
Differences in physical stimuli (for example, brightness, loudness) can have a
significant impact on measures of brain activity (including activity related to
perception and attention) that may be independent of the predicted impact of an
experimental manipulation on cognition. For this reason, it is always preferable to
compare brain activity in response to the same physical stimuli, manipulating only
the psychological condition (such as task, or the participant’s expectations). This has
been termed the Hillyard Principle.
In between-subjects designs, participants are split into different groups and receive
different treatments or experimental manipulations, and the dependent measures are
compared between groups. In within-subjects designs, every participant experiences
every condition, or level of the independent variable(s). Mixed designs combine
within- and between-subjects manipulations.
Statistical power refers to the likelihood of detecting an experimental effect, if it is in
fact present. Statistical power is influenced by the amount of noise, or variance, in
the data, as well as the sample size. Results from studies with low power are less
likely to replicate in future experiments. Underpowered studies can be of particular
concern in neuroimaging research due to the high cost per participant of running the
studies.
In interpreting neuroimaging studies, forward inference is the practice of associating
a pattern of brain activity with a particular cognitive operation or process based on
the design of the study and a priori hypotheses. Reverse inference, by contrast,
occurs when a researcher observes activity in a particular brain region – often not
predicted a priori – and infers the presence of a particular cognitive process based on
past literature concerning the function of this brain area. While reverse inference
represents a sound practice of scientific reasoning in the presence of uncertainty, it
can be undermined by bias on the part of the researcher. Reverse inference based on
large databases that systematically review the published literature is preferable to
selective reviews of the literature.
The rise of neuroimaging and neurostimulation techniques has led to the
development of neuroethics as a field of scholarly study. This impacts on
consideration of ethical issues in the design of experiments using these techniques, as
well as the future implications of these technologies as their accuracy and reliability
increase. Key issues include neuroprivacy, cognitive enhancement, and the
possibility of diagnosing previously undetected illness.
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3 Electroencephalography (EEG) and
Event-Related Potentials (ERP) 1



Learning Objectives
After reading this chapter, you should be able to:

Explain what EEG measures, and what the acronym stands for.
Explain the neural origins of the EEG signal.
Explain the difference between EEG and ERPs.
Discriminate between time- and frequency-domain views of EEG data.
Define an ERP component in terms of four parameters.
Describe the basic hardware components required to record EEG.
Explain the concept of differential amplifiers, and specify the minimum number of
electrodes required to record EEG.
Describe best practices for running an EEG study.



Introduction
Electroencephalography, or EEG, is the oldest non-invasive neuroimaging
technique. It is also one of the simplest technically, involving electrodes
placed on the scalp and connected to an amplifier. The electrodes record
electrical activity generated by large groups of neurons acting in synchrony.
EEG was first recorded by Hans Berger, a German psychiatrist and
neurologist who was interested in studying the relationship between brain and
mind. Berger published the first report of EEG in 1929; however, at first his
results were not believed by the scientific community. In 1934, however,
Adrian and Matthews published evidence that confirmed Berger’s initial
report, and made the findings more credible by providing an explanatory
account of how the relatively slow fluctuations in electrical activity related to
the better-understood and much faster-occurring action potentials. Adrian and
Matthews noted that, ‘Recording [the slow waves we now call EEG] would
seem to offer the most direct method of investigating cortical activity, but for
the difficulty that they are certainly summated effects compounded out of the
potential changes in many neurones’ (p. 440) and concluded that these waves
corresponded ‘to a summation of the brief responses of individual neurones’
(p. 471). Soon after, the first event-related potentials (ERPs – sometimes
also called evoked potentials or EPs) were recorded by Pauline and
Hallowell Davis (Davis, Davis, Loomis, Harvey, & Hobart, 1939; Davis,
1939). The distinction between EEG and ERP is an important one in the field,
and quite simply EEG refers to continuous recordings of ongoing electrical
brain activity, whereas ERPs are EEG signals time-locked to particular
events, such as the presentation of a specific stimulus or a motor response. As
we will see, both EEG and ERPs are used in cognitive neuroscience;
however, ERPs are the more commonly used technique because they allow us
to associate brain activity with specific, experimentally controlled events.

As this is the first chapter describing a neuroimaging technique, a number of
key concepts are introduced that are common to many, if not all, techniques
of cognitive neuroscience and so we will spend some time explaining these
concepts. Rest assured, the time invested understanding concepts of data
acquisition and signal processing will serve you well in chapters to come.
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What Are We Measuring?



Physiological Basis of the EEG Signal
EEG is recorded from electrodes (typically numbering 3–256) placed on the
scalp, which are connected to an amplifier that boosts the size of the signals
before saving them digitally on a computer, as shown in Figure 3.1. EEG can
also be recorded directly from the cortical surface via electrodes placed
during neurosurgery, but in this chapter we focus on non-invasive recordings.
The EEG electrodes measure electrical activity generated by the brain;
however, we cannot measure the activity of individual neurons. This is
because the brain contains millions of neurons, located relatively far away
from the EEG recording electrodes. Rather, the EEG signal represents the
summed activity of many neurons. Indeed, the physics of EEG impose a
number of constraints on interpretation of the signals that may be viewed as
both a blessing and a curse. They are a blessing in the sense that they serve to
filter and simplify the incredibly complex activity of the brain. However, the
‘curse’ is that this limits our ability to understand brain activity using this
technique, and to interpret the results. Indeed, much of what we know about
EEG comes from a ‘black box’ approach of recording activity under different
experimental conditions, observing what EEG signals are produced, and
developing interpretations of what these EEG signals mean through inference
based on what changes or stays the same across experimental manipulations.

Figure 3.1 An example of an EEG system. The participant is wearing an
elastic cap with electrodes, which feed into the amplifier (the gold object in
the centre of the table) which then connects to a computer to record the data.
In an experiment, the participant typically views stimuli on a computer
monitor (left) while EEG is displayed for the experimenter on another
monitor (right). Image provided courtesy of Brain Products GmbH
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One important constraint on EEG is that the number of sources of
information that we have (the number of electrodes) is far lower than the
number of neurons in the brain, or even the number of functionally distinct
brain areas that exist. However, simply increasing the number of electrodes is
not useful above a certain point, because of other factors. Firstly, electrical
signals conduct very well through the brain, so an EEG signal recorded from
a particular electrode represents not only activity of the brain directly under
that electrode, but activity from many other areas of the brain as well. Thus
activity measured at any given electrode is the sum of the activity of many
brain regions. Secondly, the skull is a relatively poor conductor of electricity.
One effect of this low conductivity is that electrical signals are blurred,
spatially, by the skull. Thus EEG electrodes placed close together on the
scalp record virtually the same information from the brain. Together these
two factors impose a limit on the spatial resolution of scalp-recorded EEG,
meaning that more electrodes is not necessarily better – a topic that is
discussed further below.

Another constraint on EEG is that individual neurons acting alone produce
relatively weak signals. For a signal to be detected by EEG it must be quite
strong, because it must be conducted from its source to the recording
electrodes, through the poorly conducting skull. What is picked up by EEG
scalp electrodes, then – as observed by Adrian and Mathews in considering
even the earliest EEG recordings – is the summed activity of many neurons
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acting in synchrony, with similar anatomical location and alignment.

This brings us to an important concept for understanding the generation and
propagation of EEG signals – the electrical dipole. ‘Dipole’ refers to
something that has two ends, or poles, that are opposite in some way. The
magnetic poles of the Earth are a familiar example. When talking about
electricity, a dipole is something that has a positive charge at one end and a
corresponding negative charge at the other. A battery is a common example
of this. Brain areas that generate an EEG signal detectable at the scalp also
have a dipolar configuration. In practice, this generally occurs when a fairly
large group (a ‘field’) of neurons within a particular anatomical location are
aligned with each other, as shown schematically in Figure 3.2. This group of
neurons will form an equivalent current dipole (ECD) when, overall, one
side of the field (the side with the cell bodies in the example shown) has a
positive charge, and the other end (with the axons in the example) has a
negative charge. In the human brain, the cortex contains large numbers of
pyramidal neurons whose shape and anatomical organization lend themselves
to creating ECDs that are measurable at the scalp. Groups of neurons that are
physically aligned with each other and synchronously activated, thus able to
generate EEG signals measurable at a distance, are referred to as open fields.
Other possible configurations of neurons, whose activity would collectively
cancel out and thus not generate a detectable EEG signal at the scalp, are
referred to as closed fields. Examples of these are also shown in Figure 3.2.

It is also important to consider what sort of activity these neurons exhibit and
how this relates to the corresponding EEG signal. The form of neural activity
that is probably most familiar are action potentials: the firing of an individual
neuron when the electrical potential of its membrane exceeds its firing
threshold, which causes a current to travel down the neuron’s axon to the
terminal, where the action potential triggers the release of neurotransmitters
which in turn affect the potential of other neurons. The duration of action
potentials is very brief, however, so synchronization across neurons is
relatively unlikely. As well, signals propagate down the axon via saltatory
conduction (whereby the signal ‘jumps’ from one section of the axon to the
next, because axons are insulated with myelin alternating with nodes of
Ranvier where ion channels open and close as a signal passes through them).
This means that if two adjacent axons are conducting action potentials that

Masoud


Masoud


Masoud


Masoud


Masoud


Masoud




occur at slightly different points in time, the same spatial location on the two
neurons may be depolarizing in one axon and re-polarizing at the other, in
which case their potentials would cancel each other out when measured from
a distance by EEG.

Another component of neural activity, and one that changes more slowly, is
postsynaptic potentials. These are the electrical potentials of the membranes
of the cell bodies of neurons, which are influenced by incoming signals from
other neurons. Postsynaptic potentials essentially represent the sum of all of
the incoming excitatory and inhibitory signals to a neuron, over some period
of time ranging from tens to hundreds of milliseconds. Because the inputs are
summed over time, there is more opportunity for the postsynaptic potentials
of multiple neurons to be synchronized (in other words, have similar changes
in potential at the same time), and thus summate to produce a signal that is
detectable at the scalp. In neurons, if the cell body is depolarized by incoming
excitatory postsynaptic potentials (EPSPs), then the body becomes relatively
positively charged relative to the axon of the neuron (which has not been
affected by the incoming EPSPs) – thus forming an electrical dipole between
the cell body and axon, as depicted in Figure 3.2.

Thus at any given point in time, the EEG signal measured at a particular
location on the scalp will be the sum of all of the ECDs active in the brain
whose fields are oriented towards that electrode. Because of the volume
conduction of EEG signals through the brain, the activity of a given ECD will
in principle actually be detectable at any location on the scalp, either as a
negative or positive voltage. However, the signal will be stronger at locations
that are directly aligned with the poles of the ECD, and also at electrodes that
are closer to the source of the signal. Note, however, that these two factors
can work against each other, making inference about the location of the ECD
difficult: a dipole oriented tangentially to the scalp (as shown in Figure 3.3C),
and close to the skull may generate strong electrical potentials both at
electrodes that are close to it (which are physically close, but not aligned with
the axis of the dipole), and at electrodes farther away (which are physically
distant, but aligned with the axis of the dipole). This is one of the many
problems inherent in determining where a given EEG signal comes from in
the brain, which will be discussed later in this chapter.



Figure 3.2 Schematic examples of open and closed field configurations of
neurons. To generate a measurable EEG signal at the scalp, neurons must be
oriented parallel to each other, and have similar electrical polarization across
their long axis

Figure 3.3 An example of a single electrical dipole (shown as a red dot, with
the line extending from it indicating the direction of the positive pole) located
approximately in the motor cortex, and how its electrical fields would project
across the scalp depending on the dipole’s orientation. In A, the positive pole
is pointed towards the back of the head. The red contour lines with white
background show areas of the scalp where a positive EEG potential would be



recorded, with the peak potential at the centre of the smallest (middle) circle;
progressively weaker positive potentials would be recorded at each contour
line moving away from the centre circle. The blue shaded areas indicate
where a negative potential would be recorded, with the maximum negative
potential again in the centre of the smallest circle. B and C show how a
dipole with the same electrical potential (‘activation’) strength, in the same
location in the brain, would generate very different scalp topography patterns
depending on its orientation. Because dipoles are largely generated by
pyramidal neurons oriented tangentially to the scalp, the three different cases
shown here could arise simply by the dipole’s being located on either the left
side, right side, or top of a gyrus on the cortex



ERP Components
EEG recordings thus represent the summed activity of all the ECDs active in
the brain at that point in time that have open field configurations, as well as
noise. Noise can come from various sources, including the person being
recorded from (for example, muscle activity) and the environment (for
example, electromagnetic fields generated by nearby electrical equipment).
How do we differentiate these and characterize the brain activity of interest?

The basic logic of using event-related potentials (ERPs) as a measure of
brain activity is that over a number of trials in an experiment involving the
same types of stimuli and task demands, brain activity related to this type of
stimulus and task should be consistent, whereas the noise should not – noise
should be random with respect to our experimental manipulations. Thus if we
average together the brain activity across multiple trials, time-locked to some
experimentally controlled event of interest (such as the onset of the stimuli),
then the influence of the noise on the resulting average should be reduced,
while the true, consistent signal should be enhanced. Such averaged,
segments of EEG data, time-locked to events, are what we refer to as ERPs.
In the ideal case, the signal-to-noise ratio (SNR) will increase as the square
root of the number of experimental trials included in the average. This
assumes that the signal and noise are independent, the signal is truly
consistent across the trials, and the noise is random with a mean of zero and
consistent variance. In reality, any of these assumptions may not actually be
true. For example, the brain activity may vary from trial to trial based on
individual characteristics of the stimuli, the subject’s attention level, or other
factors. Likewise, some aspects of noise may be correlated with stimulus
presentation, for example if a subject blinks every time a visual stimulus is
presented (something ERP experimenters in fact go to lengths to prevent).
Nevertheless, it is generally true that more trials lead to better SNR.

The number of trials (events) required per condition to obtain a reliable ERP
effect can vary depending on several factors. These include the size of the
ERP effect of interest, and how much noise there is in the data (which can be
influenced by the design of the experiment, the EEG system used, the EEG
recording environment, and the individual subject). While generally, ‘more is



better’, the fact that SNR increases with the square root of the number of
trials means that there are diminishing returns from more trials. The number
of experimental conditions and how long each experimental trial takes are
also limiting factors. Thus in studies of the auditory brainstem response,
which is very small but is elicited by very brief ‘click’ sounds, it is not
uncommon to use 10,000 trials per subject. Each ‘click’ is very brief and they
can be presented in very rapid succession, so 10,000 trials only take a few
minutes to conduct. However, in studies of sentence processing,
experimenters use far fewer trials because of the amount of time required for
people to read each sentence and make a response for the experimental task; a
sentence processing study involving 200 sentences may take over an hour for
data collection. Because of these complexities, there is no hard-and-fast rule
for choosing the number of trials; typically this decision is made based on
review of the prior literature and/or the researcher’s previous experience
working in a particular domain.

Once data are collected from multiple subjects and averaged together across
trials and participants, a grand average waveform is obtained at each
electrode. More details on all of the steps required to get to this point in data
analysis are provided later in this chapter; for now we want to focus on the
end result. An example of grand averaged waveforms from an experiment are
shown in Figure 3.4. The waveform at each electrode basically consists of a
series of positive and negative peaks. The effects of interest in the experiment
are called components, and are commonly – though not necessarily –
associated with particular peaks. A common definition for an ERP
component is a feature of the averaged waveform that has a consistent (a)
polarity (positive or negative), (b) timing, (c) scalp distribution (where on the
scalp it is largest), and (d) eliciting conditions. For example, the onset of a
visual stimulus (the eliciting condition) typically evokes a series of
components referred to as the P1-N1-P2 complex; a convention in ERP
research is to label early components according to their polarity (positive or
negative) and their sequence (so, P1 is the first positive peak, P2 the second
positive peak, etc.). The P1-N1-P2 complex has been labelled in the bottom
panel of Figure 3.4. It is important to remember from our description of
ECDs that positive and negative polarity both represent brain activation –
when first introduced to ERPs some people think that negative peaks
represent activity decreases, or neural inhibition. However, when a particular



ECD is active it generates both positive and negative electrical potential;
what is measured at a given electrode simply depends on the orientation of
the ECD. Inhibition would be reflected in a smaller amplitude peak (or no
discernible peak at all).

The labelling of components can be confusing for a newcomer to the field of
ERPs. First of all, an alternative convention for labelling components – and
one that is used most of the time for later components – is to label peaks
according to their polarity and latency. Thus the P1 is sometimes called the
P100, because it tends to peak around 100 ms. The timing and scalp
distribution of components is also often complex. For instance, there are
actually three distinct visual N1 components, in that the first negativity in the
waveform peaks at different latencies over different parts of the scalp, and
these can be differently affected by experimental manipulations. Furthermore,
certain types of visual stimuli elicit specific components that are not seen for
visual stimuli more generally. For example, faces elicit a distinct component,
labelled the N170 (because it peaks at 170 ms post-stimulus onset) over the
posterior temporal lobe – typically largest at electrodes on the mastoid
process, the bony area behind the ear. Other visual stimuli also elicit N170-
type components, but these differ in their scalp distribution and sensitivity to
eliciting conditions. For example, the N170 elicited by faces is larger for
inverted than upright faces, and is larger over the right than the left
hemisphere. In contrast, an N170 is also elicited by printed words, but in this
case it is larger over the left than right hemisphere, and is larger for real
words than non-words (strings of consonants) or false fonts (letter-like
symbols). Component labels are also often used to refer to different
components in very different domains. For example, the onsets of auditory
stimuli also elicit a series of components labelled the P1-N1-P2 complex.
However, the scalp distribution of these components is different for visual
and auditory stimuli: the visual P1-N1-P2 complex is largest over the
occipital cortex, whereas the auditory P1-N1-P2 complex is largest over
midline frontal electrodes. These differences in scalp distribution are due to
the fact that the components are generated in distinct brain regions (visual
versus auditory sensory cortices). The timing of the auditory and visual P1-
N1-P2 complexes also differ; however, the timing of these early sensory ERP
components are sensitive to experimental factors such as the brightness or
loudness of the stimuli.



Figure 3.4 Effects of averaging trials on ERP waveforms from a single
participant. All trials are from the same experimental condition: viewing
upright faces. The top two rows show averages of different numbers of trials
(or, in the case of the top right, un-averaged single trials). The solid lines
represent averages of one set of trials (selected from odd-numbered trials),
the dotted lines represent averages of different trials (even-numbered). The
top row demonstrates that not only are averages composed of low numbers of
trials noisier than those composed of larger numbers, but also the averages
are less consistent (that is, less overlap between odd- and even-numbered
trials). The bottom panel shows the average of 256 trials for this particular
experimental condition presented to the participant, with the first three
prominent components – P1, N170, and P2 – labelled (a total of 300 trials
were actually presented, but some were removed due to artifacts caused by
eye blinks). The data shown are from an electrode placed over the right
mastoid, referenced to the average of 128 electrodes covering the scalp

The P1-N1-P2 complex and the N170 are examples of a set of exogenous
components, so-called because they are elicited by external, sensory factors.



Although the amplitude (size) and timing of these components can be
influenced by stimulus and/or manipulations, exogenous components are
generally ‘obligatory’ in the sense that they are elicited by stimuli regardless
of whether the participant is paying attention to them (or, often, even when
people are unconscious). Other components depend more heavily on the task
and the subject’s mental experience of the events, and are referred to as
endogenous components. An example of an endogenous component is the
P3, which is elicited specifically by relatively infrequent, task-relevant
stimuli. For example, if the stimuli in an experiment consist of a series of
pictures of cats and dogs, and the cats occur 80% of the time but subjects are
instructed to respond only when they see a dog, then dog stimuli will elicit a
P3 effect (which is a positivity, generally maximum just behind the top of the
head peaking around 300 ms after stimulus onset). However, if the dogs and
cats occur with equal frequency, or the subject does not have to make a
special response to the rarer stimuli, then the P3 will be smaller or
undetectable in the ERP waveforms. Another example of an endogenous
component is the N400. This component is elicited by (among other things)
words whose meaning does not fit into the context of the words preceding it
in a sentence. For example, in the sentence ‘He drove to the beach in a
banana’, the word ‘banana’ will evoke a negativity peaking around 400 ms
over the top of the head relative to a semantically appropriate word like ‘car’.
However, there is nothing special about the word ‘banana’ that evokes the
N400 component; the same word would not evoke this N400 effect in a
sentence like ‘The monkey went to the beach and ate a banana’. It is
important to remember however that the exogenous/endogenous distinction is
somewhat fuzzy – for example the N1, which we called an exogenous
component, can vary in its amplitude depending on whether or not the person
is attending to the stimulus or not – an endogenous factor.

As a side note, you may have noticed that whereas previous components were
referred to by a letter indicating their polarity along with the sequential
number of their peak (for example, P1, N1, P2, N2, P3), the N170 and N400
are named based on the timing of its peak. This is a relatively common
convention in the ERP literature: early peaks are labelled sequentially, while
later ones are labelled according to their timing, but this convention is not
100% consistent. Often the timing information in the label can be confusing
as well; for instance, the P600 component (elicited by syntactic violations in



sentences) had a peak latency of approximately 600 ms when first discovered
and named thus (Osterhout & Holcomb, 1992); however, in subsequent work
it was discovered to have variable latency (e.g., Newman, Ullman, Pancheva,
Waligura, & Neville, 2007). Most investigators still refer to it as the P600
though, reflecting the power of habit and convention. As well, many
components are labelled according to their eliciting conditions and/or other
features of the waveforms, such as ‘error-related negativity’ (ERN), or ‘left
anterior negativity’ (LAN). The naming conventions for ERP components
typically arise ‘organically’ in the field as a component is discovered and
perhaps initially referred to differently by different investigators. Indeed, in
some cases components that were independently discovered in different
experimental contexts – and given different labels – are later recognized as
being the same component due to commonalities in polarity, timing, and
scalp distribution, along with the characterization of a common underlying
cognitive process in the two experimental contexts (e.g., MacLeod, Stewart,
Newman, & Arnell, 2017). Timing is probably a more consistent convention
in the literature overall, even though it is recognized that the timing is
approximate and experimental factors may influence peak timing.

In spite of the consistency with which particular peaks occur in time under
certain experimental conditions, and our conventions for naming those peaks,
in many cases these waveform peaks do not represent the time at which any
particular brain area or ECD reaches its peak activity. This is because the
scalp-recorded waveforms are the sum of all EEG-measurable activity at a
given point in time. As Figure 3.5 shows, a peak electrical potential in the
scalp-recorded ERP waveform may actually occur at a time in between the
times at which the activity of two underlying generators (ECDs) peaks. We
refer to the peaks of these underlying generators as latent components, which
we cannot directly observe but which combine to yield scalp-recorded
components. As well, the absolute amplitude of the ERP is difficult to
interpret because it is influenced by preceding and subsequent peaks, and the
timing and amplitude of many components (especially early ones more
strongly associated with sensory-perceptual processes) are quite sensitive to
low-level stimulus factors such as intensity (for example, brightness or
loudness), contrast, and size. Thus the optimal way to use ERPs as a research
technique is to compare the waveforms between two or more different
conditions, ideally with all participants seeing all of the stimuli/conditions (a



within-subjects design). As much as possible, differences in the stimuli
between conditions should be minimized, except for the factors under
experimental manipulation. Thus, for example, in the N400 sentence
processing experiments like the one described above, it is common practice
to generate two versions of each sentence that differ only in whether the
‘target’ word is semantically appropriate or not. The semantically appropriate
and anomalous words themselves should be matched on as many properties
as possible, such as their length, how frequently they occur in the language,
their part of speech (for example, both nouns), and possibly other factors
such as their imageability. Likewise, in the P3 experiment described earlier,
the pictures of the dog and the cat should be similar in size, overall
luminance, etc.

The advantage of comparing ERPs elicited under such closely matched
conditions is that such comparisons isolate effects of the experimental
manipulation from extraneous factors. Waveform peaks cannot be guaranteed
to reflect peaks in underlying neural activity – or even activity of single brain
areas/processes as opposed to overlapping activity from multiple brain
regions. As well, ‘0 µV’ is arbitrary and defined by a short baseline period
immediately preceding the stimulus, so the actual voltage value at any given
point in an ERP epoch has no independent meaning. Thus waveforms from
individual ERP conditions are, in many cases, not very informative. The
subtraction method provides a solution to this problem, by focusing on
differences between waveforms elicited in two closely matched experimental
conditions that differ only in the feature that is of experimental interest. This
isolates the brain activity associated with these experimental differences.
(The subtraction method is also a standard approach to designing and
analysing fMRI experiments, as we will see later in this book.) It is thus
common to plot difference waveforms, which are created by subtracting the
waveforms from one condition from those of another. Difference waveforms
allow the experimenter to see clearly the times at which the conditions differ,
without being distracted or potentially biased by the appearance of the peaks
in the individual conditions’ waveforms (which, as noted above, may not
correspond to peaks in latent components anyway).

Figure 3.5 Simulated data showing how different patterns of activation of
three dipoles (latency components) can create nearly indistinguishable



patterns of ERPs at the scalp. Three dipole sources were modelled, located
approximately in the superior temporal lobes of each hemisphere, and the left
frontal lobe (the diagram at bottom left shows dipole locations and
orientations). Across the bottom of the figure are the three different time
courses of activity of these three sources, along with the projections of the
summed activity of these latent components at the scalp. Although there are
subtle differences in the scalp topography, these patterns would likely be
statistically indistinguishable from each other. The top part of the figure
shows the ERP waveforms at 15 electrode locations covering the scalp. In
these projections, some random noise has been added to the data, similar to
what would be found in real data (the noise is about 10% of the amplitude of
the latent components). As with the scalp maps, the waveforms are quite
similar across the three different combinations of latent component activity.
Notably, the largest apparent differences between the different latent
component sets are not where the dipole project their maximum potentials
(that is, not near the vertex of the head, where the scalp maps show the
darkest), but at electrodes that are quite peripheral. Another important point
to note is that although there are three distinct dipoles contributing to the
scalp-recorded ERP activity, it would be difficult, if not impossible, to
determine this based on the scalp-recorded activity, because of the way the
dipoles’ activity sum at the scalp



An example of the subtraction method is shown in Figure 3.6. Activity is
compared between biological and scrambled motion. Biological motion
comprised short videos of people performing actions such as walking or
chopping wood; these were shown as white dots placed on the joints of the
body, against a black background. Thus there was no outline of a body, rather
the impression of a human form was derived from the patterns of motion. The
other (control) condition was scrambled motion, obtained by scrambling the
locations of the dots in the biological motion videos to preserve the low-level
features of the stimuli (number of dots, speed and distance of movement), but
eliminate the coherent percept of a body. The figure shows that the timing of
the between-condition differences did not correspond to the timing of the
obvious component peaks in the individual-condition waveforms. This is not
always the case – sometimes peak differences do correspond in time with
individual-condition waveform peaks; for example, the P3 and N400,
although visible as peaks in the difference waveforms, are also visible as
prominent features in the waveforms of the deviant conditions that elicit
them.



Figure 3.6 The left panel shows the ERPs elicited by two different
experimental conditions, as described in the text. A sequence of early
components can be seen, including the P1 at 100 ms, the N1 just before 200
ms, the P2 at approximately 250 ms, and the N2 at approximately 250 ms.
The right panel shows the difference wave created by the subtraction
biological – scrambled motion. Note that the peaks (greatest differences) in
the difference wave do not necessarily correspond directly to ‘component’
peaks or troughs in the waveforms of the individual conditions. For example,
biological motion’s first peak negativity in the difference wave is at
approximately 200 ms, which corresponds to the ‘slope’ between the N1 and
P2 in the individual-condition waveforms, rather than to either the peak time
of the N1 or the P2. Furthermore, this difference is maintained from
approximately 200–600 ms, which overlaps with the N1, P2, and N2
components. This underscores the point that the component peaks visible in
the individual-condition ERP waveforms may not reflect the brain activity
that is modulated by a particular experimental manipulation. Waveforms are
derived from an experiment originally published in White, Fawcett, &
Newman, 2014

At a minimum, difference waveforms can be used as a form of mental
chronometry, to determine the earliest point at which the subject’s brain
makes a distinction between the two experimental conditions. However,
typically much more can be inferred from differences by referring to the



published ERP literature on similar experimental designs. For example, the
P3 is thought to reflect ‘context updating’ whereby new information is
integrated with recent events held in working memory, and the P3 reflects
novel information relevant to the individual. This process seems to be supra-
modal, or generic, in that similar P3s can be obtained for visual, auditory,
somatosensory, or other stimuli. Thus observing a P3 in an experiment not
only tells us when the brain registered the experimental manipulation, but
also that the context-updating process was involved, which in turn tells us
that the information was relevant to the individual (since irrelevant
information does not elicit a P3). Indeed, when the N400 component was
discovered in response to semantic expectation violations in sentences (Kutas
& Hillyard, 1980), the researchers were surprised because they had predicted
a P3 response. Observing a distinct component for semantic anomalies led
the researchers to conclude that this component – the N400 – reflected a
language-specific process related to integrating the meanings of words. In
other words, the N400 showed that semantic information in sentences was
processed differently from the more generic context-updating process
reflected by the P3. Another example of how difference waves can be
informative again relates to the P3. Farwell and Donchin (1991) created a
computerized device that allowed people to spell words using only their
brainwaves. The ‘P3 speller’ works by showing all the letters of the alphabet
in a grid on a screen, and asking the user to focus their attention on the letter
they want to ‘write’. Then, in random order rows and columns of the grid
flash. All of these flashes elicit visual evoked potentials; however, the flashes
that highlight the letter the person is attending to elicit a P3 due to their task
relevance (the attention the user is paying to that letter). Thus by comparing
differences between ERPs elicited by highlighting different rows and
columns, the chosen letter can be identified after a sufficient number of
flashes.

Another way of using difference waves is to compare waveforms from a
single condition, from corresponding electrodes over either hemisphere. For
example, the lateralized readiness potential (LRP) is a component that rises
as people prepare to make a motor response, such as pressing a button. The
LRP is larger over the motor cortex of the hemisphere contralateral (opposite)
to the hand that will move, and so the LRP is obtained as the difference
between the waveforms from electrodes C3 and C4, which are over the left



and right motor cortex, respectively.

The use of difference waveforms may allow experimenters to get closer to the
activity of underlying ECDs that relate to the experimental effect and
associated neurocognitive process of interest, to the extent that these may be
masked by overlapping activity of ECDs that are not specifically modulated
by the experimental manipulation. However, it is still important to remember
that just like the peaks in the waveforms of individual conditions, these
difference waves may reflect the activity of multiple ECDs/brain areas and
that the activity of all contributing areas may not be simultaneous but rather
partially overlap in time. This is a fundamental limitation of the ERP
technique, and perhaps the most important thing to keep in mind when
interpreting ERP results. Numerous efforts have been made to attempt to
separate the contributions of different generators to these ERP effects, some
of which we will discuss later. However, all of these approaches are based on
assumptions and inferences, and so do not perfectly solve the ‘black box’
problem inherent in EEG/ERP.



Oscillatory Signals
Our description of ERPs so far has focused on what is referred to as the time
domain, meaning that brain activity is examined as a function of time.
Another way of visualizing and analysing the data is in the frequency
domain. Frequency refers to how many times something happens in a given
time interval. Typically we talk about frequency of waveforms in terms of the
unit Hertz (Hz), which is defined as the number of cycles (peaks or troughs in
the sine wave) per 1 second of time. The frequency of a simple waveform
such as a sine wave is easy to determine simply by looking at it. For example,
Figure 3.7 shows examples of sine waves of different frequencies; the
frequency can be determined visually by simply counting the number of
peaks (or troughs) that occur in the space of 1 second. Human EEG is
characterized by a number of frequency bands (ranges) that are associated
with different conscious states as well as different aspects of cognitive
processing. Table 3.1 describes these different bands and associated
processes. It is important to understand that although one particular frequency
may be most dominant or obvious to the naked eye in a segment of EEG data,
any data actually comprises a mixture of different frequencies.

Mathematically, it is possible to both compose a complex waveform from a
series of sine waves – as shown in Figure 3.7 – and conversely to decompose
such a complex waveform into its component frequencies. A Fourier series
is a combination of waveforms of different frequencies. Figure 3.7 shows an
idealized Fourier series consisting of a set of component sine waves at
frequencies within each of the bands defined for human EEG shown in Table
3.1, along with 60 Hz noise that is typically present due to electromagnetic
interference (60 Hz noise is discussed in more detail later in this chapter).
Real EEG data never looks this simple owing to the fact that there is a much
broader range of frequencies in real data, and the power (amplitude) of these
frequencies is rarely constant for any length of time.

Table 3.1 



A consequence of the fact that we can break a complex waveform down into
a Fourier series is that we can take any waveform in the time domain (which
is the ‘normal’ way that we look at EEG data, as electrical potential varying
over time – shown in the top panels of Figure 3.7) and perform a
mathematical operation (known as a Fourier transform) that allows us to
view it in the frequency domain (shown in the bottom panel of Figure 3.7).
A frequency-domain representation collapses over time, so that rather than
time on the x axis, frequency is plotted; amplitude (referred to as power in
the frequency domain) is plotted on the y axis. Thus in the bottom of Figure
3.7 we see clear peaks in the frequency domain corresponding to the
frequencies of each of the component waveforms in the top panels, with the
power (height) of each peak corresponding to the amplitude of the sine waves
in the top panels. (Note that the decrease in amplitude with increasing
frequency in this plot follows the pattern observed in real EEG, in which
power is approximately proportional to 1/frequency.)

The relevance of all this to EEG research is that an alternative to analysing
ERP components in the time domain is to examine the effects of experimental
manipulations in the frequency domain. Frequency-domain analysis typically
focuses on changes in power (amplitude) in particular frequency bands that
occur time-locked to experimental events of interest. So in fact the distinction
between time- and frequency-domain analyses is an oversimplification;
typically analyses that consider frequency are time-frequency analyses.
Thus they are the equivalent of ERPs, but in the frequency domain. Two



types of event-related changes in the frequency domain are possible, typically
referred to as event-related synchronization (ERS) and event-related
desynchronization (ERD). ERS occurs when power in a frequency band
increases following an event of interest, while ERD is the opposite – a
decrease in power after event onset. Perhaps the easiest example of ERS and
ERD to obtain is related to the alpha rhythm, in the 8–14 Hz frequency band.
An example of this is shown in Figure 3.8. Very clear alpha oscillations are
typically evoked over occipital electrodes when a person closes her or his
eyes – an example of ERS where alpha power increases time-locked to the
event of eye closure. ERD occurs when the subject opens his or her eyes
again, at which point the alpha typically disappears from the EEG. An
important thing to note here is that although the terms ‘synchronization’ and
‘desynchronization’ are commonly used to describe changes in power, these
terms reflect an unproven hypothesis – namely that power changes are solely
attributable to changes in synchrony between neurons within a brain area. In
fact, power changes could arise for other reasons, including simply reduced
postsynaptic potentials as a result of decreased input to that brain region.

Figure 3.7 An example of Fourier series composition/decomposition. The top
panel shows a set of sine waves of different frequencies, in the time domain
(that is, time is on the x axis of the plot). In this example, the sine wave
frequencies were chosen to correspond to the different major frequency bands
listed in Table 3.1, along with a 60 Hz which corresponds to the
electromagnetic noise typically present in EEG data. The first six plots show
individual sine waves; the seventh plot shows the sum of the individual
frequency components above it. The bottom panel shows this summed
waveform in the frequency domain, after applying a Fourier transform to the
summed waveform. The x axis now represents frequency, and clear peaks are
present at the frequencies at each of the components of the summed
waveform



Figure 3.8 A simple example of event-related synchronization (ERS) and
desynchronization (ERD). Continuous EEG recorded from an electrode over
the occipital lobe is shown. The dashed vertical lines represent events
triggering synchronization/desynchronization. Increases in alpha power can
be seen as the increased amplitude and clear 10 Hz oscillation in the periods
marked as ‘ERS’. Note however that some alpha power is evident even in the



‘ERD’ periods

In addition to looking for ERS or ERD – frequency band changes associated
with experimentally controlled events – frequency domain analysis can be
applied over longer periods of EEG data. One example of this is in ‘resting
state’ experiments where EEG data is recorded for some period of time (for
example, 1–10 minutes) while the participant is at rest, either with his or her
eyes closed or open and staring at a fixation point. The power in different
frequency bands is then analysed, averaged over a number of seconds (for
example, 30-second segments may be used, with each segment overlapping
50% with the one preceding it, and 50% with the one after it). The same
analysis can also be applied to task-related EEG data, if the subject is
performing a consistent task over an extended period of time (for example,
reading words presented at a steady rate). Such analyses can reveal ‘state-
level’ patterns of brain activity that is related to general aspects of task
performance such as sustained attention (or ‘default mode’ brain activity that
occurs when no specific task or stimuli are given, in the case of resting state
data), rather than transient, event-related activity.

Another application of frequency domain analysis is to what are called
‘steady state’ stimuli. These are stimuli that alternate on and off at a rate
comparable to frequencies in the EEG that are particularly sensitive to the
stimuli. For example, steady state visual evoked potentials (SSVEPs) are
elicited by flashing a visual stimulus on and off at a rate within the alpha
band (8–14 Hz). This type of stimulation ‘drives’ the alpha rhythm at the rate
of the stimulation. An example application of this is to present similar stimuli
(for example, white circles) on each side of a computer screen while the
subject is instructed to maintain fixation on a cross in the centre of the screen.
If the circle on the right flashes at 8 Hz, and the circle on the left at 12 Hz, we
will see two peaks in the frequency plot of the data – at 8 and 12 Hz. If we
further direct the subject’s attention to one or the other side of the screen at
different points in the experiment, we will find that power in the 8 Hz band
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increases when attention is directed to the right side of the screen, while
power in the 12 Hz band will increase when attention is directed to the left
side of the screen. Similar steady-state effects can be obtained in the auditory
and tactile modalities as well.



How Do We Measure It?



Data Acquisition
EEG is measured by electrodes placed on the scalp. The electrodes are simply
small sensors made of some conductive material, connected to wires that in
turn plug into an EEG amplifier. Common materials for electrodes include
tin, silver/silver chloride, and gold, though other materials such as graphite
have been experimented with. In clinical settings, EEG electrodes are
commonly placed on the head individually, attached with a sticky paste. In
research settings, it is more common to use a cap in which the electrodes are
fixed in specific locations. Caps have the advantages of relatively quick set-
up, and faster clean-up; applying electrodes individually takes more time and
the paste is harder to wash out, but the positioning of electrodes can be more
precisely done in relation to an individual’s head size and shape, and the
paste allows for recordings that can last for extended periods of time, even
during sleep. Other variants include caps into which individual electrodes can
be plugged, nets in which elastic connects the electrodes, leaving the hair
accessible between elastics and electrodes, and headbands that contain
relatively few electrodes. Some examples of EEG caps and nets are shown in
Figure 3.9. The electrodes do not normally touch the scalp directly, but rather
sit a few millimetres from the scalp and a conductive gel is injected through a
small hole in the electrode to make the connection with the scalp (in some
systems, sponges soaked in electrolyte solution substitute for the gel). This
system reduces noise because the physical movement of the electrodes
against the scalp can create noise; the gel serves as a flexible connection that
is resistant to this effect. Some EEG systems use dry electrodes which make
direct physical contact with the scalp and do not require a conductive
medium like gel. While this reduces set-up and clean-up time, dry electrodes
are inherently much more sensitive to noise – gel and paste form a highly
conductive path for the electrical signal to travel from the scalp to the
electrode, and are flexible enough that the effects of electrode movement are
reduced. The quality of data collected with dry electrodes is generally poorer
than with ‘wet’ electrode systems, leading most researchers to avoid dry
electrode systems unless there is a specific benefit that outweighs the
reduction in data quality.

Figure 3.9 Examples of different EEG caps and systems. Across the top row,
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the left image shows a conventional 32-channel system with disc-type
passive electrodes. The middle cap features 64 active electrodes, each of
which has a small circuit board on the electrode itself, which includes a pre-
amplifier to boost the signal (and thus reduce environmental noise) and a
coloured LED to facilitate impedance checking. Both of these first two
systems use electrolyte gel to make the contact between electrode and scalp.
The right cap is a 256 channel system in which electrodes are embedded in
sponges which are soaked in a liquid electrolyte solution rather than gel, and
the electrodes are connected by transparent elastics forming a net, rather than
using a cap made of stretchable material as in the left two caps. The bottom
row shows additional EEG hardware. The left image shows a cap with active
electrodes, an interface box (centre), and the amplifier (top right) and battery
(bottom right). The right image shows a net (left) with the associated
amplifier (right) and a computer that would control data acquisition and
perform analysis. Top left and centre, and bottom left images provided
courtesy of Brain Products GmbH; top and bottom right images provided
courtesy of Electrical Geodesics, Inc.

Electrode positions vary from system to system, but most follow a standard
known as the International 10–10 System, as shown in Figure 3.10. This
system is based on the use of standard landmarks on the head, measuring the
distances between them and then placing electrodes at evenly spaced
distances from each other along the lines defined by the landmarks. The
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landmarks commonly used are the nasion (the indent at the bridge of the
nose), the inion (the depression at the base of the skull, centred left-to-right),
which define the distances along the anterior–posterior dimension, and
between peri-auricular points located in the area of each ear – just above
the tragus in the zygomatic notch. The vertex of the head is defined as the
point 50% of the distance between these two pairs of points. This electrode
position is labelled Cz (for ‘central zero’), and the labelling of other electrode
positions follows a standard system of letters and numbers based on 10%
increments of the anterior–posterior and left–right measurements (American
Clinical Neurophysiology Society, 2006). This system is still often referred to
as the ‘International 10–20 System’, harkening back to a time when fewer
electrodes were used and a combination of 10% and 20% increments were
used; there is also a 10–5 system involving 5% increments and thus allowing
higher-density (more electrodes) recordings, although this is not widely used
or clinically accepted. It is important to note in research settings where the
electrodes are fixed to a cap or net, the actual distances between electrodes
may not be exactly 10% once the cap is on an individual’s head, because
head shapes differ. Thus in common practice the electrode positions are
approximations. However, in clinical settings electrodes are attached
individually to the scalp using a glue-like paste (called colloidon), and are
placed at precise 10% increments.

The electrodes connect to an amplifier, which boosts the very small signals
recorded from the scalp prior to their being recorded. Amplification serves to
make the EEG signals easier to measure and quantify. Amplifiers also
perform analogue-to-digital conversion – the continuous (analogue) EEG
detected by the electrodes is converted to a digital signal that represents the
voltage at discrete points in time. It is typical to digitize EEG data at
sampling rates of between 100–1000 Hz (Hz, or Hertz, is a unit indicating
the number of samples recorded per second). The amplified, digitized signals
are then output to a computer for visualization and recording. Many
amplifiers have additional inputs for other sensors (for example, to measure
other physiological signals such as heart rate and respiration), as well as a
‘trigger port’ which is an input from a computer or other device that allows
markers to be recorded in the EEG data file that are precisely time-locked to
external events of interest, such as stimuli presented by a computer to the
participant.
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One of the most important concepts to understand about EEG recording is the
fact that we are always measuring a difference in electrical potential between
two locations. Indeed, electricity itself is a dynamic force, and any
measurement of electrical potential is by definition a differential
measurement. Electrical potential is an important concept to understand. It
may be most intuitive to think of electricity as something that flows through a
conductor, such as a wire. This flow of electricity is known as current, and
involves the movement of charged particles (electrons) through a conductor.
However, electrical potential is a more common measurement than current.
Electrical potential is not current flow; rather, it is literally the potential for
current to flow. Sources of electricity always have potential, even when
current is not flowing. Thus the wall outlet in a typical North American home
has a potential of 120 V, regardless of whether any device is actually attached
to the outlet and drawing current. Similarly, batteries store electrical
potential. For example the ‘AA’ type of battery used in many handheld
devices has an electrical potential of 1.5 V, meaning that the difference in
charge between the positive and negative terminals is 1.5 V – again
regardless of whether anything is connected to the battery. This potential sets
a limit on the amount of current that could flow between the terminals if a
conductor connected them; however, the actual current flow depends on the
properties of the conductor, such as resistance.

Figure 3.10 The electrode positions and names in the International 10–10
System. Letters generally refer to the lobe of the brain over which the
electrodes are (approximately) positioned; ‘z’ stands for ‘zero’ and represents
the midline of the scalp, running from the nasion (Nz) to the inion (Iz).
Electrodes on the left side of the midline are assigned odd numbers and those
on the right side have even numbers. Note that TP9 and TP10 typically fall
over the mastoids – the bony, hairless area behind the ears that is often used
as a reference in EEG recordings. They may thus alternatively be labelled
‘LM’ and ‘RM’, respectively
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An analogy that may be helpful in understanding the concept of electrical
potential is that of water. Imagine that we have a bowl of water sitting on a
table. This bowl of water has a certain potential, which is the amount of water
that could fall to the ground if the bowl was tipped. If we were actually to tip
the bowl, the rate at which the water moves (for example, litres per second)
would be equivalent to electrical current. However, the potential is simply the
difference between the amount of water in the bowl, and the amount of water
on the floor (which we could measure in litres). In electricity, potential is
typically measured in units of Volts (V) relative to ground, where ground is
literally the electrical potential of the Earth itself; the Earth is considered to
have zero electrical charge so serves as a good reference point. Returning to
EEG, this principle of electrical measurement means that the electrical
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activity measured at any electrode placed on the scalp (typically quantified in
microvolts – µV – or millionths of a Volt) is actually the potential difference
between that electrode and the ground. In EEG systems, the earth is not used
as the ground – to do so would create a safety hazard (stray electrical current
could pass through the person connected to the electrodes, leading to
electrocution), and reduce the overall sensitivity of the system to the very
small potentials measurable at the scalp. Instead, a ground circuit (or ‘floating
ground’) is created within the EEG amplifier to serve as ‘zero voltage’.
Measuring the difference between an electrode on the scalp and the
amplifier’s circuit ground, however, will reflect not only the brain activity
around the electrode on the scalp, but all of the electrical charge in the
subject’s body, including accumulated static electricity. To cancel out this
effect, the ground circuit is connected to an electrode placed somewhere on
the subject’s body. The location of this ground electrode is arbitrary, and for
convenience it is typically somewhere on the head, included in the montage
of electrodes in the cap that is used.

While this arrangement isolates brain activity at the active electrode (the one
on the scalp at which we want to measure brain activity) from static electrical
charge in the body, it is not sufficient for clean (that is, low-noise) EEG
recordings. The circuitry of the amplifier will inevitably contain some
amount of electrical noise itself, due to electrical noise in the environment
and within the amplifier itself. Thus the measurement of electrical potential
between the active electrode and the amplifier’s ground circuit will reflect
both electrical activity at the scalp and the noise present in the ground. To
deal with this problem, EEG recording uses differential amplifiers. In such
systems, a minimum of three electrodes are required for EEG recording, the
active and ground electrodes, and a reference electrode (in practice, a larger
number of active electrodes are used). The electrical potential is measured at
the active electrode relative to ground (A–G), and the potential at the
reference electrode is likewise measured relative to the ground (R–G). Then
what is actually recorded is the difference between the active and reference
electrodes (A–G) – (R–G), and any noise specific to the ground circuit is
cancelled out in this subtraction. This configuration, in principle, restricts
what is recorded from the active electrode to the electrical potential present at
that location, eliminating noise from the rest of the body, the ground circuit,
and the environment. In practice, some noise will still be present in the
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recordings due to imperfections in the amplifier circuitry, the quality of the
connections between the electrodes in the scalp, and the fact that different
locations on the body (and even the head) may vary slightly in the noise that
they contain.

There are some important implications of the use of differential amplifiers for
the recording and interpretation of EEG data. Firstly, the quality of the
connection between each electrode and the scalp is critical. This is typically
measured as impedance (conceptually similar to resistance). The impedance
threshold for good-quality recordings varies between EEG systems
depending on their engineering, but the guidelines of the system used should
be adhered to, and efforts should be made to ensure not only low, but
comparable, impedance at all electrodes. Impedance is typically lowered by
rubbing the electrolyte gel or solution into the scalp, which works both by
getting the gel deeper into the skin and also gently abrading the dead outer
layer of skin cells. A clean scalp is a good starting point for low-impedance
recordings, so having participants wash their hair prior to coming for a study
is good practice.

In terms of the interpretation of EEG recordings, the important thing to
remember is that the potential recorded at each (active) electrode is actually
the difference between that site and the reference site. One effect of this is
that active electrodes near to the reference electrode will show very little
signal unless there happens to be a strong source within the brain, in between
these electrodes and close to them. A consequence of the fact that EEG
recordings are differences between two sites is that the actual potential
recorded at a particular scalp location will vary depending on what location is
used as a reference (but will not, typically, vary with the location of the
ground). Historically, it was common to use a reference location away from
the head (for example, the collarbone) because it was thought that this would
be ‘neutral’ with respect to brain activity. However, this is inconvenient and
based on a false assumption, because the body is highly conductive and so
brain activity is measurable at any location on the body. As well, noise
cancellation may actually be worse for a reference farther from the head,
because the sources of the noise may vary in strength more than for a
reference location on the head. Thus in most modern systems it is common to
use a location on the head, such as the mastoid bones (the bony area behind
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the ear, just below the hairline), on the tip of the nose, or the top of the head.

The choice of reference electrode location will determine how the recorded
data look (specifically, the amplitude and polarity of the potential at each
electrode). Fortunately, as discussed below under ‘Preprocessing’, it is very
easy to re-reference the data to another electrode location later. This means
that, in practice, the choice of reference electrode location during data
acquisition should be made more on the basis of convenience than for any
other reason. Indeed, in many EEG systems the reference and ground
electrode locations used during recording are fixed and cannot be changed.
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Signal and Noise
Like all research techniques, collecting good-quality EEG data relies not just
on the equipment, but the expertise and care of the experimenter. EEG data
quality is arguably even more dependent on the care taken by the
experimenter than some other imaging techniques. This is because EEG is
particularly sensitive to various sources of noise, and so the experimental
procedures must account for this susceptibility. Noise in EEG comes from a
number of sources. To start with, we should clarify that in EEG, noise is
defined as any variance in the recorded EEG data that is not of interest to the
experimenter. This is a very broad definition, and includes electromagnetic
noise in the recording environment, physiological noise from the
experimental participant (that is, signals generated by sources other than the
brain), and even signals from the brain that are not of interest in the
experiment. A term that is often used in EEG research to describe transient
noise in the data is artifact. This term can refer to both physiological and
non-physiological noise.

These different sources of noise are controlled in different ways, and
understanding how to control them depends on understanding where they
come from. We will start with electromagnetic noise. A fundamental rule of
physics, Ampère’s circuital law, describes the fact that any electrical current
will induce a magnetic field, and correspondingly any magnetic field will
induce an electrical current in a nearby electrical conductor. Colloquially, this
relationship is often referred to as the right-hand rule, because if you hold
your right hand with the thumb extended and fingers curled, the relationship
between electrical current and magnetic field is shown: for a current flowing
in the direction of the thumb, the corresponding magnetic field will flow in
the direction of the curled fingers (though in reality the magnetic field
entirely circles the conductor). This is illustrated in Figure 3.11. In an EEG
recording environment, we have wires connecting the electrodes on the scalp
to the EEG amplifier, with current (the signal from the electrodes) flowing
through the wires. As conductors, these wires are able to have current
induced in them by nearby magnetic fields – and note that, unlike electricity
which requires a conductive medium, magnetic fields travel easily over
distance through the air. Critically, in the environment we typically have
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other sources of electromagnetic signals as well. These include lights,
computers, monitors, and anything else connected to an electrical outlet, as
well as (potentially) other sources such as cell phones, two-way radios (often
used by facilities personnel in universities and hospitals), and other devices
that generate a wireless signal. All of these devices generate magnetic fields,
and can therefore induce current in the EEG wires.

Figure 3.11 The right-hand rule, a mnemonic for Ampère’s circuital law,
illustrating the relationship between an electrical current and its associated
magnetic field. Given a current flowing in the direction that the thumb of
one’s right hand is pointed (green arrow), the induced magnetic field will
flow in the direction of one’s curled fingers (blue dashed line)

Much of this induced noise is associated with devices connected to electrical
mains systems (for example, anything connected to an electrical outlet;
overhead lights), and the electricity supplied in these systems is an alternating
current (AC) that fluctuates at a rate of either 50 or 60 Hz (different countries
have different standards; for example, North America uses 60 Hz while
Europe uses 50 Hz). Thus the noise induced in the EEG conductors fluctuates
at this frequency, as shown in Figure 3.12. Care should always be taken in the
EEG recording environment to control and mitigate the effects of line noise.
This can be done through simple means such as ensuring that any electrical
wires are as far away from the recording subject as possible, and in some
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cases shielding the effects of noise from the subject. Many wires (for
example, computer monitor cables) are shielded by having a grounded,
conductive sheath placed over the wires. On a larger scale, many EEG labs
record data inside a shielded booth, or Faraday cage. This is a room
enclosed in a conductive material, such as copper, with the conductive
material connected to an electrical ground. Anything inside a Faraday cage
is largely isolated from electromagnetic sources outside the cage. However,
in practice the efficacy of Faraday cages in EEG research is less than
complete, because typically there are electrical devices such as video
monitors and/or speakers inside the recording booth. Any wires running from
the outside to the inside of the Faraday cage will act as antennae to carry
outside electromagnetic noise into the booth, unless they run through filtered
connections between the outside and inside of the booth. It is also possible to
place devices such as monitors outside the booth (booths can have shielded
windows) or to build Faraday cages to surround individual pieces of
equipment within the booth. Ultimately, however, the cost and effort
involved in properly shielding the EEG subject from outside electromagnetic
noise may not be worth the benefits. Because electrical mains noise is highly
regular, and occurs at a higher frequency than is usually of interest in EEG
data (which, for most studies, is typically below 30–40 Hz), it is generally
possible to remove most of the effects of mains noise from the data by
filtering (see the next section for more details). This said, it is still valuable to
reduce noise in EEG recordings as much as possible for a number of reasons.
Sources of noise other than electrical mains may be less regular in their
frequency or strength over time, making filtering much less effective – and
electrical wires running to the recording booth can act as antennae to conduct
outside signals such as from two-way radios and large electrical equipment
that do not generate purely 50 or 60 Hz noise. Finally, it is important for the
experimenter to monitor the quality of the EEG data as it is being recorded, in
order to control for any problems that may occur. The more noise that is
present in the EEG signal, the harder it will be for the experimenter to assess
whether problems are occurring that could be corrected.

Figure 3.12 A six-second segment of raw EEG, shown without (left) and
with (right) high-frequency noise removed by applying a 30 Hz low-pass
filter. The high-frequency noise included 60 Hz electrical line noise as well
as noise from other, unidentified sources
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Other sources of electromagnetic noise may have very different frequencies,
and possibly varying ones. For example, most audio headphones use
electricity to drive their speakers, and the frequency and intensity of the
electricity used varies with the sound being produced. Headphones placed on
an EEG subject’s head and creating sounds will induce highly variable, and
very large, artifacts that are difficult to remove and may wash out the EEG
data. For this reason, careful control over the recording environment, and the
equipment used in the experiment, is critical to obtain good-quality data. For
auditory presentation, speakers placed some distance away from the subject
are preferable to headphones; if headphones are required, there are models
available that keep the electromagnetic sources relatively distant from the
head, and use air tubes to carry the sound from its source to the ears.

The other important source of noise in EEG recordings is physiological. As
noted above, EEG signals from the brain can themselves be noise depending
on the experimental context. Other important sources of physiological noise
include eye movements, eye blinks, muscle movements (especially facial
muscles), chronic muscle tension, and heartbeat (EKG). The eyes generate
electrical artifacts because each eyeball is effectively an ECD, with polarity
reversing between the retina and the front of the eye. When the eyes move,
the orientation of this dipole changes, and this will be reflected in EEG
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recording electrodes on the scalp due to electrical conduction. A
characteristic feature of eye-movement artifacts is that any eye movement
results in a negative shift in potential on one side of the eye, and a
corresponding positive shift on the other side of the eye, maximal along the
axis of the eye movement. These can be easily identified by examining the
data from electrodes near the eyes; many labs place electrodes close to the
outside of each eye to monitor for horizontal eye movements, though these
can also be detected in nearby scalp electrodes (for example, F3/4 and F7/8).
Eye blinks also generate EEG artifacts. The skin is a good conductor of
electricity, and when the eyelids touch they form a new path for current to
flow. Blinks result in large, peaked artifacts that reverse in polarity above and
below the eyes. This is why it is useful to have electrodes placed above and
below at least one of the eyes – this arrangement will facilitate blink
identification because the polarity inversion will be evident when comparing
the electrodes above and below the eye.

Besides the eyes, muscles (especially facial and neck muscles) can generate
large EEG artifacts. These artifacts are generated by the nerves that innervate
the muscles; this ‘noise’ in the EEG signal is of interest in other research
fields, where it is known as the electromyogram (EMG). The frequency range
of EMG can span 0.5–350 Hz, but in the EEG signal it is typically
recognizable as relatively high (> 30 Hz) frequency. Common causes of
EMG artifact include muscle tension (which is often easily fixed by asking
the participant to relax her/his muscles), jaw clenching, or speaking. This
does make it difficult to record clean EEG data under experimental
conditions that require speaking or other body movements. EMG artifacts can
be removed to some extent by filtering; however, because the signal is more
complex and variable over time than line noise, and can include frequency
bands of interest for EEG, eliminating the sources of EMG noise during the
recording is preferable to a ‘hope we can filter it later’ approach.

Head movements can often induce another artifact as well: a physical artifact
created by the movement of the wires running from the electrodes to the
amplifier. These artifacts are created through induction because the wires
(conductors) are moving through space (containing varying magnetic fields).
Some EEG systems use shielded wires for which this artifact is much less of
a concern, but it is generally a good idea to ask participants to remain as still
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as possible during the experiment. In studies requiring movement, wireless
EEG systems can be used. Artifacts can also be generated by the physical
movement of the electrodes relative to the scalp. This is not typically a
significant concern for most systems, as the electrode gel or solution acts as a
flexible connection and minimizes the effects of small movements; this is
more of a concern with dry electrode systems, however. As well, if a
participant scratches her head and moves the electrodes an artifact may be
produced.

Artifacts can also be generated by changes in skin conductance. These are
commonly known as skin potentials and are generated by increased
electrical conductance across the surface of the skin due to sweat (which, as
an electrolyte-rich liquid, is a very good conductor). Skin potentials manifest
in the EEG as very low-frequency drift: the tracing for the electrode will not
go horizontally across the screen but instead trend – often dramatically –
upward or downward. Decreasing electrode impedance will help to reduce
skin potentials, but the best approach is prevention by ensuring adequate
climate control within the EEG recording environment.

A final physiological artifact worth mention is from the heartbeat. The heart
generates a characteristic, complex electrical waveform with every beat,
which is commonly referred to as the EKG. This can sometimes be picked up
in some EEG electrodes, although it is relatively uncommon. Because the
heartbeat is relatively low frequency (roughly 0.5–2 Hz under resting
conditions) and unlikely to be synchronized with experimental stimuli, this
artifact is not typically a major concern for EEG data quality.

As mentioned above, even EEG itself may be considered noise, if it is brain
activity unrelated to the experiment. For example, alpha waves are
characteristic EEG waves generated in the occipital cortex. These are often
generated when a person closes his or her eyes, but can also be generated
when people are tired or bored. Thus in a long, boring experiment, the
experimenter may see alpha waves generated. These are not of experimental
interest, and alpha waves are often quite large relative to other EEG signals.
Thus even though the alpha waves are being generated by the brain, they are
considered ‘noise’ because they are not of experimental interest. EEG effects
of no interest such as this can be some of the most problematic for an
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experimenter because they occur in the same source (the brain) and at similar
frequencies to the experimental effects of interest, and so cannot typically be
filtered out or removed by most techniques. It is thus important for the
experimenter to consider why these artifacts occur and try to optimize the
experimental design; for example, by giving participants frequent breaks,
making the task as interesting as possible, keeping the task as short as
possible, not running experiments at times when people are likely to be tired,
and so on.



Practical Considerations
In describing the different artifacts above, we touched on some strategies to
help improve data quality. Here we will summarize and expand upon these.
There are three general times when data quality can be controlled: before the
participant arrives (through proper set-up of the recording environment and
experimental design), when preparing the participant (by proper application
of the electrodes), and during the recording (by providing feedback to the
participant).

Proper set-up of the recording environment should include creating a space
for the experimental participant to sit that is comfortable, acoustically quiet,
and free of distractions. An acoustically and radio frequency-shielded booth
is ideal, although a small, quiet room is adequate and used in many labs. A
comfortable chair should be provided, to help minimize discomfort and
associated muscle tension. However, for most experiments it is desirable for
the participant to stay awake, so the chair should not be too comfortable! It is
also a good idea that the chair not have a high back, so that the participant’s
head will not touch the chair back – this can produce artifacts in the data
through the mechanical movement of the electrodes and wires. The
environment should be climate-controlled to ensure that the subject is
comfortable; in particular too hot an environment is problematic because
sweating can induce skin potentials. As much as possible, it is also a good
idea to control the presence of electrical line noise near where the participant
will sit. This primarily involves minimizing the number of conductors
(especially electrical and computer wires) near to the participant. Because the
strength of magnetic fields decreases with the square of the distance, moving
wires that are near to the participant’s chair to a location even a foot farther
away can often substantially decrease the amount of line noise in the
recordings. It is common to have the computers being used for the
experiment outside of the recording booth/room, with only the minimum
necessary equipment (for example, video monitor, speakers, response device)
inside the recording space. It is also useful that all electrical equipment near
the participant be grounded; for example, laptop computers with ungrounded
electrical plugs generate substantially more line noise in the data than desktop
computers with grounded connections. Some troubleshooting and
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experimentation is typical in setting up an EEG lab to identify the optimal
configuration.

Experimental design is also a consideration that can affect EEG data quality.
Because blinks create artifacts, it is a good idea not to design stimuli that are
likely to induce blinks, such as sudden, bright visual stimuli or loud auditory
stimuli. Because eye movements create artifacts, it is a good idea to ensure
that visual stimuli can be easily viewed without eye movements. For
example, in studies that use written sentences as stimuli, the sentences are
typically presented one word at a time, in the centre of the screen.
Experiments may also be designed in ways that allow participants specific
times to blink in between critical trials. For example, if the participant has to
initiate each trial with a button press, s/he can blink between trials. In other
cases frequent breaks can be given to allow blinking. Because physical
movements create artifacts, it is a good idea to minimize movement
requirements. Studies that require button press or verbal responses typically
have a delay between stimulus onset and the prompt to respond, to ensure
that the physical movement occurs after the post-stimulus period during
which the EEG is of interest (often 1 second, though this varies with the EEG
effects under investigation). Finally, while fatigue affects performance under
any circumstance, in EEG it is of particular concern because numerous
artifacts may occur (for example, alpha waves, increased blinking, body
shifting, stretching, yawning). Thus it is a good idea to design experiments
that last an hour or less, and provide breaks during the experiment. Some labs
have found that playing background music can also help participants feel
more alert, so long as the music does not interfere with the experiment itself.

Proper set-up of the EEG participant also contributes significantly to data
quality. It is always a good idea to have all equipment and forms prepared
before the participant arrives, and to proceed with the study in a calm,
organized manner – if the experimenter acts stressed, this may lead to less
comfort and more tension in the participant. Care should be taken with
preparation of the exposed skin where electrodes will be placed, and to the
placement of the electrode cap and any free electrodes. Connections between
the electrodes and the head should be as physically secure as possible (for
example, in a snug-fitting cap). Electrode impedances should be measured,
and lowered to levels appropriate for the system as discussed in the previous
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section. This is typically done by rubbing the scalp at each electrode location
to work the gel in better and loosen dead skin cells. Exposed skin can be
prepared with rubbing alcohol or an exfoliating cleanser prior to electrode
application to lower impedance. Because the reference and ground electrodes
affect the data at all other (active) electrodes, particular care should be taken
to ensure that these have low impedance. Because participant and comfort are
important, it is always good to attend to a participant’s needs. Many EEG
labs offer snacks (such as candy) and drinks (including caffeinated ones) to
participants to aid in their alertness.

During recording, it is vitally important to monitor the EEG signals from all
electrodes. This allows the experimenter to take action during the study to
improve data quality, as needed. Many different actions might be required,
depending on the situation; thus it is important for experimenters to know
how to recognize and differentiate different types of artifacts. Most
commonly, a participant may show muscle tension or blink particularly
frequently. In these cases, verbal feedback to the participant is usually very
effective. As well, impedance may go up at some electrodes over time,
resulting in increased line noise and drift in those channels. This can be
corrected by taking steps to lower impedance at those electrodes. If a
participant gets bored or sleepy during the experiment, an increase in alpha
band activity is often seen. When this is observed, it is a good idea to pause
the experiment, give the participant a break, and possibly offer a stimulating
snack and/or beverage. For all of these reasons, it is a good idea to
programme breaks into the experiment, perhaps every 10–15 minutes. This
both gives participants regular intervals to reduce fatigue, and provides the
opportunity to check impedances or give feedback to the participant.

Summary

EEG is the oldest non-invasive neuroimaging technique, first developed in the 1930s. It
measures the summed electrical activity of many brain regions, due to the fact that
electricity is conducted well through the head. Thus EEG data provides poor information as
to the location in the brain of activity. However, EEG has exquisite temporal resolution,
making it an excellent choice for studies interested in the timing of neurocognitive activity.
The primary source of electrical activity measured by EEG is postsynaptic potentials, and
not action potentials. Although electricity is volume-conducted through the head, not all
electrical activity manifests as measurable EEG signals. This is because activity can only be
recorded at the scalp when large numbers of neurons are oriented parallel to each other, and
have synchronized postsynaptic potentials.
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Much research focuses on ERPs, which are EEG signals time-locked to particular events of
interest (such as the onset of stimuli), and typically averaged over many trials. Averaging is
important because EEG has an inherently low signal-to-noise ratio (SNR), but SNR
improves non-linearly with the number of trials averaged together. ERP components are
features (peaks or troughs) of a waveform that have characteristic polarity, timing, scalp
topography, and eliciting conditions. Certain components have been associated with
particular cognitive operations through many repeated experiments, and so the presence
and/or size of these components is often the focus of studies investigating a particular
cognitive process.

EEG is normally recorded by placing electrodes on the scalp (usually with a conductive
electrolyte gel or solution to improve the quality of the contact), and connecting these
electrodes to a differential amplifier. The amplifier serves to both boost the signal, and
cancel out environmental noise. Noise is cancelled by the fact that the electrical potential
measured at each ‘active’ electrode on the head is actually the difference in electrical
potential between that electrode and a reference electrode placed elsewhere on the body,
and in fact the potential at each of these electrodes is measured relative to a third, ground
electrode. Differential amplifiers rely on common-mode rejection, which eliminates any
signal that is identical at both electrodes. Since electromagnetic noise from the environment
should be largely similar at different parts of the head, this is effective in removing much
environmental noise, such as from electrical lights and other equipment. However, other
types of noise are still present in most EEG data, including that generated by muscles,
blinks, skin conduction, head movements, and heartbeats. Recording clean EEG data
requires careful attention to detail; perhaps more than most other cognitive neuroscience
techniques.

Things You Should Know

EEG stands for electroencephalography, and it measures electrical activity generated
in the brain via electrodes placed on the scalp.
EEG is generated primarily by postsynaptic potentials, which are modulations of
neural cell membranes by incoming signals from other cells. To be recorded at the
scalp, large numbers (thousands or even millions) of neurons must be arranged
parallel to each other in an ‘open field’ configuration, and have postsynaptic
potentials that oscillate synchronously with each other.
Event-related potentials, or ERPs, are EEG signals time-locked to particular events of
interest (such as the onset of stimuli), and averaged across many trials to improve the
signal-to-noise ratio (SNR).
While EEG is often viewed in the time domain – plotting electrical potential as a
function of time – it can also be fruitfully examined in the frequency domain. This
involves applying a Fourier transform, collapsing over a period of time (ranging from
milliseconds to many minutes) to identify the amplitude of the signal (power) in
different frequency bands. Frequency bands are defined by the number of cycles
(peaks and troughs) per second, in units of Hertz (Hz). Human EEG is categorized
into at least five frequency bands: delta, theta, alpha (or mu), beta, and gamma.
In the time domain, ERP components are characteristic features of a waveform that
have consistent polarity, timing, scalp distribution, and eliciting conditions across
individuals and experiments. Components are typically associated with particular
cognitive processes, and so they are often the focus of study in ERP experiments.



Because of volume conduction, a component defined in this way may be generated
by multiple brain areas operating over the same time period, or even different brain
areas active at slightly different, but overlapping, times.
Recording EEG requires electrodes placed on the scalp, connected to an amplifier
that boosts the signal and removes some environmental noise. Data from the
amplifier are typically streamed to a computer for digital storage and analysis.
EEG relies on differential amplifiers, which subtract electrical noise that is common
to pairs of electrodes. Specifically, recording EEG requires a minimum of three
electrodes: active, reference, and ground. Data are observed at each active electrode,
and reflect the subtraction [A–G] – [R–G].
Recording clear EEG data requires careful attention to detail in the preparation of the
participant, how the electrodes are connected, and instructions and feedback provided
to the participant before and during the experiment. In applying electrodes, a key
factor is reducing the impedance between electrode and scalp as much as possible.
This is done through cleaning the skin under each electrode, rubbing to move hair
and remove dead skin cells, and to ensure good contact between the electrolyte
gel/solution and the scalp (or direct electrode–scalp connection in the case of dry
electrodes). For the cleanest data, it is also good practice to encourage the participant
to keep their muscles relaxed, and minimize blinking and body movement during the
study.
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Learning Objectives
After reading this chapter, you should be able to:

Explain why it is best to control psychological/task conditions in an ERP experiment,
while holding physical stimuli constant.
Describe the important considerations in stimulus timing for ERP experiments.
Describe common sources of noise in EEG recordings, and how to minimize them.
List the common steps involved in preprocessing EEG/ERP data.
Describe the different types of filtering commonly applied to EEG data, and how to
determine appropriate cut-offs.
Recognize different types of artifacts in EEG recordings, and explain how best to deal
with them in preprocessing.
Identify the common dependent measures used in, and common approaches to, statistical
analysis of ERP data.
Explain the differences between event-related synchronization and desynchronization.
Explain the difference between forward solution and inverse problem, and the challenges
posed by source localization of EEG/ERP data.
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Experimental Design



Stimulus Features
One of the most important considerations in ERP research is matching the
stimuli between conditions. Although stimulus control should be considered
important in any experimental design, including for behavioural studies, the
effects of stimulus differences in EEG data may be magnified. This is
because some ERP components – particularly early components most
strongly related to sensory processing – are exquisitely sensitive to low-level
stimulus features such as size, brightness, and contrast. Thus if there is a
systematic difference in any of these properties between the stimuli used in
different experimental conditions, it will be impossible to know if an
observed ERP difference between conditions is due to the experimental
manipulation or a stimulus confound (this of course assumes that the
experiment is not aimed at investigating the effects of varying some low-level
stimulus property).

There are a number of different ways to address this issue. Perhaps the most
ideal approach is to apply the ‘Hillyard Principle’, mentioned in Chapter 2:
‘To avoid sensory confounds, you must compare ERPs elicited by exactly the
same physical stimuli, varying only the psychological conditions’ (Luck,
2014: 134).

Hillyard is known for his pioneering ERP research on attention (Hillyard &
Anllo-Vento, 1998; Hillyard, Hink, Schwent, & Picton, 1973; Mangun,
2013). In a classic application of this principle, an experiment would compare
ERPs evoked by, for example, a white square presented on the left side of a
computer screen for 100 ms between conditions in which the subject was
either cued to pay attention to that side of the screen, or cued to attend to the
right side of the screen. Thus the stimulus was exactly the same in the two
conditions, and all that varied was where the subject’s attention was directed.
Often in such experiments attention is directed to one side of space by
requiring subjects to respond to stimuli presented there – however, this would
create a ‘psychological’ confound if some stimuli (on the attended side) were
to be responded to, whereas other stimuli (on the unattended side) were not.
The solution to this is to have two types of stimuli: ‘target’ stimuli that the
subject is instructed to respond to when seen on the attended side (in this



example, perhaps red squares), and ‘standard’ stimuli that the subject is
instructed not to respond to (the white squares). To compare the effects of
identical stimuli on the attended and unattended sides, only the ERPs in
response to the white squares (standards) would be analysed. It would be
important to balance all experimental factors, so both target and standard
stimuli should be equally likely to appear on either side of the screen, with
equal numbers of stimuli presented on each side. Because the targets are used
to provide subjects with a task, but ERPs to these stimuli are not of
experimental interest, they could be less frequent that standard stimuli
(perhaps only 10–20% of the total stimuli). This would ensure that most of
the trials were used for ERP analysis.

Obviously, the Hillyard Principle cannot always be applied in an experiment.
For example, if we wish to compare ERPs evoked by upright and upside-
down (inverted) images of faces, the stimuli are necessarily different.
However, in this case it would be advisable to ensure that each face image is
presented in each condition (that is, each face presented both upright and
inverted), and that nothing besides the orientation of each image was varied.
This would restrict stimulus differences to the one of experimental interest. In
such a case, it would also be advisable to keep the ‘psychological conditions’
matched – if participants were instructed to make a button-press response to
one type of stimulus (say, inverted faces) but not to the other, then the to-be-
responded-to stimuli might be expected to elicit greater attention/arousal as
well as ERPs associated with preparing a motor response – so it would be
better to have participants press one button for upright faces, and a different
button for the inverted ones.



Timing
Because of the high temporal resolution of EEG, stimulus timing is a
significant consideration. This manifests in a number of different ways. First
of all, it is important to ensure that there is a high degree of synchrony
between when the stimulus computer initiates the presentation of a stimulus,
when that stimulus actually is presented to the participant, and when the EEG
system receives the marker code (or trigger) from the stimulus computer
indicating the onset of that stimulus. The first of these, synchrony between
when the computer initiates the stimulus and when the stimulus hardware
actually presents the stimulus, may seem trivial, but it is not. A number of
factors come into play here, primarily related to the mechanics by which
stimulation devices like video monitors and speakers produce stimuli. Video
monitors do not have instantaneous responses; rather, they re-draw every
pixel on the screen at a regular interval known as the refresh rate, which is
typically the same as the electrical line frequency (50 or 60 Hz depending on
the country). A 60 Hz refresh rate means that the shortest duration a visual
stimulus can appear on a screen is 16.67 ms (1000 ms/60 Hz), and it also
means that if the request to draw/update an image comes from the computer
at a time other than exactly at the start of a refresh cycle, there will be a delay
between the time the computer ‘thinks’ that the stimulus appeared, and when
it actually did – of up to 16.67 ms. If the stimulus computer blindly sends a
trigger code to the EEG computer at the same time that it sends the message
to draw a visual stimulus on the monitor, without considering the monitor’s
refresh rate, the code could misrepresent the actual onset of the visual
stimulus to the subject by the duration of the refresh cycle. Given that some
timing differences in EEG are in the order of 20 ms (for example, the peak of
the N170 component between upright and inverted faces), this degree of
timing uncertainty could distort or even eliminate our ability to detect an
experimental effect.

There are two primary ways to address this issue for visual stimuli. One is to
use a monitor with a higher refresh rate. For example, current monitors
targeted towards the video gaming market have refresh rates of above 120
Hz, bringing the refresh cycle down to 8 ms or below. Regardless of the
hardware, it is advisable to use specialized software that synchronizes



stimulus presentation with the refresh rate of the monitor. In this case, the
software will ensure that the code to initiate stimulus display is synchronized
with the start of a drawing cycle on the monitor, and the code sent to the EEG
computer can be timed with this as well. Numerous commercial stimulus
presentation packages, as well as open-source libraries for programming
languages such as Python, have this capability. Regardless of the approach
used, it is critical that the experimenter test the timing of the visual stimuli
relative to the EEG trigger codes. This can be accomplished using a
photodiode (which detects light flashes) that sends a trigger directly to the
EEG amplifier; the timing of the codes sent by the photodiode can be
compared with the timing of codes sent by the stimulus program and the
mean and standard deviation of the asynchronies computed.

Auditory stimuli present similar issues, although the sources of timing delays
can be more variable depending on the hardware – speakers and headphones
do not have refresh rates but may nevertheless have characteristic delays.
These delays can be measured in a similar fashion to that described above for
visual stimuli – a hardware device can be built or purchased that sends a
trigger code to the EEG system whenever a sound exceeding a particular
threshold is detected by a microphone. Given the constraints of a particular
hardware set-up, the timing inaccuracy of auditory stimuli should be at a
minimum for simple stimuli such as simple sine wave tones. However,
complex auditory stimuli such as speech may induce additional variability.
Careful editing of such stimuli is essential to ensure that there is no silent gap
at the beginning of each sound file. Another consideration is that, for
example for speech stimuli, different words may be identifiable at different
times after their onset, depending on the particular phonemes and their
uniqueness. Such factors can be difficult to control and may lead to variance
in the timing of the ERP components across trials.

Another timing-related consideration is the duration of the stimuli, and the
inter-stimulus intervals (ISIs). Sensory systems typically produce
characteristic ERP responses not only to the onset of a stimulus, but to its
offset as well. These offset-related ERPs are typically lower amplitude than
the onset effects, but are not negligible. Thus one might wish to ensure that
the duration of the stimuli is sufficiently long to separate the onset- from
offset-related components. Another approach would be to use variable-



duration stimuli so that the offset-related components would be expected to
cancel out when trials are averaged together. The inter-stimulus interval, or
more specifically the stimulus onset asynchrony (SOA), between stimuli is
also an important consideration. If stimuli are presented too closely together
in time, the ERP components elicited by each stimulus may overlap and thus
be difficult to separate (mathematically deconvolve) from each other. Thus
expectations concerning the amount of time after stimulus onset that ERP
effects will be detectable should be factored into timing considerations.
Beyond overlap of ERP components, another consideration is refractoriness –
the fact that after an initial stimulus, the amplitude of ERPs evoked by
subsequent, similar stimuli will be somewhat attenuated. The extent of
refractoriness varies depending on the type and intensity of stimuli (being
maximal for simple, highly repetitive stimuli), but at its extreme one could
fail to see any distinctive response to individual stimuli if they are presented
too closely together in time. On the other hand, full recovery from
refractoriness typically takes several seconds, which could result in a long,
boring experiment for participants. Thus it may not be reasonable to design
stimulus timing around full recovery from refractoriness, but nevertheless
this is a consideration that should not be overlooked.



Stimulus Presentation and Response Collection
Hardware
As we have discussed, electromagnetic noise can be a serious concern in
EEG data. Noise is generated, among other things, by equipment typically
used for stimulus presentation, including computer monitors and headphones.
It is thus ideal to keep all stimulation equipment as far away from the subject
as possible, since electromagnetic noise drops off with the square of the
distance from the source. Most acoustic headphones are problematic for EEG
because they use electricity to generate the sounds they produce, which will
induce significant artifacts in the EEG since the headphones are right near the
recording electrodes. Generally, using ‘free field’ sound presentation
(speakers placed farther from the subject) is preferred if it is feasible for the
experiment. However, in some cases the experimenter may wish to separately
control the stimulation presented to each ear, which is only possible with
headphones. In this case, there are special headphones available for
audiological research that place the sound- (and noise-) generating hardware
farther from the subject’s head, and deliver the sound to the ears via tubes
that fit into foam earplugs.

Hardware used for collecting behavioural responses, such as a keyboard or
button box, also runs the risk of transmitting electromagnetic noise to the
subject. This is largely dependent on the hardware design and so testing is
essential to ensure that this doesn’t happen. More generally, the experimenter
should pay careful attention to how wires are run in the EEG recording room,
keeping them as far away from the subject as possible. Sometimes simple
actions like moving a power cord can drastically reduce noise in the EEG
recordings.



Participant Movement
Head movement can be a serious concern in EEG recording. Movement of
the electrodes relative to the scalp can induce artifacts in the data, as can
movement of the wires connected to the electrodes. Thus the ideal
experimental design does not require the participant to move, and involves
instructing the participant to stay as still as possible. Small movements such
as those required to make a button press response are not a concern, but
larger movements may be. Different EEG systems vary in their sensitivity to
these effects, and wireless systems have been developed that are specifically
designed for experiments requiring the participant to move. Nevertheless,
careful thought and extensive pilot testing are required if one wishes to
record clean EEG from moving people.

One type of movement that is particularly difficult to deal with is speaking.
Because speech involves the activity of so many muscles in and around the
face, it will induce very significant motor artifacts in the EEG data. One
approach to this in studies interested in speech production is to only analyse
EEG data collected immediately prior to speech production. This can be
effective in revealing brain activity associated with preparing a spoken
response, but it is obviously rather limiting if the experimenter is interested in
the brain activity that goes on during speech. Another approach is to attempt
to remove the speech-related artifacts from the data, using principles similar
to those described above for removing ocular artifacts. Just as EOG
electrodes are used to record ocular artifacts, EMG electrodes can be placed
on the face and neck to capture speech production-related artifacts.
Specialized signal-processing techniques (discussed later in this chapter) can
then be used to attempt to isolate the artifacts from EEG data, and remove
them. It is important to emphasize, however, that these post-hoc data clean-
up methods may be imperfect at best, and require significant investment of
time to develop and validate. Thus it is always preferable to avoid artifacts
wherever possible than to attempt to remove them after the fact.



Designing for Simplicity
Compared to research using exclusively behavioural measures, EEG and
other cognitive neuroscience methods require significantly more time spent
on data acquisition, processing, and analysis. Thus there is a common
temptation to try to squeeze several experimental manipulations into one
study, in an effort to get the most ‘bang for the buck’ in terms of the amount
of data collected per subject. However, in the end this can often work against
the experimenter. One thing to consider in designing an experiment is the
complexity of the model that will be required for data analysis. Analysis of
variance (ANOVA) and related variants of the general linear model are a very
common way to approach data analysis. Because EEG data have both spatial
and temporal dimensions, the complexity of the ANOVA model applied to
EEG/ERP data is often more complex than for a comparable behavioural
study. The effect of an experimental manipulation will likely differ at
different electrode locations, since ERP components have a spatial
distribution over the scalp. For this reason, it is common to include one or
more factors in the ANOVA related to electrode position. This may be as
simple as electrode identify, or a two-dimensional approach such as coding
the location of each electrode along the left–right and anterior–posterior
dimensions. It is common to simplify the levels of these dimensions by
grouping electrodes into regions of interest (ROIs); for example, creating
levels such as left–midline–right and perhaps three to five levels along the
anterior–posterior dimension. Nevertheless, such an approach will mean that
in addition to the experimental factors of interest in the ANOVA, there will
be additional factors related to electrode position.

Thus in the simplest possible experimental design – looking for a difference
between two experimental conditions – the ANOVA model might have three
factors: the experimental factor along with left–right and anterior–posterior
factors. In this case a significant experimental effect that modulated an ERP
component with a particular scalp distribution would involve a three-way
interaction between these factors, since the difference between experimental
conditions would be larger at some combination of the left–right and
anterior–posterior dimensions than at other combinations. If we expand on
our hypothetical design, imagine that we wanted to examine the effects of



various features of a word on N400 amplitude. We could select word
frequency (how often the word appears in normal usage – coded as high/low),
imageability (how easy it is to visualize the concept associated with the word
– also coded as high/low), and length (number of letters – coded as
long/short). In this case, our ANOVA model would contain five factors and a
significant five-way interaction might be obtained if all three dimensions of
the words affect N400 amplitude. The presence of such an interaction would
necessitate a very large number of post-hoc tests in order to interpret – so
many, in fact, that the interaction might be very hard to interpret at all! This
is especially true because increasing the number of post-hoc tests also
increases the probability of Type I error (finding false positives), and so
multiple comparison correction should be applied to the post hoc tests, which
may result in an overly conservative analysis. This is not to say that such
designs should always be avoided, but merely to suggest that (as with any
experimental design) the experimenter think through the planned approach to
data analysis, and what pattern(s) of results will be required to support the
experimental hypotheses, prior to executing the study. A series of simpler
studies might ultimately be easier to interpret than running one complex
study whose results are not interpretable.

Another dimension of complexity in ERP data analysis is time. Different
components and experimental effects might occur at different points in time,
and sometimes a manipulation may have effects over more than one temporal
epoch. For example, sentences containing syntactic violations such as
Yesterday I wanted the eat to banana typically elicit an enhanced negative
potential from 300–500 ms (labelled the LAN) followed by an enhanced
positive potential (called the P600) from approximately 600–800 ms. Thus
separate analyses will be performed on mean amplitudes over the two
different time windows where these effects are predicted.

Another suggestion is to design ERP experiments around specific
components. This has several benefits. For one, if the experimental
hypothesis centres around a single component, then only one time window
may need to be analysed. Conversely, if one does not have a prediction a
priori as to when the experimental effects will occur, one may have to
conduct analyses over a number of time windows, which again would
necessitate multiple comparison correction. Another significant benefit of



designing a study around a particular component is that one can draw on the
body of prior research concerning that component. This makes it much easier
to interpret the results of the study in terms of the neurocognitive processes
associated with that component.



Data Analysis



Preprocessing
Signal processing refers to any operations performed to modify the data prior
to visualization or statistical analysis. The goal of signal processing is to
optimize, as much as possible, our sensitivity to the experiment-related brain
activity and our ability to detect an effect of an experimental manipulation, if
it is present. It is important to understand that modifying the data in the ways
we will describe is not ‘cooking’ the data or otherwise trying to make effects
appear that are not truly present. On the contrary, our goal is to remove noise
and thus increase the SNR of our data as much as possible. As we have
already discussed, there are many sources of noise that can contaminate EEG
data. While it is critical to minimize the presence of noise in the data as much
as possible at the time of recording, it is impossible to record data using EEG
(or for that matter, any other neuroimaging technique) that contain only brain
activity – noise is inevitable. However, noise is ultimately variability in the
experimental measurements, and our ability to detect statistically significant
experimental effects, should they exist, is reduced when variability increases.
Thus signal processing comprises a variety of techniques that help to reduce
noise and increase our sensitivity to experimental effects.

Filtering
Filtering is a set of techniques that reduce certain frequencies in the data,
with the primary goal of making it easier to detect signals in the range of
frequencies not filtered. As mentioned earlier, frequency refers to how many
times something happens in a given time interval. We learned earlier that the
term ‘frequency’ is used to refer to how many times per second the EEG was
sampled at each electrode. When describing the data itself, we commonly use
frequency to describe the number of cycles (peaks and troughs) that occur in
a unit of time. Recall that it is mathematically possible to break any
waveform down into a set of different sine waves of differing frequencies,
using a Fourier transform; this set of simpler waveforms is called a Fourier
series. Mathematically, there are many implementations of filters, such as
finite impulse response (FIR), infinite impulse response (IIR), Butterworth,
Bessel, and others. Each have advantages and disadvantages in different



applications, but the details of these are beyond the scope of this book. What
is important to understand, however, is that filters can be described in general
terms by how they affect the data. A low-pass filter attenuates high
frequencies (allowing low frequencies to ‘pass through’ the filter), while a
high-pass filter attenuates low frequencies. These filters are typically
described by their cut-off frequency; for example a 0.1 Hz high-pass filter
attenuates frequencies below 0.1 Hz. A band-pass filter is a combination of
low- and high-pass filters (passing through a frequency band between the
high-pass and low-pass frequency cut-offs). It is common to apply band-pass
filtering to EEG data to reduce low-frequency noise (such as drift from skin
potentials) and high-frequency noise (such as EMG artifact). A notch filter
does the opposite of a band-pass filter, reducing frequencies in a particular
band between its high- and low-frequency cut-offs. The most common
application of a notch filter in EEG is to reduce line noise, by applying a
notch filter at the frequency of the electrical mains (50 or 60 Hz, depending
on the country).

The filter responses of each of these types of filters is shown in Figure 4.1.
Filter response plots show the effects of applying a filter, in the frequency
domain. One important thing to note in these plots is that the filters do not
reduce all frequencies below the cut-off to zero. Rather, there is a transition
band (shaded in grey in Figure 4.1) over which the power is gradually
attenuated before dropping to its maximally reduced value. This transition
band is often called the roll-off of the filter, and is a necessary feature. If the
transition band is too narrow (that is, the roll-off is too steep), the filter can
introduce artifacts in the data, which manifest as ‘ripples’ in the time domain.
In other words, filtering with too narrow a transition band will reduce some
frequencies in the data, but introduce artifacts at other frequencies. The width
and shape of the filter roll-off is dependent on the type of filter applied, and
the cut-off; in general, narrower bands are required at lower frequencies, as
seen in the band-pass panel of Figure 4.1. It is thus necessary to understand
the nature of the filters one is applying when working with EEG data. In
general, mature EEG data analysis software packages provide filters that have
been well tested, but it is important to read and understand the documentation
to ensure this step is done correctly.

Figure 4.1 Responses, in the frequency domain, of different categories of



filters. The grey shaded areas represent the transition band (or roll-off), over
which the signal is partially attenuated

Figure 4.2 shows time- and frequency-domain representations of some
example EEG data, before and after different types of filtering. The left
panels show the power spectra (another term for frequency-domain plots) of
the data and the right panels show a 15 s segment of the EEG data (in the
time domain) from six channels. Starting with the top panels, in the raw data
power spectrum we see a pattern that is quite typical of EEG data: the power
drops off exponentially with increasing frequency (the 1/f effect mentioned in
the previous chapter); there is a peak just below 10 Hz (corresponding to the
person’s alpha frequency); and there is a very large spike at 60 Hz
(corresponding to electrical line noise). In the time domain, the segment of
data shown demonstrates all of these features: the low-frequency power is
manifest as slow drift in all channels, but especially in F3 and C3 in the
earlier portion of the segment; alpha is notable especially around 5–6 s in
channels C4 and P4 (and also in these and other channels at other times); 60
Hz noise is present as high-frequency fluctuations throughout the segment;
and finally there is a large burst of high-amplitude, high-frequency noise
between 12–14 s (which probably was caused by head movement and/or



muscle contraction).

Moving down in Figure 4.2, we can see first the effects of applying a 30 Hz
low-pass filter. The cut-off frequency is indicated by a dashed line in the
power spectrum, and we can see that the power (amplitude) of the EEG drops
off dramatically above this frequency. In the time domain, we can see that
this filter markedly reduces the high-frequency noise, including both the 60
Hz noise throughout and the high-amplitude noise from 12–14 s. However,
we can see that this 12–14 s noise burst also included a lower-frequency
component which was not removed by the filter. A couple of other things are
notable about the power spectrum for the filtered data. First of all, the roll-off
of the filter can be clearly seen with a transition band of approximately 10
Hz. Secondly, the 60 Hz peak is still visible; however, it is of no concern
because of the overall attenuation of frequencies below 40 Hz. Conversely,
we can see that the frequencies above 30 Hz are well preserved, including the
alpha peak. The alpha peak looks much smaller than in the raw data, but this
is because the scale of the y axis of the frequency plot has been dramatically
increased to account for the effects of filtering the higher frequencies.
Finally, there are ‘ripples’ at frequencies > 40 Hz. These are a side effect of
the filter (in particular the with of the transition band), but are of no
consequence because all of the frequencies are well attenuated by the filter.

Figure 4.2 The same EEG data is shown in its raw form (which was collected
with a 150 Hz low-pass filter and no high-pass filtering) and after various
filters are applied. Left panels show the frequency-domain representations
(power spectra) of the entire dataset (approximately 45 min of data), while
the right panels show a 15 s segment of the data in the time domain. Note that
the y-axis scale for the power spectra is adjusted in each case to capture the
actual range of power in the data





The next filter that was applied is a high-pass filter with the same 30 Hz cut-
off that we applied for the low-pass filter. A 30 Hz high-pass filter is not
something that would normally be applied to EEG data, but for illustrative
purposes here it provides a nice contrast to the 30 Hz low-pass filter. In the
frequency domain, we see essentially a mirror image of the panel above: the
width of the transition band is similar, and although the 1/f decline in power
at lower frequencies is still visible, even the lowest frequencies are well
attenuated. The result in the time domain is very flat EEG at each channel,
because the low-frequency drift has been completely removed, as has the
alpha that was visible in the raw and low-pass filtered data. However, the
higher-frequency noise, including 60 Hz, is still very much present in the
data. Below this we see the effects of applying a 50–70 Hz notch filter, which
is a way of reducing electrical line noise while otherwise preserving high
frequencies. The plots show that this behaves as expected, with maximal
attenuation of 60 Hz and roll-off on either side between 50–60 and 60–70 Hz.
The time-domain representation looks very much like the raw data, since the
notch filter is selective for 60 Hz noise and thus does not have much effect on
the other high-frequency noise in the data.

Finally, the bottom panel of Figure 4.2 shows the effects of a 0.1–30 Hz
band-pass filter. This is a very typical setting for ERP studies. Because the
low-frequency cut-off is 0.1 Hz, it is basically impossible to see the effects of
the filter at the low end of the band in the power spectrum. However, even
though the power spectra for the 30 Hz low-pass and this band-pass filter
look very similar, the effects of the low-frequency cut-off are quite apparent
in the time domain: the band-pass filtered data shows reduced low-frequency
drift, for example for electrode F3.

It is common to band-pass filter data to be used in ERP analysis using high-
pass cut-offs of 0.01–0.3 Hz, and low-pass cut-offs of 30–40 Hz. As noted
above, it is important to be aware of the roll-offs of the filters one is using,
and also to examine the data before and after filtering to determine whether
any untoward effects occurred during filtering. Figure 4.3 shows data from a
study by Tanner, Morgan-Short, and Luck (2015) which investigated filter
artifacts on ERP data from a real sentence processing experiment. As the
high-pass filter cut-off starts to encroach on the range of frequencies of
interest in the EEG data, experimental effects of interest are attenuated, while



at the same time complex interactions of inappropriate filter settings with the
data create artifactual differences between the two experimental conditions.

Figure 4.3 Artifacts that can be induced in ERPs by high-pass filters. Data
are from a sentence processing experiment in which two types of anomalies
were presented: violations of grammatical rules (Syntactic Condition) and of
meaning expectancy (Semantic Condition). Well-formed control sentences
were also included for each sentence type. The top row shows the data with
no high-pass filtering applied (the term used for this in the EEG literature is
DC for ‘directly coupled’). The syntactic condition shows a component
typical of this type of violation – an enhanced positivity for anomalous
relative to control sentences, labelled the P600. Likewise, the semantic
condition shows a typical effect for this type of violation – an enhanced
negativity peaking around 400 ms called the N400. Little, if any, effect of
filtering is seen on either of these effects with high-pass cut-offs of 0.01 or
0.1 Hz. However, starting at 0.3 Hz both components begin to show
attenuation by filtering. Furthermore, induced differences between the
conditions that are not present in the unfiltered data begin to emerge.
Beginning with the 0.3 Hz cut-off and increasing from there, we see an
induced N400 in the syntactic condition and an induced P2 in the semantic
condition. The authors of this study showed that high-pass cut-offs of 0.01–
0.1 Hz were optimal in terms of maximizing the statistical sensitivity to the
actual effects while minimizing the risk of spuriously identifying filter
artifacts as statistically significant experimental effects. Data reprinted from
Tanner et al. (2015) with permission of John Wiley and Sons



Generally these sorts of filters are applied offline, meaning they are applied
in software to the data after they are recorded. During recording, a wider
range of frequencies is typically collected; however, some filtering is needed
during acquisition. The reason to record the data with less filtering is to
preserve as much information in the raw data as possible; information that is
filtered out prior to recording can never be re-created; after recording, any
offline filtering can be undone by going back to the raw data. Strictly
speaking, high-pass filtering is not required, although it is common to use a



0.01 Hz high-pass filter to reduce the effects of low-frequency drift in the
data (such as skin potentials caused by perspiration). Although this drift can
be filtered out later, it can make monitoring of the EEG during recording
more difficult. A low-pass filter, however, is always required when recording
EEG. The reason for this is to eliminate the induction of a particular type of
artifact, called aliasing, that is caused by the sampling rate. Recall that
sampling rate is the rate at which the continuous data are sampled and
recorded; typically rates between 100–1000 Hz are used. The sampling rate
sets the upper limit of frequencies that can be recorded in the data – if we
record at 100 Hz, clearly there is no way that we could detect a 200 Hz
signal. However, without filtering out frequencies higher than our sampling
rate, information at higher frequencies will still be recorded – but
inaccurately due to the lower sampling rate. This inaccuracy takes the form of
power at an artificially low frequency in the data. The reason for this is
shown in Figure 4.4. Because we are not sampling quickly enough, we only
capture parts of the signal, and the spacing of our sampled points is such that
we ‘catch’ the signal at different points in its cycle at each sampling time.
When we connect the dots of these time points, the result is a distorted
version of the original signal.

To eliminate aliasing, we must apply a low-pass filter at a frequency below
the sampling rate. The highest frequency we can accurately record for a given
sampling rate is known as the Nyquist frequency, and is defined as half of
the sampling rate. In actual practice the low-pass cut-off used should be at
most one third of the sampling rate, or even lower. This is illustrated in
Figure 4.4. The figure shows two examples of a 10 Hz signal, and what
happens when the sampling rate is two and three times the frequency of the
signal. In both cases, the sampled data (the dashed black lines) is sufficient to
determine the presence of a 10 Hz signal. That is, if we count the peaks in
this 1 s sample of data, we will find 10 peaks. However, compared to the true
signal (the grey line), the amplitude of the sampled 10 Hz signal is not
consistently as high, because our sparsely sampled points do not always
capture the peak. This has two consequences. First of all, the power of the
measured 10 Hz signal will be lower than the true signal. In an experiment
where the power at 10 Hz was of interest, this would obviously be a problem,
and even in an ERP experiment if there was a component of interest that was
about 50 ms wide (which is the width of one peak of a 10 Hz signal), we



would underestimate its true amplitude. The second consequence is that
aliasing introduces low frequencies into the data that are not present in the
true signal. In the top panel of Figure 4.4 this would be approximately a 1 Hz
signal, because the peaks are underestimated in the first half of the 1 s time
window, and the troughs are underestimated in the second half. In the bottom
panel the aliased signal would be approximately 0.5 Hz. While the 1/3 rule
generally works well, another approach to setting the low-pass filter is to base
it on the highest frequency that one hopes to have in the recorded data, which
may be well under 1/2 or even 1/3 of the sampling rate.

Figure 4.4 Examples of aliasing. The true signal is a 10 Hz sine wave. When
sampled at a sufficiently high rate (in this case, 500 Hz), this signal is well
represented, as shown by the solid grey lines. However, when the sampling
rate is too low aliasing occurs. The effects of aliasing are shown for sampling
rates of 30 (top) and 20 Hz (bottom)



Artifact Detection, Removal, and Correction
Filtering can be effective in removing certain types of artifacts from EEG
data – in particular, artifacts that are fairly consistent over time (or at least
fluctuate systematically for part of the recording period) and occur in
frequency ranges outside that of the brain activity we are interested in
measuring (which, for a large majority of cognitive neuroscience ERP
studies, is in the range of approximately 1–25 Hz). However, not all artifacts
in EEG data meet these criteria. Some of the most disruptive artifacts come
from eye blinks and eye movements, which we collectively refer to as ocular
artifacts. Examples of blinks and horizontal eye movements are shown in
Figure 4.5 and could also be seen in Figure 4.2. Ocular artifacts are of



relatively high amplitude compared to EEG, and can significantly obscure
EEG data. It is important to note that these artifacts are not just detectable
around the eyes – they propagate across the scalp to electrodes that are quite
far away from the eyes. Other artifacts that may occur include those induced
by sudden movements (such as sneezing), or by touching the electrodes.
Because ocular artifacts tend to be the most prominent, we focus here on
those.

Figure 4.5 Examples of common artifacts found in EEG data. A 25 s
segment of continuous EEG is shown for a number of channels (electrodes),
with different types of artifacts marked and labelled. HEOG is the horizontal
eye channel (a bipolar recording representing the difference in potential
between the outer canthi of the left and right eyes), and VEOG is the vertical
eye channel, recorded from an electrode placed under one eye and referenced
to the average of the left and right mastoids (as all other electrodes were).
The nature of the first segment of artifact (marked with a ‘?’) is unclear – the
fact that the waveforms are relatively high amplitude and quite consistent
across many channels suggests that this is an artifact, but as is sometimes the
case with EEG, visual inspection alone does not tell us what its origin is. The
other artifacts are more readily identifiable by certain hallmarks. For instance,
horizontal eye movements typically manifest as square wave-like deflections
in the HEOG channel. Blinks show opposite-polarity deflections in above and
below the eyes, so comparison of the VEOG channel with those above the
eyes (the channels starting with ‘F’) helps identify these. Note that the last
segment marked is labelled ‘not a blink’ because, although the shape of the
EEG waves in this segment is roughly similar to that in the marked blinks,
the polarity is the same in VEOG and the ‘F’ channels



There are several ways to deal with ocular artifacts. The first is to try to
minimize their presence in the data through the design of the experiment and
the procedures used during data collection. While blinking and eye
movements normally occur unconsciously, they can to a large extent be
controlled consciously, so simply informing participants that they should try
to minimize their blinking and eye movements can be effective. The
experimenter should always monitor the EEG during recording, and can
provide feedback to participants who show excessive ocular activity in a
further attempt to reduce it. As well, where possible the design of the
experiment should allow for designated blink periods in between trials. This
is often done by making studies self-paced, or inserting mandatory break
periods at regular intervals in the experiment. This approach can be combined
with cues that remind subjects not to blink during critical parts of the trials,
such as a box which appears immediately prior to the onset of critical stimuli.
An advanced and technically demanding approach is to use an eye tracker to
monitor for ocular artifacts during the experiment. An automated algorithm
running in real time on the eye-tracking data can identify blinks and eye
movements and send signals to the EEG data recording computer to ignore
the trials with ocular artifact, and also to inform the stimulus presentation
computer to ‘recycle’ the trial and present it later. In this way, the experiment
can be run with no ocular artifacts or loss of data. Another important
recommendation concerning EEG recording is that a number of electrodes be
placed around the eyes. These are commonly referred to as
electrooculogram (EOG) electrodes because their primary purpose is to
detect ocular artifacts and not brain activity. A typical arrangement involves



electrodes placed above and below at least one eye and electrodes placed on
the temples lateral to each eye (commonly called the outer canthi of each eye)
to detect the horizontal component of eye movements.

In spite of the experimenter’s best efforts, the data will inevitably contain
some ocular artifacts. Historically, the way to deal with these during data
processing was to remove these trials. They can either be identified manually,
by the researcher scrolling through the EEG from each trial and identifying
trials for removal that have obvious artifacts. This process can be automated
by using algorithms designed to detect blinks, such as rejecting any trial
where the change in amplitude over a short time period exceeds some
criterion such as 75 or 100 µV (since typically no EEG effects of interest are
nearly this large). This approach tends to be very reliable, although because
the algorithms may not detect all artifacts, it is advisable for the experimenter
to review the data manually after automated artifact rejection.

The downside of the trial rejection method for dealing with artifacts is that it
reduces the number of trials that contribute to the average. Since signal-to-
noise ratio improves with the square root of the number of trials, reducing the
number of trials will tend to lower our signal-to-noise ratio, making detection
of an experimental effect less likely. As well, people may vary in how much
they blink or move their eyes, so this approach may result in different
participants contributing differentially to the across-subject average, which is
not an ideal situation. Some experimental designs may also inherently induce
ocular responses, at least in some people – such as particularly bright visual
stimuli or loud auditory stimuli. Thus an alternative approach to artifact
rejection is artifact correction. In this approach, artifacts are identified and
classified, and then removed in some way from the data while preserving the
non-artifactual components of the data. One approach to this is using
regression (Gratton, Coles, & Donchin, 1983). Ocular artifacts are identified
in the EOG electrodes using an automated algorithm, and any signal that
correlates with the artifacts is removed from each other electrode. While
generally well accepted, this approach can in some cases overestimate or
underestimate the size of the artifact and so is imperfect.

An alternative approach is using a signal processing technique known as
independent components analysis (ICA; Makeig, Bell, & Jung, 1996). The



ICA algorithm attempts to identify a number of different ‘components’ in the
data that are statistically independent of each other. A given component can
be more or less strongly present at a given electrode, or on a particular trial,
and components that contain artifact can be removed from the data without
affecting the other components. Since ocular artifacts come from independent
sources from brain activity (that is, the eyes rather than the brain) and can be
reasonably expected to have different time courses and magnitudes than brain
activity, ICA readily identifies these and can be highly effective in removing
them. ICA can also be effective in isolating and removing other artifacts,
including muscle noise, alpha artifact, and noise that may arise from
individual electrodes having a poor connection (Delorme, Sejnowski, &
Makeig, 2007). However, caution should be exercised by the experimenter as
an incomplete understanding of what the algorithm is doing, or what the
components represent, could result in removing actual task-related brain
activity. A related technique, principal components analysis (PCA), can also
be effective at removing ocular artifacts but has been shown to be less
effective overall in removing other types of artifacts (Jung et al., 1998).

Re-Referencing
As noted earlier, the choice of reference electrode during recording is often
determined by convenience, or by the EEG system manufacturer, and may
not be ideal for interpretation of the results of a given experiment. Different
reference locations may be standard in different research areas, and/or more
or less suitable for detecting a particular effect depending on its scalp
distribution. It is easy enough in most analysis software to re-reference the
data. This is done simply by subtracting the data recorded at the new
reference channel, time point by time point, from the data of every other
channel. Because we are subtracting a constant value from every electrode,
the overall scalp distribution – in terms of the differences in amplitude
between electrodes across the scalp – will not change. However, the actual
potential value at each electrode site can change considerably, so depending
on the reference chosen a particular component could have large, small, or
zero potential, and be positive or negative. An example of this is provided
below, but first we will discuss the merits of different reference location
choices.



Arguably the most ‘neutral’ approach is to use the average reference, by
computing the average potential at all electrodes at each time point, and
subtracting this from each individual electrode. The net potential of the head,
considering all neural sources, is theoretically zero since every generator of
an EEG effect can be considered a dipole with equally strong negative and
positive poles. In practice, however, what is recorded is not the ideal. First of
all, the strength of electrical potentials will attenuate somewhat with distance
from the source, and especially due to intervening tissues – mainly the skull,
whose thickness and thus impedance varies across the head. More
importantly, we are unable to place electrodes at equally spaced locations all
around the head, because if nothing else the neck gets in the way, and in
reality most EEG electrode montages have most or all of their electrodes
located over the top half of the head (although some systems feature many
electrodes lower down in part to facilitate more accurate computation of an
average reference). If all of the electrodes are over the top of the head, and a
particular EEG effect is broadly distributed over the top of the head (as many
are), then the average potential across the recording electrodes may in fact
include the effect of interest. Thus subtracting this average from all electrodes
may actually attenuate the experimental effect – the exact opposite of what
we would want. For this reason, it is common to use a single location (such as
the tip of the nose or the nasion), or a pair of comparable locations on either
side of the head. It is advisable not to use a single location on one side of the
head, because if there is an overall difference in the laterality of the EEG
potential (and many EEG/ERP effects are lateralized), a lateralized reference
may induce a bias in the re-referenced data.

Although mathematically, re-referencing is very simple, its effects on ERPs
can be complex and are often the topic of intense discussion among experts.
An example can demonstrate why this is. Figure 4.6 shows sample data from
a group of twelve people who participated in a face processing experiment.
On each trial, participants saw either an upright face, or an inverted one
(rotated 180°). The data in Figure 4.6 are the grand average across all upright
face trials and all participants, referenced in four different ways: to the
average of all electrodes, the nasion, averaged mastoids, or the vertex
(electrode Cz). These are all common reference sites to use in EEG studies,
although the vertex is more commonly used during recording, with re-
referencing occurring afterwards, since many ERP effects are large at the



vertex. The nasion is probably the most common reference site for face
processing studies, although the average reference is also common (the data
in this example were obtained using a 128-channel recording system with
quite comprehensive coverage of the scalp, including more ventral areas, so
an average reference was a reasonable choice). The average of the two
mastoids (electrodes TP9 and TP10) are also common reference in many ERP
studies, although less so in studies of face processing because one of the main
effects of interest tends to be largest at or near these electrodes. This effect is
known as the N170 (so-named due to its polarity and timing), and is typically
associated with a positive peak at the vertex.

Figure 4.6 Scalp topography of the ERP effects elicited by upright faces,
from the grand average of 12 participants obtained using a 128-channel EEG
system. Each of the four panels shows the data referenced to a different
location. In each panel, the top figure shows the scalp topography at three
time points when the ERP components are largest, corresponding to the P1,
N70, and N250 components typically reported for face stimuli in the
literature. The bottom of each panel shows a ‘butterfly’ plot in which tracings
of each electrode are overlaid. Data are replotted from Matheson and
Newman (2008)



Figure 4.6 shows the data as ‘butterfly’ plots, showing the waveforms at all
128 electrodes overlaid on one axis to emphasize where the potentials deviate
the most from baseline. As well, scalp topography maps are shown for three
time points, selected as those where peak potentials occurred. These
correspond to components typically obtained in face processing studies: the
P1, N170, and N250. Examination of this figure shows that regardless of the
reference, the largest potentials can be observed to occur at the same time
points, and with generally the same scalp distributions. However, the
amplitude of the components differs quite a bit. For example, with the
averaged mastoids reference, the N170 is only negative right around the peak
of this effect (the two dark areas in the corresponding scalp map), with a
maximum negative voltage seen in the butterfly plot of approximately –2.5
µV. In contrast, using a vertex reference the negativity extends over much
more of the scalp, and the maximum values are over –10 µV. Similar
variability can be seen for the other components and references as well. Thus
we can see that the choice of reference in this case seems to have little impact
on our ability to detect where the experimental effects are largest across the
scalp, although the magnitude of the potentials will certainly vary with
reference location.

The situation gets more complicated, though, when we compared ERPs
between different conditions. Recall that looking at ERPs to a single
experimental condition is rarely very useful; what we should focus on are the
differences between carefully controlled experimental conditions. In the case
of our example, the stimuli in the two conditions differed only in their
orientation. The typical finding is that the N170 to inverted faces is slightly
delayed, and higher amplitude, than for upright faces, especially over the
right hemisphere; as well the P1 and N250 are larger for inverted faces.
Figure 4.7 shows the difference waveforms computed as inverted–upright,
again with four different reference locations. Looking first at the N170, we
see that indeed the scalp distributions show a greater negativity over ventral
temporal-occipital scalp regions for inverted than upright faces, and that this
effect is most pronounced over the right hemisphere – regardless of choice of
reference. Critically, however, the magnitude of this experimental difference
is very dependent on the choice of reference. This is shown even more clearly
in Figure 4.8: at the right mastoid electrode – the typical peak of the
inverted–upright N170 difference – the amplitude of this experimental



difference varies by roughly a factor of ten, from –0.1 (for the averaged
mastoids reference) to more than 1 µV (for the vertex reference)! Similarly,
the right panel of Figure 4.8 shows the difference waves at the vertex
electrode, where the difference is zero for the vertex-referenced data (which
is expected), and largest for the averaged mastoids-referenced data. Thus our
ability to detect an experimental effect – at least at a given electrode – could
differ depending on our choice of reference.

Figure 4.7 Data from the same experiment as in Figure 4.6, but showing the
difference waves computed as inverted–upright faces

Epoching
Epoching, also known as segmentation, is the process of ‘chopping’ the EEG
data into short segments around experimental events of interest – in other
words, moving from (continuous) EEG data to ERP data. Typically, during
data collection the computer presenting the stimuli sends ‘codes’ or markers
to the EEG recording computer, indicating precisely the time and type of
each event of interest. Epoching involves finding those codes and extracting
the EEG for a short period before, and a somewhat longer period after, each



code of interest. The data immediately prior to the event code is used as the
baseline for the post-code potentials, so after segmentation the average
potential of this time period is subtracted from each post-stimulus time point
within the epoch. This serves to account for drift and other random factors
and ensures that ‘zero’ potential for the data of experimental interest is
consistent across electrodes and trials. The time periods used for epoching
depend on the experimental design, and the ERP effects of interest.
Commonly the baseline period ranges from 50–500 ms, and the post-stimulus
period may range from 250–1000 ms or more depending on the expected
timing of the experimental effects. An important consequence of this
procedure is ensuring (in the experimental design) that the experimental
conditions immediately prior to the events of interest are neutral (or as neutral
as possible) and, most importantly, comparable across conditions. If the
stimulation or expected cognitive processing can be expected to be different
between conditions immediately prior to the time-locking event of interest,
then the brain activity measured with EEG may differ between conditions
prior to the event of interest. In this case, it would be impossible to know
whether any observed differences between conditions after the event were in
fact due to the event itself, or preceding differences.

Epoching may involve more complex criteria than simply finding particular
event codes of interest. For example, one might wish to only select events to
which the participant made a correct response, in which case an event code
subsequent to the target event would also have to be examined. Similarly, one
might wish to separately categorize the ERPs to stimuli depending on what
type of event preceded them. Thus the process of epoching is not simply
segmenting EEG data into short segments, but also of ‘binning’ these
segments into categories of experimental interest.

Figure 4.8 Difference waveforms from the same data shown in Figure 4.7,
plotted for two specific electrodes. These correspond to two common
reference locations, and are also where the largest experimental effects are
typically reported in face-processing ERP experiments. Note that in the
bottom panel, the waveform for the vertex-referenced data is a flat line
overlapping the x-axis, because the data at the reference location are
necessarily zero



Subsequent to epoching, trials within each experimental category are



typically averaged together for each participant. Averaging allows us to
examine the ERP response for each category of stimulus and to visualize
differences between conditions. The averages for each participant are then
averaged together, across subjects, to create a grand average. While this is
normally the point at which data are plotted for interpretation and display in
manuscripts or other presentations, it is important for the experimenter to
examine the averages of each participant’s data prior to including it in the
grand average. This allows for quality control, ensuring that nothing looks
amiss in an individual’s data that might signal a problem in the preprocessing
steps; indeed it is good practice to visualize the data after each processing
step to catch problems when they occur and ensure that the ultimate grand
average is not contaminated by artifacts.



Extracting Measures for Statistical Analysis
A number of approaches are commonly used for statistical analysis of ERP
data, and many others are currently being explored as alternative possibilities.
Much of ERP research focuses on specific components – peaks or troughs in
the data that have reliable polarity, timing, scalp distribution, and
experimental eliciting conditions – and how these components vary as a
function of some experimental manipulation. Thus statistical analysis
depends on extracting some measurement of the size (amplitude) and/or
timing (latency) of that component, for each subject in each condition. The
various measures that are commonly used are illustrated in Figure 4.9. Peak
amplitude is the electrical potential at the peak of a specific component.
Typically the researcher has a prediction, based on previous research, as to
when a particular component will peak. Since the timing of the peak of a
particular component varies over some range across individuals (and indeed,
across trials within an individual), the most intuitive way to identify a peak is
to use an algorithm that picks the maximum positive or negative amplitude, at
each electrode and for each participant, within the time window when the
component is predicted to appear. For example, an N1 component might be
defined as the most negative amplitude between 100 and 200 ms. A variant of
this is peak-to-peak amplitude, which measures the difference between the
amplitude of adjacent positive and negative peaks (such as the difference
between P1 and N1 amplitude).

This approach is problematic, however, for several reasons. For one it is
highly sensitive to noise. The largest (or smallest) value within any
distribution of data is not representative of the average of some larger sample
of the data. As well, peak amplitude will be strongly affected by the filtering
(particularly low-pass filtering, because peaks are a high-frequency aspect of
the data) and the algorithm may fail to properly identify the true component
peak if an earlier or later component with larger amplitude occurs at the
beginning or end of the time window. Thus an alternative is to compute the
mean amplitude within some time window. If the experimenter is interested
in the size of a component with a fairly narrow peak, one approach is to
identify the adaptive mean amplitude (or mean peak amplitude), by first
finding the maximum value within the desired time window (the peak), and



then computing the average of a few time points on either side of that value
(for example, the average of five or seven time points centred on the peak
amplitude). For other components, a clear peak may not be obvious (for
example, the N400 commonly studied in language processing studies has
more of a plateau shape). In these cases, the mean amplitude over a larger
time window (for example, 100–200 ms) is commonly used.

Figure 4.9 Common dependent measures that can be extracted from ERP
waveforms for statistical analysis. Amplitude measures are shown in the top
panel, while latency measures are shown in the bottom panel





One of the strengths of the EEG/ERP technique is its high temporal
resolution. While simply analysing the amplitude of specific components that
occur over particular, but relatively constrained time windows exploits this
high temporal resolution, another approach is to use the actual timing of an
effect as the dependent variable in an analysis. This is generally referred to as
latency, and it can be measured in several different ways. Conceptually, one
may be interested in when the onset of a particular ERP component or effect
occurs, or in when it peaks. Identifying the timing of a component peak – its
peak latency – is subject to the same concerns as measuring peak amplitude
discussed in the previous paragraph, in terms of being sure to define an
appropriate time window, ensuring that the ‘peak’ identified is not the tail of
a different component occurring at the beginning or end of the time window,
and the sensitivity to high-frequency noise. An alternative to quantifying the
peak latency is using the fractional area latency. This involves defining a
time range over which the area under the curve is computed (typically the
time range over which the component of interest occurs), then identifying the
time point at which a particular fraction of this total area is obtained. Thus
one could define 50% of the total area as representing the mid-point of the
component, as an alternative to trying to identify the peak amplitude.
Fractional area latency can also be used to define the onset of a particular
ERP component. Onsets can be tricky to define, because the ERP waveform
is continuous over time and contains noise as well as preceding components.
Thus operationally defining the onset as, for example, the point in time at
which the area under the curve reaches 10% or 25% eliminates the need to
identify the exact onset time, and is more robust to noise in the data.

A somewhat contentious issue in the ERP literature concerns how to choose
the time windows for peak or mean amplitude measurements. From the
perspective of objective, hypothesis-driven, reproducible research, it is best
to choose the time window prior to running the experiment. This would
normally be guided by a review of the prior literature of the ERP
component(s) of interest, to identify the time window when the component
normally occurs. However, this can be problematic because the timing of
ERP components is sensitive to stimulus characteristics, the task involved,
and even the overall experimental context (such as room lighting or
background noise). As well, there may be sufficient variability in the



published literature that one either has to pick a wide time window, or pick
one of several windows. If the timing that is predicted a priori does not
actually match the timing of the component that is observed once the data are
collected and averaged, then the component (or more specifically, the
difference in the waveforms between experimental conditions) may only
partially overlap the time window chosen for analysis. As a result, the
statistical analysis may not reveal a significant effect. An alternative
approach often seen in ERP studies is that an approximate time window is
chosen a priori, but adjusted once the data are collected, based on visual
inspection of the data. While this has the advantage of titrating the analysis to
the effects present in the data, it is scientifically questionable practice because
it amounts to ‘cherry picking’ results once the data are collected, rather than
testing an a priori hypothesis. In exploratory studies this may be acceptable,
but this is different from hypothesis-driven research, and may result in
findings that are not replicable. An ideal solution to this is to run a small pilot
study using the intended paradigm, using this to characterize the timing of the
experimental effects and generate hypotheses for a replication of the study
using a larger number of participants. Alternatively, there are approaches that
investigate multiple time windows, or include time as a factor in the analysis.



Mass Univariate Analysis
All of the advice provided here on experimental design should be taken as
guidelines rather than hard-and-fast rules. Science is by its nature dynamic
and it is important to use the right tools to answer a research question
(assuming they are used correctly), rather than simply following rules.
Indeed, many important scientific discoveries come from ‘thinking
differently’.

An approach that contradicts the advice provided in the text concerning
simplicity and focusing on a single component, but does try to address issues
discussed in the previous section around choosing the appropriate time
window for analysis, is what has been termed mass univariate analysis
(Groppe, Urbach, & Kutas, 2011). In this approach, differences between
conditions are computed by way of t-tests at every time point and every
electrode. Thus if one had a dataset with 64 electrodes and a 1000 ms post-
stimulus epoch to analyse, one might compute 64,000 t-tests. In practice,
EEG data is typically recorded at sampling rates of 250–500 Hz (that is,
every 2–4 ms) and the data is not expected to change very much over a few
milliseconds, so for mass univariate analysis the data are typically down-
sampled to a lower rate such as 100 or even 50 Hz. As well, the developers of
this approach suggest that the time range for analysis be restricted to the
window in which the experimenter expects experimental effects to occur,
which may not be before 100 ms post-stimulus presentation for example.
Nevertheless, even with 50 Hz sampling this would result in 45 x 64 = 2,880
t-tests. This would clearly necessitate some form of multiple comparison
correction, since at a typical significant threshold of p <.05 we would expect
5% of the 2,880 t-tests (144 of them) to be significant by chance. A number
of approaches to multiple comparison correction can be used, which are
described in the citation provided above.

The advantage of the mass univariate approach is that it is unbiased by the
experimenter’s expectations. In a typical analysis using a measure such as
mean amplitude, the experimenter is expected to make a prediction
concerning the timing and scalp distribution of the experimental effect before
collecting the data. If this prediction is partially wrong, the time window



and/or set of electrodes chosen for data analysis may only partially overlap
with the actual experimental effect, which may make identifying an actual
effect as statistically significant less likely. The mass univariate approach is
‘data driven’ and so can accurately capture the timing and scalp distribution
of the effect in the data rather than trying to make it fit into a particular
‘mould’.

There are benefits and costs to this approach. The developers suggest that it
may be useful in exploratory data analysis, either when a researcher doesn’t
know where or when to expect experimental effects, or when the researcher
has a prediction but is open to the possibility of other, unpredicted differences
occurring and wishes to capture those. The developers nevertheless suggest
that if a researcher has a strong a priori hypothesis concerning the component
affected by the experimental manipulation (in terms of both timing and scalp
distribution), then a component-driven analysis approach using mean
amplitude or another measure may be more sensitive. In addition to greater
sensitivity to a predicted effect, a component-centric data analysis approach
may have greater validity because the results confirm an a priori hypothesis.
Exploratory analyses normally generate hypotheses for future experiments.



Frequency Domain Analysis
As with the time domain, analysis in the frequency domain can be performed
in several ways. One approach to frequency domain analysis is to filter the
data to remove information at frequencies above and below the frequency
band of interest (a type of bandpass filtering, described in the section on
signal processing below). The filtered data thus represent the activity only in
the frequency range of interest. Another approach involves applying a
Fourier transform from the time to the frequency domain. Then, data can be
plotted as a function of frequency (averaged over the time window of interest,
which can be the entire epoch or smaller segments of the epoch) and one can
look for peaks at particular frequencies (or differences between conditions at
particular frequencies). A third approach is to use what are called wavelets –
essentially short segments of a sine wave of a particular frequency – in a
mathematical operation known as convolution which essentially ‘slides’ the
wavelet across a segment of EEG data to find the point at which it fits best.
This best fit should represent the point when the peaks in the EEG data best
line up with the peak in the wavelet.

Another factor to consider in a frequency-domain analysis is time. In the
simplest case, one can compute power within a frequency band, or across a
range of frequencies, over an entire EEG recording, or over epochs time-
locked to events of interest. Often these epochs may be longer than those
used in time-domain ERP analyses, because accurately measuring power at
low frequencies requires segments of data long enough to actually capture
those frequencies. Another approach is a time-frequency analysis, which
examines power at different frequencies as a function of time. This is
commonly employed on epochs of data time-locked to events of interest.
Rather than looking at average frequency over the entire epoch, however, a
wavelet or other approach is used to compute power as a function of time.
The result is that the researcher can identify whether power in a particular
frequency band increases or decreases at a consistent time relative to an
experimental event of interest. For example, Figure 4.10 shows data from a
sentence-processing experiment conducted by Davidson and Indefrey (2007).
This employed a typical paradigm in which participants read sentences that
could end coherently, or with a semantic or syntactic violation. Such



experiments typically employ time-domain analyses, with the N400
component being elicited by semantic violations and the P600 elicited by
syntactic ones. However, Davidson and Indefrey used a wavelet analysis over
epochs spanning 2 s before and after each target word to create the time-
frequency plots shown in Figure 4.10. Each panel of this figure shows time
on the x axis and frequency on the y axis. Focusing on the rightmost panels,
which show the difference between each violation type and control (well-
formed) sentences, we can see that the two violation types have distinct
frequency-domain effects. Semantic violations elicited increased power in the
theta band from approximately 200–500 ms, whereas syntactic violations
elicited decreased power in the alpha and beta bands from approximately
400–800 ms. The authors further noted that the changes in power were
inversely related to the amplitude of the components in the time domain (for
example, trials with larger N400s had lower theta-band power), and the scalp
distributions of the frequency-domain effects were distinct from those of the
time-domain components. This illustrates that both time- and frequency-
domain analyses can provide interesting – and complementary – information.

Figure 4.10 Time-frequency plots from a study of semantic and syntactic
violations in sentence processing. In each panel, time is on the x-axis and
frequency on the y-axis; increased power is shown in white and decreased
power in black. Reprinted from Davidson and Indefrey, 2007 with permission
of Elsevier



Another application of time-frequency analysis can overcome a key
limitation of ERP analyses, which are almost always performed on grand-
averaged waveforms. This averaging process, while useful because it
increases our ability to identify what is common across many trials versus the
non-systematic noise in the data, can mask trial-to-trial, variation in the EEG
signal that is nevertheless consistently related to the experimental
manipulation. Frequency-domain analysis is more flexible in its approach to
single-trial analysis, because an increase in frequency may consistently occur
over trials, even when the phase (timing of the peaks) of the oscillations is
not consistent across trials. Thus whereas ERP analysis depends on peaks
occurring at relatively consistent times across trials – so that in the averaging
across trials this peak becomes clearer – frequency-domain analyses applied
to individual trials may find that power in a particular frequency band
increases even when a clear effect in the averaged time-domain ERP is not
present. Figure 4.11 shows a plot in which individual trials are sorted
according to their phase (when the peak of a particular frequency band
occurs). This plot shows that the component that appears as a positivity from



200–450 ms in the average ERP waveform actually has a duration of only
100–150 ms on any given trial, but that its onset varies over a range of
roughly 100 ms, leading to temporal smearing in the average. In a case such
as this, further analysis could be performed to determine whether this phase
shift correlated with any properties of the stimuli or the participant’s
performance (for example, reaction times).

Figure 4.11 A set of ERPs elicited on 500 trials of a visual processing
experiment, from a single subject, at electrode T6. The trials have been sorted
by their phase in the theta (3–6 Hz) band. Each line of the top panel
represents a single trial; the bottom panel shows the average ERP waveform
of all 500 trials. Two components are notable in the average waveform: an
early positive peak at 100 ms and a later, more sustained positive component
from approximately 200–450 ms. However, the phase-sorted individual trials
reveal that while the early positive component has very consistent timing
across trials, the later component’s onset varies across a range of
approximately 100 ms. Thus the average ERP waveform suggests a much
wider-duration component than was actually present on any individual trial



Source Localization
Understanding how brain activity relates to cognition necessitates an
appreciation of the brain’s activity over time and space. As we have
emphasized in this chapter, EEG is particularly good at revealing the time
course of brain activity. However, it is less well-suited at identifying the
locations in the brain in which the signals are being generated. This is
because the so-called inverse solution of finding the set of sources that
generate a particular pattern of scalp electrical activity is mathematically ill-
posed – there are in principle an infinite number of possible configurations of
electrical potential-generating sources inside the head that could all result in
the same pattern of scalp potentials. For this reason, it is often called the
inverse problem rather than ‘solution’. In practice, not all possible solutions
are neurophysiologically valid – for example, we know that EEG is not
generated in the ventricles of the brain (which are filled with cerebrospinal
fluid) or in the white matter (which consists primarily of axons but not cell
bodies where postsynaptic potentials occur). Nevertheless, even with
anatomical and neurophysiological constraints any scalp potential map still
has many possible generators, which can vary in their location, dipole
orientation, strength, and number.

In spite of the ill-posed nature of the source localization problem, many
efforts have been made to develop source localization algorithms for
EEG/ERP data. While there are many different families of these, they all
essentially attempt to compare different possible forward solutions –
estimates of expected scalp electrical potential maps given a particular set of
generators in the brain. Forward solutions are in principle relatively simple to
compute, because if one specifies the location, orientation, number, and
strength of the dipoles there is a unique solution for how these project
outward in space. However, computing an accurate forward solution to model
a particular individual’s EEG data is more complicated. This is because many
factors affect the measured scalp topography. These include the thickness of
the skull (which varies across the skull as well as across individuals), the
exact shape and sulcal folding patterns of the brain, the size and shape of the
brain and of the skull, and the noise in the data. The simplest (and least
accurate) forward solutions assume the head, including the brain, is shaped
like a perfect sphere, with uniform skull thickness. From there, different



approaches get increasingly complex, with the ultimate approach being to
obtain a structural MRI of the participant’s head as well as accurate 3D
measurements of the location of each electrode on that person’s head during
the EEG recording. Even with this level of accuracy, however, source
localization algorithms tend to be highly sensitive to noise in the data, and it
can be challenging to validate or compare source localization algorithms
because there is no ‘ground truth’ reference to compare the solutions to.

Although EEG/ERP source localization has serious limitations, it can also be
a useful tool. In particular, source localization can theoretically overcome the
significant limitation of ERPs discussed earlier, namely that of overlapping
latent components. Recall that the scalp topography at any given point of
time is the sum of all EEG-measurable activity going on in the brain at that
point in time. Source localization offers a means of disentangling these
overlapping time courses of activity, because each source will have its own
time course of activity. Thus it offers the opportunity to characterize latent
components rather than simply relying on their overlapping projections to the
scalp. Caution is nevertheless advisable since an inaccurate source solution
could potentially generate an erroneous set of latent components.

Caveats notwithstanding, it is not uncommon to perform source localization
on EEG/ERP data. The validity of these solutions is often assessed with
reference to prior knowledge; for instance, ERPs evoked by visual stimuli
should evoke activity with sources located primarily in the occipital lobes, at
least for early components such as the P1-N1-P2 complex. Indeed, the best
way to use EEG source localization is for confirmatory, rather than
exploratory, purposes – in other words to test a hypothesis about the time
course of activity in a specific brain region, rather than ‘fishing’ to determine
which regions might be involved. Source localization is also used with MEG
data, and for several reasons the solutions can be more accurate for MEG.
Thus this topic is discussed at greater length in the next chapter.

Summary

Designing experiments using ERPs or EEG requires a solid understanding of how the
technique works, its limitations, and its strengths. Like most neuroimaging measures, ERP
responses are very sensitive to features of stimuli, including physical properties such as
size, brightness, loudness, and timing. Ideally, an experiment should compare ERP
responses to the same physical stimuli under different psychological/task conditions so as to



eliminate the possibility that any observed differences between conditions are due to the
stimuli. While in practice this is often not possible, as many questions depend on
differences between stimuli, nevertheless experimenters should always consider possible
unintended stimulus effects and take steps to minimize these.

EEG recordings are subject to many sources of noise, including electromagnetic
interference from the environment, head movements, and physiological artifacts such as eye
movements, blinks, skin potentials, and muscle potentials. Many of these artifacts register
as electrical potentials that are much larger than the EEG itself, creating serious problems
for data analysis. While signal-processing techniques can help reduce or remove some
artifacts, it is by far preferable to minimize the presence of these artifacts during recording.
This is achieved both through careful monitoring of the EEG data during recording, and
thoughtful experimental design to minimize the occurrence of artifacts (for example,
minimizing the need for head or body movement; giving participants opportunities to blink
between trials).

Preprocessing involves a number of steps performed on EEG data prior to statistical
analysis, to improve the quality of the data and maximize the likelihood of finding
experimental effects, if they are present in the data. These include high- and low-pass
filtering to remove low- and high-frequency artifacts, respectively; removal of trials with
excessive artifacts; correction for common artifacts like blinking, using approaches such as
regression or ICA; re-referencing the data to a different electrode(s) than that used during
recording; and segmenting the continuous EEG into epochs time-locked to events of interest
to create ERPs. Properly applying each of these steps requires a solid understanding of their
effects. Once data have been preprocessed, statistical analysis can be performed. For ERPs,
this usually involves computing peak or mean amplitude within a particular time window
(ideally defined a priori, based on hypotheses), and/or the latency of the onset or peak of a
particular component. Because many EEG systems have large numbers of electrodes, it is
common to select specific electrodes for data analysis, or to group electrodes into regions of
interest (ROIs). As well, data can be analysed in the frequency domain, in which case power
in specific frequency bands and temporal windows is used as the dependent measure (a
time-frequency analysis). When large numbers of statistical tests are performed, some form
of multiple comparison correction should be applied to minimize the likelihood of obtaining
spurious results. Another step sometimes performed in data analysis is source localization,
which attempts to solve the inverse problem – identifying the locations in the brain from
which measured EEG activity arose. However, the inverse problem is mathematically ill-
posed (has an infinite number of possible solutions), making the results of such efforts often
unreliable.

Things You Should Know

Because brain activity is sensitive both to the physical properties of stimuli and the
cognitive processes activated by stimuli and tasks, physical differences in stimuli
between experimental conditions can confound the interpretation of EEG data. For
this reason, it is preferable to hold stimuli constant between experimental conditions,
manipulating only the psychological conditions. When this is not possible,
researchers should be mindful of this possible confound and attempt to control for
differences between stimuli.
EEG has exquisite temporal resolution, but this also means that ERP experiments are



very sensitive to the timing of stimuli and cognitive operations. Relatively small
delays or variability in stimulus timing (on the order of 10–20 ms) can drastically
change the timing of ERP components, or make these effects difficult to identify if
their timing does not overlap sufficiently in the grand average. In EEG experiments it
is important to use stimulus presentation software specifically designed to have very
precise timing, and also to confirm the reliability of timing prior to running the
experiment.
Sources of noise in EEG data include environmental electromagnetic interference,
head and body movement, and physiological artifacts including blinks, muscle
contractions, and skin potentials caused by sweating. It is important to minimize
these during EEG recording through the design of the experiment, and attentive
monitoring of the EEG during the experiment, and providing constructive feedback
to participants if they produce excessive artifact.
Preprocessing EEG data involves a series of steps to improve the signal-to-noise ratio
(SNR) and sensitivity to experimental effects. These steps include filtering, artifact
identification and removal, artifact correction, re-referencing, and segmenting the
data into epochs time-locked to events of experimental interest.
High-pass filters attenuate low-frequency artifacts, while low-pass filters attenuate
high-frequency artifacts. Bandpass filters combine high- and low-pass filters, while
notch filters remove a specific band of frequencies while leaving higher and lower
ones untouched. Filters necessarily have roll-offs around their specified cut-offs,
meaning that not all frequencies beyond the cut-off are entirely removed from the
data. As well, filters can actually induce unintended artifacts into the data. For these
reasons, it is important to use the minimum amount of filtering necessary to remove
artifacts in the data.
Because EEG/ERP data is so rich in information, often comprising hundreds of time
points over dozens of electrodes, various data-reduction techniques are typically
performed to obtain dependent measures for statistical analysis. Common dependent
measures in ERP (time-domain) analysis include peak amplitude, mean amplitude,
peak latency, and onset latency. In ERD/ERS (frequency-domain) analysis, the most
common dependent measure is power within a specified frequency band. All of these
measures are typically obtained within pre-specified time windows of interest. As
well, researchers often select individual electrodes, or combine electrodes into
regions of interest (ROIs), rather than analysing every electrode individually.
Event-related synchronization (ERS) refers to increases in EEG power within a
specific frequency band, time-locked to an experimental event of interest. Event-
related desynchronization (ERD) refers to time-locked decreases in power. However,
the terms (de)synchronization should not be interpreted literally, because many
factors other than increased or decreased synchronization of neural activity can
influence EEG power.
The forward solution refers to predicting a pattern of scalp electrical potentials, given
knowledge of the number, location, orientation, and activation strength of the
generators of these potentials in the brain. Forward solutions are relatively simple to
calculate. The inverse problem refers to predicting the number, location, orientation,
and activation strength of the neural generators on the basis of scalp-recorded
EEG/ERP data. The inverse problem is mathematically ill-posed, meaning that there
are an infinite number of possible solutions to this problem for any observable
pattern of scalp potentials. Performing source localization with EEG data involves
attempting to solve the inverse problem, using the forward solution. There are many
approaches to this, but because there is no ‘gold standard’ to compare the results to



(that is, a known correct solution for real human EEG data), and because EEG data
tend to be very noisy, EEG source localization can be unreliable.

Further Readings

Luck, S.J. (2014). An Introduction to the Event-Related Potential Technique (2nd ed.).
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Ritter, W., Ruchkin, D.S., Rugg, M.D., and Taylor, M.J. (2000) Guidelines for using human
event‐related potentials to study cognition: Recording standards and publication criteria.
Psychophysiology, 37(2), 127–152.



5 Magnetoencephalography (MEG)



Learning Objectives
After reading this chapter, you should be able to:

Explain how magnetic fields are generated by electrical activity in the brain.
Describe the relationship between EEG and MEG, and explain why a particular EEG
effect might look different when measured with MEG, or not be visible at all.
Name the different types of MEG sensors and describe how each works, including the
orientations of dipoles that each is sensitive to.
Describe common sources of noise in MEG recordings, and how these are mitigated.
Explain the standard preprocessing and analysis steps applied to MEG data.
Explain why source localization is generally more reliable for MEG than for EEG.
Name three general classes of source localization algorithm, and explain the strengths and
weaknesses of each.
Describe considerations in experimental design that are specific to the MEG technique.
Describe the strengths and limitations of MEG relative to EEG.



Introduction
Magnetoencephalography (MEG) is a technique closely related to EEG,
first developed by David Cohen in 1968. However, rather than recording
brain electrical potentials with electrodes placed on the scalp, magnetic fields
are measured using devices called magnetometers and gradiometers that
are arranged in a helmet. The magnetic fields measured by MEG are
generated by electrical activity in the brain, just like the signals recorded by
EEG. Indeed, much of this chapter builds on the technical foundation
developed in the preceding chapters. In the chapters on EEG we described
Ampère’s circuital law (the right-hand rule), by which electrical current flow
induces a magnetic field, and vice-versa. This same principle allows us to
measure the brain’s electrical activity using magnetic field sensors. In spite of
the fact that MEG is in principle sensitive to the same forms of brain activity
as EEG, in practice it is different in many respects. Firstly, peak MEG
activity locations on the scalp will differ from the locations of EEG/ERP
peaks due to the right-hand-rule relationship between electrical current and
magnetic fields. Secondly, magnetic fields drop off rapidly with distance,
whereas EEG signals are volume-conducted through the head – so MEG is
more sensitive to activity on the cortical surface than deeper activity; this also
adds an additional useful constraint in source localization. Finally, MEG is
much more technically demanding and expensive. MEG is more sensitive to
environmental electromagnetic noise than EEG, so it requires very expensive
shielding. As well, the magnetometers must be cooled close to absolute zero
to function, and so must be kept bathed in liquid helium. As a result, the costs
of MEG are closer to those of MRI than of EEG, meaning that MEG scanners
are typically multi-user facilities. MEG scanners are less ubiquitous than
MRI scanners, however – while MRI has many revenue-generating clinical
applications, MEG has relatively few. Given the high cost and technical
complexity, one might wonder why anyone would ever choose MEG over
EEG. The greatest advantage of MEG over EEG is that the physics of the
magnetic signal are such that source localization is generally more reliable
than with EEG, allowing MEG a combination of high temporal and spatial
resolution – although caveats about the accuracy of source localization
remain. Those caveats notwithstanding, it is more common to see MEG data
reported in terms of time-varying activity in different brain locations, than in



terms of sensor-level signals as is the norm with EEG/ERP.



What Are We Measuring?
The physiological basis of the MEG signal is essentially the same as for the
EEG signal. Open fields of pyramidal neurons whose postsynaptic potentials
fluctuate in synchrony with each other are the primary source of MEG
activity. A critical difference between MEG and EEG signals, however, is
that the magnetic fields induced by electrical current flow in the brain wrap
around the conductors (neurons). This is illustrated in Figure 5.1, where we
see that for an intracellular electrical current flowing along a neuron from
dendrites to axons creates a magnetic field around the neuron. The location of
the open field along the cerebral cortex becomes critical here, because
pyramidal neurons are largely oriented perpendicular to the surface of the
cortex. Thus as can be seen in Figure 5.1, only magnetic fields generated by
neurons whose axons are aligned tangentially to the scalp will radiate outside
of the head. This means that MEG is primarily sensitive to activity of neurons
along the banks of sulci on the cortex, because neurons on the gyri and in the
depths of the sulci will be oriented such that their magnetic fields do not
radiate outside of the head where the MEG sensors are.

The physical relationship between electrical and magnetic fields creates some
important differences between MEG and EEG. Firstly, since EEG signals are
orthogonal to MEG signals, EEG will in principle be most sensitive to
neurons on the gyri – since those are oriented with their dipoles projecting
directly outward from the head (see Figure 5.1). Secondly, electrical
potentials conduct through the volume of the head quite well, so neurons
along the banks of the sulci will generate potentials that may not be
detectable (at least weak) at electrodes directly above the active region, but
these potentials will be detectable by EEG at locations on the scalp farther
away. In contrast, magnetic fields are not readily conducted through the
brain, but rather drop off rapidly – approximately exponentially – with
distance. As a result they are less detectable at locations more remote from
their source. As well, because the skull is a poor conductor of electricity,
EEG signals get blurred by the skull, and thus in many cases there will be
quite a bit of overlap between the scalp potentials generated by neurons on
the gyri and along the banks of the sulci. In contrast, magnetic fields are
almost entirely unaffected by the skull, so they are not blurred the way EEG



signals are, leading to activity that appears more focal with MEG than EEG.

Figure 5.1 A magnetic field is induced by any electrical current, following
Ampère’s circuital law – also known as the right-hand rule. This is illustrated
in A, showing that if one makes a ‘thumbs-up’ gesture the thumb points in
the direction of current flow (blue arrow), and the magnetic field is induced
flowing in the direction indicated by the curled fingers (black dashed line). B
shows this for an open field configuration of pyramidal neurons: a dipole is
created by current flow from cell bodies to axons, which induces a magnetic
field around the neurons. In C and D, we see examples of currents and
associated magnetic fields induced by open fields of neurons located in two
different positions within the cerebral cortex. Note that these illustrations are
highly schematic and the neurons are not drawn to scale! In C, the active
open field is located along a part of the cortex parallel to the skull. So while
the electrical potential would be detected by an EEG electrode positioned
above this field, the magnetic field around it stays entirely inside the head,
and would not be detected by an MEG sensor. In contrast, D shows a similar
open field of active neurons located on the banks of a sulcus. Here, the
electrical dipole is oriented parallel to the scalp and so an EEG electrode
located above this field would not detect the activity – rather, we would see
zero electrical potential at this location (although the activity would be
detected at electrodes farther away). However, the magnetic field induced by
this current flow would exit and then re-enter the head above the open field,
and would thus be detectable by an MEG sensor placed there. The bottom
two panels further illustrate the relationship between EEG and MEG. In E
and F, a single electrical dipole is shown, located along the midline of the
head with current flowing towards the front of the head (this is not a realistic
situation as there is no cortex along the midline, but this serves to illustrate
the basic principle). E shows the scalp distribution of electrical potential,
while F shows the distribution of the associated magnetic field, with showing
the field exiting the head, and blue showing the field re-entering the head



The relationship between depth and strength of the MEG signal is shown in
Figure 5.2. In practice, it is not clear how much signal is actually missed
simply because it is generated deep in a sulcus. On one hand it has been
estimated, based on in vitro measurements and computational modelling, that
a minimum of 50,000 neurons acting synchronously are required to generate
a measurable MEG signal (Hansen, Kringelbach, & Salmelin, 2010). While
this may sound like a fairly large number of neurons, this many neurons can



be found in a patch of cortex approximately 1 mm in diameter. So certainly,
focal areas of activity that are in principle strong enough to be detected by
MEG might be missed if they are located too deep in a sulcus. On the other
hand, the area of cortex activated in a functional imaging experiment is
typically well over 1 mm in diameter, so activation may extend enough to
include neurons both on the banks of sulci and on the adjacent gyrus or
sulcus. This is not always the case though: activation may be more focal. For
example, in mapping the motor or somatosensory representations, the peaks
of activation of adjacent fingers tend to be relatively small and close together,
on the order of millimetres. In spite of this close proximity, MEG has been
shown to be able to resolve these small spatial differences. Likewise, early
visual cortex areas have a fine-grained retinotopic organization whereby
areas representing different parts of the visual field may be separated by one
or only a few millimetres, and this too has been detected using MEG (Hagler
et al., 2009; Perry, Adiamian, Thai, Holliday, Hillebrand, & Barnes, 2011).

Figure 5.2 Empirical data from a single individual, demonstrating how MEG
sensitivity decreases with the depth of the source. This is shown as the
strength of a source that would be required to generate a detectable MEG
signal. Reproduced from Hillebrand and Barnes, 2002 with permission of
Elsevier



How Do We Measure It?



Data Acquisition

Detecting Magnetic Fields
MEG recordings are done using devices that measure magnetic fields, or
more specifically magnetic flux, which is change in magnetic fields.
Although this may seem like a subtle distinction, it is actually very important:
MEG specifically measures changes in magnetic fields, rather than static
fields. MEG sensors need to be extremely sensitive because the magnetic
fields generated by the brain are very small – on the order of 10-15 Tesla (T;
Tesla is a standard measure of magnetic field strength). By comparison, the
Earth’s magnetic field (which causes the needle on a compass to point north)
is 25–65 x 10-6 T and a common fridge magnet is approximately 10-3 T in
strength. The minute strength of the brain’s magnetic fields thus require very
sensitive instruments to measure. The only device sensitive enough to
measure the brain’s evoked magnetic fields is the superconducting
quantum interference device (SQUID). One basic requirement of the
sensitivity required for MEG is that the sensors must be cooled to a
temperature near absolute zero. At these temperatures, materials become
superconducting – that is, they have almost zero resistance to current flow.
This is the only way to allow the tiny magnetic fields from the brain to induce
a current in the sensor. In MEG systems, typical superconducting materials
include niobium, lead, or mercury, which have critical temperatures at which
they switch to the superconducting state of below 10 K (–263°C). Keeping
the sensors this cool requires bathing them in liquid helium, which is only
liquid below 4.2 K. The need for liquid helium to maintain the
superconductivity of SQUIDs is a significant, ongoing cost of maintaining a
MEG system. Liquid helium is a scarce resource worldwide, and therefore
costs continue to steadily increase. While some MEG systems are equipped
with helium recovery systems, in other systems the helium boils off at a
steady rate and must be refilled every few weeks. A contemporary MEG
scanner is shown in Figure 5.3.

Figure 5.3 An example of an MEG scanner. The person’s head is inside the
helmet of the scanner, which contains the MEG sensors. The inset shows the



arrangement of the sensors inside the helmet, relative to the head. The
scanner has an integrated seat which can be raised or lowered (using the
handle seen extending from between the person’s feet) to ensure a snug fit of
the helmet to the head. Much of the space above the head is devoted to a
dewar, containing the liquid helium necessary to keep the MEG sensors
cooled to near-absolute zero. This enables the superconducting properties of
the sensors that is necessary for MEG to function. Images courtesy of Elekta

Even beyond keeping the materials cool enough to allow superconductivity,
the required level of sensitivity for MEG requires further complex
engineering. A schematic diagram of SQUID is shown in Figure 5.4 – it
consists of a thin ‘washer’ approximately 1 mm square, broken by a thin gap
which is bridged by an electrical insulator. This is known as a Josephson
junction (named after Brian Josephson, who received the Nobel Prize in
1973 for his work developing this) and allows for the measurement of



changes in electrical current flowing through the SQUID. SQUIDs operate by
passing a constant ‘bias’ current through the SQUID; by the right-hand rule
the strength of this current is altered if there is any change in the magnetic
field around it, and this is how the brain’s magnetic fields are measured – as
the amount of change from the default bias current. The Josephson junction is
critical to this process because it has a special property: it passes current
unaltered when the current is low, but at higher current levels it creates a
high-frequency alternating current. The SQUIDs do not sense the magnetic
fields of the brain directly though, because their small surface area – while
essential to their sensitivity levels – provides poor coupling to the magnetic
fields. Thus the SQUIDs are connected to flux transformers that are also
made of superconducting material and run from the SQUIDs themselves to
locations closer to the subject’s head in the MEG helmet. The shape of the
flux transformers determines their sensitivity. This fact allows different types
of flux transformers that are sensitive to different aspects of the brain’s
magnetic field.

Figure 5.4 Simplified diagram of a MEG sensor. The left side shows the
detector coil which would be inside the helmet, close to the participant’s
skull. When a neuromagnetic field is produced by the brain, with the proper
orientation relative to the sensor, the field induces a current in the detector
coil. This current is transmitted via a conductor to the input coil. Collectively,
the detector coil, input coil, and conductors connecting them comprise the
flux transformer. Because there is current flowing through the coil, a
magnetic field is induced around the input coil. The SQUID (grey ring) is
located next to the coil, so that when a magnetic field is induced in the coil, it
in turn induces a current in the SQUID. This induced current generates an
electrical potential difference across the SQUID, on either side of the
Josephson junctions. This potential difference is directly proportional to the
magnetic flux at the detector coil, and is recorded as the MEG signal



There are three different types of flux transformers used in MEG scanners.
The simplest type of flux transformer is a magnetometer, shown in the left
panel of Figure 5.5. A magnetometer consists of a single coil or loop of wire
arranged such that the flat surface of the loop is parallel to the surface of the
MEG helmet (and by extension, the subject’s head), with leads to and from
the SQUID. Any magnetic field impinging on the loop will induce a current
in it via the right-hand rule. A problem with the simple design of the
magnetometer is that it records all magnetic fields, including both those of
neural origin and environmental background noise. Thus in modern MEG
systems a flux transformer configuration known as an axial gradiometer is
typically used instead. As shown in the middle panel of Figure 5.5, axial
gradiometers have a second loop that is wound in the opposite direction from
the first, located farther away (~5 cm) from the head. Axial gradiometers are
one of a more general class of sensors (gradiometers) that are sensitive to
gradients in magnetic fields – magnetic fields that vary along a spatial
dimension. More specifically, gradiometers are sensitive to the difference in
magnetic field strength between the two loops of coil. Axial gradiometers are
sensitive to magnetic field gradients along lines moving out from the surface
of the scalp; because of the right-hand rule, any magnetic field present (and
equivalent) at both loops will cancel out, so only fields that drop off with
distance from the scalp are measured. This is because the magnetic field
induces currents following in opposite directions in the two loops, due to
their opposite windings. Since environmental magnetic noise tends to be
uniform around the head, the axial gradiometer configuration should cancel
out such environmental noise, while preserving neural signals because they
drop off over much smaller distances, and so are not detected at the coil
rather away from the head.



Figure 5.5 Schematic diagram of the configurations of magnetometers and
gradiometers. The magnetic fields are shown as large arrows, and the current
induced by these fields in the measurement coils is represented by the smaller
arrows. Magnetometers consist of a single loop of wire, and suffer from the
problem of being sensitive to both signal from the brain and noise from
external sources. Axial gradiometers address this problem by having a second
loop of wire in the coil, farther from the head and wound in the opposite
direction to the loop close to the head. Because of its distance from the head
(a few centimetres), this second loop is insensitive to magnetic fields
emanating from the scalp but is still affected by other magnetic fields in the
environment. Because of the right-hand rule, this opposite-direction winding
serves to cancel out any signal that is induced in both loops by the same
source. Both magnetometers and axial gradiometers are sensitive to the
component of magnetic fields perpendicular to the scalp. Planar gradiometers
also employ two loops with opposite windings to cancel out environmental
noise. However, the loops are in a figure-8 pattern which makes them
sensitive to magnetic fields that vary over short distances across the head (the
parallel component of the fields)

A second gradiometer configuration, the planar gradiometer, has the two
coils in the same plane, equal distance to the scalp, in essentially a figure-8
configuration. This is shown in the right panel of Figure 5.5. Like axial
gradiometers, the reverse winding in the two loops of the planar gradiometer
serves to cancel out the effects of any magnetic field that impinges on both
loops. However, the fact that both loops are close to the scalp makes planar
gradiometers more sensitive to different neuromagnetic field patterns than



axial gradiometers. Specifically, since gradiometers are sensitive to the
difference in magnetic field between the two loops of the gradiometer, planar
gradiometers are sensitive to neuromagnetic fields that change over the
distance between the two loops, along the surface of the scalp.

The spatial sensitivities of these different gradiometers are known as their
lead fields, which describe the orientation of the current that would yield the
maximum output of the sensor at that location in space. To understand the
lead fields of axial versus planar gradiometers, first recall that MEG is
primarily sensitive to dipole sources that are oriented parallel to the surface of
the head. The magnetic field of such a source can be imagined as circles
centred on that dipole and radiating out of the head, as shown in Figure 5.1.
Visualized from outside the head, this magnetic field can be drawn as arcs
emanating on one side of the dipole and re-entering the head on the other side
of the dipole. This is shown in the top left panel of Figure 5.6. This magnetic
field, measured at any point along the scalp, can in turn be described as
having two ‘components’ – one measured orthogonal to the scalp (the
perpendicular, or radial, component) and one running tangentially to the
scalp (the parallel component). The perpendicular component is maximal
right where the magnetic field ‘emerges’ from the scalp, while the parallel
component is maximal at the apex of the arc of the magnetic field, just where
it changes in its path from travelling away from the scalp, to where it starts
travelling back towards the scalp.

Axial gradiometers (and magnetometers) are most sensitive to the
perpendicular component of the magnetic field. The perpendicular
component has equivalent values on either side of the dipole at a given
distance from the dipole, but with opposite signs (since on one side of the
dipole, the magnetic field is flowing out of the head, whereas on the opposite
side it is re-entering the head). In contrast, planar gradiometers are most
sensitive to the parallel component of the magnetic field. A given dipole will
have a particular, fixed orientation and so its parallel component outside the
head will have a single maximal direction. One important distinction between
axial and planar gradiometers is that while axial gradiometers are equally
sensitive to dipoles regardless of their orientation (assuming the dipoles are
tangential to the scalp), planar gradiometers are maximally sensitive to
dipoles of a particular orientation. Indeed, dipoles oriented 90° to the optimal



orientation of a planar gradiometer are essentially invisible to it. For this
reason, planar gradiometers are always arranged in pairs at each sensor
location in MEG systems, oriented 90° relative to each other.

Figure 5.6 Examples of sensitivity profiles of axial (A–C) and planar (D–F)
gradiometers to different magnetic field patterns and strengths. The top left
panel shows a coronal cross-section of the head, with an electrical dipole
source represented as the green arrow, pointing towards the viewer. The
dashed lines represent the magnetic field induced by this dipole, with the
thickness of the lines schematically representing the fact that field strength
decreases with difference. Where the field manifests outside the head, field
lines flowing out of the head are shown in red and those entering the head are
shown in blue. The letters A, B, and C represent locations of axial
gradiometers, corresponding to the diagrams in the top right panel. In the
right panel, A shows a gradiometer positioned over a relatively strong field
(close to the dipole) entering the head, and below this is the MEG signal that
would be recorded if the dipole increased and then decreased in activity over
a brief period of time. B shows that an axial gradiometer positioned directly
over the dipole would not detect any activity, because at this position the
magnetic field has no perpendicular component but rather is parallel to the
head. C shows an axial gradiometer positioned over the outward-flowing part
of the magnetic field, but because it is further from the source the measured
signal is weaker. The bottom left panel shows the magnetic field map as
viewed from the top of the head, again with red lines representing fields
exiting the head, and blue lines representing fields entering the head. D
shows a planar gradiometer positioned over the outward-flowing part of the
field, but the magnetic field is stronger under one loop than the other. On the
bottom right the magnitude of the magnetic fields are represented by the size
of the arrows and the resulting signal detected by the planar gradiometer is
shown on the far right. In E the gradiometer is centred over the dipole, such
that one loop is over the field exiting the head and the other over the field
entering the head. Because of the large difference in the magnetic field
between the two loops, the resulting signal is very strong. F shows a
gradiometer positioned such that both loops are along the same magnetic
field line, and so the field is identical in orientation and strength at the two
loops. As a result, the measured signal – representing the difference between
the two loops – is zero



Both types of gradiometer are sensitive to magnetic fields in the brain, but
provide complementary information. Some MEG systems have been
manufactured with exclusively one or the other type of sensor. However, the
maximum sensitivity to brain activity and dipolar orientation is achieved by
combining both types of sensors. The most common commercially available
MEG systems currently on the market use a combination of two planar and
one axial gradiometer at each of 102 locations in the MEG helmet, providing
comprehensive coverage of the head with a total of 306 sensors. Examples of
evoked MEG data from each type of sensor are shown in Figure 5.7.

‘Wearable’ MEG
An exciting recent development in MEG technology is the first report of a
‘wearable’ MEG system (Boto et al., 2018). This system uses an entirely
different technology than the standard MEG systems described above. Rather
than using SQUIDs, this system relies on optically pumped magnetometers
(OPMs). These sensors rely on shining a laser with a specific wavelength
(795 nm) through glass vials filled with 87Rb (a weakly radioactive isotope of
the element rubidium). A property of 87Rb ions is that they polarize – or align
themselves – with a laser beam of this wavelength. Most usefully, the



orientation of the 87Rb ions in the laser beam changes when an external
magnetic field is applied. This weakens the amount of light transmitted by the
laser through the glass cell. Therefore, by measuring the amount of laser light
transmitted, we get a measurement of the strength of the magnetic field
around this sensor. The primary advantage of these sensors over SQUIDs is
that they operate at room temperature (actually, the 87Rb has to be heated to
150°C), and so the system does not require the sensors to be embedded in a
large dewar of liquid helium. As a result, each sensor is relatively small and
light, and can be attached to the head using a plastic holder. In Boto and
colleagues’ report, a face-and-head mask was 3D printed for each individual
participant based on a 3D MRI scan of their head, allowing a custom fit with
enough support to hold each sensor, as shown in Figure 5.8. Because the
sensors are held in a fixed position relative to the head, and do not require the
bulky helium dewar, the system allows for relatively free movement of the
individual, which opens up many possibilities not possible with existing
MEG technology. As well, custom-fitting the sensors to the head ensures they
are all at a close, and relatively fixed, distance (rather than, for example, the
sensors being at variable distances in a helmet, and farther away from the
head for people with smaller heads), and that the sensors move with the head,
eliminating the need for motion correction.

Figure 5.7 Top: An example of several seconds of raw MEG data from four
sensors of an Elekta Neuromag MEG system. The data are taken from a
recording from an adult presented with a variety of auditory and visual
stimuli, and are shown for four sensors located over the occipital lobe (visual
cortex). On this system, each sensor has three gradiometers in the same
location: one axial and two planar (the latter oriented 90° relative to each
other). Note in the continuous data the electrocardiogram artifact (large
spikes) in the first axial gradiometer channel, as well as the burst of alpha
rhythm in the second, third, and fourth sensors – particularly in the axial
gradiometers. Bottom: Butterfly and scalp topography plots of epochs time-
locked to the onset of auditory stimuli presented to the left ear, averaged
across 72 trials. The colours of the lines in the butterfly plot indicate the
position of their corresponding sensors on the head, as shown by the legend
on the left. The auditory evoked response is clearly visible, peaking at 88 ms
post-stimulus onset. The scalp topography plots show the distribution of the
magnetic fields over the head for each sensor type. For axial gradiometers,



red shows fields exiting the head and blue, fields entering the head. Note that
the planar gradiometer data is shown on a monochromatic scale (no negative
values) and represents the magnitude of change (gradient) in magnetic field
between the two loops of each gradiometer. Although the raw data includes
separate recordings for each of the pair of planar gradiometers at each sensor
location, these are combined in the scalp map because they reflect gradients
along two perpendicular axes parallel to the scalp surface. In other words,
one of the pair measures changes approximately front to back, and the other
approximately left to right. Note also that the most intense changes in the
planar gradiometer scalp map are positioned in between the largest blue and
red spots of the axial gradiometer map, reflecting their relative sensitivities to
the parallel versus perpendicular components of the magnetic fields. Data are
from the ‘sample_audvis_raw’ example dataset recorded at the
MGH/HMS/MIT Athinoula A. Martinos Center Biomedical Imaging and
available in the MNE-Python software package (Gramfort, 2013)





This system still has limitations however. Neuromagnetic signals are very
tiny relative to external sources such as the Earth’s magnetic field, regardless
of the sensor type used. Thus these sensors are still used in a shielded room
as traditional MEG is (see below). Even in this shielded room, weak external
magnetic fields are present, and movement of the OPMs through this field
create large artifacts. Thus each sensor is equipped with electromagnetic coils
that measure and cancel out changes in the external magnetic fields. As well,
this system is still in the prototype stage and currently offers limited coverage
of the head. It does provide an exciting glimpse into the future of MEG
technology, however.

Head Position
An important consideration in MEG scanning is that the head of the person
being scanned is positioned inside the scanner in what is often referred to as a
‘helmet’. Unlike an EEG cap, this helmet is not snug-fitting, but rather a hard
plastic portion of the MEG scanner that is made big enough to accommodate
most head sizes. This means that the head is in fact free to move inside the
helmet; however, head movement during a MEG scan is not desirable.
Because the sensors are located in fixed positions inside the helmet, if the
head moves then the position of the sensors relative to the brain changes,
which is problematic since we assume a fixed relationship between the sensor
and head locations. MEG systems typically address this issue through the use
of head position indicators (HPIs) attached to the participant’s head. These
are simply small metal coils, typically coated in plastic, attached to wires that
connect to the MEG system. A common configuration is to place one on each
temple and one on the nasion (bridge of the noise), though greater numbers of
coils can provide greater accuracy and redundancy (for example, one on
either side of the forehead and one behind each ear). After being attached to
the head (often with tape), the locations of these coils on the head are
digitized using a device connected to the MEG system that records positions
in three dimensions. This device typically has a stylus, the tip of which is
touched to each HPI coil (though other approaches such as camera-based
systems can also be used). The stylus is also used at this time to digitize the
shape of the head, typically by tracing around the head to provide
comprehensive coverage. This 3D digitization is used later in analysis for



accurate representation of the head shape and the positions of the MEG
sensors relative to the head shape. If a structural MRI scan of the participant’s
head and brain is also available, the 3D digitized tracing of the head is also
valuable for co-registering the MEG data with the individual’s brain
anatomy. Each HPI generates a unique signal that is detected by the MEG
scanner. Head position can either be recorded once at the beginning of the
scan, occasionally throughout, or continuously. Continuous scanning of the
HPI coils is ideal so that compensation can be made for any changes in head
position post-scan. In spite of this measure, it is ideal that the participant be
instructed to move her/his head as little as possible – and that head movement
is monitored and feedback provided if excessive motion is detected. The
motion correction algorithms are only really effective over a limited range of
movements, so movements of more than a few millimetres can render the
MEG measurements inaccurate – errors which can be propagated and
magnified in subsequent steps such as source localization.

Figure 5.8 A wearable MEG system using optically pumped magnetometers
(OPMs). In the left-hand photo, the sensors (marked with red arrows) can be
seen over the right sensorimotor cortex of an individual. These are held in
position by a 3D printed mask custom-fitted to the individual’s head and face.
The left panel shows a schematic diagram of how OPMs function: in the
absence of an external magnetic (B) field, 87Rb ions in the OPM align with a
laser beam shining through them. When an external magnetic field impinges
on the sensor, however, the ions are moved out of alignment with the laser.
This results in a decreased strength of the laser beam at the photo-detector,
which provides a measurement of the external magnetic field strength.
Reprinted from Boto et al., 2018 with permission of Springer Nature



Combined MEG–EEG
EEG can be recorded simultaneously with MEG. MEG systems often come
with EEG amplifier hardware built into the MEG scanner, so that an
electrode cap can be plugged into the MEG scanner and the EEG data saved
in the same file as the MEG data. Third-party, MEG-compatible EEG
systems are also available from various vendors. MEG and EEG have
different sensitivity patterns, both because signals from the same generator
are related to each other via the right-hand rule, and because of the fact that
MEG is preferentially sensitive to sources on the banks of cortical sulci while
EEG is more sensitive to deeper and volume-conducted sources. This is
illustrated in Figure 5.9. Because MEG and EEG provide complementary
information, simultaneous recording of both can have two advantages.
Firstly, the EEG data can act as an additional source of information for, and
constraint on, source localization. Secondly, if a study is focused on using
MEG to develop a richer understanding of a commonly recorded ERP
component, it can be useful to have the actual ERP data from each individual
in the MEG study. At a minimum, this can confirm that the ERP component
of interest is being elicited in the MEG study, since the same component as
measured with MEG will necessarily have a different spatial distribution



across each type of MEG sensor; timing can even vary somewhat between
MEG and EEG (likely due to how different latent components separate in the
two measures). Further, one could perform analyses such as correlating the
amplitude of the ERP component in each individual with source-localized
MEG activity in different brain regions. This could be useful if multiple
regions are active; not all of these regions might contribute to both the MEG
and ERP components, so a correlation analysis could help clarify the MEG–
EEG relationship. The downside to simultaneous MEG–EEG recording is
that EEG set-up extends the overall duration of the procedure, often
significantly, and the data analysis becomes more complex as well.

Figure 5.9 Comparison of electrical potential and magnetic field scalp
topography maps resulting from particular dipole orientations. The top panel
shows a dipole source tangential to the cortical surface. The two drawings on
the left show the position of the dipole (red circle) and its orientation (red
line). On the right are the scalp distributions generated by that dipole, as they
would manifest in EEG and MEG recordings, respectively. For EEG, red
represents positive electrical potential while blue represents negative. For
MEG, red represents magnetic fields exiting the head and blue fields entering
the head. The bottom panel shows a radial dipole source. The location of this
dipole in the head is identical to that in the top panel, but the orientation is
changed. Note that this radial source is invisible to MEG since the magnetic
fields remain entirely inside the head





Signal and Noise

Shielding
As noted earlier, the size of the magnetic fields generated by the brain is tiny
relative to the magnetic fields generated by most electronic devices as well as
metal objects moving through space. Elevators or passing vehicles even tens
of metres away from the scanner can induce significant artifacts (for example,
one MEG system was placed too close to a subway tunnel and could only be
used in the middle of the night when the subway was not running). Much
smaller metal items closer to the scanner can also create artifactual magnetic
fields – for example, office chairs used at the operator’s console. Although
low-pass filtering is always used with MEG to prevent aliasing (as in EEG),
and high-pass filtering is usually performed as well, these are not sufficient to
remove all artifacts. In particular, many sources of noise are so large,
compared to MEG, that they can ‘swamp’ the MEG sensors because they
greatly exceed the range of values that the sensors can record. In this case the
recordings look like flat lines and no useful data can be extracted.

Because of MEG’s extreme sensitivity, recordings can only be successfully
performed in shielded environments. There are essentially two strategies for
shielding, passive and active. Passive shielding involves surrounding the
scanner room with several layers of metal, including copper, aluminium, and
mu-metal, a special blend of metals specifically designed to deflect magnetic
fields (primarily nickel and iron, along with copper and chromium or
molybdenum). The shielding is designed to be highly magnetically
permeable, meaning that it does not actually block magnetic fields, but
rather provides a path for magnetic fields to flow around the shielding rather
than through it. Mu-metal is particularly effective for lower frequencies,
while aluminium is more effective for higher frequencies. Each of these
materials has a limited capacity for deflecting magnetic fields before it
becomes saturated. Therefore, to provide sufficient shielding for a MEG
scanner multiple layers of shielding are required, using a mix of metals. To
be fully effective such shields are very thick and heavy (10–15 tons), and
must be placed on a heavy concrete pad or other specially reinforced flooring.



A concrete pad is advantageous because it can also attenuate vibrations
transmitted through the building that could generate MEG artifacts. The
weight of the room and desirability of vibrational isolation places limitations
on where the shielded room can be located since the floors of typical
buildings are not engineered to handle such weight.

Active shielding takes a very different approach – the impinging magnetic
fields are measured by coils of wire placed in various configurations around
the room, and then subtracted from the MEG recordings. This approach does
not replace mu-metal shielding, but on its own can provide significant noise
reduction. Thus for sites that cannot accommodate a fully sufficient mu-metal
shield (for example, because the floor could not support the considerable
weight of such a shield), a thinner mu-metal shield is complemented by
active shielding. Regardless of the approach taken to shielding, the
complexities of engineering and cost of materials mean that the cost of the
shielded room can represent a significant proportion (for example, half) of the
overall cost of an MEG system.

Properly designed and installed room shielding is effective in attenuating the
external magnetic fields entering the MEG scanner room. However, such
shielding is never perfect. Some further attenuation can be obtained via coils
placed inside the MEG scanner itself, but sufficiently far away from the
subject’s head so as not to record brain activity. In addition to these
measures, it is important to control sources of magnetic noise within the
recording room itself. Any electronic equipment used in the room will
generate magnetic fields that can render the MEG recordings unusable. For
this reason, the best approach is to keep all such equipment outside the room
when possible. This places considerable limitations on devices used for
stimulus presentation and behavioural monitoring. Typically a projector is
placed outside the room, aimed through a hole in the shielding wall towards a
(non-electronic) screen in front of the participant. The hole in the wall does
not allow magnetic interference to enter because it is designed around a
waveguide, a metal tube whose diameter-to-length ratio is designed to
prevent electromagnetic fields from passing through it. Waveguides are also
used to run any cables in and out of the shielded room; however, any metal
wires running through the waveguide can act as antennae to carry in
electromagnetic interference. To prevent this, many response devices (such as



button boxes) are available that rely on fibre optic technology rather than
electricity. Acoustic stimulation can be another challenge. Speakers inside the
room can be a source of electromagnetic noise, and typical headphones are
unusable because they use electricity and/or magnets to drive the speakers,
which are located next to the head. As with EEG, specialized headphones that
use air conduction through small tubes can be used to keep the
electromagnetic generators of the sound far from the participant. Speakers
can be used if properly designed and shielded, and kept as far away from the
MEG scanner itself as possible. It is also important to realize that many
sources of electromagnetic interference, such as cellular phones and
computers, should not be brought into the MEG scanner room even when a
scan is not taking place. The fields generated by these can negatively affect
the MEG scanner and it may take considerable time for these effects to
dissipate, and/or recalibration of the MEG sensors may be required.

Physiological Noise
Another significant source of noise is the participant being scanned. Eye
movements, blinks, and muscle artifacts are detected by MEG as they are by
EEG, and similar approaches to controlling them can be used, including
providing the participant with instructions as to when not to blink, and
recording EOG. Muscle activity can be recorded using EMG electrodes if
much muscle activity is expected during parts of the scan where the
neuroimaging data are of interest, though it is not routinely recorded
otherwise. Cardiac artifact is another significant source of noise in MEG (see
Figure 5.7), and so EKG (electrocardiogram) recordings should ideally be
obtained as well for artifact removal. Any metal on the participant can be a
source of magnetic noise, for two reasons. One is that metal objects may have
become magnetized over time, and thus generate magnetic fields of their
own. The other reason is that any metal moving in the magnetic field will
generate artifacts. Thus as the participant moves (including breathing), any
metal on their body or clothing creates artifacts. Thus participants should
remove all jewellery and other metal prior to entering the MEG recording
room, as well as any clothing that has metal on it such as buttons, snaps, or
zippers. Under-wire brassieres are also a source of noise (since the metal wire
moves with every breath) and so female participants should be advised to
wear a different type of undergarment when coming for their MEG scan.



Some participant-related artifacts are unavoidable. Dental work that contains
metal, including braces, wires, posts, bridges, and some types of fillings, can
be a problem and some people with these items are simply not eligible for
MEG scans. Implanted metal plates or pins, especially in the head, can also
be a problem, and implanted electronic devices such as pacemakers, cochlear
implants, deep brain stimulators, and insulin pumps should not even go close
to the MEG scanner. Another potential source of noise, which may be
surprising to some people, are personal beauty products. Many types of
make-up, hair products, and tattoos have metal particles in them that can
affect magnetic recordings. Participants should be advised not to use any
make-up or leave-in hair products prior to coming for a MEG scan, and
should be asked about tattoos.

Prior to starting the MEG experiment, the participant should be placed in the
MEG and the data quality examined. This can help determine whether
questionable factors such as dental work are an issue for that individual. If
artifacts are detected, steps should be taken to attenuate these if possible. For
example, a demagnetizer (de-Gausser) can be used to attempt to ‘scramble’
residual magnetization in implanted metal items. This may or may not be
effective, and improper use may increase, rather than reduce magnetization.
As well, the demagnetizer can exert magnetic force on implanted
ferromagnetic objects so it should not be used if there is a danger of the
implanted metal moving, and it should never be used near implanted
electronic devices.



Signal Processing
Many of the steps of data preprocessing and analysis are similar for MEG
data as for EEG data. It is common to filter the data to a narrower range than
was used during online recording, to segment the data into epochs around
event codes of interest, and to perform artifact rejection or correction to
remove ocular and other artifacts. However, there are other steps that are
specific to MEG data. Often additional data, such as continuous head-motion
tracking and data from noise sensors built into the MEG scanner, are not
automatically used for artifact correction during data recording; rather these
corrections are applied in an offline step after the scan is completed. These
are usually done in software specific to the MEG vendor and so it is best
practice to perform these corrections prior to other preprocessing steps.

It is possible to analyse MEG sensor-level data in the same ways that
EEG/ERP data are analysed; for example, by computing peak or mean
amplitudes within specific time windows of interest and performing statistical
comparisons between conditions. However, for MEG systems with more than
one type of sensor, this analysis would have to be performed twice: once for
the magnetometers/axial gradiometers, and once for the planar gradiometers
(note that although planar gradiometer data are recorded from orthogonally
oriented pairs of sensors, these are typically combined for analysis into a
single ‘root mean square’ measure which always has a positive sign, and
represents the overall magnetic field strength across the planar gradiometers
at a given location). This results in multiple measures of the same effect,
which will have different scalp distributions and may vary in magnitude
between sensor types. This could result in challenges for interpretation since
it could be difficult to tell simply from the sensor-level data whether effects
with similar timing were the same effect (from the same brain generators)
reflected differently by the different patterns of sensitivities of each type of
MEG sensor, or distinct effects. While there are multivariate analysis
approaches that could integrate data from multiple sensor types into one
analysis, this is not common practice. An additional consideration when
averaging data across individuals is that while EEG electrodes are applied in
a set of standardized locations that are defined relative to the size of each
person’s head – and so should approximately lie over the same brain regions



across individuals – with MEG the sensors are in fixed locations, and the
head is free to move inside the scanner. Thus the position of a given MEG
sensor relative to a particular brain region may vary much more between
individuals than the position of an EEG electrode. Since MEG data are more
amenable to source localization than EEG data (especially for systems with
both axial and planar gradiometers) – and source localization potentially
provides richer information about the neurocognitive processes of interest – it
is increasingly common for MEG researchers to perform source localization
and focus solely on those results for data analysis and reporting. There are a
number of different approaches to source localization, however, which may
not give consistent results. Thus it is essential for MEG researchers to
understand the fundamentals of how the different source localization
algorithms work, and their strengths and limitations. This is what we discuss
in the next section.



Source Localization
The basic concepts of source localization were introduced in the preceding
chapter on EEG. In this chapter we will go into detail on some of the more
common methods for performing source localization. It is important to
emphasize a certain level of caution when interpreting source localization
results, both as a researcher and as a consumer of the research literature. In
spite of the fact that the physics of magnetic field propagation and MEG
sensors mean that source localization solutions are better-constrained for
MEG than EEG, all of the methods available are estimations or possible
solutions, based on certain assumptions about the data. The mere fact that
multiple solutions are available – and under active development – should be
an indication that there is no one ‘right’ solution, and that any solution may
not be correct. This means that the localization information provided by
MEG should not be considered as reliable or accurate as that provided by
fMRI or PET. While those techniques have their own limitations, the means
by which activity is localized are universally accepted and do not rely on
untested assumptions.

While the developers of MEG source localization algorithms spend
considerable time and effort to test and validate these approaches, the tests
themselves are subject to limitations. Firstly, there is no way to know what
the ‘ground truth’ is. It is common to evaluate source localization algorithms
using data collected from simple paradigms such as finger-tapping or
presenting a simple visual stimulus such as a black-and-white checkerboard,
or auditory pure tones. Since the locations of primary motor and sensory
cortices are well known, it is comparatively easy to validate the accuracy of
these approaches. Indeed, since within primary motor and sensory cortices
there are reliable topographic organizations – such as the retinotopic
organization of visual cortex whereby there is a mapping between locations
in the visual field and locations on the occipital cortex – one can do more
than simply confirm localization to the generally correct brain region, testing
whether the algorithm accurately represents the known organizational
patterns of a given region. However, the fact that a particular algorithm is
accurate and reliable for such straightforward motor and sensory paradigms
does not necessarily entail that it is accurate for other patterns of brain



activity. For example, if multiple generators in different parts of the brain are
simultaneously active, there is no guarantee that an algorithm will produce
correct results simply because it performs well in a simple, single-generator
experiment.

Another approach to testing source localization algorithms is to use simulated
data, in which the sources are precisely known because they are set by the
experimenter. Commonly noise is also added to these datasets (ideally noise
recorded from a MEG scanner, for example from someone sitting in the MEG
scanner but not performing any task). This is a more powerful way of testing
accuracy, in the sense that the ground truth is known, but the accuracy of an
algorithm with one set of simulated data may not generalize to other sets of
data – for instance, simulated data with sources in different locations,
different properties of the noise, or individual differences in head shape. With
simulations, however, it is possible to systematically move the simulated
source throughout the brain to assess the accuracy of the algorithm at every
possible location. While any approach has limitations, the simulation
approach is the most widely used method for testing and comparing source
localization algorithms.

Another possible validation approach, for paradigms where more complex
patterns of activation are expected, is to compare source localization results
with data from other techniques, such as fMRI, neuropsychological, and
intra-operative mapping studies. While these can certainly be used to guide
expectations regarding MEG source localizations, there is no guarantee that
MEG will be sensitive to all or even the same set of active regions as these
other techniques. Each technique has a unique ‘sensitivity profile’ to the
types and locations of activity. For example, fMRI might detect activity in a
closed field configuration of neurons that MEG is blind to. Recall as well that
the physics of magnetic field propagation, as well as individual differences in
brain anatomy, entail that MEG is not equally sensitive to activation in every
part of the brain – MEG is primarily sensitive to activity along the banks of
cortical sulci. However, this does not mean that MEG is entirely insensitive
to deeper sources – merely that it is less sensitive, and that the variability in
sensitivity between individuals will increase with distance from the sensors.
Noise levels are also variable across participants and noise can contribute
significantly to the (in)accuracy of source localization.



None of this is to suggest that source localization is inappropriate or non-
scientific. It is merely to encourage an appropriate level of critical evaluation
when viewing and interpreting source localization results. Source localization
algorithms can be thought of as ways to model the data, based on certain
assumptions. As with any model, these are possibly wrong, but are
nevertheless a representation of the data given to them. It is always useful to
both understand the assumptions made by the source localization algorithm,
and to evaluate the results of any one study in light of the larger literature to
determine whether there is converging evidence to support the results. In
what follows we will discuss a number of different source localization
approaches that are widely used. This is not an exhaustive review, and a
failure to mention any particular approach does not imply anything about its
validity. The goal here is to provide the reader with a conceptual
understanding of classes of approaches that they are most likely to encounter
in the lab and in the literature, and how these approaches differ from each
other.

General Issues in Source Localization
There are a number of factors to consider that may affect the accuracy of any
source localization approach. One has to do with the shape of the head and
brain. The simplest approaches to source localization treat the head as a set of
concentric spheres – representing the surface of the brain, the skull, and the
scalp (and possibly other tissues such as the dura mater covering the brain).
Assuming a spherical shape makes the mathematical computations simpler;
however, it is clear by simply looking at anyone’s head that this is an
incorrect assumption that may result in inaccuracies. An alternative is to use a
realistically shaped head model. A common approach to realistic head
modelling is to use a standard reference model obtained from averaging the
anatomical MRI scans of a large number of people (‘standard’ reference
brains for this purpose are readily available and widely used in this field, as
discussed in more detail in the chapters on MRI). Besides more accurately
representing the shape of the head, having an anatomical MRI also allows
one to place further constraints on the source localization algorithm: if we
assume that the recorded MEG activity was generated only in the grey matter
of the cerebral cortex, then there are many fewer possible locations for
dipoles to be located and the inverse solution thus becomes somewhat less ill-



posed – although there are still in principle many possible forward solutions
that could generate a particular pattern of sensor-level data. An important
consideration is that simulation studies using a single, standard head-shaped
model cannot take into account how the increased variability stemming from
individual differences in brain size and shape may affect the results.
However, the most accurate models use an anatomical MRI scan of the actual
person from whom the MEG data being used for source localization were
obtained. This obviously depends on having access to an MRI scanner as well
as MEG, and the necessary funds to perform both types of scans, which can
substantially increase the cost and logistical complexity of the study.

The benefits of using a realistically shaped head model vary with the source
localization algorithm used. A study (Tarkiainen, Liljeström, Seppä, &
Salmelin, 2003) using simulated MEG data with real MEG noise compared
source localization accuracy for spherical and realistically shaped models,
with and without information on the conductivity of the different tissues
(since conductivity, particularly of the skull, will affect the recorded data).
The authors found that the amount of noise and the depth of the source had a
greater impact on source localization accuracy than the choice of head model,
and that while the most realistic models yielded the most accurate
localizations, the gains in accuracy were typically on the order of only a few
millimetres. This level of variability is unlikely to meaningfully impact the
interpretation of the results, since this is at the limits of the spatial resolution
of MEG or EEG anyway. However, a limitation of this study was that it used
only a single point source in each simulation, localized using a very simple
approach (dipole modelling, which is described below). It is therefore
uncertain whether the results generalize to more realistic cases with multiple
active sources; one study that addressed this question concluded that the
benefits of more realistic head models become more pronounced when
multiple sources are active (Lalancette, Quraan, & Cheyne, 2011). As well,
some approaches to source localization, such as the distributed source models
discussed below, depend critically on having a realistic head model.

Beyond shape, another consideration is what tissues in the head to model.
The primary goal in modelling the tissues in the head (other than the cortical
surface) is to determine how the propagation of electrical currents or
magnetic fields is affected by the tissues. Tissues with low conductivity



(most notably the skull, but also the scalp) attenuate and smear electrical
signals particularly; magnetic fields are also somewhat affected by the skull.
It turns out that what affects signal propagation is specifically the boundaries
between different tissue types. For this reason, head models used in source
localization are called boundary element models (BEMs), and these model
the surfaces of tissues as thin layers, rather than explicitly modelling the
thickness of each layer. This can be seen in Figure 5.10, which shows an
example of a realistic, three-layer BEM. Note that the skull is not represented
as a single layer, but rather that the inner and outer layers of the skull (the
boundaries) are separately modelled. A three-layer BEM like this would
typically be used for EEG source localization, whereas a single-layer model
(the inner skull) would be sufficient in MEG source localization, because the
magnetic fields are not differentially affected in any significant way by the
different tissue types.

Noise in the data can also have a significant impact on the accuracy of source
localization – perhaps more than the choice of head model or source
localization algorithm. Thus it is advisable to perform any steps that can be
done to improve the SNR of the data, prior to source localization. This
includes standard preprocessing procedures such as filtering, and artifact
removal or correction. Tarkiainen and colleagues (2003) found that
increasing the level of low-pass filtering from 100 to 40 Hz (thus removing
more high-frequency noise) resulted in increased localization accuracy when
using dipole fitting, and that this effect was more pronounced as the depth of
the sources from the cortical surface increased. Another way to improve SNR
is to average across trials, since SNR increases with the square root of the
number of trials in the average. This can improve localization accuracy for
some methods, such as dipole fitting (the first method discussed below), but
it may be counter-productive for other methods, such as beamformers
(discussed later) – the accuracy of beamformer calculations increases with the
amount of data provided, and so including all of the individual trials rather
than the average can actually increase accuracy (though see Brookes et al.,
2010 for a method that uses trial averaging to improve the accuracy of
beamformers to distinguish activity at nearby locations). This underscores the
importance of understanding how a particular source localization algorithm
works prior to attempting to use it. Regardless of whether trials are averaged
or not, it is clearly advisable to include as many trials as possible for each



experimental condition in a study design, and ideally equal numbers of trials
in each condition.

Figure 5.10 Example of a three-layer boundary element model of the head,
combined with a cortical surface model, for use in source localization. The
layers are defined from a T1-weighted anatomical MRI scan. The two top
panels and bottom left panel show the three layers of the head that are
modelled: the skin (pink), outer skull (yellow), and inner skull (red). Note
that for the purposes of mathematical modelling, each layer is represented as
a continuous, closed surface – so even though the skull does not actually
surround the brain completely, it is modelled even beneath the brain, inside
the head; likewise the ‘skin’ layer connects along the bottom of the field of
view of the MRI scan, even though this is actually inside the neck of the
person. The green layer represents the outer surface of the white matter
(which is also the inner surface of the cerebral cortex). Note that this is not
one of the layers of the head model but rather the surface on which dipoles
would be modelled; the three layers of the head model are used to estimate
how signals are altered as they pass across those boundaries between
different tissues. The bottom right panel shows an inflated view of the cortex
of the left hemisphere. The purple dots in the head model panels, and the
yellow dots in the inflated surface view, represent the dipoles modelled on
the cortical surface



Some researchers go further and perform source localization on data averaged
across all participants in a study, rather than averaging the data after
performing source localization on each individual. This practice introduces
several concerns, however. Firstly, since each individual’s head will have
been in at least a slightly different location in the MEG scanner, simply
averaging data from each sensor across subjects will introduce accuracy
errors because the position and distance of a given point in the brain from
each sensor will vary across individuals. Some correction for head position
would need to be performed using data from the head position indicators. As
well, each individual’s head and brain are a different size and shape, so
ideally at a minimum some scaling for head size (based on the head shape
digitization performed at the beginning of the scan) should be performed.
Better yet, spatial normalization – an approach that involves not only



scaling but actually adjusting the shape of each individual’s brain to match
the reference brain – would be performed. However, any of these adjustments
to the data can introduce error and thus reduce the accuracy of the source
localization for that individual. These normalization steps would of course
still need to be performed after source localization in order to average data
across subjects, but at least if the source localization is performed first, its
accuracy will not suffer from the normalization procedure. Thus in the end, it
is not obvious that the gains in SNR from averaging across individuals would
offset the errors introduced by the steps necessary to allow such averaging.

Dipole Modelling
Perhaps the simplest and most long-standing approach to source localization
is based on the assumption, discussed in the chapter on EEG, that electrical
brain activity can be modelled by dipoles. Technically, a dipole is a point
source, meaning it is infinitely small, exists at a particular location in the
brain, and has negative and positive poles of equal electrical strength with
some orientation. Several examples of simple dipole models were shown in
the EEG chapters. In practice, of course, we know that one of these
assumptions is not true: the sources of electrical activity in the brain that we
can measure with MEG or EEG are not infinitely small, but rather are
collections of many hundreds or thousands of neurons (mostly pyramidal
cells) whose electrical potentials vary in polarity between their soma (cell
bodies) and axons. However, a point dipole located in the centre of such a
collection of neurons is a fairly reasonable simplification.

In essence, dipole modelling is an iterative process that involves placing a
dipole at a particular location inside the head and assigning to it a particular
orientation and strength, then computing the forward solution to determine its
expected scalp topography (or more precisely, sensor-level data). This scalp
topography is then compared to the actual data and the difference between the
predicted and actual data are computed. This gives a measure of the
goodness-of-fit. Then, one of the parameters of the dipole (location,
orientation, or strength; technically each dipole has six parameters because
location is specified along three dimensions, and orientation along two) is
changed slightly (usually by a pre-specified amount, but in a randomly
chosen direction), the forward solution is again computed, and the difference



between this topographic map and the real data are computed again. If the
goodness-of-fit generated by this set of dipole parameters is better than the
previous iteration (that is, a smaller difference between the model and the
data), then a further change of the same parameter, in the same direction, is
made and the goodness-of-fit again calculated. If the goodness-of-fit is
worse, the preceding model is returned to, and a different change in
parameters is made (for example, a change of the same parameter in the
opposite direction, or change of a different parameter). This process is
repeated until the best fit is determined – the model that generates the
smallest difference from the actual data. This process is called least squares
estimation because the metric used is actually the square of the difference
between the model and the data (which is done because this elegantly
eliminates negative values, resulting in measures of the absolute size of the
difference regardless of which quantity is larger), and the goal is to find the
minimal (least) squared difference.

While this model-fitting process is relatively straightforward, in practice it is
much more complicated and subject to uncertainty. First of all, there is a very
large set of possible dipole locations, orientations, and strengths, and because
the inverse problem is ill-posed, many of these possible combinations could
produce equally good fits to a particular dataset. Typically the researcher
makes an assumption as to where the dipole is located and how it is oriented
based on prior literature or other information. However, without an
exhaustive search it is possible for the algorithm to get ‘caught’ in a local
minimum – a set of parameters that does not generate the absolute best
goodness-of-fit, but simply the best fit given a particular set of starting
parameters and a particular set of (randomly selected) changes to those
starting parameters. One way to avoid local minima is to run the algorithm
repeatedly – since different random selections of parameters should not all
end up at the same local minimum. Different sets of starting parameters can
also be tested to determine whether they converge on a common solution.
However, recall that by definition the inverse problem is mathematically ill-
posed because there are a potentially infinite number of possible dipole
solutions that could generate the same pattern of sensor-level data. Thus
some guesses about dipole location – and constraints on how far the dipole
can move from that starting location – are necessary in order to find a unique
and reasonable best-fitting solution. At the same time, the need to pre-specify



dipole locations means that dipole fitting is operator-dependent, and thus the
results can differ depending on who is using the algorithm and what
assumptions s/he makes. One advantage of having MEG data obtained from
multiple sensor types (both axial gradiometers and orthogonal pairs of planar
gradiometers, and possibly EEG as well) is that the known lead fields of
these different types of sensors can impose additional constraints that help
‘triangulate’ the dipole location(s) and reduce the number of possible
solutions.

Another problem with dipole fitting is that for many experimental conditions
and brain states it is likely – if not guaranteed – that more than one area of the
brain is involved in generating the measured pattern of activity. A single
dipole model is at best usually only valid for specific types of simple
conditions, such as a small stimulus presented in a particular part of the
visual field or movement of a single finger. Thus ideally the experimenter
should have an idea of how many dipoles to use and roughly where each is
located, which is in most cases unknown. Changing the number of dipoles
can significantly alter the results of dipole fitting; for example, the best-fitting
single-dipole solution for activity generated by a pair of brain areas is a
dipole located midway between the two true sources. Thus assumptions made
in this regard can significantly influence the results and lead to erroneous
interpretations. One could still implement a ‘multi-start’ approach that
involves fitting many different models comprising different numbers of
dipoles and starting locations. However, again because of the ill-posed nature
of the inverse problem, as the number of parameters increase there is
increasing likelihood that two or more very different models will have
comparable goodness-of-fit values. A priori predictions can be used to guide
the number and starting locations of dipoles, but this again raises the issue of
operator dependence. If the assumptions made are incorrect, the dipole
solution will likely be as well.

Distributed Source Models
Distributed source models take a very different approach from dipole
modelling, although at their heart they are actually based on the same
principle: computing a forward solution based on dipoles and comparing this
to the data. The critical difference from dipole modelling is that distributed



source models simultaneously fit a dipole at every location on the cortical
surface, rather than making assumptions about the number of dipoles and
where they should be. Finding the optimal source solution then depends on
determining what the optimal strength (signal amplitude) of each dipole is to
best match the observed data. This approach accounts for the fact, known
from other imaging methods such as fMRI, that brain activation is rarely as
focal as a single dipole model would suggest, and in fact is often distributed
over relatively large (up to several square centimetres) areas of cortex.

Although technically a distributed source model could be computed for a 3D
matrix encompassing the whole space inside the head, virtually all available
approaches constrain the model to locations that are neurobiologically
plausible, such as the cerebral cortex. The first step in computing a
distributed source model is thus to create a model of the surface of the brain
(either from a standard brain or the individual’s anatomical MRI) and
tessellate it – a process of representing the surface as a set of roughly equally
sized triangles (with the variability in their size being driven by the need to fit
as best as possible to the shape of the brain surface). This is shown in Figure
5.11. A dipole is then placed at each of the vertices (corners) of these
triangles. The spatial resolution of the model is determined by the number of
triangles and vertices; typically there are in the order of 10,000 vertices,
resulting in a resolution of 5–10 mm, which is reasonable given the effective
spatial resolution of MEG and time required for computation. An important
consequence of this large number of dipoles is that distributed surface models
are inherently underdetermined – that is, there are more parameters to
estimate than there are independent sources of data (the MEG sensors; at best
there may be ~300 sensors). The mathematical consequence of this is that,
like the inverse problem in general, the distributed source solution is ill-posed
and has an infinite number of possible solutions. In order to make the
solution tractable, constraints need to be applied – known mathematically as
regularization. One constraint that is already implied by using a cortical
surface model is that the range of possible solutions is limited to the surface
of the brain, but this constraint is insufficient. Additional constraints are
needed, and different distributed source models differ primarily in their
approaches to regularization.

Figure 5.11 A tessellated cortical surface. The smooth, continuous cortical



surface is represented as a set of discrete triangles, defined by a set of points
on the cortex (vertices). The size of each triangle can vary according to the
shape of the brain. The inset at top left shows a zoomed view of the region
indicated by the arrow. Image produced using the Surf Ice software package
(www.nitrc.org/projects/surfice)

One distributed source modelling approach is known as minimum norm
estimation (MNE). The primary regularization used by this approach is to
assume that the correct solution is the one that minimizes the overall
difference between the data and the model, while keeping the average
amplitudes of the entire set of dipoles to a minimum. Because signal strength
drops non-linearly with depth from the surface of the brain, a consequence of
MNE is that it is biased towards solutions where most of the activity is on the
outer surface of the brain. Modern implementations of MNE thus employ an
additional regularization, a parameter which ‘penalizes’ shallow sources in
favour of deeper ones (Lin, Witzel, Ahlfors, Stufflebeam, Belliveau, &
Hämäläinen, 2006). Correct tuning of this parameter produces relatively even
sensitivity to sources of varying depths, at least within the cortex; this
regularization cannot fully compensate for the fact that MEG is inherently
less sensitive to deeper sources. Another regularization that can be applied is
noise normalization. This approach recognizes that noise levels may not be
the same at every dipole across the surface of the brain, and converts the data
to z statistics by dividing the estimated strength by the variance of that
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estimate, at each dipole individually. Two commonly used versions of noise
normalization are dynamic statistical parametric mapping (dSPM; Dale et
al., 2000) and standardized low-resolution brain electromagnetic
tomography (sLORETA; Pascual-Marqui, 2002). Figure 5.12 shows an
example of a dSPM solution.

Distributed source models have advantages over dipole modelling because
they do not suffer from operator dependence in specifying the number and
starting locations of the dipoles, and seem to better fit our understanding that
brain activity in many experimental paradigms is not highly focal but rather
distributed. However, all of these techniques are inherently low resolution,
and likely overestimate the spatial extent of activation in many cases.

Beamformers
Beamformers are a class of signal-processing technique originally developed
for radar, but which have been found to have applications in a wide variety of
domains. A beamformer is a spatial filter – effectively a set of weights
(multipliers) applied to the data from each MEG sensor – such that the signal
from every location in the brain volume other than the region of interest is
suppressed (Baillet, 2011; Barnes, Hillebrand, Fawcett, & Singh, 2004;
Brookes et al., 2008, 2010; Hillebrand & Barnes, 2005). This is based on
models of how a signal propagates from each location in the brain to each
sensor. As with distributed source models, beamformers can fit dipoles only
along the pre-specified, tessellated cortical surface, or they can operate on a
three-dimensional grid whereby the space inside the head is sampled with a
consistent spatial resolution by first dividing it into voxels (cube-shaped
‘volume pixels’) of a consistent size, typically 1–4 mm on each side of the
cube. Then, for each voxel (or a subset of voxels deemed to be of interest),
the appropriate weighting matrix is computed to filter out the signal from all
other locations, leaving the time series data associated with that particular
location. Each source location in a beamformer analysis is often called a
virtual electrode. Just as with dipole or distributed source models,
beamformers assume a dipole at each location in the head where source
modelling takes place. But whereas distributed source models attempt to find
the optimal balance of dipole strengths across the entire set of dipoles
simultaneously to model the sensor-recorded data, beamformers instead use



the forward solutions from voxels of non-interest to build the spatial filters –
essentially characterizing the data from the voxel of interest as what cannot
be attributed to the dipoles at other locations. Nevertheless, each voxel in the
beamformer result is still a dipole with a particular strength and spatial
orientation. An example beamformer result is shown in Figure 5.13.

Figure 5.12 Example of a distributed source model, using dSPM noise
normalization. The top panel shows the inflated cortical surface of the right
hemisphere, with areas showing activation levels above a statistical threshold
shown with a colour scale indicating intensity of activation ranging from red
(weaker) to yellow (stronger). Consistent with the fact that the data are from
an auditory stimulation experiment, the activation is focused in the superior
temporal lobe. Time courses from the 100 strongest dipoles on the cortical
surface are shown in the middle bottom panel. The bottom panel shows the
same source localization solution, but uses arrows positioned at each of the
distributed sources to represent the orientation of the dipoles; the colour still
represents activation intensity. For this figure the cortical surface is not
inflated, as this would distort the dipole orientations. Data are from the
‘sample_audvis_raw’ example dataset recorded at the MGH/HMS/MIT
Athinoula A. Martinos Center Biomedical Imaging and available in the
MNE-Python software package (Gramfort, 2013)



Figure 5.13 Results of a beamformer applied to the same auditory
stimulation dataset as the distributed source solution shown in Figure 5.12.
This used a type of beamformer known as dynamic imaging of coherent
sources (DICS) (Gross, Kujala, Hamalainen, Timmermann, Schnitzler, &
Salmelin, 2001). Time courses for the 30 strongest dipoles are plotted in the
bottom right panel. Data are from the ‘sample_audvis_raw’ example dataset
recorded at the MGH/HMS/MIT Athinoula A. Martinos Center Biomedical
Imaging and available in the MNE-Python software package (Gramfort,
2013)



Because they can sample the entire space inside the head systematically,
beamformers can be performed using a spherical head model – in contrast to
distributed source models which require a model of the surface of the cortex.
However, the accuracy of beamformers increases if the head model is more
representative of the head of the actual person whose data is being source-
localized, so constraining the source localization to the cortical surface using
the individual’s own anatomical MRI is likely to increase accuracy. On the
other hand, a more detailed but inaccurate head model, or poor registration
between the MEG sensor locations and the head model, can result in lower
accuracy (Hillebrand & Barnes, 2003). As with distributed source models, the
SNR of beamformers get worse with increasing distance from the sensors
(towards the centre of the head), and the approach for compensating that is
regularization. A side effect of this regularization is a loss of effective spatial
resolution as depth increases; however, this is also an inherent limitation of
the MEG technique itself.

The use of spatial filters allows source imaging at a very fine resolution with
beamforming; however, this has a potentially negative consequence. Because
the spatial filter suppresses activity that is detected at locations other than the



target voxel, if there is a high correlation between the activity at the target
voxel and some other location in the brain, then the spatial filter will remove
that activity from its estimate of the activity at the target voxel. In other
words, if the activity of two sources are highly correlated over time, then
beamforming will be poor at detecting them, or may not detect them at all.
However, beamformers are robust to partial correlations, and so this
limitation is only true in cases where the data are quite highly correlated
(although there is no hard-and-fast rule, correlations over 0.5 would typically
be considered ‘high’; however, this also depends on the strength and SNR of
the source). Even for highly correlated sources, correction algorithms have
been developed. It is also the case that even when two brain areas show
correlation, the strength of this correlation is typically not consistent over
time. As a consequence, the use of longer-duration segments of MEG data
when computing beamformers will decrease the likelihood of this type of
error. This issue of correlated sources becomes important particularly for
research studies interested in ‘functional connectivity’ – how different brain
areas modulate each other. Functional connectivity is typically defined as the
correlation between time courses from different brain regions. However, such
correlations are commonly weaker than 0.5, so beamformers can still be used
for this purpose; as well there are techniques to measure functional
connectivity other than linear correlation that can be used. Functional
connectivity is discussed in greater detail in the chapter on functional MRI.

It is important to understand that the fact that highly correlated sources may
cancel each other out does not mean that beamformers cannot detect activity
that is spread out over an area larger than the size of a single voxel. Indeed,
Figure 5.13 shows a very smooth, extensive activation, which is typical for
beamforming and consistent with the effective spatial resolution of MEG.
The distributed source localization results occur because the weighting
matrices for adjacent voxels are highly similar (since they are spatial filters
for almost the same location), and so there is comparatively little suppression
of signals by the beamformer for nearby voxels. The problem of correlated
signals described above is with regard to source locations some distance from
each other (several centimetres). However, the weighting matrices do by
definition differ from voxel to voxel, and so the source signal strength at the
voxel exhibiting the highest level of activity within a region will tend to
reduce the beamformer-reconstructed activity of the voxels around it. Thus



whereas distributed source models may tend to overestimate the spatial extent
of activation, beamformers may tend to underestimate it. However, this
general observation is highly dependent on the particular source localization
algorithm and the parameters used with that algorithm; a comparison of
Figures 5.12 and 5.13 suggests that in this case the beamformer resulted in a
more spatially distributed solution. A related consequence of the way spatial
filtering works is that if there are two activation peaks that are highly
correlated and relatively close to each other, the beamformer will erroneously
place a single peak of activation in between the two actual sources. However,
in practice this may often not be a significant concern unless the activations
are very strong and focal. Indeed, another consequence of spatial filtering to
be aware of is that beamformer-reconstructed sources with higher levels of
activation will be more focal than sources with weaker activity, because the
high activation will induce greater spatial filtering of nearby voxels. This
again runs contrary to distributed source modelling, where stronger
activations may end up being smeared over a larger area.

An important consideration for spatial filtering is that the brain volume must
be sampled at a sufficiently high spatial resolution, because if the brain is
under-sampled, the peak location of activity might be missed (especially if it
is relatively focal), and thus filtered out by the beamformer rather than
detected. On the other hand, a paradoxical feature of beamforming is that
better SNR and a larger number of MEG sensors can actually make signal
detection more difficult. This is because both of these factors increase the
effective spatial resolution of the beamformer, which in turn increases the
likelihood of suppression of nearby signals; in noisier data and/or with fewer
sensors, the spatial filter can only act over larger brain regions.

Comparison of Source-Localization Algorithms
Because of the nature of spatial filters, beamformers and distributed source
models can be viewed as complementary approaches to source localization,
and asking ‘which is better?’ may be an overly simplistic question (or,
alternatively, have an overly complex answer). Distributed source models are
generally thought to overestimate the spatial smoothness, and thus spatial
extent, of brain activation. Their inherently low spatial resolution makes them
unsuited to do high spatial resolution imaging, especially where differential



activation of nearby cortical regions is expected – for example, retinotopic
mapping in the occipital lobe or tonotopic mapping in the auditory cortex. In
contrast, retinotopic mapping has been successfully performed using
beamforming (Brookes et al., 2010). On the other hand, distributed source
models are unaffected by correlated activity in different brain areas, while
beamformers may less reliably detect activity that has multiple peaks over a
restricted area, or that is correlated between brain areas that are some distance
from each other. As an example of the latter case, a transient, simple auditory
stimulus presented to both ears will evoke sensory-related activity in the
superior temporal lobes (primary auditory cortex) bilaterally. This activity
will thus be highly correlated between the two, spatially discrete cortical
regions and thus a beamformer would fail to detect either area of activation;
though a solution to this is to compute the beamformers for each hemisphere
separately (Herdman, Wollbrink, Chau, Ishii, Ross, & Pantey, 2003). One
strength of beamformers is that while they are negatively affected by
correlated (that is, time-locked) activity between brain areas, they are able to
detect consistent activity across trials that is not time-locked to stimulus
presentation. This can occur in frequency domain analyses where either there
are no time-locking events (such as in data collected during the resting state),
or there are consistent changes in power within a particular frequency band
after a particular stimulus event, but these changes are not phase-locked – in
other words, the peaks and troughs within the frequency band do not
consistently line up across trials. Other approaches, which depend on first
averaging data across trials to improve SNR, are unable to detect these
changes because the averaging process would largely cancel out any changes
that are not time-locked to the stimulus events.

Ultimately, the choice of source-localization algorithm, as well as the
interpretation of the results should thus be informed by a good understanding
both of the strengths and limitations of the technique, and the experimenter’s
prior expectations concerning the spatial distribution and extent of activation.
It is also important to understand that all approaches to source localization are
attempts to create a solution to a mathematically ill-posed solution – that is,
one that has a virtually infinite number of possible solutions. The
mathematical computations and parameters used in any source-localization
approach represent one possible solution to the ill-posed problem, based on
certain assumptions and extensive testing as to what seems to work best. As a



result, different source-localization approaches will almost inevitably lead to
at least somewhat different results given the same dataset. This can be seen in
comparing Figures 5.12 and 5.13 – although in those two figures the results
are broadly consistent with each other, and with prior expectations for
cortical responses to auditory stimuli. Determining which the ‘right’ solution
is not straightforward, either. With real data, the ground truth is never known,
because each individual, and each dataset, has its own characteristics. Even if
one had data from a method with relatively unambiguous localization
information, such as fMRI or PET (though see caveats in those chapters
concerning localization accuracy), those techniques do not measure the same
thing (magnetic fields) as MEG and so could not be relied upon as ground
truth. Thus it is important to always keep in mind that source-localization
results are models, not literal representations of data, and to take source-
localization results with at least a grain of salt (if not more).



Experimental Design
Due to the great similarity in what EEG and MEG measure, and their
temporal resolutions, virtually all that was discussed in the previous chapter
concerning experimental design for EEG is equally applicable here for MEG.
Perhaps the only factor worth mentioning specifically here is that source
localization approaches in particular benefit from having larger amounts of
data. This includes not only the number of trials, but the number of time
points available in each segment or trial epoch. Increasing the number of time
points can be achieved both by a high sampling rate (1000 Hz is common for
MEG), and longer segment lengths (extending perhaps 1–2 s both before and
after the onset of each stimulus). Longer pre-stimulus baseline epochs may be
more important for MEG than EEG, for two reasons. One is that for certain
source-localization methods such as beamformers, accurate detection and
localization of the signal is related to contrasts between the pre- and post-
stimulus epochs, and noise estimates are based on the amount of data
available for each of those periods. If fewer data points are present in the pre-
stimulus period, estimation of the baseline may be noisier (have higher
variance) than for the post-stimulus period, which may be problematic. The
same reasoning applies if one wishes to perform a frequency-domain
analysis, because calculation of pre-and post-stimulus power in different
frequency bands should be done on the same quantities of data, and indeed
lower frequencies can only be accurately estimated from longer segments of
data. The need for longer baseline periods than in EEG may also inform
decisions about SOA (the timing between successive stimuli), to ensure that
there is minimal overlap between stimuli in different epochs, or that there is
sufficient random variability that subsequent stimuli are not closely time-
locked to each other.

Another consideration arises if source localization is of critical importance to
the study. As noted earlier in this chapter, MEG does not have uniform
sensitivity to sources throughout the brain. It is maximally sensitive to
activity occurring in the cerebral cortex close to the surface of the scalp, and
less sensitive to deeper structures such as the hippocampus and brainstem.
This does not mean that MEG is blind to sources in these locations, but the
reduced sensitivity can result in lower spatial accuracy in localizing sources,



and/or less ability to detect signals at all. Here again, including as many trials
per condition as possible will aid in the ability to detect and accurately
localize signals. At the extreme, Parkkonen and colleagues (Parkkonen,
Fujiki, & Makela, 2009) demonstrated that it is possible to measure auditory
brainstem responses (ABRs) using MEG. ABRs are a sequence of peaks
typically recorded using EEG, generated within the first 10 ms after a brief
auditory stimulus such as a click is presented. While easily recorded by EEG
due to volume conduction of the electrical signals, they were considered a
challenge for MEG because they are generated in auditory nuclei deep in the
brainstem. Nevertheless, Parkkonen et al. were able to record these signals
with MEG – using approximately 16,000 repetitions of the stimulus per
subject – and provided evidence from dipole modelling that these signals
were in fact generated in the brainstem. While this number of trials is
obviously infeasible for many experimental designs (here, each stimulus was
a brief ‘click’ and the experiment took about 30 min), it does illustrate that
experimental design can overcome some factors commonly perceived to be
inherent limitations of the MEG technique.

In a less extreme example, Riggs and colleagues (Riggs, Moses, Bardouillle,
Herdman, Ross, & Ryan, 2009) conducted a recognition memory experiment
in which participants viewed 200 images of indoor and outdoor scenes and
were later tested for their memory of these images among a set of distractor
images. Brain activation in the hippocampus was of interest because this
structure is involved both in encoding such images into memory and in later
retrieving them, and activation differs between familiar and novel images.
Because the hippocampus is buried deep in the medial temporal lobe, it sits
far from any MEG sensors and is considered a challenging target for source
localization. Riggs and colleagues compared three different approaches to
beamformer analysis and were able to recover hippocampal activity,
including the predicted differences between familiar and novel images. The
analysis approach that worked best operated in the frequency domain,
measuring the degree to which the peaks in a particular frequency band (in
this case, theta: 4–6 Hz) lined up across trials – a technique called inter-trial
coherence (ITC). The authors speculated that this worked better than an
approach based on amplitude of the beamformer-derived signal, because
amplitude-based measures are penalized more with increasing depth than
coherence measures. This experiment demonstrates both the feasibility of



using MEG to study activity even in deep sources, and the importance of
comparing and understanding different source-localization approaches.



Data Analysis
In general, MEG data is broadly similar to EEG and approaches to analysis
are likewise very similar. The raw data are a set of time series from multiple
sensors, which are then preprocessed to improve SNR and then either
analysed as sensor data or as source-localized time series. Regardless of
whether they are sensor or source data, analysis can occur in the time domain
or in the frequency domain. In the time domain, component-based analyses
can be conducted in which peak or mean amplitudes within certain time
windows (ideally specified a priori) are analysed, or correlations between
time series can be conducted to examine functional connectivity. In the
frequency domain, both power (amplitude) and coherence (correlation of
peaks across trials, and/or between sensors or brain areas) in different
frequency bands can be analysed. In general the same statistical approaches
can be used for MEG as EEG data, such as t-tests, ANOVAs, and other
variants of the general linear model. Regardless of the approach used,
however, one important consideration is with regard to multiple comparisons.
While we touched on it in the previous chapter, here we will discuss this
issue in more depth.



The Multiple Comparison Problem
In the previous chapter we described an approach to ERP data analysis called
mass univariate analysis, in which between-condition t-tests are performed at
every electrode and time point. We noted that while this approach is unbiased
by predictions about where or when an experimental effect might occur, this
comes at the cost of an increased risk of false positives – finding results that
meet the threshold for statistical significance simply by chance. This occurs
because a conventional p value used in statistical null hypothesis testing sets
the probability of such false positive events, and a conventional threshold
such as .05 is fine when performing a single test – since 95 times out of 100 a
significant result would not be found by chance – but when performing
hundreds of tests, it means by definition that 5% of them will appear
significant when in fact they are not.

A similar problem exists for most MEG data, regardless of whether source
localization is performed or if the sensor-level data is analysed. A typical
modern MEG scanner has upwards of 100 sensors, and signals may be more
focal at the MEG sensors than at EEG electrodes, because there is less
smoothing by the intervening tissues. Thus where in EEG research often
multiple electrodes are analysed together in a single region of interest (ROI),
this is not as reasonable an approach with MEG. So if one were using a
modern MEG system with 100 sensors, each of which had three gradiometers
(one axial and two planar), then the analysis would involve 300 comparisons
if each sensor was treated independently – multiplied by the number of time
points that were being analysed (as noted earlier, data from the pairs of planar
gradiometers are often combined prior to data analysis, but this still leaves
200 contrasts to contend with). The problem becomes vastly greater if a
distributed-source or beamformer approach is used, as these generate time
series at thousands of voxels in the brain.

It is possible to simplify the analysis by reducing the number of statistical
comparisons considered, for instance by analysing data averaged over a time
window of interest, rather than all time points, and/or at specific sensors or
locations in the brain where the effects are expected to be maximal. However,
these are not always appropriate for the research question, and even when



they are there are likely to still be multiple comparisons, albeit fewer than if
all time points and locations were analysed.

There are a number of different approaches to dealing with the multiple
comparison problem. The one most commonly taught in introductory
statistics classes is the Bonferroni correction, which involves dividing the
desired p threshold by the number of tests performed. Thus if one were to
perform ten tests with a desired overall p of .05, then one would need to
apply a threshold of p =.05/10 =.005 to each individual test. This approach is
problematic for neuroimaging data, however, since the number of tests is
typically in the tens or even hundreds of thousands, and so the resulting p
threshold becomes so low as to be difficult to obtain. The Bonferroni
approach is thus considered overly conservative for neuroimaging data. In
fact there is a good, principled reason not to use Bonferroni correction as this
approach assumes that each statistical test is independent of every other test.
However, in neuroimaging data we expect that brain activity measured at
each voxel in the brain (or at each sensor) is in fact correlated with the data
from adjacent and nearby brain regions (or sensors), as well as some more
distant areas that are functionally connected to a given brain area – so the
individual tests are not truly independent.

One commonly used alternative to Bonferroni correction, both in
neuroimaging and other areas (such as genetic microarrays), is the false
discovery rate (FDR), introduced by Benjamini and Hochberg (1995) and
first applied to neuroimaging by Genovese and colleagues (2002). In brief the
approach works by controlling the proportion of discoveries (p values that
exceed the desired univariate or single-test threshold, such as .05) that are
false positives, based on a ranking of the p values (with the smallest – most
significant – p value ranked the highest). Thus the approach is adaptive
depending on characteristics of the data, in particular the total number of
discoveries but also the total number of tests and the desired level of
significance. A number of variants of the FDR approach are available, and
have been compared in some papers (Groppe et al., 2011).

A third type of approach uses nonparametric statistics. An advantage of
nonparametric approaches is that they do not make any assumptions about the
variance or other aspects of the data – they are data-driven approaches and



merely assume that the data collected are representative of the more general
population to which one would want to generalize. They are however more
computationally intensive than more familiar (parametric) statistical methods
such as ANOVAs and t-tests, and can be less powerful. The two main
nonparametric approaches are bootstrapping and randomization methods
(Nichols & Holmes, 2001). In both cases, estimates of the activity levels are
made many times with different randomized subsets of the data. In
bootstrapping, the data are randomly sampled with replacement, meaning
that the same data point (subject or trial, depending on the level of the
analysis) could be represented multiple times whereas other data points could
not be present at all in a particular sample. In randomization all of the data
are used, but on each iteration of the estimation, each data point (typically a
trial in a single-subject analysis, or the average across trials for a given
condition and subject in a group-level analysis) is randomly assigned to one
condition or the other, rather than being assigned to its true condition. In this
way, one can estimate how much more likely the difference between the
conditions in the true experiment is from any random set of assignments of
data to conditions (since if there is no true difference, then the two samples
really are random samples from a single population).

In both bootstrapping and randomization approaches, 1000 or more
randomized samples are created and a between-condition difference statistic
(for the purposes of explanation, we will use t but in principle any statistic
can be used) is computed for each sample, at each voxel or sensor. Once this
is done, the maximum t value for each sample (that is, across all voxels or
sensors in that sample) is found; collectively the values of all of these
maximum t values form the permutation distribution of this statistic.
Assuming a desired p value of .05, the t value is obtained by comparing the
conditions using their actual labelling to the permutation distribution; if the
actual t value is within (or above) the range of the top 5% of t values in the
permutation distribution, we consider this a significant result. Put another
way, the threshold for significance is the t value at the 95th percentile of the
permutation distribution. This process controls for multiple comparisons
because the threshold for significance is defined by the maximum statistic
values that are likely to be found by chance, across a very large sample of
randomized relabellings of the data – each of which contained the same
number of statistical tests as the dataset with the correct labellings. Therefore



any t value in the dataset with the actual labelling that exceeds the threshold
is considered significant in the face of multiple comparisons. While
nonparametric statistics are considered to be more robust for neuroimaging
data – including MEG and fMRI – than parametric approaches, an important
consideration is that they tend to be less sensitive than parametric methods
(Eklund, Nichols, & Knutsson, 2016; Hillebrand & Barnes, 2005), and in
some cases considerably less sensitive. In practice, this means that although a
researcher can have confidence in effects that are found to be significant
using a properly applied nonparametric approach, other effects might be
missed, resulting in ‘false negatives’.

Summary

Electrical current flow – the movement of charged particles – create a magnetic field
according to Ampère’s circuital law (also known as the right-hand rule). Because of this,
electrical brain activity gives rise to very small magnetic fields that can be measured at the
scalp using MEG. Because these magnetic fields – produced by hundreds or thousands of
synchronously active neurons arranged in open field configurations – are so small, MEG
must be conducted in a magnetically shielded room, and use very sensitive detectors super-
cooled in liquid helium. These superconducting quantum interference devices (SQUIDs)
can be connected to different types of sensors, which differ in the orientation of magnetic
field that they are sensitive to. Magnetometers and axial gradiometers are maximally
sensitive to the radial components of magnetic fields as they enter or exit the head.
Conversely, planar gradiometers are maximally sensitive to tangential components of
magnetic fields, which run parallel to the surface of the scalp. Two planar gradiometers with
orthogonal orientations are required to capture the full possible range of tangential magnetic
field orientations at a given location. The term ‘gradiometer’ refers to sensors with one
pick-up coil close to the scalp, and another with opposite winding further away from the
scalp. Because both the near and far windings will pick up environmental noise, but only
the near winding will pick up brain activity, gradiometers help to reduce the amount of
environmental noise in MEG recordings. However, shielding the room and elimination of
other sources of noise are still necessary, including ensuring that the person being scanned
has no metal on their clothing or in their body, and using stimulation and response
equipment that does not generate magnetic fields within the shielded MEG recording room.

Because the head fits loosely inside the MEG helmet, the relationship between sensor
locations and specific locations on the scalp is less fixed than with EEG. For this reason, it
is common to track the head position using head-position indicators, and correct for any
movement of the head relative to the MEG sensors during preprocessing. There are limits
on the efficacy of this, however, so the head should always remain as still as possible during
scanning. This can be a problem for children especially, whose smaller heads pose
additional problems because of the greater distance between the brain and the sensors.
Another common step in preprocessing that is unique to MEG is correction for
environmental noise by subtracting recordings of the noise made by sensors in or around the
shielded room, and/or on the scanner itself. Other preprocessing steps are similar to EEG,
including filtering and correction or removal of artifacts created by eye blinks, eye



movements, and heartbeat.

Although MEG data can be analysed at the sensor level, like MEG, it is more common to
perform source localization and interpret the time series data from specific brain locations
that show modulation with the experimental manipulation. This is both because with MEG
there are often data from multiple sensors at each scalp location (meaning sensor-level
analysis would need to be performed multiple times), and because the physics of magnetic
field propagation create more constraints on source localization than with EEG. While
electrical potentials volume-conduct through the head, meaning that EEG signals can be
strong even far away from their sources, magnetic fields drop off sharply with the square
root of distance. As a result, there is somewhat less ambiguity in source localization for
MEG than EEG. Three common classes of source localization algorithm are dipole fitting,
distributed source models, and beamforming. Dipole fitting can have highly variable results
because it is heavily dependent on choices made by the researcher concerning the number,
location, orientation, and strength of the dipoles. Distributed source models offer a better
solution in many cases because they assume dipoles at every location on the surface of the
cerebral cortex, and find the optimal combination of dipole strengths to explain the
measured data. This reduces the operator-dependence of the results relative to dipole fitting.
However, in some cases – such as with early sensory components that have one or two
sources that can be relatively easily predicted (for example, primary auditory cortex) –
dipole fitting is a more appropriate and robust approach to use. Beamforming uses the data
from all sensors to create a spatial filter that isolates activity originating from a given
location in the brain from activity at all other locations. This can be applied to pre-specified
regions, or systematically across the whole brain surface (like distributed source models) or
whole brain volume (like fMRI). Beamforming can be unreliable when the activity in
multiple brain locations is highly correlated, although in most cases this is not an issue.
Source localization is highly sensitive to noise and thus requires a high signal-to-noise ratio
(SNR). This may necessitate many more trials than would be required for sensor-level
analysis or in an equivalent EEG study where source localization was not the goal. As well,
longer pre-stimulus baseline periods may be required to obtain low noise in the baseline
period, which is necessary to detect significant post-stimulus activation. As well, the sharp
drop-off of magnetic field strength with distance means that activity in deep brain regions
may be difficult to detect, or require large numbers of trials.

Relative to EEG, MEG has comparable temporal resolution but better spatial resolution due
to the physics of magnetic field propagation. As well, set-up time is shorter for MEG than
EEG as there is no need to manually lower impedance at every sensor location. However,
MEG is significantly more expensive than EEG and so in cases where source localization is
not required, EEG may be a better choice.

Things You Should Know

Whenever an electrical current flows through a conductor, a magnetic field is
induced with a spatial relationship described by the right-hand rule. This is how
magnetic fields, measured by MEG, are produced by brain activity.
The basis of the MEG signal is similar to EEG. Like EEG, hundreds or thousands of
neurons must experience synchronized changes in polarization, and be arranged in an
open-field configuration, in order to generate a measurable magnetic field at the
scalp. Because of the right-hand rule, the distribution of magnetic flux across the



scalp will be very different from the distribution of electrical potentials. Differences
in scalp topographies between EEG and MEG are further enhanced by the fact that,
while electrical signals volume-conduct through the head, MEG signals drop off
sharply with distance. Depending on the location and orientation of a neural
generator, it might produce measurable EEG and MEG signals, or only one or the
other.
The primary types of MEG sensor are magnetometers, axial gradiometers, and planar
gradiometers. Magnetometers and axial gradiometers are primarily sensitive to radial
components of magnetic fields, while planar gradiometers are primarily sensitive to
tangential components of magnetic fields. Typically, two planar gradiometers with
orthogonal orientations are used in each sensor location in order to capture the entire
range of possible tangential magnetic field orientations. These sensors all rely on
superconducting quantum interference devices (SQUIDs), which must be cooled in
liquid helium and well-shielded from external noise.
MEG is very sensitive to electromagnetic noise from the environment, as well as
physiological noise and movement artifacts from the body of the person being
scanned. Environmental noise is attenuated through passive or active shielding of the
room containing the MEG scanner, as well as by the use of gradiometers (rather than
magnetometers), whose design includes reverse-winding loops distal from the head
which help cancel out environmental noise that is equivalent at both loops of the
gradiometer. Movement artifacts are reduced by ensuring that the person being
scanned does not have any metal on their body or clothing (because metal moving
through space induces magnetic fields, even simply with breathing). Physiological
artifacts, including heartbeat and eye blinks and movements, are removed offline
during data preprocessing.
A number of preprocessing and analysis steps for MEG data are similar to EEG data,
including filtering, artifact removal and/or correction, and segmentation into epochs
of interest. However, prior to these steps, MEG-specific preprocessing may include
correction for head motion (based on recordings made from head position indicators
during the scan) and removal of environmental artifacts measured by external sensors
during the scan. Unlike EEG data, MEG data are not recorded relative to a reference
sensor and so re-referencing is not necessary. Another consideration is that with
MEG, there may be more than one data recording at each sensor location; for
instance, there may be recordings from an axial gradiometer and two orthogonal
planar gradiometers. These may be analysed in parallel, or combined in some way
such as in source localization.
Source localization of MEG data can be somewhat more constrained than for EEG
data. This is because the magnetic fields drop off sharply with distance, creating less
ambiguity of the depth and location of a generator than with EEG. As well, if
multiple sensor types are used (for example, both axial and planar gradiometers), the
different sensitivity patterns of these sensor types can be used to further constrain the
source localization.
Three common classes of source-localization algorithms are dipole fitting, distributed
source models, and beamforming. Dipole fitting requires pre-specification of the
number of sources (dipoles), as well as guesses as to the location, orientation, and
strength of each. As a result, the results of dipole fitting may be highly operator-
dependent and not replicable. Distributed source algorithms address this issue by
fitting dipoles at each of many locations across the cortex, meaning that the user does
not need to pre-specify the details of each dipole. Distributed source models tend to
produce very blurry, low-resolution solutions. Beamforming can operate either across



the brain volume or surface, or on a pre-specified set of locations. Beamforming
applies a spatial filter, derived from all sensor data, to isolate the activity originating
from a specific location in the brain. The nature of this spatial filtering means that
beamforming is less reliable when two or more sources are highly correlated (that is,
have similar time courses of activity).
The considerations for MEG experiment design are similar to EEG, although the fact
that the person’s head must remain in the MEG helmet, and that the stimulation and
response collection equipment must not generate electromagnetic fields, impose
some additional constraints on what is possible. Experimenters may also consider
including longer pre-stimulus baseline periods in MEG than EEG designs, to reduce
the amount of noise in the baseline estimations. Finally, the fact that MEG signal
strength drops with distance means that studies investigating activity originating in
deep (non-cortical) structures, like the brainstem or hippocampi, may need to average
data over far more trials than would be required with EEG to get a reliable signal.
MEG’s greatest strength relative to EEG is that source localization is generally
considered more constrained, and thus more reliable. As such, it can be considered to
have somewhat higher spatial resolution than EEG. MEG has similar temporal
resolution to EEG, and like EEG can be considered a direct measure of neural
activity. Disadvantages of MEG relative to EEG are the high costs of the equipment
and shielding, as well as the ongoing costs of liquid helium. As well, the SNR of
MEG can be low, especially for deep sources or source localization of cognitive (as
opposed to sensory) brain activity.

Further Readings
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6 Magnetic Resonance Imaging (MRI)



Learning Objectives
After reading this chapter, you should be able to:

Explain the role that hydrogen ions play in MRI, and describe their physical properties that
are relevant to obtaining MR images.
Define the concepts of the net magnetization vector, precession, and resonance, and how
these are influenced by an external magnetic field.
Explain the process of excitation and how the net magnetization vector is influenced by a
radio frequency pulse.
Define and contrast the processes of T1 recovery and T2 decay.
Explain how T1 and T2 contrast are obtained in an MRI scan.
Explain the difference between T2 and T2* decay.
Identify whether a structural MR image was obtained with T1 or T2 contrast.
Explain the function of magnetic field gradients in obtaining a 3D MR image, and
distinguish the roles of slice selection, frequency encoding, and phase encoding.
Define the concepts of spatial frequency, 2D Fourier decomposition, and k space, and
explain their relevance to MR image reconstruction.
Explain what an MRI pulse sequence is.
Identify common safety risks of MRI, and explain precautions that should be taken prior to
bringing a person within the field of an MRI scanner.



Introduction
Magnetic resonance imaging (MRI) is a medical imaging technique that
has revolutionized both clinical medicine and cognitive neuroscience. Within
cognitive neuroscience, MRI scans can be used in many different ways to
examine brain structure and function. Functional MRI (fMRI) is far and away
the most commonly used functional neuroimaging technique; in any given
year there are more than double the number of published papers in Medline
referencing this technique than any other technique. The first papers
demonstrating functional MRI were published in 1992 (Bandettini, Wong,
Hinks, Tikofsky, & Hyde, 1992; Kwong et al., 1992; Ogawa et al., 1992), and
since that time use of the technique has exploded. While fMRI has some
important limitations, as we will see, it offers highly accurate localization of
brain activity without the ambiguities inherent in EEG or MEG source
localization. As well, because MRI scanners are able to acquire high-
resolution structural scans of the brain in the same session as the functional
data, the fMRI data can easily be displayed as coloured activation maps on
these images, resulting in compelling images that have highly intuitive
interpretations – or at least apparently intuitive interpretations – compared to
the ‘squiggly lines’ of EEG for example. Also contributing to the prevalence
of fMRI is the fact that although MRI machines are very expensive, their use
in clinical medicine is so widespread that they are fairly ubiquitous and
accessible. This means that researchers interested in using fMRI do not have
to necessarily raise the funds to purchase the scanners (although the mere
presence of an MRI scanner does not mean it is suitably configured for a
particular research purpose). In contrast, MEG scanners have roughly
comparable price tags but have relatively few clinical indications, and so are
a rarity in hospitals, even today. The accessibility and appeal of fMRI led to
the development of a large community of users and some relatively
established and commonly accepted approaches to data analysis, along with
software packages implementing these. In addition to fMRI, a number of
other uses of MRI have found widespread application in cognitive
neuroscience, in particular diffusion tensor imaging (DTI, which can be used
to make inferences about the white matter tracts connecting different brain
regions), and morphometry, which attempts to relate features of brain
structure to characteristics such as the effects of particular experience



(including long-term changes in conditions such as deafness, as well as
changes over shorter periods such as in training studies) or disease states (for
example, Alzheimer’s disease). Because MRI is such a widespread and multi-
faceted technique, this book devotes five chapters to the topic, covering the
various functional and structural applications of the technique in cognitive
neuroscience. But first, it is important to understand the fundamentals of how
MRI works in general. This knowledge will help you understand how the
different applications of MRI in cognitive neuroscience work, as well as what
their limitations are and why these limitations exist.

Figure 6.1 A typical MRI scanner. Image copyright Siemens AG,
Munich/Berlin; used with permission



What Are We Measuring?
In different applications of MRI, we actually measure different things, such
as blood oxygenation (fMRI), the relative amounts of fat compared to water
in tissue (structural MRI), the movement of water molecules (diffusion MRI),
or the amounts of different chemical compounds (MRI spectroscopy).
However, in all of these cases, and indeed in virtually all applications of MRI
to human beings, MRI is ultimately measuring energy released from
hydrogen (H) atoms. Hydrogen is ubiquitous in the body: our bodies are
composed almost entirely of water, and hydrogen is a component of water
(H2O) as well as other important physiological compounds such as glucose
and fats. The mechanisms by which MRI scanners are able to produce so
many different measures of brain structure and function, all through the
hydrogen atom, are fascinating and significantly more complex than the
much more direct relationship between electrical activity in the brain and the
measurements made by EEG or MEG. Understanding how MRI works will
require some appreciation of physics as well as physiology, but the basic
concepts can be understood conceptually without requiring a background in
mathematics or physics (Hanson, 2008).



Hydrogen Atoms and Magnetic Fields
Hydrogen is the simplest atom in the universe. You may recall that there are
three fundamental types of subatomic particles: protons, which have a
positive electrical charge; electrons, which have a negative electrical charge;
and neutrons, which have no charge. Hydrogen atoms are composed solely of
a single proton, whereas other types of atoms include greater numbers of
protons, as well as electrons and neutrons. For this reason, in many cases
(including the present chapter), the terms ‘proton’ and ‘hydrogen atom’ can
be used interchangeably. Protons spin constantly around an axis, much as the
Earth spins around its axis (this is a general property of atoms that have more
protons than neutrons). Continuing our analogy with the Earth, the spin of a
proton gives it a magnetic moment, meaning that it acts as a magnetic dipole
– with poles we can refer to as ‘north’ and ‘south’ – and will experience force
in a magnetic field. A proton also has a characteristic angular momentum, a
fundamental characteristic proportional to its inertia and speed. Any atom
that has a magnetic moment and angular momentum is considered an MR-
active nucleus, and could be detected using MRI. However, in practice MRI
hardware must be tuned to a particular nucleus, and virtually all MRIs for
human use are tuned to hydrogen. A schematic diagram of a spinning proton
is shown in Figure 6.2.

Because they have magnetic properties, protons are influenced by external
magnetic fields. A useful analogy is a compass, which contains a needle
made of a magnetic material. The needle points to north because it aligns
itself with the Earth’s magnetic field. However, if you bring a stronger
magnet near the compass (such as a fridge magnet), the needle will align
itself with the position of that magnet due to the stronger field. Protons
operate essentially like compass needles. Inside the body, the orientation of
protons is generally random, as they are influenced by the Earth’s magnetic
field, but also local, microscopic magnetic fields of other protons, atoms, and
molecules in the body. Recall that magnetic field strength drops off
exponentially with distance, so even very small magnetic fields can have
significant influence over short distances at the atomic level. In the presence
of a relatively strong external magnetic field, however, the orientations of the
protons will be pulled into alignment with that magnetic field. An essential



component of any MRI scanner is a very strong magnet, whose field runs
along the length of the bed that the person lies on in the scanner. This strong
magnetic field of the MRI scanner is often called B0. The strength of B0 is a
fixed property of the scanner, and MRIs are typically described by their
magnetic field strength, which is measured in Tesla (T). Typical scanners
used in cognitive research are 1.5, 3, or 7 T, although lower-field scanners are
used in some clinical work, and scanners up to 9 T have been produced for
use in human research. By comparison, the Earth’s magnetic field is in the
order of tens of microTesla (10-6 T), and a typical fridge magnet is in the
order of tens of milliTesla (10-3 T). The field of an MRI system is so strong
that the scanner must be kept in a magnetically shielded room, and no ferrous
or otherwise magnetic materials can be taken into the room, or they would be
drawn into the centre of the MRI at high speed (see also the section on MRI
safety at the end of this chapter).

Figure 6.2 A schematic representation of a proton (hydrogen ion), showing
its axis and the direction of rotation or spin. This spin creates the magnetic
moment (field) of the proton

Inside the body, the influence even of the strong magnetic field from an MRI
scanner exerts only a relatively weak (though measurable) influence on the
orientation of the protons. Thus the orientations of the many protons in the
body inside an MRI scanner will still be largely random, but with a slight net
overall tendency to be more aligned with the field of the scanner than any
other direction. In fact, less than ten out of every million protons is actually
aligned with B0 in a typical human MRI scanner, but this is nevertheless
sufficient to create a measurable effect due to the large number of protons in
the body (on the order of 1027). The degree of alignment of the protons with
B0 is a function of the strength of the magnetic field, and so stronger MRI
systems induce greater alignment of the protons, which ultimately (for



reasons discussed below) leads to better signal quality. While the orientation
of any individual proton is insignificant in MR imaging, we can compute the
net magnitude and orientation of all the protons in a particular sample (such
as the entire head, or a smaller portion of it): this is called the net
magnetization vector (NMV). As you are reading this chapter, the NMV of
your head is likely to be approximately zero, because your protons have
completely random orientations. However, when someone lies in an MRI
scanner, the NMV of their body will be aligned with B0 and thus have a
magnitude greater than zero. This is shown in Figure 6.3. This is the essential
first step in MR imaging – aligning the NMV of the body with B0.
Subsequent steps involve perturbing this NMV and then measuring the result.

Figure 6.3 The orientation of axes of individual protons is largely random
when not in a magnetic field (top). However, when in a strong magnetic field,
such as an MRI scanner (bottom), there is a weak tendency of the protons to
align with the axis of that external magnetic field (B0; large orange arrow).
The summed orientation of all the protons in a sample can be described by
the net magnetization vector (NMV). In the top panel, since all possible
orientations of proton are possible (top right), the NMV is essentially zero.
However, in a strong magnetic field, the majority of protons will have
orientations roughly aligned with the magnetic field, and so the NMV will be
non-zero, and oriented parallel to B0





Precession and Resonance
In the presence of a static magnetic field – B0 – protons will tend to align
their axes with this field. Previously we learned that protons spin around this
axis. However, protons also experience a second type of movement, which is
a rotating ‘wobble’ around the central axis. This is called precession, and can
be visualized as the axis of the proton (the line between its two poles) being
tilted slightly away from, and rotating around, the axis of B0, as shown in
Figure 6.4. Moreover, the protons precess at a precise rate, determined by the
strength of the magnetic field, according to the Larmor equation:

ω = B0 × λ

In this simple multiplication formula, ω is the precessional speed (also known
as the Larmor frequency, and typically expressed in megahertz – MHz –
where 1 MHz = 1000 Hz), B0 is the strength of the magnetic field, and λ is
the gyro-magnetic ratio. The gyro-magnetic ratio is a fixed property of any
MR-active nucleus relating its magnetic moment to its angular momentum;
for hydrogen the value of λ is 42.57 MHz/T. Therefore in the presence of a 1
T MRI scanner, the hydrogen atoms precess at 42.57 MHz; in a 3 T MRI
scanner, they precess at 3 × 42.57 = 127.71 MHz. Providing you with these
numbers may seem very specific, given the conceptual approach of this
textbook, and indeed in the day-to-day use of an MRI scanner there’s
typically no need to know these values. However, the precessional speed of
hydrogen atoms is critical to understanding how MRI actually works; this
brings us to the topic of resonance.

Figure 6.4 In the presence of a strong magnetic field, protons both align with
that field, and precess around it. Precession (black dashed arrows) is different
from the spin of the proton (dashed blue arrow), and occurs only in the
presence of an external magnetic field. The bottom panel shows a proton at
different points in its precessional path over time



Resonance is a general phenomenon whereby energy can be transferred from
one material to another if both are oscillating at (or tuned to) to the same
frequency. Musicians may be intuitively aware of this – for example, if a
guitar is sitting on a stand and a key is played on a piano nearby, the
corresponding string of the guitar that is tuned to that note will vibrate. In this
case, the piano caused oscillating sound waves which had sufficient energy to
travel through the air to the guitar, and make its string vibrate. However, only
a string tuned to vibrate at the same pitch (frequency) is able to absorb this
energy – this is resonance. Another example is pushing someone on a swing:
if the pushes are timed synchronously with the movement of the swing, they
add energy and help the person swing higher; if, however, the pushes go
against the direction of the swing, they slow the swinger. This is essentially
the same manner in which MRI scanners work. Protons precess at their
resonant (Larmor) frequency, and any energy applied to them at that resonant
frequency will be absorbed by the protons, whereas energy at other
frequencies has no effect on the protons. In the case of MRI, the Larmor
frequency is in the radio frequency (RF) range, and so radio waves are used.
During MR image acquisition, an RF transmission coil transmits RF energy
at the Larmor frequency of hydrogen into the head of the person being



scanned, and as a result this energy is absorbed by the protons.

An important feature of radio waves is that, physically, they can be
considered magnetic fields that change direction in time. As noted earlier, we
induce precession by applying a second magnetic field perpendicular to B0;
we can now say more specifically that in an MRI scanner, it is the radio
waves that are transmitted in a plane perpendicular to B0. Thus there is now
‘competition’ between B0 and the RF magnetic field to determine the
orientation of the protons.

Thus the result of applying RF energy is that the NMV ‘tips’ from being
aligned with B0 (also called the longitudinal plane) towards being aligned
with the transverse plane that the RF energy is being transmitted in. This is
called excitation and is illustrated in Figure 6.5. It is common on MRI
scanners to quantify the amount of RF energy used in terms of the flip angle
of the RF pulse, and so using the amount of energy required to put the NMV
in the transverse plane is referred to as a 90° flip angle.

Figure 6.5 Excitation. The left panel shows the NMV of a sample of protons
(such as the head) aligned with a strong magnetic field (B0), which we call
the longitudinal plane. Excitation involves applying RF energy at the
resonant (Larmor) frequency of the protons in the B0, and in a plane
orthogonal to B0 (the transverse plane). Because RF energy is a time-varying
magnetic field, it draws the NMV towards the transverse plane, as shown in
the right two panels. This ‘flip’ of the NMV is proportional to the intensity of
RF energy applied, and so RF energy can be quantified in terms of flip angle.
Because the MRI signal is recorded in the transverse plane, the magnitude of
the MRI signal is proportional to the projection of the NMV into the
transverse plane, as shown by the dashed grey arrows. A 90° flip angle
creates the maximum recorded MRI signal



A 90° flip angle is quite common as it generates the maximum possible MRI
signal, because the receiver coil that measures the MRI signal is also aligned
with the transverse plane. This is illustrated in Figure 6.6. The receiver coil is
effectively a loop of conductive wire, and so as the precessing NMV passes
through the receiver coil, it induces an electrical current via the right-hand
rule, which forms the basis of the MRI signal. The strength of the signal thus
depends on the length of the NMV as it projects onto the transverse plane.
This is important to understand: the length (size) of the NMV is proportional
to the degree to which protons align with B0; however the length of the NMV
projected onto the transverse plane is proportional both to the strength of B0
and the flip angle. This is shown in Figure 6.5 – although the absolute length
of the NMV shown in the figure is the same for the 45° and 90° flip angles,
the projection of the NMV into the transverse plane – and thus the strength of
the recorded signal – is greater for the 90° flip angle.

Figure 6.6 Schematic diagram of an MR receiver coil (grey) and its
positioning relative to the transverse (B0, orange) and longitudinal planes of
the net magnetization vector. When the NMV is flipped by 90°, precession
occurs in the transverse plane, as shown by the blue arrows. Since the
receiver coil is oriented in the transverse plane, the magnitude of the recorded
signal is proportional to the size of the NMV in the transverse plane



Excitation – the input of RF energy to the body via resonance – actually has
two primary effects that are important for MR imaging. In addition to tipping
the NMV into the transverse plane, RF energy also causes phase
synchronization (or coherence) of the protons with the RF signal input.
Recall that phase refers to the relative positions of the peaks and troughs of
an oscillation over time; two waveforms may have the same frequency but
have different phase values, as shown in Figure 6.7. In the absence of
external RF energy, all of the protons in the head are precessing at the same
(Larmor) frequency, but their phases will be random. When an RF pulse is
applied, the phases of all of the protons will align with the phase of the input
RF pulse, thus becoming coherent. After the RF pulse is turned off, the
phases will gradually desynchronize and become random (incoherent) again.
The effect of phase synchronization is to create a very strong NMV in the
transverse plane. This is because, in addition to being proportional to the
strength of B0, the NMV is affected by the degree of coherence of the phases
of all the precessing protons. If the protons are highly incoherent, then the
NMV projected into the transverse plane is short, because at any given time
some protons’ poles are passing over the receiver coil. This results in a weak
signal because the signal from some protons is effectively cancelled out by
those crossing the receiver coil immediately before or after. In contrast, when
coherence is high, all (or really, a majority, as there is always a degree of
randomness or noise) of the protons’ poles cross the receiver coil at the same
time, generating a strong signal, as shown in Figure 6.7.



How Do We Measure It?
These two phenomena, tipping the NMV and phase synchronization, together
allow us to obtain MR images. As shown in Figure 6.6, the piece of hardware
that collects the imaging data – the MR receiver coil – is positioned such that
it only detects the precession of protons when the NMV is in the transverse
plane. Thus in the equilibrium (incoherent) state, no measurable signal is
detected by this coil since the NMV is aligned with the longitudinal plane.
However, when the NMV is flipped into the transverse plane, the coherent
precession of the protons is now detectable by the receiver coil. The signal is
induced in the coil due to the right-hand rule: the magnetic field created by
the precessing protons induces an oscillating electrical current in the coil.
This signal would be minimal if the phases of the protons’ precession were
incoherent, but when they are coherent they summate to induce a large signal
in the coil, oscillating at their rate of precession (the Larmor frequency). Thus
the ‘raw’ MRI signal is actually simply an oscillating waveform. How this
gets converted into a two- or three-dimensional image is a topic we will cover
in the next section, but first we need to explore the nature of this signal a bit
more.

At this point we need to introduce the variable of time into our understanding
of how MRI signals are obtained. Above we have referred to the RF
transmitter being turned on and off, and indeed MR imaging is dependent on
rapid and precise alterations of RF energy being transmitted and not. More
generally, we can think of the process of obtaining an MR image as a pulse
sequence – a sequence of pulses of RF energy (and as we will learn soon,
other events as well) over time. Indeed, the term ‘pulse sequence’ is used to
refer to the type of program run on an MRI scanner that determines what type
of images are obtained, and their quality. This can be visualized as the
sequence of events occurring over the course of a scan, as seen in Figure 6.8.

Figure 6.7 Top: Phase locking illustrated using a simple sine wave. All of the
waves have the same frequency (in this case, 10 Hz, although protons precess
much faster in reality). The value of the sine wave at any point in time
represents the position of the axis of a proton in its precessional path.
Relative to the reference waveform shown at the bottom in red, the orange



wave is phase-locked, or ‘in sync’; the green waveform is phase shifted by
90°; and the blue waveform by 180°. Bottom: schematic of four protons
precessing either out of phase or in phase. The waveforms to the right of the
proton images show the relative magnitude of the recorded signal: coherent
precession results in a much larger signal



A first important thing to note about the pulse sequence in Figure 6.8 – which
is true of all MRI pulse sequences – is that the RF transmission is not
constant during the scan. Rather, it is on for brief, regular periods. In between
these, the signal is read out from the receiver coil. This alternation of
excitation and readout is necessary, among other reasons, because reading
from the transmission coil when an RF pulse was being applied would simply
result in measuring that RF pulse. This alternation is also necessary because
the relative timing between RF energy transmission and receiver sampling is
critical to determining the type and quality of image obtained.

Figure 6.8 A simple MRI pulse sequence diagram, showing the relative
timing of an RF pulse and the signal readout from the receiver coil. The
readout is called an ‘echo’ because it is a reflection of the RF pulse

Recall that applying RF energy causes two events: the NMV flips into the
transverse plane (assuming a typical 90° flip angle) and the phases of
precession of the protons become coherent. As soon as the RF pulse is turned
off, the protons begin to revert to their pre-RF-excited state – the NMV
begins to tip back towards the longitudinal plane (the axis of B0) and the
phases of the individual protons lose coherence. Collectively, these two
phenomena are called relaxation, but each phenomenon also has its own
name. The return of the NMV to the longitudinal plane is referred to as T1
recovery, while the dephasing is known as T2 decay. It is important to
understand that while these two processes begin at the same time (when the
RF pulse is turned off), they are distinct phenomena, and are independent of
each other (see Figure 6.9). T1 recovery and T2 decay are influenced by
different factors, and they have different time courses – T1 recovery times are
typically significantly longer than T2 decay times.

T1 recovery occurs as protons give up their energy to the surrounding
environment (the molecular lattice). The time course of T1 recovery is an
exponentially increasing function, as shown in Figure 6.10, and occurs more
quickly in fat than water (as discussed below, we focus on fat and water here



because they are the two main components of brain tissues that influence MR
contrast). The rate of T1 recovery for a particular type of tissue can be
described by its T1 relaxation time, which is defined as the time it takes for
63% of the longitudinal relaxation to recover. Figure 6.10 shows that the T1
relaxation time is shorter in fat than in water. T2 decay also has an
exponential time course, but a decreasing one since it describes the loss of
coherence over time. This is shown in Figure 6.10, where it can be seen that,
as with T1 relaxation, T2 decay occurs more quickly in fat than water. Again,
the rate of T2 decay can be quantified by a number, the T2 relaxation time,
which represents the time it takes for a 63% reduction of the NMV in the
transverse plane or, put another way, for transverse magnetization to reach
37% of its maximum value.

Figure 6.9 The two relaxation phenomena in MR imaging. T1 recovery (left)
is the return of the NMV to alignment with B0 after excitation by an RF
pulse. In this view, the longitudinal plane is vertical (orange arrow, B0) and
the transverse plane is horizontal. T2 decay is the gradual dephasing of
protons after the RF pulse is turned off. This is visualized here looking down
onto the transverse plane, with B0 pointing directly out of the page towards
the viewer. Note that T1 recovery and T2 decay actually have different time
courses, and are illustrated on the same timeline here only for convenience



As noted above, T1 recovery and T2 decay are influenced by different
factors, although both occur more quickly in fat than in water. T1 recovery
time depends on how easily the surrounding lattice can absorb energy from
the protons. Fat molecules are densely packed and are inherently good
absorbers of energy, so they allow for rapid transfer of energy from protons.
In contrast, water molecules are less densely packed and have higher inherent
energy, making it harder for them to accept energy from excited protons.
Thus energy transfer is less efficient and consequently slower.

Figure 6.10 T1 recovery and T2 decay curves as a function of time at 1.5 T,
shown for the two different tissue types that are of primary importance in



creating contrast in structural imaging of the brain: fat and water. Note that
T2 decay has a faster time course than T1 recovery

T2 decay, in contrast, occurs due to interactions with the magnetic fields of
molecules surrounding the protons. When the RF energy is turned off, there
may seem to be no principled reason why dephasing should occur – since
protons precess at a fixed rate (their Larmor frequency), once they are
precessing coherently they should continue to do so in the absence of a
change in the magnetic field. In reality, however, the spins of protons near to
each other interact because of their magnetic moments. These interactions
cause some protons to precess at slightly faster rates and others at slower
rates, leading to T2 decay. These interactions occur more rapidly in the
densely packed fat molecules than in the more spread-out water molecules so,
like T1 relaxation, T2 decay occurs more quickly in fat.

Another phenomenon that can be measured is known as T2* decay. This is
also dephasing, but occurs much more rapidly even than T2 decay, in fact
over only tens of milliseconds. T2* decay is caused by small, local
inhomogeneities in the magnetic field, which can be caused by magnetic
properties of some molecules (for instance, haemoglobin in blood) as well as
by the fact that magnetic field inhomogeneities are caused near the
boundaries of different tissue types – for example, between fat and water, or
at the boundaries of the brain and the cerebrospinal fluid that envelops it, but
even between blood vessels and brain tissue. Although these differences in
magnetic field strength are very small compared to the B0 field of the MRI
scanner, they nevertheless exert measurable influence on the microscopic
environment around the protons. T2* decay is particularly important in fMRI,



as we will discuss in the next chapter.



Contrast in MR Images
The fact that different tissue types, like fat and water, have different T1 and
T2 recovery times is the basis for contrast in an MR image – that is,
differences in intensity (brightness) between different tissue types. Figure
6.11 shows examples of two different MRI scans of a human head, with
different contrast weightings. In both cases, we see the contrast as
differences in intensity of the image between grey matter, white matter, and
cerebrospinal fluid (CSF). These tissue types are the primary source of
contrast in anatomical MR images due to their differences in fat/water
content: grey matter is composed primarily of cell bodies, which have a low
fat content and a relatively high water content; white matter is composed
primarily of axons, which have high fat content due to the myelin sheath that
insulates the axons; and CSF has a higher water content even than grey
matter since it lacks cellular structures. Optimizing the contrast between grey
matter, white matter, and CSF results in the best renderings of anatomical
structure, and this is done by adjusting scan parameters so as to maximize the
difference in T1 and/or T2 contrast between these tissue types. You may have
noticed the green arrows in Figure 6.10 highlighting contrast: these arrows
are at the times when the T1 and T2 recovery curves are maximally different
– thus providing the best signal contrast between the images. Understanding
how these times are used requires further elaboration of MRI pulse
sequences.

Figure 6.11 Examples of T1- and T2-weighted MR images, both shown for a
midline slice through the head in the sagittal plane. Images generated using
FSLview software from the ‘Colin’ single-subject template brain (Aubert-
Broche, Evans, & Collins, 2006; Holmes, Hoge, Collins, Woods, Toga, &
Evans, 1998). Copyright © 1993–2009 Louis Collins, McConnell Brain
Imaging Centre, Montreal Neurological Institute, McGill University. Used
with permission



Although Figure 6.8 showed a simple pulse sequence involving only a single
RF pulse and readout (echo), in reality during an MRI scan a large number of
RF pulses are used, spaced at regular intervals. The time between each RF
pulse during the scan is called the repetition time (TR). In a T1-weighted
image (one designed to maximize T1 contrast), the first 90° RF pulse flips the
NMV into the transverse plane, and when the pulse is turned off T1 recovery
begins; however, the TR is set such that the second RF pulse occurs before
full T1 recovery has occurred. Thus at the time of the second RF pulse, the
NMV has recovered only partially – and critically, differently for different
tissue types. Because T1 recovery is faster in fat than water, the NMV in fatty
tissues (like white matter) will have recovered more than tissues with higher
water content. Thus when the second (and each subsequent) 90° RF pulse
occurs, the NMV is flipped past the transverse plane because the effect of the
second pulse is additive with the residual transverse magnetization in the
tissues. This is shown in Figure 6.12. As can be seen in this figure, the result
is that the transverse component of the NMV is longer for fat than for
water. The transverse component is the projection of the NMV into the
transverse plane – essentially obtained by drawing a vertical line from the end
of the NMV for each tissue type to the transverse plane. The transverse plane
is important because this is where the receiver coil is positioned, so the
projection onto the transverse plane determines the size of the signal that will
be measured. Tissues with higher fat content therefore appear brighter in T1-
weighted MR images, because they have a longer transverse component.
Thus to maximize fat–water contrast (or in the brain, grey matter–white
matter–CSF contrast) the TR in T1-weighted images is set at the time where
the T1 recovery curves for fat and water are maximally different. This
ensures that the projection of their respective NMVs into the transverse plane



will be maximally different. The result is that in T1-weighted images fat is
bright and water is dark. A typical T1-weighted image of the brain looks
rather intuitively like a black-and-white photograph, since white matter will
be white, grey matter will be grey, and CSF will be essentially invisible
(black). A typical T1-weighted image is shown in the left panel of Figure
6.11.

In other cases, a T2-weighted image is desired, such as the one in the right
panel of Figure 6.11. Recall that T2 decay refers to the decrease in phase
coherence (dephasing) in the transverse plane. Thus to obtain a T2-weighted
image we need to pick parameters that maximize the contrast in T2 decay
between fat and water – a time when significant dephasing has occurred for
fat, but relatively little for water. T2 contrast is primarily dependent on a
different scan parameter than T1 contrast: the echo time (TE). This is the
time between the RF pulse and readout of the signal from the receiver coil
(since what is read out is essentially an ‘echo’ of the RF signal sent in to the
tissue). By reading out the image at a time when fat has significantly
dephased, but water has not, we obtain an image of the brain in which white
matter (fat) is dark (because it is highly dephased and contributes little
signal), while grey matter and CSF are brighter. Referring back to Figure
6.10, we can see that the TE that maximizes this contrast is relatively short
compared to the TR that is optimal for a T1 weighted image. The influence of
T1 contrast in a T2-weighted image is minimized by using a TR that is longer
than what would be used in T1-weighted imaging – a time at which full or
almost-full recovery has occurred for both fat and water.

Figure 6.12 How contrast is generated in MR images over repeated
excitation cycles. Moving from left to right, a first 90° flip angle RF pulse
causes the NMV for both fat (yellow) and water (light blue) to be flipped into
the transverse plane. The next panel shows a point in time (at which partial
recovery has occurred. The NMV for fat has recovered more than for water,
since the T1 recovery time for fat is shorter. The rightmost panel shows the
NMVs immediately after the second 90° RF pulse, which occurred at the time
of the middle panel, when recovery was different for fat and water. As a
result, both NMVs are flipped past 90° (since the second pulse is additive
with the residual effects of the first). However, their previous partial recovery
leads to the projection of the NMV into the transverse plane (grey arrows,



bottom panel) for fat being longer than for water. Thus a greater MR signal
will be recorded for fat than for water, resulting in brighter spots on the MR
image. This is because the receiver coil is positioned in the transverse plane,
so the projection of the NMV into the transverse plane determines the MR
signal strength



Spatial Encoding of MR Images with Gradients
Thus far we have discussed how contrast is obtained in MRI images, and
noted that MRI pulse sequences are designed to maximize the contrast
between different tissue types. However, we have made no mention of how to
obtain a 2D slice, or a 3D image, of a structure such as the brain. Indeed, in
contrast to EEG or MEG – in which the number and density of the sensors is
directly related to the spatial resolution of the resulting data – high-resolution
MR imaging can be performed with a single RF coil (although multi-channel
coils do exist, and can provide improvements in image quality as well as how
long it takes to obtain an image; these are beyond the scope of this book
however). Understanding how 2D and 3D MR images are formed builds on
our understanding of the Larmor equation. Recall first that excitation is
dependent on the match between the frequency of the RF pulse and the
resonant (Larmor) frequency of the protons. Secondly, recall that the Larmor
equation tells us that protons’ resonant frequency is determined by the
strength of the magnetic field that they are in. A consequence of this is that if
different protons (in different locations) are experiencing different magnetic
field strengths, then an RF pulse tuned to excite the protons at one magnetic
field strength will not excite those experiencing a different field strength.
This is the principle used for spatial encoding of MR images.

At first the notion of different magnetic field strengths might seem surprising,
since the entire head of the subject during an MRI scan of the brain is inside
the bore of the scanner, which has a fixed field strength such as 1.5, 3, or 7 T.
However, MRI scanners have additional hardware inside them that allow for
the creation of magnetic field gradients – changes in the strength of the
magnetic field over one dimension of space. Along such a gradient, the
strength of the magnetic field at the very centre of the scanner is equal to the
labelled field strength of the scanner, but along one dimension (for example,
bottom to top, or left to right) the field strength increases gradually going in
one direction from the centre, while in the opposite direction field strength
decreases gradually. This is depicted in Figure 6.13. In the figure the
magnetic field strength is lower at the bottom of the head, and higher at the
top, and as a consequence the Larmor frequencies that will excite tissue at the
top of the head will not excite the bottom. Indeed, MRI scanners are typically



capable of sub-millimetre resolution, meaning that the slope of the gradients
used creates distinguishable Larmor frequencies across distances of less than
a millimetre. Thus there is a direct relationship between the slope (steepness)
of the magnetic field gradient used, and the resolution that is possible in an
MR image.

A 3D image of an anatomical structure such as the brain is typically acquired
as a series of 2D slices. Each slice has a particular thickness (for example, 1
mm for an anatomical image), and is composed of a 2D grid of individual
elements (for example, a 256 x 256 array of squares, 1 mm on a side). An
MRI slice can essentially be thought of as being like a digital photograph,
which is composed of a grid of pixels; however, the MR slice – although
typically viewed as a 2D image – has a particular thickness as well. Thus the
elements comprising MR images are called voxels (volume pixels), which are
the 3D equivalent to pixels.

Figure 6.13 A magnetic field gradient, represented schematically within the
bore of an MRI scanner. At the centre of the bore the magnetic field is the
field strength of the MRI system (for example, 3 T). Moving away from the
centre in one direction (rightward in this image), field strength decreases
along the gradient while in the opposite direction field strength increases. The
effect of this is to change the resonant (Larmor) frequency of protons along
this spatial dimension



Acquiring 2D or 3D MR images involves the use of gradients along three
orthogonal spatial dimensions. These are typically labelled x, y, and z, with z
running parallel to B0 (along the bore of the scanner), y running vertically,
and x running horizontally. This is illustrated in Figure 6.14. In the simplest
type of MR image acquisition, these gradients are applied to one spatial
dimension at a time over the course of the pulse sequence. There are,
however, many different variations on this theme which affect the properties
of the image; some of these are discussed in later chapters. For now we will
go through the most straightforward sequence used to acquire a single 2D
slice. For the sake of explanation, we will use an example in which the
person being scanned is lying on their back in the MRI (which is the typical



position), and we are acquiring a set of slices in the axial plane. As shown in
Figure 6.14, three different image planes are typically defined in anatomical
imaging: axial is as if you were looking at the brain of a person lying down,
viewed from the feet; sagittal is looking at the person from the side; and
coronal is as if you were facing the person. Since a participant lies on their
back in the MRI scanner during brain imaging, we can also define a 3D, x–y–
z coordinate system relative to the brain that parallels that described above for
the scanner. Thus we define x as the right–left dimension of the axial slice, y
as the anterior–posterior dimension, and z as the dorsal–ventral (up–down)
dimension along which the slice will be specified.

Figure 6.14 The three primary spatial axes, and planes of view defined in
medical imaging, relative to both the MR scanner bore (right) and the brain
as it is typically positioned in the bore (left)

The first step of the pulse sequence is slice selection; one slice is acquired at
a time. Slice selection involves inducing a gradient – the slice selection
gradient – along the axis that will be divided into slices. In our example,
since we want axial slices, this means inducing a gradient along the z
dimension – the long axis along the bore of the scanner. This is shown in
Figure 6.15. The slice selection gradient is turned on immediately before RF
excitation, and stays on during the excitation phase, as shown in Figure 6.16.
The frequency of the RF pulse is tuned to the Larmor frequency of the
particular position along the z axis of the slice we wish to image. The
thickness of the slice is determined by the slope of the gradient (with steeper



slopes producing thinner slices), and the bandwidth of the RF pulse – the
range of frequencies in the pulse. The RF pulse is thus a narrow range of
frequencies with a peak at the desired frequency for the target slice, and some
roll-off on either side of it. The steepness of this roll-off determines the
bandwidth. In Figure 6.16 note that the slice selection gradient is actually
briefly reversed immediately after the RF pulse. The effect of this is to undo
the effects of the slice selection pulse: the slice selection gradient briefly
changed the rate of precession of protons along the z dimension, and a side
effect of this is that when the gradient is turned off, the phase of the protons
at different locations along the gradient direction will be different – since the
ones that sped up ‘got ahead’ of the ones that slowed down. The brief
reversal of the slice selection gradient ‘rewinds’ the phases of the protons
along the gradient so that they are all in phase again. If this was not done,
some residual gradient in the precessional frequencies of protons along the
slice selection dimension might remain when the next RF pulse was sent,
which could lead to interactions that interfered with selective excitation of
slices acquired after. As well, for reasons we will learn below, it would
interfere with accurate reconstruction of the signal within the slice. The result
of the slice selection step is that protons within the target slice are excited,
with their NMV flipped into the transverse plane, while protons at all other
locations in the brain are not excited. Thus at readout, we can be confident
that our signal is originating only from that slice. However, we still need to
be able to resolve the signal from distinct 2D locations within that slice. This
is where the additional gradients come in.

Figure 6.15 A magnetic field gradient along a spatial dimension changes the
Larmor frequency of protons along the gradient. In MR imaging, a single
slice is selected for imaging at a given point in time by applying a gradient
along the slice dimension (here, the z axis) and then transmitting an RF pulse
at the Larmor frequency of the targeted slice, as determined by its position
along the gradient





Two-Dimensional Image Reconstruction
Understanding how a 2D MR image (slice) is created depends on
understanding how we can encode 2D information in a single 1D waveform
(which is all the receiver coil of the MRI records). The answer lies in a
method that should now be familiar from previous chapters: Fourier analysis.
Up until now we have considered Fourier transforms only in one dimension:
time. Recall that the Fourier transform allows us to convert a time-varying
waveform into a frequency-domain representation, because any complex
waveform can be decomposed into a weighted combination of simpler sine
waves – where by ‘weighted’ we mean that the amplitude of some of the
constituent sine waves are greater than for others. This was illustrated in
Figure 3.7. However, to reconstruct a 2D image we need to take our
understanding of Fourier analysis a step further, into the second dimension.

Figure 6.16 Pulse sequence diagram showing slice selection, frequency
encoding, and phase encoding steps

Just as a 1D signal can be decomposed into component sine waves, so can 2D
patterns such as images (whose two dimensions we call x and y) be
decomposed into a combination of 2D sine waves. Examples of 2D sine
waves – commonly called sine wave gratings – are shown in Figure 6.17.
Although at first glance these may look like alternating black and white bars,



closer inspection reveals that they change continuously from black through
grey to white. The white corresponds to the peaks of a sine wave, and the
black to the troughs. One can imagine that sine wave gratings are like
rippling sand dunes on a desert, or – less poetically – as if we were viewing a
sine wave from above, rather than the typical ‘side view’ as shown in the top
panel of Figure 6.7. In the 1D (temporal) domain we refer to the frequency of
a sine wave in terms of cycles per unit time (typically cycles per second, or
Hz); in the 2D (spatial) domain we refer to the spatial frequency of a grating
in terms of cycles per unit space (for example, per millimetre). Thus we can
say that the gratings in the bottom row of Figure 6.17 have higher spatial
frequency than those in the top row. As well, note that the gratings in the
right column of the figure are tilted at an angle. These were created by a
combination of sine waves running along the x and y axes. In the top right
panel, the lines in the image run at a 45° angle because the frequencies along
the x and y axes are equal. In the bottom right panel, the frequency along the
x axis is higher than along the y axis, resulting in a tilt of less than 45°.

Figure 6.17 Examples of 2D sine wave gratings

So, just as any 1D waveform can be decomposed through a Fourier transform
to a weighted combination of sine waves, any 2D image can be decomposed
into a weighted set of sine wave gratings. Conducting a 2D Fourier transform
essentially involves determining the individual weights of a very large set of
gratings, since they can vary in their spatial frequencies along two



dimensions, x and y. For a 1D Fourier transform, the result is a frequency
spectrum (as we saw in the EEG chapters), with frequency along the x axis
and power (the weighting of that frequency) on the y axis. The result of a 2D
Fourier transform requires us to plot power for each possible combination of
spatial frequency along the x and y axes of the original image, therefore we
plot spatial frequency along the two axes of a 2D frequency spectrum, and
power is represented as the brightness at each pixel in the image. In MR
imaging, the frequency spectrum of a 2D image is called k space; an example
of this is shown in Figure 6.18. The top row shows a drawing of Joseph
Fourier (after whom the transform is named), along with the 2D Fourier
transform (k space) of the drawing. By convention, k space is plotted with
zero in the centre of the graph, and so the power at the lowest frequencies
along each spatial dimension of the image are represented by the brightness
of the centre of k space; higher spatial frequencies are plotted in the periphery
of k space. Thus each point in k space actually represents information about
every spatial location in the MR image – but only some of the information.
This is illustrated in the bottom two rows of Figure 6.18: if we reconstruct the
image using only the centre of k space, we get a blurry version of the image,
since it only contains the low spatial frequencies of the image. This is in
effect a low-pass filter of the image. Conversely, if we reconstruct the image
from only the periphery of k space, excluding the centre, the result is a high-
pass filtered version of the image, showing only the edges or high spatial
frequencies. Put another way, the centre of k space is responsible for the
image contrast, while the outside of k space is responsible for the sharpness
of the image.

Figure 6.18 K space is the frequency-domain representation of a 2D image.
In the top row, the left two columns show a line drawing (of Joseph Fourier,
after whom the transform is named) and its k space representation, while the
right two columns show an MR image of a brain and its k space
representation. The middle row shows the same images reconstructed from
only the centre of their respective k spaces, while the bottom row shows the
images reconstructed from only the periphery of k space. By convention, k
space is drawn with the origin (0, 0) in the centre of the plot, so the centre of
k space contains information about low spatial frequencies, while the
periphery contains high-frequency information. Original image of Joseph
Fourier from ‘Portraits et Histoire des Hommes Utiles, Collection de



Cinquante Portraits,’ Societe Montyon et Franklin, 1839–1840, obtained from
commons.wikimedia.org/wiki/File:Joseph_Fourier.jpg

Another way of thinking of k space is in terms of what sine wave grating each
location in k space represents. This is illustrated in Figure 6.19. The
dimensions of k space are called k x and k y – since k y reflects frequencies
along the y axis of the original image, moving vertically from the centre of
the image corresponds to horizontal gratings of increasing frequency; moving
away from the centre along k x corresponds to vertical gratings of increasing
frequency. Most of k space, however, corresponds to gratings that run at
some angle, representing a combination of different spatial frequencies along
k x and k y. Also note that k space is symmetrical around zero – in other
words, there are negative spatial frequencies along both axes. These actually
correspond to the same spatial frequency, but with the opposite phase. For
example, the figure shows two gratings with x frequencies of –2 and 2,
respectively, with the phase difference reflected in whether the bar on the left
side of the grating is dark or light.



Figure 6.19 Different positions in k space represented as 2D sine wave
gratings. The origin (0,0) of k space is in the centre, so we can see that a
grating with vertical bars corresponds to a location along the k x axis where k
y = 0, whereas a horizontal grating corresponds to a point along the k y axis
where k x = 0. Most locations in k space represent combinations of non-zero
frequencies along both axes, resulting in angled gratings. Negative spatial
frequencies reflect gratings with the same spatial frequency as a positive
value, but opposite sign; this is evident in comparing the relative positions of
the black and white stripes in the two gratings with vertical bars.

As stated above, the 2D Fourier transform of an image is just a combination
of a (typically very large) set of sine wave gratings of varying combinations
of spatial frequencies along the two dimensions. Any 2D image – be it a
drawing, photo, or MRI scan of a brain – can be decomposed into a weighted
set of sine wave gratings, and conversely the set of these weightings – the k
space representation of the image – can be used to reconstruct an image. With
this in mind, we are now ready to understand how we can go from the 1D



waveform recorded by the MRI scanner to a 2D image of a slice of some
tissue such as the head. In MR imaging, we use magnetic field gradients to
determine the weighting of each of a large set of sine wave gratings for the
slice being imaged, and from this create a k space representation of the slice.
Then, the image is reconstructed by subjecting the k space representation to
an inverse 2D Fourier transform.



Moving through k Space
Deriving this 2D Fourier transform of a slice of tissue in MR imaging
essentially involves creating this large set of individual sine wave gratings,
and determining how well each matches the slice of tissue being imaged. We
create these gratings and determine their weighting by using gradients along
the x and y dimensions of the slice. Since magnetic field gradients change the
precessional speed of the protons in the tissue, the result is that at any given
point in time, the phase of the precessing protons will vary along the gradient
(since faster-precessing protons’ phases will get ahead of those of slower-
precessing protons), in a continuous fashion. Since protons precess very fast,
over the length of the gradient there will be a number of points, evenly
spaced along the gradient, where the protons have the same phase. As a
result, if we plot the phase of the protons along the gradient (so, along one
dimension of our MRI slice) we will get a sine wave whose spatial frequency
corresponds to the distance over space between protons that have the same
phase at that particular point in time. This phenomenon is known as phase
roll and is illustrated in Figure 6.20.

Figure 6.20 The result of applying a magnetic field gradient along a single
spatial dimension is to change the speed of precession of the protons along
the gradient. This results in a ‘phase roll’, whereby at any given point in time
the phases of the protons along the gradient will vary in a continuous fashion,
according to a sine wave. Arrows have been plotted to emphasize the
sinusoidal shape created by the phase roll. The spatial frequency of the phase
roll will continue to increase with time as long as the gradient stays on,
because the faster-precessing protons will gradually move farther ahead of
the slower ones



Keeping our explanation to a single gradient applied along a single spatial
dimension for the moment, recall that the MRI records only the net signal
averaged across all locations along the gradient. Thus when a phase roll is
applied, the resulting MRI signal should actually be zero because there are
(roughly) the same number of locations with each possible phase, so the
opposing phases will cancel each other out. However, this is only true if the
sample was homogeneous (for example, a container of water). However, if
the spatial frequency of the phase roll happens to match the spatial frequency
of contrast variation across the image, then the MRI signal would be larger
than if the tissue were homogeneous across the image. For example, if there
is white matter at the locations along the spatial gradient of the phase roll
where the arrows are pointing up, but grey matter or CSF at the locations in
between, we would get a relatively strong signal in a T1-weighted image
because the strong signal from the fat in the white matter would not be
completely cancelled out by the signal from the intervening locations, since
they were composed of a type of tissue that generated less signal. In other
words, when the spatial frequency of the phase roll across the gradient
matches with the spatial frequency of the contrast (structure) of the tissue
being imaged, a relatively strong signal will be generated, and so a greater
weighting for that particular sine wave grating will contribute to the ultimate
image formation.

Figure 6.21 shows the extension of this same idea to two dimensions.
Gradients have been applied along both the x and y dimensions and so we get
phase rolls along both these dimensions, which interact to yield a complex



2D pattern. It is relatively easy to imagine how this 2D map of phase angles
corresponds to a sine wave grating: the stripes of the grating would run
diagonally from the bottom left to top right of the image. Figure 6.22 shows a
parallel to Figure 6.19, but with 2D phase rolls rather than sine wave gratings
drawn.

Figure 6.21 Phase roll in two dimensions. Gradients have been applied along
both the x and y axes; the interaction of these results in a diagonal pattern of
phase roll. This would correspond to a sine wave grating with its ‘stripes’
running diagonally from the top left to bottom right

Figure 6.22 Relationship between 2D phase roll plots and k space, analogous
to Figure 6.20



Another important point to consider is that the spatial frequency of the phase
roll will increase continuously over time as long as the gradient is turned on.
This is because the different speeds of precession, over time, will increase the
differences in phase between protons at different locations. This can easily be
visualized by imagining three people running on a circular track, at different
speeds: a few seconds after the start of the race, the runners will be close
together. However, as time goes on, assuming each person runs at a fixed
rate, the faster runner will get increasingly ahead of the slower runners. Thus
we can derive information about different spatial frequencies depending on
the exact time at which the signal is sampled. In practice, the signal is read
out over a specific range of time to obtain a specific range of spatial
frequencies. This is called ‘moving through k space’ or, alternatively, ‘filling’
k space. How the gradients are applied along the x and y dimensions of the
MRI slice over time is determined by the pulse sequence, which in turn
determines the manner in which k space is filled during image acquisition.

We will now walk through a conventional 2D acquisition sequence. If we



look at the pulse sequence diagram in Figure 6.16, we see that the x and y
gradients are applied at different times, and have different names. The y
gradient is called the phase encoding gradient, and the x gradient is called
the frequency encoding gradient. This terminology can be a bit confusing –
there are good reasons for these labels, but it is important to remember that
ultimately, they are both used to encode the spatial frequencies present in the
tissue. The purpose of these gradients is to place the MRI signal in a
particular location in k space, and then read out the signal over a period of
time as the spatial frequency of the phase roll changes due to the differing
precessional frequencies along the gradient.

The way that the gradients are applied determines a number of properties of
the image, including how long it takes to acquire and what sorts of artifacts
may be present in the image. The most straightforward type of acquisition is
the one shown in Figure 6.16, where the y (phase encoding) gradient is
applied first, followed by the x (frequency encoding) gradient. Acquiring
such an image requires a number of phase encoding steps for each 2D slice,
in which the entire pulse sequence is repeated with a different strength of the
phase encoding gradient. Because a steeper gradient induces a greater spatial
frequency in the phase roll along the axis of the gradient, this process means
that each phase encoding step (that is, one cycle through the pulse sequence)
fills a different row of k space, or a different line along the ky axis. This is
shown in Figure 6.23.

Figure 6.23 Movement through k space induced by magnetic field gradients.
The strength of the phase encoding gradient (applied in this case along the y
axis of the scanner) determines the position of the signal readout along the k y
axis, with steeper gradients (represented as taller orange bars) leading to
positions farther from the middle of k space. After the phase encoding
gradient has been applied and turned off, the frequency encoding gradient
(purple) is turned on, along the x dimension of the scanner. This gradient is
first applied in one direction along x, which ‘winds’ the 2D phase roll of the
image to a location at the left side of k space. Then, the direction of the
gradient is reversed and readout of the signal begins. Because the frequency
encoding gradient stays on during readout, the phase roll will gradually
unwind (decrease in spatial frequency) to zero, and then increase again.
Readout occurs at discrete times during the application of the frequency



encoding gradient; each sampling time represents one voxel along the k x
dimension. Once one row of k space has been filled in this manner, the phase
encoding gradient is applied again with a different gradient strength, to fill
the next row of k space

Normally the process of filling k space proceeds from the top to the bottom,
one row at a time. Thus the steepest phase encoding gradient is applied first;
the steepest gradient will create the greatest phase roll and thus correspond to
the highest spatial frequency, which corresponds to the top line in k space.
Each subsequent phase encoding step will use a shallower gradient,
approaching the centre of k y. A zero phase encoding gradient will fill the
centre line, and after this the slope of the gradient begins to increase again,
but in the opposite direction (so, if the gradient initially ran from the back to
the front of the head, now the gradient will slope from front to back) to fill
the bottom half of k space. The number of phase encoding steps determines
the number of voxels along the y axis in the MRI image. Note in Figure 6.16
that the phase encoding gradient is applied, and then turned off, prior to the
readout of the MRI signal. This is why it is called a ‘phase encoding’ gradient
– because once the gradient is turned off, prior to readout, the precessional
frequencies along this axis return to the Larmor frequency, but a phase roll
along this axis has been induced.

Following the phase encoding gradient, the frequency encoding gradient is
applied and then readout begins. Although the basic principle behind the
frequency encoding gradient is the same as for phase encoding – to induce a



phase roll – the fact that it is kept on during readout means that its effects on
the ultimate MR signal are a bit different. The first thing to notice about the
timing of the frequency encoding gradient shown in Figure 6.16 is that prior
to readout, it is switched on in one direction (for example, so that the right
side of the head experiences a stronger magnetic field than the left), then at
the time that readout begins, it is switched to the opposite direction (so that
now the left side of the head experiences the stronger magnetic field). This
trick has the effect of ‘winding’ the phase roll along the frequency encoding
gradient in one direction, so that at the start of readout, the phase roll across
the frequency encoding direction has its maximal spatial frequency. This
places us at the left edge of k space. Then, as readout commences, the
reversal of the gradient along the frequency encoding direction has the effect
of gradually slowing down the protons that were precessing fastest prior to
readout, and speeding up the ones that were precessing slowest. The effect of
this is that the spatial frequency of the phase roll along the x axis gradually
decreases over time, reaching zero and then increasing again as the effect of
the reversed frequency encoding gradient takes effect – ultimately resulting in
a high spatial frequency caused by higher precession at the opposite end of
the x axis from that induced by the first frequency encoding gradient. As you
may have noted in the figures, negative and positive values of spatial
frequency are effectively opposite phases of the gratings: the locations of the
black and white bars in the sine wave gratings are reversed.

In this way, the signal read out by the MRI over time corresponds to
movement through k space along the k x axis, from left (when the effects of
the initial frequency encoding gradient induce a maximal spatial frequency
phase roll), through the centre (when the reversed gradient cancels out the
initial phase roll), to the right edge of k space (where spatial frequency is
again maximal, due to the effects of the reversed gradient). Although the
process of moving along k x is continuous (in contrast to the discrete steps of
filling the lines of k space in different phase encoding steps), the MRI signal
is sampled only at discrete intervals. The number of intervals corresponds to
the resolution of the resulting MR image along the x axis, which is often
called the number of frequency encoding steps. It is most common to acquire
square images, so the number of phase and frequency encoding steps will be
equal.



As a final point, you will notice that any k space plot of an MR image is
always brightest in its centre. This is essentially an artifact of how the images
are created: when one or both spatial encoding gradients are zero (or close to
zero), this means that the spatial frequency across that axis is zero, and so all
of the protons along that dimension are precessing in phase. Thus regardless
of the tissue composition, we will record a relatively large MR signal because
of the phase locking across the protons all the way along the axis.

Armed with this basic understanding of the steps involved in generating a
MR image, we are now ready to explore specific applications of MRI in
cognitive neuroscience. In each of the following chapters on MRI we will
refer to concepts such as contrast and k space to explain how individual
imaging techniques differ from each other, why they work the way they do,
and importantly, how the physical basis of image acquisition imposes limits
on the technique and can induce artifacts in the images.



Safety
In routine use, MRI is an extremely safe technique. It has been in use for
several decades, and there is no evidence of harm from either short- or long-
term exposure to the strong magnetic fields or radio waves used. There are,
nevertheless, three important safety considerations when working around
MRI. These include the dangers inherent in a strong magnetic field; possible
heating due to the use of RF energy; and effects that can be induced by the
rapid switching on and off of magnetic field gradients.

First and foremost, an MRI scanner has a very strong magnetic field (for
example, 1.5, 3, or 7 T) that is always on – even when the machine is not
scanning, and even when the machine is switched ‘off’ for the night. This
magnetic field is not present when an MRI scanner is being transported from
the manufacturer to the site where it will be installed, but it is created when
the machine is first installed. Bringing an MRI ‘up to field’ (that is, to full
strength) is a slow and somewhat delicate process that requires trained
engineers – so not something that one would want to do on a regular basis –
and once the process is completed, the machine can remain at field for years.
Because of the strength of the magnetic field, and the size of the space over
which the field has to be full strength (that is, the entire bore of the scanner,
large enough to accommodate a large human body), the field is both strong
and can extend for many metres around the scanner. Even ten or more metres
away from the scanner, its magnetic field is strong enough to pull
ferromagnetic objects out of a human hand and into the bore of the scanner at
high velocity. There are numerous video demonstrations of this available
online, which the reader is strongly encouraged to seek out. Indeed, several
deaths have been caused by accidents in which someone brought such an
object (such as an oxygen tank) into the scanner room when someone was in
the scanner. For this reason, MRIs are always housed in specially shielded
rooms (which also keep radio waves from the rest of the environment from
contaminating the images), and anyone entering the MRI room should be
screened by a trained MR technician. Even loose change or other small metal
objects in a pocket can become dangerous projectiles. Any equipment that
needs to be used inside the MRI room needs to be certified as MR-safe;
specialized medical and research equipment is made specifically with MRI



safety in mind.

The strong magnetic field also presents some danger for people with metal
inside their bodies. However, the static field is usually not a significant
concern, as most medical devices designed for implantation are made of non-
ferrous materials because MRI is such a widely used diagnostic tool.
However, this is not universally true, and so databases containing MRI safety
information provided by medical device manufacturers are available and
should be consulted if there is any question. In many cases as well, implanted
devices such as pins or plates are firmly attached to bone and over time, fuse
with the body making them unlikely to move. A larger concern with
implanted metal, however, is the effects of gradient fields. Magnetic field
gradients are turned on and off rapidly and repeatedly during any MRI scan.
These rapid changes can have several effects. Firstly, they can create small
but repeated movements of metal objects. This can be of significant concern
for things like aneurysm clips (used to patch blood vessels in the brain), wires
from implanted electrical devices, and stray pieces of foreign metal which
may enter the body, such as small pieces of metal from metal grinding or
welding, or shrapnel. As well, because of the right-hand rule, rapidly
changing magnetic fields can induce currents in loops of conductor in the
body, such as wires (also, when being scanned one should never hold their
hands together as this creates a conductive loop through the arms, which can
result in unpleasant nerve stimulation). Another potential risk is tattoos, as
some inks contain small metal flakes as part of the colouring (even if the ink
does not appear magnetic). While many people with tattoos have been
scanned without incident, it is possible that uncomfortable or even painful
heating could occur, depending on the size of the tattoo, the infused, and if
the tattoo is on the part of the body being scanned. Likewise, any jewellery
and body piercings should be removed. Collectively, burns caused by
conductive loops and tattoos comprise the majority of injuries reported in
MRI scanning.

The risks of metal objects – implanted or not – are easily mitigated through
careful screening. Any MRI centre will have a routine screening
questionnaire that everyone who is to be scanned will complete, and that is
then reviewed by a trained MRI technician. If this reveals any concerns, the
technician will inquire further, and possibly consult a device safety database



or follow up with a physician. In some cases people may not be eligible for
an MRI scan; in some extreme cases, if the MRI is medically essential then
surgery may be performed to remove the incompatible device.

Another risk of MRI is heating. The RF energy used during a scan is, by
definition, deposited into the body, and over time during a scan this can
actually raise the temperature of the tissue. However, the amount of heating
can be quite accurately calculated based on the weight of the person, and the
software running MRI scanners is required by law to have controls in place
that prevent any significant heating from occurring. For this reason, a
person’s weight is always entered into the scanner console prior to starting
the scan, and it is important to use an accurate number. Because of these
built-in controls, heating is generally not a significant concern for an MRI
participant. However, these constraints may actually limit some of the scan
parameters, and especially for some participants. Notably, children’s smaller
mass makes them more susceptible and thus some types of scan that can
safely be run on adults may not be possible to do with small children.

A final consideration is of a very different nature: in some cases, especially
when an ostensibly healthy person has an MRI scan for research purposes (as
opposed to clinical diagnostic reasons), the scan may reveal a previously
unknown medical condition. These are called incidental findings and can
range from entirely benign to life-threatening; the incidence of clinically
significant findings has been estimated to be between 2 and 4%, although this
increases with age (Morris et al., 2009). This issue has attracted significant
concern from bioethicists (Anonymous, 2005; Illes et al., 2002; Illes &
Borgelt, 2009; Morris et al., 2009) and is an important consideration during
the informed consent process for any MRI research study. There are two
primary concerns here. First of all, the potential participant should be
informed that they may learn of a serious medical condition of which they
were previously unaware, and what the potential consequences of this are.
While this might be positive in the sense of diagnosis and treatment, it could
also negatively affect people’s eligibility for insurance, their employment, or
other factors. Secondly, it is also possible that the person will have a medical
condition that is not detected during the MRI scan. This could occur for
several reasons: when someone has an MRI for diagnostic purposes, the set
of scans performed are chosen by the referring physician with particular



concerns in mind. For example, different scans might be done if a brain
tumour was suspected, as opposed to multiple sclerosis, or Parkinson’s
disease. In the case of a research scan, the choice of scans is driven by the
research question, and limited by the time available and the cost of running
the MRI. Therefore the appropriate scans to detect a particular condition may
not be performed. Moreover, even if there is some diagnostic information
present in the scans, the condition may not be detected because the
researchers are not trained to perform diagnosis, and therefore do not know
what to look for. Some things may be obvious to anyone with experience
looking at healthy brain scans, but other things may not. This consideration
means that the potential MRI participant should not think that by
participating in a research study they are getting a ‘free MRI’ or that any
diagnosis will be performed. As well, the informed consent process should
include wording that makes it clear that the participant understands this and
will not hold the researchers accountable if a later diagnosis is made.

Summary

Virtually all human MR imaging – including all of the techniques discussed in this book –
relies on the magnetic properties of hydrogen atoms, which are ubiquitous in the human
body. The fact that different types of tissue differ in their hydrogen concentrations, and how
the hydrogen atoms are bound into molecules, is the basis for obtaining contrast between
different tissue types in an MR image – which allows us to distinguish, for example, grey
matter, white matter, and cerebrospinal fluid in a structural MRI of the brain. Hydrogen
atoms – or protons – have a single positive charge and spin around a central axis. This spin
creates a magnetic moment, meaning that protons act as magnetic dipoles with a north and
south pole along the axis of their spin. Protons also experience a second type of movement,
precession, which is a circular ‘wobble’ around the axis – similar to a spinning top it starts
to tip towards the ground. Normally inside the body, protons’ axes have random alignments
as they are influenced by the Earth’s magnetic field, as well as magnetic interactions
between atoms and molecules within the body. However, when placed in a strong magnetic
field, the protons in the body have a weak tendency to align with that magnetic field. This
does not mean that all protons align perfectly with the external magnetic field, but that the
net magnetization vector (NMV) – representing the net orientations of all protons in the
body – tends to align with the field. An MRI scanner has a strong magnetic field that is
always on, so when lying in an MRI scanner an individual’s NMV aligns with the magnetic
field of the scanner (which is termed B0).

Simply aligning the NMV of the body with the scanner’s B0 is not sufficient to create an
MR image. A critical next step is excitation, wherein the alignment of the NMV is
perturbed. This is done through the mechanism of resonance, whereby radio frequency (RF)
energy is transmitted to the body at a specific frequency. This is known as the Larmor
frequency, and corresponds to the speed of precession of the protons. The precessional
speed – and thus Larmor frequency – are determined by the strength of the magnetic field.



RF energy applied at the Larmor frequency is absorbed by the protons. Because RF energy
is actually a type of magnetic field that changes direction over time, applying RF energy is
equivalent to applying a second magnetic field, and the RF energy is transmitted in a plane
perpendicular to B0. The result is that the RF energy pulse causes the NMV to tip away
from alignment with B0 (which we call the longitudinal plane), into the orthogonal
(transverse) plane. The RF pulse also causes the precessional phases of the protons to align,
creating a stronger coherent, oscillating pattern (phase locking). Because the receiver coil –
which measures the MR signal – is aligned with the transverse plane, the degree to which
the RF pulse tips the NMV, as well as the degree of phase locking, determine the strength of
the MR signal. Another critical determinant of MR signal strength is the type of tissue.
Relaxation occurs more quickly in tissues that can dissipate energy more rapidly, notably
fat. Relaxation is slower in water (and cerebrospinal fluid), and intermediate in grey and
white matter (though white matter contains more fat, and has shorter relaxation times).
Relaxation actually involves two distinct processes: T1 recovery is the speed of return of the
NMV to alignment with B0, while T2 decay is the dephasing that occurs once the RF pulse
is turned off, and phase locking is reduced due to interactions between the magnetic fields
of protons and their surrounding environments. The timing of certain MRI scan parameters
should be chosen based on the T1 or T2 relaxation curves depending on the type of contrast
desired in the image, to maximize contrast between fat and water, or more specifically
between the tissue types of interest (for example, grey and white matter). Because MR
scanning involves many repeated cycles of excitation and relaxation, T1 contrast is
dependent on the time between RF pulses, termed TR, as this determines the amount of
relaxation time before the next excitation pulse. In contrast, T2 contrast depends on the time
between each excitation and signal readout (termed TE), because this determines how much
dephasing will have occurred prior to readout.

Critical to 2D and 3D MR imaging is the concept of magnetic field gradients. Gradients are
systematic linear variations in magnetic field strength along one spatial dimension. Because
the Larmor frequency is dependent on magnetic field strength, creating a magnetic field
gradient along one spatial dimension means that an RF pulse of a particular frequency will
selectively excite protons only in a specific position along that gradient. Slice selection
involves applying a gradient along one dimension (the slice plane) during the RF pulse,
which causes only protons within that slice to be excited. Then, a gradient is applied along a
second, orthogonal dimension (phase encoding), which creates a ‘phase roll’ whereby the
precessional phase of protons varies systematically along this dimension. This effectively
creates a 2D sine wave grating along the phase encoding direction. Finally, the phase
encoding gradient is turned off and a gradient along the third orthogonal dimension
(frequency encoding) is applied during signal readout. This creates a phase roll along the
frequency encoding direction, whose frequency increases the longer the gradient is left on.
In this way, over time the readout signal includes information about a range of spatial
frequencies in the image. The MR signal that is read out is a one-dimensional sequence of
numbers, which contain rich information of many frequencies and phases. The slice
selection-phase encoding-frequency encoding steps are typically repeated many times to
obtain information about different spatial frequencies within each slice. This results in an
image in k space, which is the 2D Fourier transform of ‘real’ space. Locations in k space
correspond to particular combinations of spatial frequency and orientation in real space, and
the inverse Fourier transform can be applied to a k space image to create a ‘real’ space
image.

While MRI is a very safe technique for most people – as there are no known long-term



effects of the magnetic fields or RF waves used – the strong magnetic field creates a number
of safety risks that need to always be kept in mind. Firstly, any material that will be
attracted to a magnetic field (ferromagnetic metals) should be kept far away from an MR
scanner. The magnetic field of an MRI scanner is so strong that virtually any metal object
carried into the MRI room is likely to be ripped from a person’s hand or pocket with life-
threatening force and speed. Scanners are typically located in shielded rooms that demarcate
a safe distance, and so in general ferromagnetic materials should be kept outside of the MRI
room. As well, people with metal in their bodies may be ineligible for MRI scans. Although
most surgically implanted metal is non-ferromagnetic, these materials may still move
slightly or heat up during MRI scans – especially loops of metal such as implanted wires.
Non-surgical metal objects in the body, such as metal slivers from metal working, or
shrapnel from injuries, can pose similar dangers. Therefore it is critical that anyone entering
the MRI room – for a scan or even as an observer or experimenter – be safety-screened by a
trained professional. MRI researchers should also consider the ethical and practical
implications both of the fact that research MRI scans may reveal previously unknown
pathologies, and also that non-diagnostic scans may not reveal pathologies that do exist.

Things You Should Know

Hydrogen ions, or protons, are ubiquitous in the human body and are the primary
basis for the MRI signal. Critical to generating the MR signal are the fact that protons
spin around an axis, creating a magnetic moment with ‘north’ and ‘south’ poles.
The net orientation of the axes of all protons in the body (or the part of the body
being scanned, such as the head) is referred to as the net magnetization vector
(NMV). Normally proton orientations are random, resulting in an NMV of zero.
However, because protons have a weak tendency to align with an external magnetic
field, in an MRI scanner the NMV aligns with the strong field (B0) of the scanner.
Protons are able to absorb radio frequency (RF) energy whose frequency matches the
speed of their precession, a phenomenon known as resonance. Because RF energy is
a type of magnetic field, applying RF energy in a plane perpendicular to B0 results in
both tipping the NMV towards the RF pulse (out of the longitudinal plane, into the
transverse plane), and bringing the precessional phases of the protons into alignment
– a process collectively called excitation. Because the readout coil from which the
MRI signal is measured is in the transverse plane, excitation also creates the signal
that is ultimately measured.
Once the RF pulse is turned off, relaxation occurs, which has two dimensions: T1
recovery and T2 decay. T1 recovery is the return of the NMV to alignment with the
longitudinal plane, while T2 decay is the loss of phase synchrony (dephasing) among
the precessing protons. The speed of both types of relaxation differ between tissue
types, being much faster for fat than water. These two aspects of relaxation are the
basis of two primary types of contrast between tissues in structural MR images. T1
contrast is obtained by choosing a TR (time between RF pulses) that optimizes the
difference in T1 recovery between different tissue types. T2 contrast is obtained by
choosing a TE (time between RF pulse and readout) that maximizes differences
between the tissues in T2 decay.
T2* decay is a special, more rapid type of T2 dephasing that is caused by very
localized magnetic field inhomogeneities. This is the basis of conventional fMRI
contrast, because deoxygenated haemoglobin (the oxygen transporter molecule in
blood) causes small magnetic field disruptions.



Magnetic field gradients are systematic variation (slopes) in magnetic field strength
along a particular spatial dimension. These are the basis of creating 2D and 3D MR
images, because in varying magnetic field strength, we also vary the Larmor
frequency of protons along that dimension. This is used in slice selection to excite
only one slice of the image. As well, the phase and frequency encoding steps in
image acquisition involve creating 2D ‘phase rolls’ across the slice by manipulating
the precessional phase and frequency of protons.
Although the MR signal that is measured by the readout coil is a single time series,
the use of frequency and phase encoding gradients allow this signal to be
decomposed into a k space image, in which different locations correspond to different
spatial frequencies and orientations of 2D sine wave gratings. The strength of the
signal at each location in k space reflects the degree to which that 2D sine wave
grating is represented in the image being scanned. By applying an inverse 2D Fourier
transform, a k space image can be converted into a ‘real’ space image.
An MRI pulse sequence describes the sequence and timing of the RF pulse; slice,
phase, and frequency encoding gradients; and readout of the MR signal. The
parameters of the pulse sequence largely determine the type, contrast, and quality of
an MR image.
MRI scanners have a strong magnetic field that is always on, even when the scanner
is ‘turned off’. This magnetic field is so strong that any ferromagnetic materials
brought into the MRI room will be drawn into the centre of the scanner with great
force and speed, creating significant safety hazards. For this reason, no ferromagnetic
materials should be brought into the MRI room, and specialized, MR-safe equipment
should be used (for example, for stimulation and response collection). As well, any
individual entering the MR room – whether for a scan or as an observer or helper –
should be safety-screened by a trained professional. Some people should never enter
the MRI room, and other people may be safe to enter, but should not be scanned due
to risks of implanted metal moving or heating up.

Further Readings

Hanson, L.G. (2015). Introduction to Magnetic Resonance Imaging Techniques. Available
at: http://eprints.drcmr.dk/37/2/MRI_English_letter.pdf.

Westbrook, C. (2015). MRI at a Glance (3rd ed.). Chichester: Wiley-Blackwell.
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Learning Objectives
After reading this chapter, you should be able to:

Define and explain BOLD contrast.
Explain the value of calibrated BOLD, and how it is performed.
Define the haemodynamic response function (HRF), including its typical timing
characteristics.
Explain how BOLD signal is related to neural activity.
Contrast EPI with conventional MRI pulse sequences, and explain the costs and benefits of
EPI.
Describe the preprocessing steps commonly applied to fMRI data, and the motivation for
each.
Explain how motion correction is performed on fMRI data, what the limitations of this
process are, and why these limits arise.
Explain spatial normalization of MR images, and describe three approaches to this
process.



Introduction
Functional MRI (fMRI) is the most widely used technique in cognitive
neuroscience. Its introduction in 1992 revolutionized (or, some might argue,
defined) the field of cognitive neuroscience. Although PET (see Chapter 10)
already was able to localize brain activation in vivo, PET scans were very
expensive and required introducing radioactive material into the person being
scanned; as well PET scanners were relatively uncommon and had poor
temporal resolution. In contrast, MRI scanners were already quite common,
and the fMRI technique – while not possessing the millisecond-level
resolution of EEG or MEG – offered good temporal resolution, allowing a
much wider range of experimental designs than PET. Functional MRI
remains one of the most powerful and flexible tools for cognitive
neuroscience, although like any technique it has limitations. Generally
speaking, fMRI is sensitive to the concentration of oxygen in the blood,
which is correlated with neuronal activity. However, an important limitation
of the technique to consider is that fMRI is always an indirect measure of
brain activity.

As discussed in the previous chapter, MRI uses a combination of magnetic
fields and radio waves to create images. Functional MRI capitalizes on two
properties of the haemoglobin molecules that transport oxygen from the lungs
throughout the body to the tissues that need it: they contain iron, and they
change their molecular configuration depending on whether oxygen is bound
to them or not. These properties led to a series of experiments in the 1980s
and 1990s that culminated in the publication in 1992 of seminal papers from
three independent research groups, demonstrating that MRI could be used to
map functional activation in the brain (Bandettini et al., 1992; Kwong et al.,
1992; Ogawa et al., 1992). Since that time these techniques have been refined
and extended, and an immense amount of innovation has occurred in the
areas of MRI hardware and software, data analysis techniques, and
experimental design. Functional MRI has now unquestionably revolutionized
our understanding of the brain.



What Are We Measuring?



The BOLD Effect
Functional MRI relies on the fact that the haemoglobin molecules that
transport oxygen in the blood to different tissues contain iron, and more
specifically that the haemoglobin molecules actually change their shape
depending on whether or not oxygen is bound to them. Furthermore, the
magnetic properties of haemoglobin are different depending on whether it has
oxygen bound to it (oxyhaemoglobin, or oxy-Hb) or not (deoxyhaemoglobin;
deoxy-Hb). Specifically, deoxy-Hb is paramagnetic, whereas oxy-Hb is not.
Paramagnetic molecules have unpaired electrons, creating a magnetic
moment (spin) that can align with external magnetic fields. This means that
deoxy-Hb – but not oxy-Hb – is affected by the strong magnetic field of an
MRI scanner. Most importantly, because they have magnetic properties,
deoxy-Hb molecules alter the strength of the magnetic field surrounding
themselves, including nearby water molecules (which are the primary source
of protons, and thus MRI signal, in the body). As a result, the presence of
deoxy-Hb increases the rate of loss of transverse magnetization, and
specifically T2* decay. As introduced in the previous chapter, T2* decay is
very rapid dephasing (faster than T2) that occurs specifically due to
interactions of protons with very localized magnetic field inhomogeneities
associated with surrounding molecules – in this case deoxy-Hb. The
properties of haemoglobin in MR imaging were first reported by Thulborn
and colleagues (1982), who showed that T2* decay was proportional to the
ratio of oxy-Hb to deoxy-Hb. In other words, higher concentrations of
(paramagnetic) deoxy-Hb caused more rapid T2* decay. In the same study,
the authors showed that this effect was magnified by increasing the strength
of the magnetic field. While Thulborn and colleagues’ work was done in vitro
(that is, in test tubes), subsequent work showed that the effects were obtained
in vivo as well: in 1990 Ogawa and colleagues demonstrated differences in
MR image contrast of live rat brains depending on the concentration of
oxygen in their blood.

In a series of experiments using a very strong magnetic field (7 T), Ogawa
and colleagues (Ogawa, Lee, Nayak, & Glynn, 1990b) demonstrated that it
was possible to visualize blood vessels as small as 50 µm in diameter, using a
pulse sequence sensitive to T2* (called a gradient echo sequence). In one



experiment, rats either breathed normal room air (which has an oxygen
concentration of about 20%), or they breathed 100% oxygen, which led to
extremely high levels of oxygen saturation of the blood and thus very little
deoxy-Hb. Comparing the images, many dark lines were observed in the 20%
oxygen condition compared to the 100% condition. These were the veins in
the brain, and the effect was attributed to the faster dephasing, and
consequent signal drop, caused by the higher concentration of deoxy-Hb in
the 20% oxygen condition. Ogawa and colleagues labelled this change blood
oxygenation level dependent (BOLD) contrast. Importantly, they noted that
this effect extended beyond the haemoglobin molecules themselves, and
indeed beyond the walls of the blood vessels into the surrounding tissues,
which they described as a form of amplification of the signal produced by the
oxy-Hb:deoxy-Hb ratio. This is an important point to note for two reasons.
Firstly, it means that BOLD changes can be imaged even using voxel sizes
that are significantly larger than the capillaries that the oxy-Hb:deoxy-Hb
ratio is changing in. At the same time, this does place an ultimate limit on the
precision of spatial localization using BOLD fMRI. It is important to keep in
mind, however, that since the changes in BOLD contrast occur in blood
vessels, and not in neurons, there are additional constrains on fMRI’s spatial
precision.

Two years after the first demonstrations of the BOLD contrast, the first
human fMRI studies were published, essentially simultaneously, by three
independent labs. In one study, Ogawa and colleagues (1992) presented
visual stimulation (flashing lights) to participants for 100–150 s, alternating
with periods of darkness. Kwong and colleagues (1992) used a similar
paradigm, alternating 60 s of visual stimulation with darkness. Both
experiments reported reliable increases in MR signal in the occipital lobe
(where visual input is known to be processed) during visual stimulation
compared with darkness. Kwong and colleagues’ study also showed similar
changes in BOLD signal in primary motor cortex in a different experiment,
in which participants alternately closed and opened their hands compared to
not moving their hands. A similar motor task was used in a study published
by Bandettini and colleagues (1992) in the same year. While Ogawa’s study
used a specialized, high-field MRI scanner (4 T), the other two studies used
1.5 T scanners of the type commonly found in hospitals at the time. Although
all of these scanners used highly modified hardware and software, the fact



that fMRI was possible on standard hospital-grade 1.5 T scanners meant that
research would not have to rely on expensive, research-dedicated hardware
but could be performed on machines that were already present in many
hospitals. Today clinical scanners (which are now mostly 3 T) are largely
capable of fMRI either ‘off the shelf’ or with standard upgrade packages sold
by the manufacturers. In many cases fMRI research is conducted on clinical
scanners during off-hours or dedicated research time, while on the other hand
the popularity of fMRI has led to the establishment of research-dedicated
MRI centres at many sites.



Physiological Basis of the BOLD Effect
The ground-breaking studies demonstrating the feasibility of fMRI using
BOLD contrast opened the door to an explosion in cognitive neuroscience
research. At the same time, they posed perplexing questions concerning what,
exactly, was being measured with BOLD fMRI. In all of the studies of brain
activation using fMRI, the T2*-weighted images showed increases in signal
at times when a brain area was expected to be more activated – for example,
in the occipital lobe during visual stimulation. While it makes intuitive sense
that fMRI signal should increase when brain activity increases, upon closer
examination we would actually predict the opposite effect. Neural activation
is, by definition, an increase in neural activity. Since physiological processes
generally require oxygen, increased activity should increase oxygen demands
in active areas – leading to a relative increase in deoxy-Hb relative to oxy-
Hb, if more oxygen is being extracted from the haemoglobin.
Deoxyhaemoglobin causes more rapid T2* dephasing, which means that
when deoxy-Hb levels are higher, BOLD signal should be weaker. Recall that
this was what Ogawa and colleagues (Ogawa, Lee, Kay, & Tank, 1990a)
showed: higher levels of deoxy-Hb created black lines in the MR image
where the veins were, indicating lower signal levels at higher deoxy-Hb
concentrations. Thus if increased neural activity leads to increased oxygen
consumption and thus higher levels of deoxy-Hb, then during activation
BOLD signal should actually decrease – contrary to what is observed in
fMRI studies.

This paradox led to several hypotheses concerning the relationship between
changes in neuronal activity levels and blood oxygen levels. To understand
these, it is important to first have a basic understanding of cellular
metabolism – how energy is produced and used in the body. The primary
source of energy for cellular processes, including neuronal activity, is
adenosine triphosphate (ATP), a molecule derived from glucose (a simple
sugar). Glucose can be converted to ATP through two possible pathways –
aerobic and anaerobic. Aerobic metabolism requires oxygen, which is used
in a complex chain of biochemical events including the tricarboxylic acid
(TCA) cycle, the electron transport chain, and oxidative phosphorylation.
Aerobic metabolism produces 38 molecules of ATP from each molecule of



glucose, consuming six molecules of oxygen in the process and producing
carbon dioxide (CO2) as a by-product. The alternative method of converting
glucose to ATP is anaerobic metabolism, which does not require oxygen.
This process is far less efficient than aerobic metabolism, yielding only two
ATP molecules from every glucose molecule, rather than 38. Thus aerobic
metabolism is by far the most common form in the body; anaerobic
metabolism typically occurs only when there is not enough oxygen available
to support aerobic metabolism. One familiar experience of this is during
highly demanding exercise, such as running hard, or climbing a long flight of
stairs. At some point during this exertion one begins to feel a ‘burn’ in the
muscles; this sensation is produced by the lactic acid that is a by-product of
anaerobic metabolism, and indicates that the level of effort has exceeded
what can be sustained through aerobic metabolism.

In the brain, the primary demand for ATP comes from the ion pumps on the
outer membranes of neurons. A neuron at rest has a negative electrical
potential relative to the extracellular environment, due to higher
concentrations of sodium and calcium outside than inside the cell; in contrast,
potassium concentration is higher inside the cell. When action potentials
reach a cell, neurotransmitters typically trigger ion channels to open, creating
localized changes in membrane potentials. As well, when a neuron fires (an
action potential), channels in the cell wall open and allow a flood of sodium
and calcium ions into the cell, and of potassium ions out of the cell, causing a
rapid change in the electrical potential across the cell membrane. In order for
the cell to recover from the action potential, re-establishing its resting
potential to allow for a future action potential, sodium and calcium must be
pumped out of the cell, and potassium pumped in. The activity of these
pumps requires ATP; collectively the activity of these pumps is estimated to
account for approximately 75% of the energy consumption in the primate
brain, as shown in Figure 7.1. The next most significant energy costs come
from propagating action potentials – 10% – and recycling neurotransmitters –
12% (Attwell & Iadecola, 2002).

Figure 7.1 Major sources of energy demands in the brain, as a proportion of
total energy consumption



It is important to realize that the brain is always active; even when no specific
stimulation or cognitive activity is occurring, neurons maintain baseline
levels of activity. As such, the ‘activations’ typically studied with brain
imaging are increases over and above these levels, not a change from entirely
quiescent neurons to ones that are firing. Indeed, the increases in firing rates
associated with specific activation (such as visual stimulation) are relatively
small and transient compared to the baseline levels of activity. It is thus
reasonable to assume that baseline levels of brain activity are supported
through aerobic metabolism, since this is more efficient than anaerobic
metabolism and is the primary metabolic pathway in the body generally. This
has been confirmed by PET imaging, which is capable of measuring rates of
glucose and oxygen metabolism in the brain. The question relevant to
understanding the BOLD signal is whether transient increases in neuronal
activity levels, such as those induced in cognitive neuroscience studies, are
supported by increased aerobic metabolism, or whether the brain treats these
like ‘sprints’ and resorts to anaerobic metabolism to support increases in
firing rate above baseline.



The original studies investigating this question actually precede the
development of human fMRI. Fox and colleagues (Fox, Raichle, Mintun, &
Dence, 1988) used PET to measure the cerebral metabolic rates of both
oxygen (CMRO2) and glucose (CMRglu), as well as the rate of cerebral blood
flow (CBF). These scans were performed during both a resting condition
(lying quietly with eyes closed) and a visual stimulation condition. During
visual stimulation, CBF and CMRglu both increased by approximately 50%
above resting levels in the visual cortex; however, CMRO2 only increased by
5%. The researchers calculated that the large majority of the increase in
glucose metabolism – over 90% – was not associated with increases in
oxygen consumption, strongly implicating anaerobic metabolism. This
speculation was strengthened by other studies that had shown increases in
lactate levels during transient brain activation in other animals; then in 1991,
Prichard and colleagues demonstrated lactate increases in the human brain
during visual stimulation (Prichard et al., 1991). Further support for
anaerobic metabolism came from an influential paper by Pellerin and
Magistretti (1994). This paper demonstrated a critical role for astrocytes
(another very common, non-neuronal cell type in the brain) in recycling the
excitatory neurotransmitter glutamate: removing it from the synaptic cleft
after it is used for neural signalling, converting it to inactive glutamine, and
then transporting it back into the synaptic terminals of neurons. This process
consumes ATP through anaerobic glycolysis, and astrocytes are commonly
found in close proximity to blood vessels, allowing them to easily obtain the
necessary glucose from the blood. Thus Pellerin and Magistretti’s work
suggested that increased anaerobic metabolism during brain activation might
not be due to neurons having energy needs in excess of what aerobic
metabolism could provide, but rather because of increase glutamate recycling
in astrocytes – which has been termed the astrocyte-neuron lactate shuttle
hypothesis.

In contrast to these early studies, more recent research has provided strong
converging evidence that neural activation is supported primarily by aerobic
metabolism, with a relatively minor contribution from anaerobic metabolism.
A few years after the first published BOLD fMRI studies, Malonek and
Grinvald (1996) investigated this mechanism using invasive optical imaging
in an animal model. This type of imaging allows researchers to separately
measure concentrations of oxy-Hb and deoxy-Hb, as well as total blood



volume. Malonek and Grinvald found that deoxy-Hb actually did increase
immediately after visual stimulation, consistent with an increase in aerobic
metabolism. However, within 1–2 s there was a more substantial increase in
oxy-Hb levels, accompanied by increases in blood flow and volume which
counteracted the increased deoxy-Hb. Malonek and Grinvald concluded that
the reason the BOLD fMRI effect manifests as an increase in signal, even
though oxygen consumption does increase, is that activity-dependent
increases in blood flow rapidly overcompensate for the small increases in
oxygen consumption. They characterized this phenomenon as ‘watering the
entire garden for the sake of one thirsty flower’ (p. 554), and suggested that
this mechanism existed to ensure an adequate supply of oxygen for active
neurons. Subsequent research has increased our understanding of this
mechanism, although it is not yet fully understood and several theories exist
(Buxton, Griffeth, Simon, Moradi, & Shmuel, 2014; Hoge, Atkinson, Gill
Crelier, Marrett, & Pike, 1999; Lin, Fox, Hardies, Duong, & Gao, 2010). It
has been demonstrated that increased flow is caused by vasodilation – an
increase in the diameter of the blood vessels – both in the capillaries (the
smallest blood vessels, where oxygen is actually exchanged with surrounding
tissue) and the arterioles that feed into the capillaries, as well as the veins that
drain the capillary beds. At least two distinct mechanisms can trigger local
vasodilation in the brain. One is increased levels of CO2 – this is a general
physiological mechanism that seems to have evolved to ensure adequate
blood supply. The other is directly related to neural activity, by way of
astrocytes.

Figure 7.2 Optical imaging data from Malonek and Grinvald (1996),
showing the concentrations of oxy- and deoxy-haemoglobin (Hb) in the
visual cortex during the onset of brief (4 s) visual stimulation (indicated as 0
on the time axis). Deoxy-Hb shows a rapid initial increase (slightly prior to
the increase in oxy-Hb), suggestive of an initial increase in local oxygen
consumption. However, this is then swamped by a much larger influx of
oxygenated blood. Adapted and redrawn from Malonek and Grinvald, 1996



A further important contribution to our understanding of the physiological
basis of the BOLD effect came from Takano and colleagues (2006), who
demonstrated a pathway by which neural activity could trigger vasodilation
via astrocytes. In a series of experiments, Takano and colleagues
demonstrated that neural activity leads to calcium ion increases in the ‘end
feet’ of astrocytes, which wrap around arteries. Increased neural activity lead
to increased calcium ion concentrations in the astrocytic end feet, which in
turn trigger increased levels of the enzyme COX-1. This enzyme converts the
fatty acid arachidonic acid into prostaglandins and thromboxanes – hormones
which cause vasodilation. Takano and colleagues further confirmed Pellerin
and Magistretti’s findings that the increase in astrocyte activity was triggered
by synaptic release of glutamate. Thus, increased neural activity results in
greater release of glutamate in the synaptic cleft, which is then taken up and
recycled by astrocytes. Calcium levels in astrocytes increase with elevated
glutamate levels, which in turn trigger the release of hormones that cause
violation of the blood vessels that the astrocytes are in contact with. In this
way, neural activity can trigger vasodilation; Takano and colleagues showed
that this process takes approximately 1 s for neural activation to trigger
vasodilation. Critically, nothing about this pathway relies on oxygen levels –



neural activity can trigger vasodilation and subsequent local increases in
blood flow, volume, and oxygen concentrations irrespective of any actual
changes in local oxygen concentration. An important consequence of this is
that, because arteries are highly saturated with oxygen whereas veins are not
(since oxygen has been extracted from the blood as it passes from the
arteries, through the capillaries to the veins), the changes in oxygen
concentration in the blood that are associated with vasodilation are
proportionately larger in the veins than in the arteries or capillaries. This
places a limitation on the spatial precision of BOLD fMRI, because peak
levels of BOLD signal change are likely to be detected ‘downstream’ of the
location of actual neural signal change.

Figure 7.3 Schematic diagram of the astrocyte-neuron lactate shuttle (ANLS)
model. Action potentials arriving at a brain area lead to the release of the
excitatory neurotransmitter glutamate, which binds to receptors on the
receiving neuron, evoking excitatory postsynaptic potentials. The glutamate
is then released from the receptors back into the synaptic cleft, where it is
taken up by astrocytes for recycling. This recycling process inside the
astrocytes uses anaerobic glycolysis to obtain the necessary energy. As well,
glutamate increases levels of calcium (Ca2+) inside astrocytes. These
increased calcium levels lead to increases in the enzyme COX-1, which in
turn activates the hormone prostaglandin. This chemical pathway occurs in
the end feet of the astrocytes that wrap around capillaries, and the
prostaglandin triggers vasodilation (increased diameter) of the capillaries,
leading to increased blood volume and flow



This limitation is an important one, and has been called ‘the great brain
versus vein debate’ (Menon, 2012). In the early days of fMRI, there was
significant concern about whether fMRI signals truly localized neural
activity, or whether the peak BOLD signal changes were all downstream of
active regions, in the draining veins. Indeed, the draining veins have been
shown to make greater contributions to BOLD signal than capillaries at lower
magnetic field strengths like 1.5 T. Thus at 1.5 T, and even at the fairly
common 3 T field strength, draining veins can make a significant
contribution to BOLD signal and so some degree of mislocalization occurs.
This is mitigated by the fact that the draining veins are quite close to the
capillary beds, and studies using these field strengths typically employ voxels
on the order of 3 × 3 × 3 mm in size. Voxels of this size would typically
include both the capillary beds and draining veins, so the level of imprecision
ultimately has little or no impact because the scans lack the spatial resolution
for the distinction between vein and brain to be significant. However, some
research questions depend on very high-resolution imaging, at 1 mm or
lower. The demand for this level of resolution has driven the adoption of
higher field strength scanners, and now there are many 7 T scanners in
research centres around the world. This is because as field strength increases,
the relative amount of signal from the capillary beds increases. Thus while 3
T scanners may be technically capable of obtaining 1 mm resolution fMRI
images, the signal in these would be dominated by draining veins, whereas at
7 T the capillary beds make a more significant contribution.



Returning to the question we started this section with, the paradox of
increased BOLD signal – reflecting increased oxy-Hb:deoxy-Hb ratios – in
response to increased neural activity and aerobic metabolism is explained
through the dilation of blood vessels leading to greater perfusion of the active
tissue (and draining veins) with oxygen. Other studies have looked at the
relationship between CBF and CMRO2 in greater detail. Understanding this
is critical to interpreting BOLD signals in terms of neural activation – if
vasodilation leads to increased blood flow that is disproportionately higher
than the increases in CMRO2, then changes in BOLD signal observed in
fMRI experiments would be likewise disproportionately greater than actual
changes in neural activity. The data suggest that in fact there is a relatively
consistent relationship between CBF and CMRO2, with ratios of
approximately 2–4 (in other words, changes in CBF are in the range of 2–4
times greater than changes in CMRO2). However, although flow and oxygen
metabolism are correlated, this ratio does vary based on a number of factors.
For example, some studies have suggested that different experimental
manipulations can have differential effects on CBF and CMRO2 – changes in
stimulus factors have a greater impact on CBF, whereas ‘intrinsic’ cognitive
changes (such as changes in attention) affect CMRO2 to a greater degree.

Another important consideration is the baseline state. Because BOLD fMRI
is not a quantitative measurement – meaning that the signal levels recorded in
fMRI studies are in arbitrary units and cannot be interpreted as reflecting a
specific level of oxy-Hb:deoxy-Hb ratio or any other quantity – fMRI
activation levels are always measured relative to a baseline condition. This
baseline is commonly a condition in which the person being scanned stares at
a simple cross or other visual stimulus. Several factors of the baseline state
impact the magnitude of activation-related BOLD changes, primarily due to
how these factors impact baseline oxygen concentrations. One such factor is
the proportion of oxygen being taken from the blood in the baseline state –
the oxygen extraction fraction. In conditions where this is relatively low,
baseline oxy-Hb levels are relatively high and so there is less ‘dynamic
range’ for the oxygen concentration to increase during activation. In other
words, the amount of possible increase in BOLD signal during activation is
smaller. Similarly, high CBF is associated with greater oxygen levels, so high
baseline CBF can also reduce the dynamic range. Conversely, situations such



as low baseline CBF or high oxygen extraction can increase the dynamic
range of BOLD responses. As well, low haematocrit (the concentration of
oxy-Hb-containing red blood cells) can reduce the dynamic range of the
BOLD signal. These different baseline situations can arise in particular in
comparisons between populations. Factors such as age, exercise, smoking,
drugs, and disease can all impact oxygen extraction fraction and CBF,
meaning that any apparent differences in fMRI signals between two groups
may not actually be due to differences in neural activation, if the groups
differ in these other factors. Even within a group, individual differences may
influence outcomes. For example, numerous studies have demonstrated that
caffeine, which causes vasoconstriction, leads to stronger task-related fMRI
signals due to the increased dynamic range afforded by lower CBF in the
baseline state. Thus people who have recently consumed caffeine may be
‘better activators’ than others.

Basic research into the relationships between CBF, CMRO2, and neural
activation, as well as concerns about how to control for individual- and
population-level differences in non-neural factors affecting the BOLD
response, have led to the development of calibrated BOLD fMRI (Mark,
Mazerolle, & Chen, 2015). This refers to a group of methods in which both
physiological and neural activation factors are systematically manipulated.
Using a biophysical (mathematical) model, calibrated BOLD makes it
possible to calculate CMRO2 with a high degree of accuracy. This technique
was introduced by Hoge and colleagues (1999), who developed a way of
measuring both CBF and BOLD signal in a single fMRI scan (by alternately
collecting flow-sensitive and T2*-weighted images, such that both are
obtained every few seconds), while at the same time manipulating the
proportion of CO2 in the air participants breathed, and the contrast of a visual
stimulus. The technique pioneered by Hoge and colleagues works by
inducing hypercapnia – elevated blood CO2 levels – which in turn triggers
vasodilation and increased blood flow as the body attempts to compensate
and flush the CO2 away, while providing increased O2. Hypercapnia is
induced by having participants use a breathing apparatus during the MRI
scan, which allows precise control of the relative levels of O2 and CO2 in the
air that is inhaled. By measuring the changes in CBF and BOLD signal that
occur over a different levels of CO2, and systematically co-varying the



contrast of the visual stimulus (higher contrast triggers higher neural
activation), experimenters can extrapolate these values to determine a
maximum possible BOLD signal (which would be obtained in the theoretical
case of 100% oxy-Hb and no deoxy-Hb). This value is in turn used to
calculate CMRO2. More recently, related methods have been developed that
rely on manipulation of O2, rather than CO2, levels. This hyperoxic method
is more comfortable for the participant, because hypercapnia induces feelings
of not being able to breathe properly, which can lead to panic in some people.

The importance of calibrated BOLD fMRI is being increasingly recognized in
studies comparing different populations. As noted above, age, disease, and
pharmacologic agents can all affect the BOLD signal through non-neural
factors such as baseline CBF and metabolism. In addition to ‘global’ effects
of such factors on the brain generally, more local effects can be observed in
people with brain abnormalities such as stroke, Alzheimer’s disease, and
cerebrovascular disease. In these cases the magnitude of BOLD signal change
from baseline to active conditions can vary substantially between different
parts of the brain, which could in turn lead to erroneous conclusions from
fMRI data. It is thus important in fMRI studies involving such between-group
comparisons (or even within-group comparisons over time, for example when
studying recovery from stroke) to assess regional variation in
cerebrovascular reserve (CVR; also known as cerebrovascular reactivity),
which is a measure of the amount of change in BOLD signal that different
brain areas undergo as a function of CO2 levels.

As a final note, the astute reader might note that the brain contains both
excitatory and inhibitory neurons. Thus increased ‘activity’ seen with fMRI
could in principle be attributable to increased firing rates of inhibitory
neurons, rather than increased activation of excitatory neurons. The evidence
does not suggest that this is the case, however. In general, inhibitory neurons
comprise a smaller proportion of cells in the brain than excitatory. Moreover,
the physiological processes involved in inhibitory synaptic activity differ
from those of excitatory activity, in that they are much less reliant on ATP-
consuming ion pumps – and thus less likely to drive the BOLD effect. This
is, however, a relatively under-studied area and questions still remain
concerning the relative contributions of excitatory and inhibitory neural
activity on BOLD signal.



Properties of the BOLD Response
We have now established that the BOLD signal increases during neural
activation, due to increases in oxygenated blood volume caused by dilation of
blood vessels in response to changes in metabolic activity that are driven by
synaptic activity. This cascade of events takes time to happen, and as a result
the time course of the BOLD response to neural activation is quite different
from the timing of the actual neural responses. Thus while the initial
responses to a stimulus can be seen in EEG or MEG data after 50 ms or less
(as early as a few seconds for auditory brainstem responses), fMRI responses
evolve over many seconds. The shape of the BOLD fMRI response over time
is called the haemodynamic response function (HRF). Although the exact
shape of the HRF varies between individuals and even between brain areas
within individuals, it has a general characteristic shape and time course as
shown in Figure 7.4. The HRF takes 1–2 seconds after an eliciting event to
begin to rise, peaks after 6–8 seconds, and returns to baseline after
approximately 12 seconds. Often, the return to baseline is followed by an
‘undershoot’ which lasts until roughly 15–18 seconds post-stimulus onset.
This time course of the HRF is what would be seen to a brief, transit stimulus
(such as in the visual cortex, in response to a brief visual image).

Figure 7.4 An example haemodynamic response function (HRF),
representing a model of the time course of BOLD signal from the brain in
response to a transient stimulus. Note the slow timing of this response
compared to EEG or MEG



A first question to ask is how sure we are that BOLD fMRI changes actually
reflect neural activity and, if so, what aspect of neural activity they reflect.
The first part of this question – whether fMRI reflects neural activity – was
well supported in the affirmative even in the first human fMRI studies, where
signal changes were localized to those brain regions predicted a priori to
show differences; for example, the occipital cortex for visual stimuli and the
motor cortex for hand movements. However, this still leaves open the
question of what aspect of neural activity the BOLD signal reflects. In a
series of seminal experiments, Logothetis and colleagues (Logothetis, Pauls,
Augath, Trinath, & Oeltermann, 2001) made direct recordings from
electrodes implanted in the visual cortex of monkeys while simultaneously
recording BOLD fMRI activity. The electrical recordings included both
multi-unit activity (MUA) measurements (the spiking activity representing
action potentials of neurons) and local field potentials, which reflect the
slower changes in postsynaptic potentials (LFPs). The LFPs are thus sensitive
to the same type of activity that is measured with EEG and MEG – although
of course the latter techniques measure activity at the scalp and thus represent
the summed activity of many brain regions, whereas LFPs represent changes
localized to the area right around the electrode implanted in the cortex.



Logothetis and colleagues’ data showed that although both multi-unit and
LFP recordings correlated with BOLD fMRI responses, the relationship was
much tighter between BOLD and LFPs. The conclusion from this is that
fMRI activity primarily reflects the relatively slow changes in postsynaptic
potentials that result from the input delivered to a brain area, rather than the
spiking output of that brain area. In this sense, fMRI can be taken to measure
signals similar to what EEG or MEG measure (although with important
caveats as discussed below).

The timing of the HRF is clearly very sluggish compared to the actual neural
responses that induce it. This is attributable to the fact that, as discussed
earlier, the BOLD response is an indirect reflection of neural activity, filtered
through several physiological steps including neurotransmitter release and
recycling, chemical messengers, and eventual vasodilation. As well, BOLD
signal is biased towards the veins that drain the capillary bed serving the
active neurons, so some of the signal delay may be due to the time it takes the
influx of oxygenated blood to actually reach these veins. Furthermore, there
is no reason to expect that the timing between the neural response and
vasodilation is constant in different areas of the brain, or even within the
same area, across different events or levels of neural activity. This has been
demonstrated empirically in numerous studies. The timing and shape of the
HRF itself is highly variable between individuals, and even between brain
areas within individuals. Aguirre and colleagues (Aguirre, Zarahn, &
D’esposito, 1998) examined HRF variability in the motor cortex in a simple
button pressing task, and found that the peak of the HRF had a range of
approximately 3–6 s between individuals. Other studies have reported ranges
of 4–6 s (Buckner, Koutstaal, Schacter, Dale, Rotte, & Rosen, 1998) and 6–
11 s (Birn, Saad, & Bandettini, 2001), using different tasks and examining
different brain areas. Beyond the timing of the peak of the response, the
shape has been shown to vary in other ways, including the time between
stimulus onset and the initial rise of the HRF, and in whether or not there is
an undershoot prior to a return to baseline. Beyond this natural range of
variation in healthy individuals, as Handwerker and colleagues (Handwerker,
Gonzalez-Castillo, D’Esposito, & Bandettini, 2012) put it, ‘Virtually every
examined disease state, age difference, or ingested substance causes changes
in HRF shape’ (p. 1019). This includes very commonly ingested substances
like caffeine and Ibuprofen. The impact of this variability is nontrivial: data



analysis of ‘event-related’ fMRI experiments (see below) relies on correcting
BOLD signal with a model of the HRF, and models that are off by 2 s can
reduce the estimated magnitude of the response by nearly 40% (Handwerker
et al., 2012). One possible solution would be to run an initial scan for each
participant in an fMRI study to estimate their individual HRF shape;
however, this can vary from voxel to voxel and region to region within
individuals, and many researchers are reluctant to spend valuable scan time
on such ‘reference’ scans rather than scans that will yield publishable data.
Other approaches to this problem include analysis methods that allow
flexibility in fitting the shape of the HRF, but these can increase the
complexity of the analysis and make interpretation more difficult.

Figure 7.5 Individual variability in the shape and timing of the HRF. The
black dashed line shows the canonical (mathematical model) HRF; each other
line represents the HRF recorded from an individual. The data were obtained
from primary motor cortex (M1) in a simple task where participants pressed a
button as quickly as possible in response to a visual stimulus. Adapted from
Handwerker, Ollinger, & D’Esposito, 2004 with permission of Elsevier

Although variability in HRF shape can reduce the sensitivity of the data



analysis applied, nevertheless there is enough consistency and robustness
across individuals that an average response can typically be measured in a
properly powered experiment. The concerns raised here are most significant
in two situations. One is in comparing different populations, who may show
systematic differences in HRF shape and/or timing. In this case, researchers
run the risk of vascular differences being mistaken for neural ones, and so
approaches such as estimating the HRF in individuals – or even using
calibrated fMRI as discussed above – may be warranted. The other situation
where the timing of the HRF is a particularly important consideration is in so-
called ‘functional connectivity’ analyses, which examine relationships in
activity between different brain areas. These are discussed in greater detail
below; for now we will simply say that one should proceed with extreme
caution in making inferences about the timing of neural activation based on
the timing of the HRF. While with EEG or MEG the relative timing of
different events can be taken to literally reflect the sequence of neural
activation, with fMRI this inference is tenuous at best, and often likely
wrong. In other words, the relative timing of the BOLD response (for
example, the onset or peak of the HRF) between brain areas should not be
taken to represent the relative timing of the underlying neural activation in
these brain areas.

Another consideration in contrasting EEG/MEG data with fMRI is that since
the signals rely on such different mechanisms, there is no reason to expect
that these techniques will all be sensitive to the same brain activation. EEG
and MEG are most sensitive to open field configurations of neurons, with
postsynaptic potentials that change coherently across the open fields. Thus
there are numerous possible configurations of neurons, and patterns of
activity, that will not give rise to a measurable EEG or MEG signal but could
be detected by fMRI. Conversely, changes in the coherence of postsynaptic
potentials could affect EEG or MEG signals without affecting fMRI signals,
if the overall level of neural activity remained the same but was simply less
correlated between neurons.



How Do We Measure It?



Pulse Sequences for fMRI
As noted above, BOLD fMRI relies on T2*-weighted images. Because T2*
decay occurs much more quickly than either T1 relaxation or T2 decay, this
necessitates very fast pulse sequences. The ability to acquire MR images very
quickly is also critical to functional imaging because, as we saw in the
previous section, the timing of the BOLD response is such that we need to be
able to obtain a series of images relatively quickly (ideally every 1–2 s) in
order to accurately characterize the shape of the response. Conventional
(structural) MRI pulse sequences require in the order of 3–10 minutes to
acquire a single image of the whole brain; clearly such timing would make
fMRI impossible. Fortunately, pulse sequences have been developed that
allow very rapid T2* weighted imaging. These allow TRs (repetition time –
the time between each consecutive acquisition of a particular slice in the
image, or effectively the time it takes to acquire all of the slices once) on the
time scale necessary for fMRI. The most common pulse sequence used in
BOLD fMRI is call echo planar imaging (EPI). Another frequently used
pulse sequence is spiral imaging. The two sequences differ in how they
traverse k space; however, both have in common their sensitivity to T2*
contrast, and relatedly their ability to scan through k space very quickly in
comparison to conventional pulse sequences.

The idea of EPI was originally developed in the 1970s by Sir Peter Mansfield
(Mansfield, 2001; Stehling, Turner, & Mansfield, 1991), who went on to
receive the Nobel Prize in Physiology or Medicine for this and related work
on MRI. The key innovation in this technique is filling all of k space after a
single RF excitation. In contrast, recall that traditional pulse sequences fill k
space in a stepwise fashion, conducting one phase encoding step per
excitation. Given that each slice in a typical fMRI image may contain 64 × 64
or even 128 × 128 voxels, EPI represents an increase of 64 or 128x in the
speed of acquisition over a traditional phase encoding scheme. Since a typical
T1- or T2-weighted image can take several minutes to acquire, this speed
increase was necessary to make time-resolved MRI possible. To scan this
fast, the MRI’s gradients need to be stronger than for most other types of
sequences (gradient strength is a feature of the MRI hardware itself), and be
able to switch direction very rapidly. In fact, Mansfield’s development of EPI



was entirely theoretical until the late 1980s and early 1990s, when advances
in engineering finally yielded MRI hardware capable of performing these
scans – which in turn coincided with the timing of the first published human
fMRI studies.

Rapid and frequent gradient switching is key to EPI scanning. In an EPI pulse
sequence, excitation and slice selection are followed by activation of the
frequency and phase encoding gradients (Gx and Gy) to move to one corner of
k space. After the time required to fill the first line of k space, the Gx gradient
is reversed, and at the same time the Gy gradient is adjusted to fill the next
phase line of k space. This contrasts with the typical approach described in
the previous chapter, in which each phase encoding step requires a separate
RF excitation and slice selection process. Instead, in EPI all the lines along
the phase encoding direction of k space (k y) are filled after a single
excitation/slice selection pulse. In this way the frequency encoding of the
second line of k space occurs in the opposite direction from the first line. This
process continues, zig-zagging back and forth through k space until it is
filled. This process is shown in Figure 7.6.

The process just described obtains an entire MR image slice in one excitation
step. On modern scanners, the time required to traverse all of k space to
acquire a single slice through the brain can be as short as 20 ms. In a typical
fMRI scan, a set of slices (usually 3–4 mm thick, or less) is obtained that
cover the entire brain, top to bottom, on each TR. Thus one TR comprises a
series of single slice acquisitions that are assembled to form a 3D brain
volume, a process which takes typically from 1–3 seconds depending on the
scanner hardware, software, and the thickness of the slices. Thinner slices
necessitate more slices for a given amount of brain coverage, and so
increased resolution requires increased time. Modern scanners are capable of
whole-brain acquisitions in less than one second, although TRs in the order of
2 s are still very common. In general, one should aim for full-brain coverage
at the desired spatial resolution, and then set the TR as short as is possible
given the constraints the scanner hardware imposes based on the spatial
resolution and number of slices. Although shorter TRs lead to larger data files
(since there are more individual time points, and each time point comprises a
3D image with upwards of 100,000 voxels), which are more demanding on
storage and processing, the advantages gained include more accurate



resolution of the time course of the haemodynamic response, and greater
statistical sensitivity to experimental effects. The latter benefit accrues from
the fact that in analysing the time course of an fMRI image, each time point
contributes information, and from a statistical standpoint, degrees of freedom,
leading to greater statistical power.

Figure 7.6 EPI pulse sequence trajectory through k space. Unlike the more
conventional pulse sequence shown in the previous chapter, in EPI all rows
of k space are filled after a single excitation (RF pulse and slice selection
gradient). Thus the phase encoding gradient is applied multiple times, with
different strengths, and the frequency encoding gradient rapidly switches
directions at the end of each row of k space. In this way a single slice can be
captured in as little as 100 ms, and enough slices to cover the whole brain can
typically be obtained in under 2 s



The rapid switching of strong magnetic field gradients is not only demanding
on MRI hardware, but it creates images that are very sensitive to distortion.
Firstly, proper reconstruction of the images requires that the data from every
second line of k space be properly realigned since the frequency encoding
direction changes by 180° with every phase encoding step. Inaccuracies in
this step can lead to ‘ghosting’ in the images whereby a faint image of the
brain appears overlaid on the image, but shifted halfway along the phase
encoding direction. Since phase encoding in EPI images is typically the
anterior–posterior dimension, this means that a ‘ghost’ of the front of the
brain would appear overlaid with the middle of the brain. This can be avoided
with proper implementation of the pulse sequence and reconstruction
algorithm however. A more common and problematic artifact arises due to
inhomogeneities in the magnetic field within the area being scanned. While
the magnetic field of MRI scanners is made to be extremely homogeneous
during installation, and regular quality assurance procedures and maintenance
will maintain this homogeneity, this is disrupted by the presence of a head in
the MRI scanner. The many different tissue types in the head (predominantly
air, bone, fat, muscle, and water, and also dental work) all have distinct
magnetic properties, and in particular the boundaries between different
materials are problematic because the magnetic field properties change
dramatically at these points. Thus while the application of a magnetic field
gradient (such as Gx and Gy) to a homogeneous medium such as water would
produce a truly linear slope in the magnetic field strength, local
inhomogeneities in the brain create a more uneven gradient, which in turn
leads to distortions in the reconstructed image. In particular, signal loss
occurs because the actual Larmor frequency at a location of high
inhomogeneity is relatively far from what would be predicted from the
application of the gradient. In EPI images, the most dramatic examples of
these artifacts – called magnetic susceptibility artifacts – occur in the parts
of the brain nearest to air pockets inside the head: the inferior frontal lobe
(orbitofrontal cortex), which is directly above the sinuses, and the inferior
temporal lobes above the ear canals. These artifacts are shown in Figure 7.7.

Another artifact that occurs as the result of the demands of EPI scanning is
geometric distortion of the images. EPI images often look smeared,
particularly at the front of the head, and the front of the head may also appear
to have a ‘bite’ taken out of it, as shown in Figure 7.7. These are due to the



fact that in an EPI acquisition there is only one TE for the entire set of phase
and frequency encoding steps. Thus the TE is optimal only for the centre of k
space, and increasingly sub-optimal for the more distal portions of k space.
This is in contrast to conventional pulse sequences, in which the TE occurs at
the same time after every phase encoding step. Thus in EPI, more time
elapses between some phase encoding steps and the readout time than others,
leading to greater signal decay prior to readout. Moreover, these effects are
amplified by any magnetic field inhomogeneities in the head. In effect, rather
than the trajectory through k space being a precise set of horizontal lines
along the frequency dimension alternating with vertical ‘blips’ in the phase
direction – as shown in Figure 7.6 – the trajectory through k space will be a
distorted version of this, with the horizontal lines being somewhat angled or
even wiggly, and some phase blips occurring before a frequency encoding
line reaches the far edge of k space.

These artifacts can be reduced through a number of methods. A number of
acquisition strategies can be used, including shimming – corrections for local
inhomogeneities using additional hardware coils – and applying additional
gradients (for example, in the slice selection direction) for correction. In
some cases, slight adjustments to the position and angle of the slices can
reduce susceptibility artifact, and distortions are also reduced when slice
thickness is thinner. Another way to reduce spatial distortions is to use
parallel imaging. This requires special head coils (the RF receiver around
the head is in during scanning) that have multiple receiver coils placed
around the head (typically 8–32 coils or ‘channels’). Because each coil
samples the head from a different position, the nature of the spatial
distortions in each differ and when the images from all channels are
averaged, the distortions are reduced. Multi-channel coils have several other
advantages, including improvements in SNR and reduced acquisition time.
Faster imaging is possible because each individual coil actually samples k
space more sparsely than when a single-channel coil is used, requiring less
time; since multiple coils are sampling k space in parallel, however, the
sampling of k space in the reconstructed image is as good or better than with
a single-channel coil. Another approach is to acquire a magnetic field map.
This is done using a separate MRI sequence (and so requires some extra scan
time) that will characterize how the field is distorted by the presence of the
individual’s head. This map is then used in post-processing to ‘unwarp’ the



EPI images. This unwarping will produce EPI images that more accurately
reflect the true shape of the brain. However, since the warping conflated
signals from different spatial locations, it is mathematically impossible to
separate these after the fact, which means that the brain’s shape will appear
more accurate (and thus easier to co-register with the structural image; see
below), but inaccuracies in the spatial localization of BOLD signal will be
present in the areas that originally had artifact.

Figure 7.7 EPI susceptibility artifacts and geometric distortion. An EPI
image (greyscale) is overlaid on a high-resolution T1-weighted structural
scan from the same individual; images were acquired on a 3T scanner. This
highlights the areas of the brain that are characterized by signal dropout in the
EPI images. Blue arrows point to magnetic susceptibility artifacts in the
orbitofrontal (top-row) and inferior temporal (middle-row) regions. Orange
arrows point to geometric distortion in the frontal pole



An alternative pulse sequence for BOLD fMRI is called spiral imaging. This
is similar to EPI in that it is a scheme for traversing all of k space in a single
excitation step; however, the path through k space is a spiral rather than a
zigzag, as shown in Figure 7.8. This trajectory is obtained by oscillating both
the Gx and Gy gradients synchronously. Spiral imaging is less demanding on
the gradient hardware, because changes in gradient strength occur gradually,
rather than abruptly and dramatically. It is also more efficient than EPI,
because in EPI the phase encoding ‘blips’ take time but do not directly
contribute to the data readout, and so the scan time can be reduced which will
contribute to reduced geometric distortions in the image. Although magnetic



field inhomogeneities still cause both susceptibility artifacts and geometric
distortions in spiral images, the shape of these spatial distortions is different
due to the different path through k space. One way of partially compensating
for this is to perform ‘spiral in-out’ imaging. While in a typical spiral scan,
the k space trajectory is from the centre of k space outward, in a spiral in-out
scan two sequential acquisitions are made (with separate excitation pulses):
one starting from the centre of k space, and one starting at the edge of k space
and spiralling inward. Since the geometric distortions are magnified as the
time between excitation and readout, combining the ‘in’ and ‘out’ spiral
trajectories helps to cancel out much of this distortion. In practice, EPI pulse
sequences are more widely available on commercial MRI scanners than are
spiral sequences, and so spiral imaging is less widely used.

Typically an fMRI experiment for an individual participant involves a
number of scans, and typically takes between 45–90 min depending on the
complexity of the experiment. Because participants have to lie still and try to
move as little as possible during the experiment, it is ideal to keep
experiments on the shorter side because as time wears on, participants may
become bored, tired, and uncomfortable and data quality may suffer. A
common structure for an experiment would be to start with a ‘scout’ scan,
which typically takes less than 1 min to acquire and provides information
concerning where the person’s head is positioned in the scanner, and allows
the operator to position the slices for the other scans according to the specific
anatomy of the individual. This is then followed by several fMRI ‘runs’,
defined as periods of continuous scanning when the experiment is conducted.
Typically runs last approximately 5 min, although in principle they could be
much shorter or much longer (20 min or more). However, experience
suggests that 4–6 min is a reasonable amount of time to expect a person in the
scanner to hold still and stay focused on the task; in between runs the
participant can rest, scratch an itch, etc. Shorter runs are a less effective use
of scanner time, both because of the increased amount of ‘down time’
between scans cutting into the proportion of time that data is being collected,
and also the fact that fMRI statistical power is in part dependent on the
number of samples taken during a scan – so, for example, it would be harder
to detect activation in five 1 min scans than in a single 5 min scan.

Figure 7.8 Spiral pulse sequence trajectory through k space. As with EPI,



spiral imaging fills all of k space for a single slice in one excitation. However,
rather than rapidly switching the phase encoding gradient on and off, and
reversing the frequency encoding gradient, the strength of both gradients is
continuously modulated in a sinusoidal fashion. This creates the spiral
trajectory shown in the bottom panel. Spiral pulse sequences are less taxing
on the gradient hardware, and are associated with different distortion artifacts
than EPI, but are less widely available on different scanner platforms

An anatomical (typically T1-weighted) scan is also routinely obtained in
fMRI studies because the functional images are optimized for BOLD
contrast, rather than anatomical (grey matter/white matter/CSF) contrast.
Anatomical scans facilitate both localization of activations on the individual’s
brain, and co-registration of activations across the individuals in the study
(this is discussed in more detail later in the chapter). Finally, other pulse
sequences may be run depending on the research question and data-



processing stream. These could include magnetic field mapping sequences
used to correct for image distortions, as discussed above, or other structural
scans such as for volumetric, morphometric, or diffusion tensor imaging
(these techniques are discussed in the following two chapters). The relative
timing of these different scans is at the discretion of the researcher (with the
exception of the scout scan, which is necessarily obtained first); however,
since people tend to become increasingly fatigued as the scan wears on, there
is value in running the fMRI scans first and other scans after – or
interspersing functional and other scans to give people breaks between the
functional scans (which may be desirable in some experimental designs).



Image Preprocessing
As with all neuroimaging techniques, fMRI data requires preprocessing
prior to statistical analysis. The goals of preprocessing are to reduce noise
and therefore improve data quality, and ultimately our ability to detect
experimental effects in the data.



Filtering
As we have seen, a typical first preprocessing step for neuroimaging data is
filtering, to remove effects of non-interest. However, the frequency range of
interest for fMRI is very different from EEG or MEG, since we are
measuring a different thing (the HRF) and sampling at a much lower rate: TR
values in fMRI tend to be in the 1–2 s range, which equates to a sampling rate
of 1–0.5 Hz. By the Nyquist theorem, we are therefore limited to measuring
quite low frequency fluctuations (below 0.33 Hz for a TR of 1 s, or below
0.167 Hz for a TR of 2 s). Since the HRF typically has a time to peak of
about 6 s and returns to baseline after 12–20 s, this means that the highest
frequencies we would expect associated with BOLD signal would be < 0.1
Hz. On the other hand, BOLD fMRI signal is contaminated by other, higher-
frequency physiological artifacts, in particular from respiration and pulse.
Because these have relatively high frequencies relative to the fMRI sampling
rate, they are aliased into the recorded fMRI signal as low-frequency
components, and so high-pass filtering is typically applied to fMRI data to
remove these artifacts. The exact frequency cutoff depends on the
experimental design (specifically the highest expected frequencies associated
with the experimental manipulation, convolved with the HRF), but are
generally in the range of 0.1–0.2 Hz.



Motion Correction
A second, virtually essential preprocessing step is motion correction. As we
learned in the previous chapter, spatial encoding in MRI scanning is
determined by the spatial gradients. Because these are part of the MRI
hardware, and are centred on the centre of the bore of the MRI scanner, it is
important that the head being scanned is located in the centre of the bore. In
practice, an initial ‘scout’ image is acquired prior to any other scanning, and
this is used to position the slices for all structural and functional MRI scans
relative to the actual position (and size and shape) of the person’s head.
However, this all assumes a fixed head position. If the head moves at all,
serious problems occur – for several reasons. Firstly, because fMRI scanning
occurs over time and multiple samples are acquired (a typical 5 min scan with
a 2 s TR yields 300 images of the brain), if the head moves then the part of
the brain that was in a given voxel will not be located in that voxel after
movement occurs. If nothing else, this will cause abrupt changes in signal if
the two locations in the brain have different signal levels. However, this
concern is greatly amplified because scanning relies on the application of
multiple magnetic field gradients at different times. So if the head moves
between slice selection and readout, then the part of the brain that was excited
by the RF pulse will not be in the same position relative to the other gradients
during frequency and/or phase encoding. Also, subsequent RF pulses may
result in above- or below-expected amounts of excitation in certain parts of
the brain, because an area that was excited by one pulse may be excited by
the next pulse as it moves into the plane of a different slice (relative to the
original slice plane). As well, if the movement results in a different tissue
type (or no tissue at all) being in a voxel, then very dramatic changes in the
signal intensity at that voxel will occur. This is most pronounced at the edges
of the brain, because the brain itself yields a relatively large signal relative to
the CSF – so a voxel may contain (bright) brain at one point in time and
(dark) CSF at the next sampling time, after the movement. This results in
large ‘spikes’ in the fMRI time series that are significantly larger than the
small (typically a few per cent) changes associated with normal BOLD
signal. These artifacts are illustrated in Figure 7.9. As well, the overall shape
of the brain image may change with head movement due to the susceptibility
and spatial distortion artifacts inherent in echo planar and spiral imaging



pulse sequences. These large motion spikes can end up being mis-identified
as activation during analysis, especially if they happen to correlate with
experimental factors such as the appearance of stimuli or button presses.

All mainstream fMRI analysis software packages include a motion correction
algorithm that attempts to identify and correct for head motion. This is done
using a relatively simple image processing approach whereby one time point
(typically either at the start or midpoint of the run) is chosen as a reference
and each other (‘target’) time point is compared to this by subtracting the two
images. The algorithm then iteratively moves the target brain image slightly
in different directions (shifts – commonly called translations – and rotations)
and re-computes the difference between the two images to find the
transformation that yields the smallest possible difference. Although effective
up to a point, motion correction approaches are fundamentally limited by the
physics of MRI. Too large a movement results in uncorrectable artifacts
because it is impossible to accurately account for the effects of movement of
heterogeneous tissue through a complex set of magnetic field gradients as
well as the supra- or super-additivity effects of the RF pulses. Thus the
general rule of thumb is that only movements of about half of the size of the
voxel can be adequately corrected for. In a typical scan with 3–4 mm voxels,
this means that head movements of 1.5–2 mm may result in unusable data.
Scans with smaller voxels sizes will have smaller tolerances and thus be more
sensitive to motion artifacts. These are very small movements – indeed, so
small that many people might not realize they are making them. Thus it is
always important both to emphasize to participants how important it is to stay
still during scanning, and to take preventative measures such as packing the
space between the head and the head coil with foam. Other types of head
restraints (such as masks or bite bars) may be used, but these generally make
people uncomfortable and so may ultimately not result in better data quality.
Another option (primarily used with children and some clinical populations)
is to train people to hold still outside of the scanner. This can be done in a
mock MRI scanner with a built-in camera system that tracks head movement
and provides feedback when movement exceeds a threshold – for example,
by temporarily pausing a movie that the person is watching. A recent
advancement is to implement this game on a tablet so that children can train
at home, lying on a bed with the tablet held in a special frame above their
head and using the tablet’s built-in camera to track movement.



Figure 7.9 Motion detection and correction for fMRI. The top row shows a
single slice from an EPI time series, at five different time points (dashed grey
lines) across a 5 min scan. Although all of the images look roughly the same
to the naked eye, a motion detection algorithm found some rotation over
time, as well as (for fMRI) a significant amount of translational movement in
the z plane. Rotations around each principal axis are shown in the second
row, and translations in each plane in the third row. Note in particular the
‘spikes’ of motion on the order of 1.5–2 mm at the second and fourth time
points highlighted. The bottom row, left panel shows the difference between
the middle time point (150 s) and a time point 4 s (two acquisitions) later,
while the bottom right panel shows the difference between the middle time
point and 252 s, corresponding to the second large translation in z. The
difference between these two time points highlights the extreme values
(bright and dark spots) created by head motion. As well, the fact that the
structural anatomy is more visible in the latter image (for example, skull
outline, ventricles in the middle of the brain, outline of each hemisphere)
reinforces the fact that motion artifacts are most pronounced at the edges of
different tissue types





Spatial Smoothing
Spatial smoothing is the application of a spatial filter, but can be thought of
as ‘blurring’ the fMRI image prior to analysis. Although this might seem to
go contrary to the goal of achieving high spatial resolution brain imaging,
there are several good reasons that spatial smoothing is almost always
recommended. Firstly, it helps to reduce noise in the image. At the level of
brain organization we are typically interested in with fMRI, activation is
expected to be spread out over relatively extended areas of brain tissue
encompassing more than a single voxel, or even a few voxels. Thus when
imaging at a typical resolution of 2–4 mm voxels, it is reasonable to predict
that highly focal ‘effects’ (only a few voxels in size) are attributable to noise
rather than brain activation. Spatial smoothing reduces such ‘pointillistic’
noise. This can be observed in Figure 7.10. Typically smoothing is done
using a Gaussian kernel – the 2D or 3D equivalent of a Gaussian (normal)
distribution – as shown in Figure 7.11. The size of the smoothing kernel is
typically described by its width at half of its maximum height (full-width at
half-maximum; FWHM). A rule of thumb is to use a smoothing kernel
whose FWHM is 1.5–2 times the voxel dimensions of the input image. Thus
for 3 × 3 × 3 mm voxels, a kernel of 4.5–6 mm would be appropriate.

Another advantage of spatial smoothing is that, according to the matched
filter theorem, if we filter an image with a kernel that matches the expected
size of the features in the image we are looking for (in our case, ‘blobs’ of
brain activation), we should enhance those relevant details while reducing the
influence of noise from smaller and (to a lesser extent) larger spatial features
in the image. This is apparent both for the area of activation in Figure 7.12,
and even for the grey-white-CSF contrast in the underlying greyscale in the
figure: the major anatomical features are clearer in the 6 mm smoothed image
than either the 4 or 9 mm, suggesting that in this case 6 mm is the closest
match to the spatial frequency of these anatomical features.

Figure 7.10 A comparison of data in a 2D slice before (left) and after (right)
spatial smoothing. Both images are representations of a single slice from a
BOLD EPI image, but with the intensity at each voxel represented both by
height and colour to highlight the changes in smoothness. Note how the



voxel-to-voxel variability is greatly reduced in the smoothed image. Overall,
amplitudes are smaller after smoothing, however the major peaks are
retained, but are more distinctive due to the reduction in noise. Figures
generated with code adapted from Dr Matthew Brett, University of
Birmingham, with permission

Figure 7.11 An example of a 2D Gaussian smoothing kernel that could be
applied to a slice of an fMRI image. Effectively, the centre of this kernel
would be placed at each voxel in a 2D slice, and the resulting, smoothed,
value at that location in the image would be the sum of the original intensity
value at that voxel, plus a proportion of the values at surrounding voxels as
determined by the height of the kernel at each surrounding voxel. For
example, if the kernel overlapped a certain voxel where the height of the
kernel was half of its maximum, then half of the intensity of that voxel would
be added to the intensity of the centre voxel being smoothed. Figure
generated with code adapted from Dr Matthew Brett, University of
Birmingham, with permission

Another reason to perform spatial filtering is that many fMRI analysis
approaches base the identification of spatially extended clusters of activation
on algorithms that assume that the noise in fMRI images has a Gaussian
distribution; while this has been shown to be approximately true anyway,
applying a Gaussian filter brings the data more into line with this expectation,



making the statistics more reliable. Finally, spatial smoothing can help
account for small inaccuracies in alignment of brains between individuals, as
discussed in the next section.

Figure 7.12 Spatial smoothing. Top row shows a slice of an EPI image with
no smoothing (‘raw’), and increasingly large Gaussian kernels. Note that the
6 mm kernel best highlights the structural anatomy of the image (grey-white-
CSF contrast). This suggests that 6 mm is a better match to the actual spatial
frequencies in the image than either smaller or larger kernels. The bottom
row shows statistical maps from the same person, showing (in red) the
contrast in BOLD signal when they tapped their fingers together with their
right hand relative to no movements – again with different smoothing
kernels. As expected, this activation is focused in primary motor cortex in the
hemisphere opposite to the hand involved. Although the un-smoothed data
shows activation that most closely matches the shape of the cortical grey
matter, the smoothed images show this activation over larger areas, which
can help to facilitate overlap in group averages. As well, note the numerous
small red spots in the un-smoothed image, and how most of them disappear
with smoothing (suggesting they were random noise) while the spot on the
medial (midline) surface of the left hemisphere increases slightly in size and
remains present in the 4 and 6 mm (and to some extent 9 mm) smoothed
images. This suggests that, rather than being random noise, this small area is
likely a true activation. The fact that this small area of activation disappears
at larger smoothing kernels, while the larger area of activation remains and
increases in size, is consistent with the matched filter theorem



Spatial Normalization
One of the first problems that fMRI researchers had to address in averaging
data across individuals was that everybody’s head (and brain) is a different
size and shape, as illustrated in Figure 7.13. However, data analysis is almost
invariably done for each voxel separately, so we need to have a way of
ensuring that across individuals, the same voxel in the MRI volume
corresponds to the same part of the brain. This process is called spatial
normalization. The initial way of doing this was borrowed from
neurosurgery; French surgeons Talairach and Tournoux (1988) had produced
an atlas of the brain, labelling different areas and providing spatial
coordinates in a 3D Cartesian frame. This atlas was based on a single brain
(that of a deceased elderly woman, which had been preserved in
formaldehyde), and a method was provided to adjust the size of any other
brain to this reference. This method involved marking two small, but readily
identified structures in the midline of the brain: the anterior and posterior
commissures. These are small white matter bundles that connect the two
cerebral hemispheres, and are quite easily seen on a T1-weighted structural
MRI. The line through these two commissures defines the horizontal plane of
this coordinate system, and the longitudinal fissure dividing the two
hemispheres defines the vertical plane; the third dimension is defined as
orthogonal to these other two planes. The brain is then divided into 12
sections and each is scaled to match the size of the reference brain.
Coordinates are measured in millimetres, with the centre of the system (0, 0,
0) defined as the anterior commissure.

Figure 7.13 T1-weighted images from ten individuals who participated in an
fMRI study, showing approximately the same locations in the brain. Note the
wide differences in brain size and shape that are evident at the level of gross
anatomy



The research community quickly identified problems with this system. One
issue was that the reference brain was likely a choice of convenience for
Talairach and Tournoux, but was not representative of the typical healthy
young adult brain in vivo – which comprises the bulk of the population used
in fMRI studies. Secondly, the scaling approach was very approximate and
could obviously not match the size and shape of any two brains at the level of
spatial resolution typical of fMRI (millimetres), and could not account for
variations in size and shape below the level of the 12 ‘chunks’ of brain used
in the Talairach and Tournoux system. As well, the Talairach and Tournoux
process relied on having a skilled user manually identify and mark the
necessary anatomical landmarks in each brain; an automated approach was
desirable. Addressing these problems required two different things: a better
reference brain and better alignment algorithms.

Although ultimately our goal is to have the BOLD fMRI data spatially
normalized to the template, in most cases the template is provided as a T1-
weighted structural image, because these have high spatial resolution and
excellent grey-white-CSF contrast. Typically, then, spatial normalization
occurs in three steps: first, a structural image from the individual participant
is aligned to their (motion-corrected) functional data; second, the
participant’s structural image is normalized to the (structural) template brain;



and, finally, those two mappings (participant’s structural to participant’s
functional, and participant’s structural to template) are mathematically
combined to create the mapping from the participant’s functional data to the
standard space template. Mapping the participant’s functional to their
structural image is achieved using a process virtually identical to that used for
motion correction (finding the optimal set of translations and rotations to
minimize the difference between the images), except in this case adjustments
are made to the algorithm because the structural and functional images have
different weightings, so we cannot expect that the image contrast will
compare between the two images. As well, compensation for spatial
distortion of the fMRI images can be made (for example, applying magnetic
field map correction). In the second step, the structural image from the
participant is adjusted to match the size and shape of the template brain. This
uses the same iterative fitting approach; however, because the two brains will
have different shapes and sizes, more parameters are adjusted in the mapping
process. Thus in addition to translation along and rotation around each axis,
scaling (stretching or shrinking) can be applied along each of the three
dimensions, and also ‘shears’ along each dimension that allow for greater
geometric distortion (for example, making the brain narrower in the front but
wider in the back). This approach is called affine linear registration; Figure
7.14 illustrates the different types of transformations that can be applied, and
Figure 7.15 illustrates the steps in affine registration from an individual’s EPI
to a template structural image.

Figure 7.14 Linear affine spatial registration, as used in normalizing
individual brains to a common space. The top row shows the original image.
The middle row shows examples of the different types of affine
transformations that can be applied; the red outline shows the original brain
shape, while the greyscale image shows the transformed image. The bottom
row shows the same transformations applied to a simple rectangle



Figure 7.15 The process of linear spatial normalization. In one step, the
individual’s high-resolution, T1-weighted structural image is registered to the
template T1 image (such as the MNI152 standard brain). This step uses affine
linear registration to adjust the size and shape of the individual’s brain to
match the template as closely as possible. In a second step, the individual’s
EPI image is registered to their own T1 weighted image. Typically a single
time point, or average across time, is used to calculate the transformation
since the EPI images will have already been motion corrected. This step uses
only rigid body registration, because there is no reason to think that the actual
size or shape of the person’s brain would change between the two scans.
Finally, the two sets of registration parameters – one mapping from the
individual’s T1 to the template, and the other mapping from the EPI images
to the individual’s T1 – are mathematically combined. This combined
transformation is then used to normalize the individual’s EPI images to the
template



Although affine registration is far more accurate than the Talairach and
Tournoux approach, it is still only an approximation based primarily on
matching the overall size and shape of the brain. The more fine-grained
details, such as individual gyri and sulci, will in general be matched
reasonably well, but inaccuracies of several millimetres or more can be
reasonably expected. Given that areas of activation are expected to be
spatially extended, and also because the same functional area may not lie in
exactly the same anatomical location relative to the gross anatomy across
individuals (that is, an activated area may be on the gyrus of one subject and
in the adjacent sulcus of another), and further because of spatial smoothing,
this level of accuracy was historically well-accepted in the fMRI community
and a large proportion of published papers used such linear registration.
However, in the quest for even higher accuracy – which may be
advantageous in identifying very focal activation, differentiating activations
between nearby regions (as in mapping relationships between stimulation of
specific locations on the retina and their corresponding activations in the
visual cortex), or in some structural imaging techniques as discussed in the
next chapter – alternative approaches have been developed that yield higher
spatial accuracy. One is non-linear registration, which uses 2D basis
functions (sine wave gratings). In this approach, affine registration is first
used to get a best linear fit, and then additional warping is done to apply non-
linear (‘curvy’ or ‘wavy’) adjustments to the shape of the brain. This is
illustrated in Figure 7.16. The template and individual participant’s brains are
each characterized by a set of weightings on 2D sine and cosine basis
functions (essentially, a 2D Fourier decomposition is performed), and then
the algorithm determines the optimal making to ‘warp’ the individual’s basis



functions to match those of the template image. This can yield improvements
in the accuracy of registration that are significant enough to be visible to the
naked eye, as shown in Figure 7.17.

Figure 7.16 Non-linear normalization using basis function warping. After
matching the 2D basis functions (Fourier transforms) of the individual’s T1
to the template, the size and shape of individual voxels from the original
image (left) are adjusted in localized, non-linear ways (right) to obtain the
best match to the template. Reprinted from Ashburner and Friston (2007)
with permission

Figure 7.17 Comparison of the results of linear versus non-linear registration
of T1 structural images to a standard template. Panel A shows axial slices
from two individuals (top and bottom rows, respectively), after linear (left
column) and non-linear (middle column) registration. The template (which is
identical for both cases) is shown in the right column. In B, the parieto-
occipital sulcus was traced on the brains of ten individuals (red), after linear
(left) and non-linear (right) registration. The results are superimposed on the
template brain to which they were registered. In both A and B non-linear
registration shows clear improvements in the similarity of the registered
brains to the template, although some variability always remains. Images in
panel A reproduced from https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT


(retrieved 10 February 2018) with permission of J. Andersson and M.
Jenkinson; images in panel B reprinted from Andersson, Jenkinson, and
Smith (2007) with permission of the authors

An rather different alternative approach to spatial normalization is spherical
surface-based normalization first pioneered by Fischl, Sereno, Tootell, and
Dale (1999). The rationale for this approach was the recognition that the
primary interest in most fMRI studies is not the whole brain volume, but the
cortical surface. Moreover, this surface is continuous but heavily folded.



Because of this folding, some regions of the cortex that are close to each
other in 3D space – such as either side of a sulcus – are actually quite distant
from each other along the cortical surface. However, an approach that adjusts
brain size and shape in 3D space may conflate data from these distant areas in
the same voxels. The approach developed by Fischl and colleagues involves
extracting the cortical surface from a high-resolution structural MR image
(for example, a T1 weighted image), cutting the brain along the midline to
separate the two hemispheres, and then ‘sealing’ the cut so each hemisphere
is represented as a continuous (but still folded) surface. Then, each
hemisphere is computationally inflated into a sphere, using a transformation
that minimizes the amount of spatial distortion (stretching or squishing)
required. This is illustrated in Figure 7.18. An important feature of this
transformation is that it is entirely reversible, so that although the shape
changes, it is still possible to map each location on the sphere back to its
original position in the folded brain. The template brain is likewise inflated to
a spherical shape, and then the individual brain is aligned to the template. By
inflating both brains to spherical shapes, there is no problem in matching the
size or shape of the brain. Rather, the algorithm focuses on aligning the
folding patterns (gyri and sulci) between individuals. Because this approach
focuses explicitly on aligning cortical features, it is less prone to blurring
anatomically defined areas across individuals, compared to other methods.
Although the brain is represented as a smooth sphere, the locations of the gyri
and sulci are still identifiable because the inflation process computes
‘convexity’ values that reflect the curvature of the original brain at each point
on the smoothed surface; gyri have negative convexity values and sulci have
positive ones. By examining the convexity values and their variance, the
algorithm is able to match the positions of the folds across subjects, with an
emphasis on best-matching the major sulci (for example, central sulcus and
Sylvian fissure) that both dominate cortical shape and are least variable
between individuals. Increasingly, fMRI researchers are recognizing the
value of analysing and viewing activation maps on inflated surfaces rather
than 2D slices or folded surfaces. Although inflation for analysis and/or
visualization purposes is possible after using affine or non-linear warping
algorithms, this surface-based alignment approach provides a more integrated
and principled approach to the problem. That said, all of these registration
methods are widely used and accepted in the field, although it is important to
keep in mind that the same data may yield slightly different results depending



on which algorithm is used.

Figure 7.18 The spherical surface-based normalization method developed by
Fischl and colleagues. (A) shows the steps of inflation of the cortical surface,
from the original brain (left) to an inflated brain-like shape, to a sphere. The
right-most panel shows the average of 40 individuals in this spherical space.
The final step would be to align the gyri and sulci of the individual’s
spherical brain to that of the template. (B) shows the hemispheres of four
people before (top row) and after (bottom row) normalization to the template
brain (left; arrows and labels indicate major sulci that drive the matching
process). (C) shows the anatomical localization of the central sulcus across
11 individuals, comparing spherical normalization with the original method
of Talairach and Tournoux (1988). While the spherical normalization
produced a coherent, smooth, and connected average sulcus – consistent with
the true anatomy of any individual – the Talairach process resulted in less
overlap (red as opposed to yellow), and even areas that are disconnected from
each other – inconsistent with true anatomy. Note that Talairach
normalization is less accurate than linear affine or non-linear warping
algorithms as well. Republished with permission of John Wiley & Sons Inc.,
from Bruce Fischl et al. (1999)



We now return to the issue of an ideal reference brain. Recall that the
Talairach and Tournoux reference was based on the brain of a single,
deceased woman in her 80s. The brain had been fixed in formaldehyde and
sat out of the body for some period of time, both of which likely led to spatial



distortions relative to a healthy living brain, suspended in CSF and perfused
with blood. To develop a better reference brain, the Montreal Neurological
Institute (MNI; later as part of the International Consortium for Brain
Mapping – ICBM) developed a template based on structural MRI scans of
hundreds of healthy young adults. A spatial average of all of these scans was
obtained (using linear registration to minimize the differences between the
brains as a group) and this was in turn referenced to the original Talairach
and Tournoux brain, to allow with comparability with that coordinate system,
which was already the standard in the field. This standardized atlas has gone
through several iterations to improve its quality; as of this writing the most
widely used version (and the one distributed with all major fMRI analysis
software packages) is the MNI152, based on 152 brains but referenced to an
original average of 305 other brains using more advanced algorithms.
However, it is very important to understand that the MNI and Talairach
coordinate systems are not the same. They are quite similar; however, in
matching the overall size and shape of the average healthy brain to the
Talairach and Tournoux template, the centre of the coordinate system shifted
from being in the centre of the anterior commissure, to several millimetres
away. Likewise, the exact positions of many other areas changed slightly as
well. It is important to keep this in mind when interpreting the spatial
coordinates that are typically used to identify the foci of activations in fMRI
papers: if one paper used Talairach coordinates and another used MNI
coordinates, some adjustment is required to compare them. This is well
documented and several sources are available on the internet to convert
between the two. It is also important to read the ‘Methods’ sections of all
papers because some authors erroneously use the term ‘Talairach
coordinates’ to refer to 3D Cartesian coordinates in general, even when the
MNI system was actually used.

Summary

Functional MRI relies on blood oxygenation level dependent (BOLD) contrast, which arises
due to the magnetic susceptibility of deoxyhaemoglobin (deoxy-Hb). Deoxy-Hb causes
rapid T2* dephasing, resulting in a lower signal in a T2*-weighted MR image. Although
increased neural activity may trigger increased oxygen consumption, which would be
predicted to yield an increase in deoxy-Hb and a consequent drop in BOLD signal, this drop
– when seen at all – occurs only in the first 1–2 s after neural activity onset. Subsequent to
this, the increases in neural activity trigger local vasodilation, which increases the volume
of blood and the proportion of oxygenated haemoglobin (oxy-Hb) in the region, resulting in
increased BOLD signal. The changes in vasodilation are thought to be caused by a complex



cascade of chemical transmitters, mediated by astrocytes. BOLD signal is in arbitrary units,
and the magnitude of the signal – and the extent to which it changes in response to
experimental conditions – is highly variable both within and between individuals with
respect to amplitude and timing. The time course of the BOLD signal in response to a
stimulus or other event is called the haemodynamic response function (HRF). Although the
HRF tends to start rising approximately 2 s after stimulus onset, peak after 6–8 s, and return
to baseline by 10–15 s, this varies considerably by brain region and individual. The BOLD
response is also influenced by drugs (including caffeine and nicotine) and disease states,
making comparisons between groups sometimes challenging. For these reasons, techniques
such as calibrated BOLD have been developed to quantitatively relate BOLD signal
amplitude changes to oxygen consumption. As well, some studies run ‘localizer’ scans to
characterize the shape and timing of the BOLD response in brain areas of interest, which are
then used to analyse the data from the experimental conditions of interest.

While conventional MRI scans take minutes to collect a single brain volume, fMRI is only
possible due to pulse sequences that allow much faster data acquisition, on the order of a
few seconds. The primary pulse sequence used in fMRI is echo planar imaging (EPI). This
technique involves applying all phase encoding steps in a single TR (after a single RF
pulse), with a rapid frequency encoding step after each phase encoding step, allowing
complete sampling of k space with a single excitation. While this allows very rapid
scanning, there are some costs to EPI imaging, notably magnetic susceptibility artifacts and
geometric distortion. As well, voxel sizes for BOLD imaging tend to be several times larger
than for structural MR imaging, in order to obtain reasonable SNR. An alternative pulse
sequence for fMRI is spiral imaging. In this technique, k space is traversed in a spiral
pattern by sinusoidally varying the phase and frequency encoding gradients in synchrony,
again with all of k space being sampled after a single excitation (RF pulse). Spiral imaging
is less demanding on the gradient hardware of MRI systems, because the phase and
frequency gradients change continuously, rather than switching the direction of their slopes
very rapidly as in EPI. However, spiral imaging has its own unique artifacts. Because EPI
sequences are more widely implemented on different MRI scanners, and because modern
hardware is capable of keeping up with the gradient switching demands of EPI, EPI is much
more common than spiral imaging.

As with EEG and MEG data, fMRI data requires a number of preprocessing steps prior to
statistical analysis to increase SNR and sensitivity to experimental effects. One step is
temporal filtering to remove low-frequency artifacts. Another is motion correction, to
compensate for small head movements during the scan. A limitation of motion correction is
that, because MRI uses magnetic field gradients over space to obtain images, head
movements of more than about 2 mm cannot be properly corrected for. This is because head
movement will result in dramatic changes in the precessional phase and frequency of
protons at a given location in the scanner. Another common step in preprocessing is spatial
filtering, or smoothing. This is done to remove noise that occurs randomly at individual
voxels, while enhancing the ability to detect activation of comparable size to the smoothing
kernel, according to the matched filter theorem. Another critical step in fMRI processing is
spatial normalization. Because every person’s brain is unique in its size, shape, and
sulcal/gyral anatomy, it is not possible to simply average together fMRI data across
individuals without compensating for these spatial differences. Spatial normalization is the
process of adjusting the size and shape of each individual’s brain to match some standard
reference template brain. There are several techniques for this. The most venerable is the
method originally proposed by Talairach and Tournoux for neurosurgery, which involves
manually identifying landmarks to divide the brain into sections, then scaling each section



to best match the size of a reference brain. However, this is a very approximate technique
and has been supplanted by automated algorithms. Among these are linear affine
registration, which involves applying translations (shifts) and rotations around each spatial
axis (x, y, and z), a global scaling factor, and then adjustments to the size of the brain along
each spatial dimension individually, as well as shears to change the shape of the brain.
While linear affine registration does an adequate job, the accuracy of spatial normalization
can be improved by following the linear affine step with non-linear warping. While linear
affine registration adjusts the size and shape of the brain on a ‘global’ scale, nonlinear
warping allows for more fine-grained local adjustments, yielding a better fit for smaller
features such as the ventricles and individual gyri and sulci. A very different approach to
spatial normalization is spherical surface-based normalization, in which the cortical surface
of each cerebral hemisphere is extracted, inflated to a sphere, and then warped to a spherical
template on the basis of sulcal and gyral anatomical landmarks. A final point concerning
spatial normalization is that the process requires a standard template brain to serve as the
reference that individuals’ brains are matched to. These templates also define the coordinate
space that is used to report the location of activations in fMRI analyses. The most widely
used template was developed at the Montreal Neurological Institute (MNI) and is based on
the average of hundreds of healthy young brains. However, in comparing activation
locations between studies it is important to note which template and coordinate system was
used.

Things You Should Know

Blood oxygenation level dependent (BOLD) contrast is the basis of virtually all
fMRI studies, and derives from the fact that deoxy-Hb causes distortions in the local
magnetic field that are not caused by oxy-Hb, and which cause rapid signal decay in
T2*-weighted MR images. Because changes in neural activity are associated with
changes in blood oxygenation, BOLD provides an indirect measure of neural activity.
Calibrated BOLD involves systematically manipulating blood O2 and CO2 levels
and measuring the resultant changes in BOLD signal. This allows more precise
calculation of oxygen consumption as well as the ability to quantify BOLD signal in
meaningful units, whereas typical un-calibrated BOLD is in arbitrary units.
Calibrated BOLD is especially useful when comparing fMRI activations between
different groups who may vary in their haemodynamics for reasons such as
medication or disease state.
The haemodynamic response function (HRF) describes the time course of the BOLD
signal in response to a transient event such as a stimulus or response execution. The
typical human HRF has an onset approximately 2 s after the event onset, peaks after
6–8 s, and returns to baseline after 10–15 s. However, the shape and timing of the
HRF varies considerably between brain regions within an individual, as well as
between individuals. While a standard shape can often be assumed for all individuals
in an fMRI study, more robust results may be obtained by using localizer scans to
characterize the HRF prior to the experimental conditions of interest.
BOLD is an indirect measure of neural activity. Changes in neural activity
(postsynaptic potentials and, to some extent, neural firing rates) cause a complex
cascade of neurochemical changes, mediated by astrocytes, that result in increased
vasodilation of capillaries around the area of increased activity. Increased capillary
size results in a net increase in the concentration of oxy-Hb relative to deoxy-Hb,
leading to an increased BOLD signal.



The pulse sequence most commonly used for fMRI is echo planar imaging (EPI). In
EPI, all of k space is traversed after a single excitation, by rapidly switching the
phase encoding gradient on and off, while also rapidly switching the direction of the
frequency encoding gradient and performing readout with each switch. While this
allows for very fast imaging relative to conventional MRI, EPI is associated with
characteristic artifacts, including signal dropout due to magnetic susceptibility, and
geometric distortions.
Preprocessing fMRI data typically involves steps of temporal filtering, motion
correction, spatial filtering (smoothing), and spatial normalization.
Motion correction compensates for the effects of small head movements during a
scan. However, it is limited by the fact that spatial encoding in MRI relies on
systematic differences in the precessional phase and frequency of protons over space.
As a result, movements of more than approximately 2 mm may render fMRI data
unusable.
Spatial normalization involves adjusting the size and shape of an individual’s brain to
match a standard template. This is necessary to average activation across participants
in a study, due to the large range of individual differences in brain size and shape.
Common approaches include linear affine registration, non-linear registration, and
spherical surface-based normalization.

Further Readings

Huettel, S.A., Song, A.W., and McCarthy, G. (2014). Functional Magnetic Resonance
Imaging (3rd ed.). Oxford: Sinauer Associates.
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Learning Objectives
After reading this chapter, you should be able to:

Compare and contrast blocked and event-related fMRI designs.
Explain how the BOLD HRF influences decisions regarding the timing between trials in
fMRI designs, and how temporal jittering can improve SNR in event-related fMRI
designs.
Explain why a baseline condition can be critical to the interpretation of experimental
contrasts in fMRI studies.
Describe the logic and utility of conjunction and disjunction analyses.
Explain the logic and advantages of fMRI-adaptation designs.
Describe common approaches to statistical analysis of fMRI experiments, and compare
mass univariate and multivariate approaches to analysis.
Explain the importance of multiple comparison correction in fMRI analysis, and compare
different approaches that can be used.
Define and contrast functional and effective connectivity analyses.



Introduction
In the previous chapter we introduced and characterized the BOLD signal
that is the basis of fMRI. Understanding the neural origins of this signal, as
well as its timing (the HRF), are important precursors to understanding the
relatively unique considerations in designing and interpreting fMRI
experiments. In the previous chapter we also covered the basic preprocessing
steps needed to prepare the data for statistical analysis. In the present chapter,
we focus on the design and analysis of fMRI experiments. The first part of
the chapter covers different approaches to experimental design, including
advantages and disadvantages of the various common approaches. This
builds on the basic types of experimental design introduced in Chapter 2, but
also introduces a number of approaches that have arisen specifically due to
the nature of fMRI data and the HRF. As well, statistical analysis of fMRI
data is discussed in the context of different experimental designs. While
much of the chapter is focused on designing and analysing experiments with
the aim of determining which brain areas are sensitive to an experimental
manipulation, the final part of the chapter focuses on methods for examining
relationships between activity between different areas. These approaches,
known broadly as functional and effective connectivity take us beyond ‘neo-
phrenology’ to considering the brain as a large-scale, integrated network.



Experimental Design
In designing fMRI experiments, an appreciation of the origin and nature of
the BOLD signal is essential, because it places constraints on what can be
done. Perhaps most obviously, the timing of the BOLD response places limits
on how quickly we can present stimuli and still be able to recover the HRFs
to individual items. However, other factors place constraints on the sorts of
questions that can be fruitfully asked (or at least, answered) with fMRI. For
example, due to both the sluggishness of the BOLD response, and
uncertainties in the precise relationship between the timing of neural
responses and BOLD signal changes, fMRI is not well suited to asking
questions about the time course of neural activity – at least not with the
precision allowed by other techniques such as EEG or MEG, which can
resolve events that differ in the order of tens or hundreds of milliseconds. As
we have seen, it is questionable whether the timing of the BOLD HRF
accurately reflects relative timing of activation in different brain areas. It is
still possible to recover information over longer time courses with fMRI,
however. For example, in working memory tasks one can distinguish activity
during different phases of a trial such as initial stimulus presentation
(encoding), the maintenance period during which people retain the encoded
information, and a response period where memory is tested. These typically
take place over many seconds, and so are comfortably within the temporal
resolution of the HRF. In the sections that follow we will see different
examples of fMRI designs that both accommodate these limitations, and try
to move beyond them in clever ways.



Blocked Designs
For the first several years of fMRI experimentation, studies exclusively
employed blocked designs, in which experimental conditions were presented
in ‘blocks’ that lasted typically between 20–100 s. The simplest blocked
designs are called boxcar designs, owing to their characteristic time course
in which the blocks involving the stimulus/task of interest (often call the
target or experimental condition) alternates with a control condition, as
shown in Figure 8.1. For example, in Ogawa and colleagues’ initial
demonstration of the feasibility of human fMRI, participants viewed a
flashing red and green checkerboard (the experimental condition, designed to
activate visual cortex) alternating with periods of darkness (the control
condition). This alternation is essential because fMRI is not a truly
quantitative method – the intensity values in the fMRI time course are in
arbitrary, meaningless units. Thus the only way to tell if a brain area is
activated is to compare BOLD signal in a condition when activation is
expected, with a condition in which it is not. This subtraction method was
discussed in Chapter 2, and was introduced to neuroimaging by Michael
Posner in the 1980s during his involvement in the first PET neuroimaging
studies of cognition, with colleagues at Washington University in St. Louis
(Petersen et al., 1988; Posner et al., 1988; Posner & Raichle, 1994). The logic
is that all brain areas will have some baseline level of neural activity and
BOLD signal; only areas that are involved in the particular task under
investigation will show increases in BOLD signal during that task, and so the
subtraction of [task – baseline] will identify those areas.

Figure 8.1 Simple block design with one experimental (‘on’) and one control
(‘off’) condition, alternating

Researchers initially employed blocked designs both because each fMRI
image took several seconds to acquire (and so stimulation had to continue
over at least this period), and because of concerns that the fMRI signal was
relatively insensitive – so activity needed to accumulate over some extended



period of time in order to be distinguished from the baseline. Indeed, even
before studies were conducted aimed specifically at characterizing the time
course of the HRF, simple visual inspection of the time course of the BOLD
signal showed that it rose over the course of several seconds before
plateauing. This suggested that the fMRI response to a single or short series
of events would not rise as much as that for a longer block, and so would be
harder to detect statistically. Furthermore, the initial approaches to fMRI data
analysis involved conducting t-tests between the signal averaged over the
‘on’ time points and the signal averaged over the ‘off’ time points, and so it
made sense to design the stimuli such that the ‘on’ and ‘off’ periods each had
numerous time points to average together. This also allowed the earliest
fMRI researchers to capitalize on statistical analysis methods pioneered for
PET scanning (Friston, Frith, Liddle, & Frackowiak, 1991) which, as we will
learn later, is inherently limited to blocked designs. Subsequent work with
event-related fMRI designs (discussed in detail in the next section) has
proven that it is possible to obtain reliable signals from short periods of
stimulation and even single events, but at the same time confirmed that
blocked designs are more sensitive due to the greater signal change that
occurs over longer periods of stimulation or task performance.

The advantage of blocked designs comes from the fact that while the HRF to
a single event has a characteristic shape (as seen in the previous chapter), the
HRFs evoked by multiple events that occur close together in time will
overlap and add together in a fashion that is roughly linear. In other words, if
one predicts the strength of the BOLD signal to multiple events by simply
drawing the HRF for each single event and then adding these together at the
time points where they overlap, this prediction is very consistent with the
actual fMRI signal obtained. This is discussed in greater detail (and with
some caveats) in the next section. Because the signals summate over time in
this way, a blocked design will yield larger signal changes than an event-
related design, in which single stimulus events are separated by larger
baseline periods and/or stimuli of other experimental conditions.

While the simplest blocked designs are the boxcar type described above,
more complex designs involving more than two conditions are possible, and
commonly used. For example, in Newman and colleagues (Newman, Supalla,
Hauser, Newport, & Bavelier, 2010a, 2010b) we investigated brain activation



associated with three different aspects of American Sign Language (ASL)
sentences. One condition involved sentences that conveyed grammatical
information through word order (as in English, ASL places subjects before
the verb and objects after, as in the sentence John kissed Mary), a second
condition involved sentences that conveyed information through grammatical
markers (in ASL, these are movements of the hands through space; some
spoken languages, such as German, use suffixes called case markers for this
purpose), and a third condition added ‘narrative’ devices including emotional
facial expressions and body shifts not seen in the other conditions. This
design followed additive factors logic, in that word order was present in all
three conditions, and the grammatical devices in the second condition were
also present in the third (narrative) condition. In the fMRI study,
experimental blocks each consisted of videos of an ASL signer producing a
series of three sentences of the same type, with each block lasting 21 s. These
blocks were presented in random order (so that participants could not predict
what type of sentence was coming in the next block), alternating with
baseline blocks (these lasted only 15 s, since this was long enough for the
HRF to return to baseline after the preceding stimulus block). Also
intermixed with the three experimental conditions were 21 s blocks of three
control conditions. Each of these types of control blocks involved the same
ASL sentences used in one of the experimental conditions, but the sentences
were played backward, and three sentences were digitally overlaid. Thus
these control blocks contained exactly the same visual stimuli as the
experimental blocks (thus controlling for low-level visual features including
face and body perception, and perception of specific types of human
movements), but were not understandable as language. It is worth noting that
the control stimuli were not ‘perfect’ in the sense that while experimental
stimuli involved a single signer, the control stimuli contained six arms, three
heads, etc. (which only partially overlapped due to the signer’s movements).
However, in pilot testing we found that native ASL signers could understand
single, backward ASL sentences quite easily – so backward sentences did not
isolate language comprehension from lower-level features of the stimuli. Our
logic in using overlaid backward sentences was that although they were not
perfectly matched to the experimental stimuli, since they contained more of
the features we were trying to control for, this only helped our efforts to
isolate linguistic processing. Schematic diagrams of the block design are
shown in Figure 8.2. While this example is somewhat complex, it illustrates



some of the ‘real world’ considerations that go into fMRI experimental
design, and the fact that efforts must sometimes be made to accommodate the
fact that perfect subtractive logic is not always possible to effect.

Figure 8.2 Complex block design with three experimental conditions (INF,
WO, NAR), three control conditions (bWO, bINF, bNAR), each alternating
with a fixation baseline condition (fix). Experimental and control blocks were
21 s long, while fixation blocks were 15 s long

A critical consideration when using the additive factors or subtraction method
is the assumption of pure insertion. This is the assumption that the
difference between the two conditions being compared is exclusively the
difference intended by the experimenter – that the variable that is ‘added’ can
be inserted into the stream of cognitive processing without any interaction
with other processes. For example, using the Petersen and colleagues (1988)
experiment discussed in Chapter 2, directly comparing real words with false
font strings to identify brain areas associated with accessing the meaning of
words violates pure insertion because several other processes are involved,
such as letter recognition and phoneme identification. Another example
would be a typical face-processing experiment, in which BOLD signal is
contrasted between images of faces and non-face control stimuli. One type of
control stimulus is images of faces that have been scrambled in some way, so
that the overall size, brightness, and contrast of the images are preserved but
there is no recognizable face or face-like features. While this represents good
control of low-level stimulus properties, there is a potential violation of pure
insertion in that faces are inherently more interesting to look at than blurry
blobs. Thus the faces and control stimuli vary both in their ‘face-ness’ and in
the level of attention that is directed to the stimuli. There are numerous
possible ways of dealing with potential violations of pure insertion. For
example, one could employ a task that requires participants to play attention
to all stimuli (for example, pressing one button if the stimulus is a face, and
another if it is not), or change the control stimuli so that faces are compared
with, say, pictures of real objects that are matched in size, brightness, and
contrast. Often there is no ‘perfect’ solution to violations of pure insertion,



but thoughtful experimental design can at least ameliorate this concern. For
example, one could both use a task that requires equal attention to all
stimulus types, and employ multiple control stimulus types – so in our face-
processing example, one might include scrambled faces, real objects, and
pictures of landscapes as control items, and take as face-processing specific
brain areas only those that are consistently activated in multiple contrasts
between faces and other types of pictures (for example, Kanwisher,
McDermott, & Chun, 1997).



Event-Related Designs
While blocked designs were essentially the only type of fMRI experimental
design for the first several years of research in the field, scientists quickly
recognized their limitations. One is that the stimuli and task used in a block
all necessarily need to be of the same type – that is, part of the same
experimental condition. While this may be fine for some research questions,
often in cognitive neuroscience unpredictability or the element of surprise is
necessary. This is most obvious in experiments such as the ‘oddball’ designs
described earlier in the context of ERP studies (where a P3 and/or MMN
component is elicited), where the experimental effect is elicited precisely
because a single stimulus is distinctive from those preceding it – and
typically the task instructions require the participant to respond to the oddball
stimuli in a way different from other stimuli. There is no way to elicit this
effect in a block lasting for tens of seconds, because once the first oddball
stimulus has been presented, one needs to present more ‘standard’ stimuli
before another oddball stimulus can be presented. More generally, a wealth of
evidence demonstrates that presenting similar stimuli repeatedly results in
speeded, more accurate responses and attenuated brain activation compared
to less predictable stimuli.

Another type of experimental design that is not amenable to blocked designs
are those in which each trial comprises multiple, distinct stages that need to
occur in relatively rapid succession. Studies of short-term memory are a
prime example of this: in a typical paradigm, some stimuli (such as a series of
letters) are presented (the encoding phase), then a retention interval follows
during which people are required to hold the items in memory, followed
finally by a test phase in which memory is checked; for example, by
presenting a letter and asking if it was part of the originally presented set on
that trial. While one could conduct a series of such trials in a blocked fMRI
design, there would be no way to differentiate brain activation associated
with encoding from retention, or testing, because all would have occurred
during the block. Another topic in the field of memory concerns what kind of
brain activity predicts later memory. For instance, one might want to present
a list of words to a person and then later test their memory for those words.
Of interest would be whether there was different activation during the initial



encoding of words that were later correctly remembered, compared to those
that were forgotten. This is obviously only possible if one can isolate the
fMRI responses to individual words in the list, which is not possible in a
block design. More generally, block designs do not allow researchers to
analyse trials separately depending on the participant’s response.

Recognizing these limitations, in the late 1990s researchers began exploring
the possibility of so-called ‘event-related’ fMRI (er-fMRI, sometimes called
‘single-trial’ designs), with the goal of recovering the HRFs to individual
stimuli. For example, Boynton and colleagues (1996) presented simple
moving visual chequerboard stimuli (which excite visual cortex strongly)
with durations from 3–24 s, with 12 s periods of a plain grey screen in
between each stimulus. Their results showed some of the first published
examples of what are now recognized as typical event-related (not blocked)
HRFs, with the duration of peak activation increasing steadily as the duration
of the stimulus increased. McCarthy and colleagues (McCarthy, Luby, Gore,
& Goldman-Rakic, 1997) implemented a typical P3 ERP oddball paradigm in
an fMRI study, using letter strings as stimuli. Letter strings were presented
with a stimulus onset asynchrony (SOA; the time from the onset of one
stimulus to the onset of the next) of 1.5 s, with one letter string (OOOOO –
standards) occurring approximately 95% of the time and another (XXXXX –
oddballs) occurring randomly in 5% of the trials. This rate of stimulus
presentation was quite fast relative to the HRF (which takes approximately 6–
8 s to peak), so there was a large amount of overlap between the BOLD
responses to each stimulus – so much overlap, in fact, that it was not possible
to visualize the HRFs for each individual stimulus. However, in areas
sensitive to the experimental manipulation, a distinct and statistically
significant rise in the signal occurred following oddball stimuli, which
peaked approximately 4 s after the onset of the oddballs. Signals time-locked
to standard stimuli did not show any such rise – they were essentially flat
because there was a more or less constant response to the standard stimuli
due to their overlap in time. The significant activations in response to
oddballs occurred in regions predicted to be involved in this task on the basis
of previous electrical recordings in monkeys (dorsolateral prefrontal cortex
and the inferior parietal lobe), adding credibility to the findings. Another
early example of an er-fMRI study investigated the memory encoding
question mentioned above. Wagner and colleagues (1998) compared brain



responses to the initial presentation of stimuli in a short-term memory
experiment that were later remembered, with ones that were not remembered.
The researchers found greater activation in a number of brain regions for
later-remembered items. Since it cannot be predicted beforehand which trials
an individual will later remember, this study was only possible using an
event-related design that could characterize the responses to individual trials,
rather than only blocks of trials.

These and numerous other experiments demonstrated that blocked designs
were not necessary in order to obtain a statistically reliable fMRI signal.
These studies also led to further studies investigating how the HRFs to
different trials summate when they overlap in time. If experimenters want to
measure the response to each individual stimulus in an experiment without
any overlap (as opposed to just examining differential activation, as
McCarthy and colleagues did), the experiment would take a long time and be
very boring for participants, because each individual stimulus would have to
be separated by 12 or more seconds of a low-level baseline condition in order
to allow the HRF to return to baseline between each trial. Some early studies
indicated that overlapping HRFs combine in an approximately linear fashion
(Dale & Buckner, 1997). In other words, if one first presents a series of
stimuli spaced 12 s or more apart in time (termed a ‘slow event-related
design’), and then presents stimuli spaced more closely together (so that their
HRFs overlap – a ‘fast event-related design’), the time course of the fMRI
data from the fast design will be almost identical to the time course that
would be predicted by taking the average HRF from the slow design and
placing it at each point in time where an event occurred in the fast design,
then adding the HRF signal values where they overlap. The additivity of
overlapping HRFs is shown in Figure 8.3.

Later studies demonstrated that this linearity is not guaranteed, and is
dependent on the type of stimulus and the brain region investigated
(Heckman, Bouvier, Carr, Harley, Cardinal, & Engel, 2007; Horner &
Andrews, 2009; Huettel, Obembe, Song, & Woldorff, 2004). In general, the
evidence has suggested that the HRFs in rapid event-related designs are
under-additive if all of the stimuli that are presented in rapid succession are
similar to each other – that is, the actual response to multiple closely spaced
stimuli is somewhat weaker than would be predicted from a slow event-



related design. More linearity and less under-additivity is observed when the
stimuli are more variable. For example, if the same stimulus (such as a black
and white chequerboard) is presented repeatedly, under-additivity is observed
in the fast event-related design. However, if the stimuli are of a particular
category but vary along some dimension (for example, 2D sine wave gratings
that vary in the orientation their lines), then greater linearity of the response is
seen between the slow and fast event-related designs. Moreover, the
differences between fast and slow event-related designs also tend to be larger
in areas that are particularly sensitive to the stimuli used. For example,
Horner and Andrews (2009) showed greater differences between fast and
slow er-fMRI designs to pictures of faces than to pictures of places in a
region of the fusiform gyrus that typically shows strongest responses to faces.
The multiple studies on this topic have converged on the explanation that the
under-additivity in fast event-related designs can be explained by neural
adaptation: the phenomenon that neurons tend to show reduced firing rates
upon repeated presentation of stimuli that they are sensitive to. Slow event-
related designs allow more time for recovery between individual stimulus
presentations, and thus show less adaptation. Adaptation also explains why
varying stimulus properties reduces the attenuating effect of fast designs:
within a brain region that is sensitive to a particular type of stimulus – for
example, the oriented lines in sine wave gratings – different populations of
neurons are tuned to different parameters of that stimulus – such as the
orientation of the lines. Thus although the same general brain area will
respond to gratings of any orientation, different neurons will respond
preferentially to different orientations, and so if a series of gratings of
different orientations are presented in a fast event-related design, less
adaptation of the BOLD response will occur than if a single orientation was
presented repeatedly because different neurons within that area are stimulated
by each orientation.

Figure 8.3 Convolution of stimulus time series with the predicted HRF, for
different SOAs. The vertical grey lines represent the onset of each stimulus,
the dashed blue lines represent the predicted HRF to each individual event
resulting from the convolution of the HRF model with each grey line. For
simplicity, the model of the HRF used here was a simple gamma function
with no undershoot. The red lines represent the sum of the HRFs to all
events. For the 9 s SOA, there is no overlap of the individual HRFs and so



the blue and red lines are perfectly overlaid. However, as SOA becomes
shorter, the overlapping HRFs sum together

Of course, in most cases the reason a researcher would choose an event-
related design in the first place is to be able to present stimuli from different
conditions in random order – so concerns over the effects of repeated
presentation of the same stimulus, or multiple stimuli of one experimentally
defined category, might seem to be of little consequence. However, an
appreciation of the potential for linear summation versus under-additivity is
important in designing an experiment, for several reasons. Firstly, even in a
block design, a stronger signal will be obtained when the stimuli within the
block are more varied (within the parameters of what defines the
experimental condition for that block) than if they are less variable. Secondly,
since overlapping HRFs do summate, presenting a short series of trials of a
single experimental condition in rapid succession within a fast event-related
design (mini-blocks) can be expected to yield a stronger BOLD response than



either a slow event-related design or constant alternation of different
conditions (compare the amplitude of the response between the 6, 3, and 1.5 s
SOAs in Figure 8.4) – and a stronger BOLD response will tend to yield a
more robust effect when the data are analysed. Thus consideration of the
potential for adaptation should factor into choosing stimuli and arranging
them in the experimental sequence.

Finally, understanding how overlapping HRFs summate is essential for
understanding how the data from er-fMRI experiments are analysed, which in
turn informs good design of an experiment to ensure that it’s actually
possible to analyse the data. For example, the 1.5 and 3 s SOA conditions in
Figure 8.4 demonstrate that it is easily possible to design an er-fMRI
experiment that yields no recoverable signal. For this explanation we will
start with the simplest case: analysis of a block design involving only a single
experimental condition alternating with a control condition. Analysis of such
a design can involve simply correlating the fMRI time series at each voxel
with function such as a square wave or a sine wave. However, a more
accurate model is to convolve the stimulus time series (which would look
like a series of spikes when each stimulus was on, as in Figure 8.4) with a
model of the HRF. Convolution is a mathematical operation that can be
understood as taking the HRF model and sliding it over the stimulus time
series, multiplying the HRF model by the stimulus time series. This is how
the red, predicted HRF line was generated from the grey spikes representing
the stimuli in Figure 8.4. Equivalently, one can imagine placing a copy of the
HRF model on a timeline, starting at each time point where a stimulus was
presented, and adding the HRFs together at time points when they overlap.
Analysis of an er-fMRI study involves this same process: the stimulus time
series is convolved with a model HRF, and then the time series from each
voxel in the fMRI scan is correlated with this predicted HRF time series.
From Figure 8.4 it is clear that the more-or-less linear overlap of HRFs to
closely spaced events means that if the SOA between events is a constant
value, then short SOAs are problematic as the resulting time series lacks
sufficient stimulus-related variation over time to distinguish task-related from
unrelated voxels – because both are predicted to yield relatively flat
responses. This is in fact desirable in blocked designs, because the point there
is to capitalize on this summation of individual HRFs. Indeed, as shown in
Figure 8.5, shorter SOAs yield stronger predicted BOLD responses.



However, this only works in blocked designs because the intervening ‘off’
blocks serve to create the necessary systematic variation in predicted BOLD
response.

Figure 8.4 Linear additivity of HRFs to individual events, as a function of
SOA. The onset of each event (stimulus) is shown as a grey vertical line, and
the predicted HRF to that stimulus as a red line. The SOA = 12 condition
(top) reflects a ‘slow’ er-fMRI design in which the HRF has time to return to
baseline before the next event. As SOA becomes progressively shorter, the
HRFs to individual events start to overlap. The result is that the BOLD signal
does not return to baseline after each event, and at the shortest SOAs (3 and
1.5 s), the resulting BOLD response is essentially a flat line after an initial
ramp-up at the start of the run. As well, increasing overlap results in a higher
overall BOLD signal; indeed, the 1.5 s SOA had to be plotted with a different
amplitude scale. Although the amplitude of the BOLD signal is larger with
shorter SOAs, this does not mean that the signal will be more detectable. This
is because without a return to baseline after each event, it is difficult to
distinguish the flat response in the 1.5 or 3 s SOA conditions from what
would be expected in brain areas not responsive to the stimulus (which would
also be a flat line, though perhaps without the ramp-up at the start; because
the units of fMRI BOLD signal are arbitrary and vary across the brain, active
areas would not be distinguished from a non-active areas simply by having
larger BOLD signal values). Note that this linear summation only holds if the
individual stimuli are distinct from one another, but from the same
experimental condition (for example, pictures of different faces)



Two critical insights allowed er-fMRI to flourish even with short SOAs. The



first, as we have already seen from the study by McCarthy and colleagues
(1997), is that if the stimuli comprise at least two distinct categories that are
expected to yield different-strength responses (for example, standard versus
oddball), then systematic variation in the BOLD signal is predicted. The other
insight was that even if there is only a single category of stimulus, it is
possible to create systematic variation in the predicted BOLD response by
‘jittering’ the SOA. That is, rather than using a constant time interval between
stimuli, we vary it – for example in a range between 2–12 s. Longer SOAs
allow more time for the HRF to start to return to baseline, at least partially –
thus moving the summed HRF away from a flat line. Having longer baseline
intervals of up to 12 s (sometimes called ‘null events’) allows for more or
less complete return to baseline, which helps create the strongest fluctuation
in BOLD response. Examples of the effect of jittering are shown in Figure
8.6. From these we can see that, relative to a fixed SOA, with jittered SOAs
we can both increase the amount of systematic variation in the predicted
BOLD response, and gain a much stronger signal (at least at some points in
the time series, where more events occur closely together); moreover, jittered
SOAs also allow us to increase the number of events presented in a given
amount of time, which further helps boost the BOLD signal.

Given the random spacing of events, one can imagine a wide range of
possible jittered time series, even given a fixed number of stimuli and scan
duration. Different temporal sequences will vary in how optimal they are for
detecting the signal associated with the experimental manipulation. A
measure of the optimality of different designs (including blocked and event-
related) has been developed called efficiency, which is a function of the
variance in the predicted fMRI time series (Friston, Zarahn, Josephs, Henson,
& Dale, 1999). Greater variance in the predicted time series yields greater
efficiency, consistent with the observation that a randomly jittered design is
better than a design with closely and evenly spaced trials. This measure of
efficiency also provides a way of comparing different experimental designs to
find one that provides a good balance of unpredictability, a relative lack of
‘dead time’ for the participant, and maximal sensitivity to experimental
effects. Various software tools are available to facilitate the design of event-
related fMRI experiments based on efficiency and other measures.

Figure 8.5 Predicted BOLD response (red lines) for block design fMRI runs,



with different SOA within the blocks. Onset of each event is marked with a
vertical grey line. The HRF was modelled using a simple gamma function
with no undershoot, time-locked to the onset of each event. More closely
spaced events cause greater summation of the individual HRFs, and thus
stronger predicted BOLD signal. Note, however, that very short SOAs may
not be possible with some experimental designs, due to the time required for
each stimulus to be sufficiently processed by the participant, and a response
(if any) to be made



Figure 8.6 Effects of jittering SOA on predicted BOLD response in an er-
fMRI design. Grey vertical lines represent stimulus onsets, and the red lines
are the predicted BOLD response based on convolving the grey lines with a
model of the HRF. Jittering the SOA creates systematic variance in the
predicted BOLD response that is unlikely to occur by chance in brain areas



not sensitive to the experimental manipulation. Conversely, fixed SOAs yield
an effectively flat predicted BOLD response that would be indistinguishable
from the time course of brain areas that were not sensitive to the experimental
manipulation. The top panel further demonstrates that far more stimuli can be
included when a jittered SOA is used without loss of the ability to detect the
systematic BOLD response, which in turn creates stronger fluctuations in
signal that are more likely to be detected and yield statistically significant
results



An additional consideration in this regard is for multi-phase experimental
designs, such as the type of short-term memory study described above. Recall
that in such a design, each trial comprises distinct encoding, retention, and



response phases. Firstly, note that each trial is much longer in this type of
design than in a simpler study in which individual stimuli are presented in
relatively rapid succession, possibly with a response made to each as quickly
as possible after stimulus onset. Thus each trial is necessarily long in
duration, and will thus have a relatively long SOA. Moreover, if the three
phases of the trial occur at fixed times relative to one another (say, 2 s for
encoding, 10 s for retention, and 2 s for response), then we again face the
problem of predicted HRFs that overlap in time and create an essentially flat
predicted fMRI time series. While we might be able to distinguish activation
during the trial, overall, with baseline activation, we would not be able to
resolve the differential activation in each phase of the experiment. To
overcome this, we need to jitter the onset of each phase of the trial relative to
the other phases. Although within a trial, the study design might apply greater
constraints than in a simple, short-trial study (for example, we probably
wouldn’t want a 10 s encoding phase followed by only 2 s for retention),
jittering even within a range that makes sense given the cognitive structure of
the design will improve the design’s efficiency. Another option is to
eliminate one phase of the trial on a subset of trials. For example, one can
reduce the contingency between the retention and responses phases by only
requiring a response on 50% of trials (Henson, 2006). Since participants
cannot know during the encoding or retention phases whether or not they will
be prompted for a response, they should still perform the tasks similarly, and
typically it is activation during the retention phase that is of greatest interest
in such studies.



Baseline Conditions
In the preceding sections we have discussed subtractive and additive factors
designs and the importance of carefully designing the control condition and
stimuli to ensure that the subtraction between experimental and control
conditions isolates the cognitive process(es) of interest. The logic of additive
factors originates in behavioural reaction time studies, where it is assumed
that given a certain amount of time required to perform a particular cognitive
operation or operations, when we add an additional cognitive operation, the
increase in reaction time is attributable to the time required for that additional
operation. However, when applied to BOLD fMRI, the picture becomes more
complex. This is because unlike reaction times, which are measured in units
of time where zero has a clear definition, BOLD signal is measured in
arbitrary units that are meaningless except in a relative sense – that is, how
much of an increase we see between the control and experimental conditions.
Because the brain is always perfused with oxygenated blood, there is always
some baseline level of BOLD signal everywhere in the brain, even when a
person is not performing any task that a particular brain area is involved in.
Furthermore, many brain areas actually show a reduction in BOLD signal
during task performance relative to a more ‘neutral’ baseline condition such
as lying still with eyes closed, or staring at a blank screen or a fixation cross –
without any specific task instructions. Thus henceforth it will be important to
remember the distinction between control conditions – during which stimuli
and/or tasks are presented to control for factors of non-interest that are
present in the experimental condition – and baseline conditions (during which
no stimulus or task is used, or a simple, unchanging stimulus such as a
fixation cross is present).

Decreases in brain activation measures were noted even in the earliest fMRI
and PET functional neuroimaging studies, and are sometimes referred to as
‘deactivations’ or ‘negative BOLD’ – although it is important to keep in mind
that they reflect reduced BOLD signal, but not necessarily neural inhibition –
and again that BOLD is measured in arbitrary units, so ‘negative BOLD’ is
meaningful only relative to BOLD signal measured in some other condition.
These task-related BOLD decreases were first addressed directly by Binder
and colleagues (Binder, Frost, Hammeke, Bellgowan, Rao, & Cox, 1999),



who postulated that during resting states in neuroimaging experiments (that
is, during times when no explicit stimulation was provided), people engage in
conceptual processing – which Binder and colleagues suggested might
include awareness of one’s body position and internal signals, future
planning, encoding ongoing experience into episodic memory, and tracking
the passage of time. More subjectively, and perhaps a bit tongue-in-cheek,
one could describe this as ‘what people do when they’re bored’ since lying
still in an MRI scanner staring at a blank, unchanging screen is perhaps one
of the least interesting things one can do! Binder and colleagues provided
support for the notion of such general conceptual processing during the
unconstrained resting state by showing that a very similar set of brain areas
showed greater activation in multiple subtractive contrasts: a passive resting
condition relative to making judgements about auditory tones; when
performing semantic judgements (about the meanings of words) relative to
the same tone task; and when performing semantic judgements relative to
performing phonetic judgements (that is, about speech sounds).

A large amount of subsequent fMRI work has been conducted around the
resting state, which we come back to in a separate section below under
‘Functional Connectivity’. For now, the important point to consider is that
during task performance, some brain areas show decreased BOLD signal
relative to a neutral baseline condition. The implication of this for subtractive
designs is that even when greater signal is observed in a particular brain area
for an experimental than a control condition, both conditions might actually
show reductions in BOLD signal relative to a more neutral baseline
condition. In other words, a pure subtraction between two conditions could
reflect either a true increase in activation for the experimental relative to the
control condition, or a smaller decrease in BOLD signal for the experimental
relative to the control condition – or even no difference between the
experimental condition and a neutral baseline condition, but decreased BOLD
for the control condition. The many possibilities are illustrated in Figure 8.7.

There are several implications of the fact that fMRI subtractions are not
baseline-independent. Firstly, any simple subtractive design should be
interpreted with caution. While any significant difference between
experimental and control conditions can be interpreted as sensitivity of that
brain region to the experimental contrast, the more specific interpretation of



the neurocognitive function of that region will likely differ depending on
whether the area shows greater or lesser BOLD signal in (at least) the
experimental condition relative to baseline. A common approach to including
the baseline in fMRI data analysis is to mask the difference in BOLD signal
between the experimental and control condition, with the experimental–
baseline contrast. In other words, report only the activations that are both
significant for experimental–control, and experimental–baseline contrasts.
This is illustrated in Figure 8.8, using data from a study in which a group of
people viewed movies of people making communicative hand gestures, and
control movies containing similar biological motion, but that were not
interpretable as communicative gesture (Newman, Supalla, Fernandez,
Newport, & Bavelier, 2015). As well, the study included a baseline condition
which involved viewing a still frame of the gesturer. The figure shows that
the simple gesture–control contrast yielded apparent ‘activation’ in numerous
brain areas (red), however when this contrast was masked with the areas that
were also significant in the gesture–baseline contrast (blue), a far more
restricted set of brain areas resulted (purple). The interpretation of the results
might have been very different if the baseline condition had not been
included.

Figure 8.7 Different patterns of BOLD response in subtraction designs can
result in the same apparent result in the subtraction image, even though their
interpretations could be very different. This figure shows four different
possible levels of BOLD activation across two conditions, ‘experimental’ and
‘control’, all relative to BOLD signal measuring in a baseline condition (for
example, starting at a fixation cross). This baseline BOLD level is set to zero
and indicated by the black line. The dashed red line shows the hypothetical
size of signal change from baseline (represented as 0 on the y axis) required
for activation in a given condition to be considered statistically significant, or
‘activated’, relative to a neutral baseline condition such as viewing a blank
screen. Thus only in the first (leftmost) situation would we consider there to
be significant activation in the experimental condition. However, in all four
examples the magnitude of the difference in BOLD signal between the
experimental and control conditions is the same. Thus without including a
baseline condition, it would be impossible to know, simply from the
experimental–control subtraction, whether the observed differences at any
given voxel reflected truly ‘interesting’ activation (that is, significantly



activated in the experimental condition relative to both baseline and the
control condition) or a difference of no interest (or, at least, requiring a
different interpretation)

Figure 8.8 The importance of including a baseline condition and using it to
mask contrasts between experimental and control conditions. In this example
the interest is in brain areas that show stronger BOLD signal to
communicative gestures than non-communicative hand and arm movements.
Areas shown in red are from the contrast between viewing videos of
communicative gestures, and non-communicative biological motion. Areas
shown in blue are the contrast between the communicative gestures and a
baseline condition (passive viewing of a still image of the gesture model).
Areas shown in purple are those that were significant in both contrasts. The
crosshairs indicate the location of brain area STSp (superior temporal sulcus,
posterior), commonly implicated in biological motion processing, in the three
views of the brain. Note the numerous areas shown in red that would have
been erroneously considered ‘active’ if only the experimental–control
contrast had been included, without using the baseline condition for masking.
Data are redrawn from a study published by Newman and colleagues (2015)



It should also be kept in mind that in many cases, the functional role of a
particular brain area may be well understood enough, based on the previous
literature, that the inclusion of a baseline condition in further studies is not
always necessary. For example, area V5 of the visual system (in lateral
occipital cortex) is well documented to be sensitive to visual motion – both
relative to static visual displays and neutral baselines. Thus, in designing or
interpreting a study contrasting moving with stationary visual stimuli, one
could be quite confident in ascribing V5 activity to motion-related
processing, even in the absence of a baseline condition.

While one may rely on the previous literature in some cases, in other
situations it may be valuable – and perhaps even essential – to include a
baseline condition as well as experimental and control conditions in an fMRI
design. Fortunately, the duration of the baseline periods need not be
equivalent to that of the experimental or control stimulation. Our
understanding of the temporal dynamics of the HRF tell us that it takes about
12–15 s for BOLD signal to return to baseline levels following stimulation,
and so a baseline interval in the range of 12–20 s should normally be
sufficient, even if the stimulation blocks are longer. Furthermore, the general
consensus is that relatively few baseline periods are necessary within an
fMRI run to adequately estimate the baseline BOLD signal level. Thus in
many studies, baseline periods are included only at the beginning and end of
a block design run (with the intervening blocks alternating between
experimental and control conditions); in other studies, a few baseline periods
may be interspersed with stimulation blocks, but perhaps only half to one-
third as many baseline blocks as experimental/control blocks are used.



In event-related fMRI designs, baseline estimation can be achieved by having
occasional, extended inter-stimulus intervals ranging in duration from 8–15 s
(in many er-fMRI designs, these are no longer than 8–10 s). These are
sometimes called ‘null events’ to indicate that they take approximately the
same time as ‘real’ events; however, this terminology may be confusing
because they are not really events at all, but the absence of events (and in data
analysis, one does not treat the null events as an experimental condition –
rather, they implicitly form the baseline against which event-related
activation is compared). Such extended baseline periods are not strictly
required in an er-fMRI design, any more than they are in a block design; one
could present events in rapid succession (though still with jittered ISIs), and
simply contrast activation between two or more conditions. However,
because of the importance of having sufficient variance in the predicted
BOLD signal over time in er-fMRI designs (as described in the previous
section), it is generally advisable to include such baseline periods in any er-
fMRI design.



Conjunctions and Disjunctions
A different approach to experimental design – and one that is somewhat
unique to neuroimaging research and not typically used in behavioural
studies – is conjunction analysis (originally called cognitive conjunctions).
First introduced by Price and Friston (1997), this approach is more flexible
than a factorial design in that it does not require multiple, fully crossed
variables. The logic behind conjunction designs is quite intuitive: if two (or
more) experimental conditions share a common cognitive factor or factors,
then the brain areas supporting these shared cognitive operations should be
significantly activated in each of those experimental conditions relative to
each condition’s baseline. The different conditions might not be expected to
yield exactly the same activation maps; conjunction analysis shows only the
areas that are significantly active in all experimental conditions of interest,
and not any areas that are uniquely activated in one condition. In mathematics
and formal logic, this is called an ‘intersection’ operation. An example of a
conjunction map is shown in Figure 8.9.

Figure 8.9 Example of an fMRI conjunction analysis. The top two panels
show two different contrasts from an experiment in which people viewed a
single English word on each trial. Each word was associated with instructions
to either say the word aloud (Produced condition), read the word silently
(Silent Reading), or read the word silently while saying ‘yes’ aloud
(Sensorimotor Control). The goal of the study was to identify areas
associated with the ‘production effect’, which is a behavioural phenomenon
in which words read aloud are later remembered better than words read
silently. Because subtracting the silent reading from the produced condition
would not control for the motor-related brain activity involved in speaking,
nor perceptual activation associated with hearing one’s voice, the
sensorimotor control condition was included. However, the silent reading
condition was also included because this is the standard way that the
production effect is normally elicited in behavioural studies (though
behavioural data from this experiment demonstrated a similar memory
advantage for the produced condition relative to sensorimotor control). The
conjunction analysis in the bottom panel represents brain areas that were
significantly activated in both the produced–sensorimotor control, and



produced–silent reading contrasts. Areas that were common to both contrasts
can be most confidently associated with the behavioural production effect,
because they reflect both (a) a well-controlled contrast (produced–
sensorimotor control) and (b) a second contrast that is not as well-controlled,
but generates the same target behavioural effect. Data are from a study by
Newman and colleagues (Newman et al., 2018)

Cognitive conjunctions allow much more flexibility in experimental design
than factorial designs. For example, imagine that rather than investigating
word type and frequency, as in the example given for factorial designs above,
we wanted to identify brain areas specialized for word processing,
irrespective of whether words are read or heard, as well as brain areas
specific to only reading (but not hearing) words, and to only auditory word



processing (but not reading). This would not be possible in a factorial design
– we could not simply substitute ‘visual/auditory’ as a factor in place of, say,
frequency in the above factorial design. This is because directly contrasting
visual and auditory stimuli can be expected to yield a wide range of
differences since they stimulate different sensory systems, and may engage
partially non-overlapping cognitive processes as well. A factorial design
requires conditions that are well matched on variables of no interest, as in a
subtraction design. However, with a conjunction design, we could address
these issues. For example, visual words could be contrasted with consonant
strings as a control condition, and auditory words could be contrasted with
auditory control stimuli (various transformations, such as playing sounds
backward and applying specific types of filtering, are good at preserving
most of the low-level acoustic features of speech while rendering it
unintelligible). Then, we could examine the conjunction of brain regions that
were significantly activated both in the visual words–visual control contrast,
and the auditory words–auditory control contrast. This would isolate the brain
areas common to word perception across sensory modalities.

One could also examine the disjunction maps for each condition, which
would show areas significantly activated in only one or the other condition.
Care should be taken in interpreting disjunction maps, however. Intuitively,
one might think that an area that’s shown as active in condition A but not
condition B is more active in A than B. While in a sense this is true, it is not
the same as the area being significantly more active in condition A than B.
This would have to be assessed through a statistical contrast between A and B
(such as a t-test). In many cases, the size of the difference (and/or the
variance in the size of the difference) between two conditions is small enough
that although activation crosses the threshold for statistical significance in
one condition but not the other, the direct statistical comparison does not
yield a significant difference.

Conjunctions can naturally be extended beyond the case of two experimental
conditions of interest – one could look for the overlap of three, four, or even
more conditions, although as mentioned above, one should aim for simplicity
in fMRI experimental designs and not go overboard with the number of
conditions included. Another important point to consider is the difference
between conjunctions and conducting a single analysis collapsing across the



experimental conditions. In the latter case, in performing the analysis one
would simply treat the two experimental contrasts (A–control and B–control)
as equivalent (that is, as if they were all A–control). This has both advantages
and disadvantages, and the choice depends on the research question. This
latter analysis approach would potentially be more sensitive, because we
would have two data points per subject, rather than one, which would
increase statistical sensitivity to true effects (recall the advantage in SNR
gained by increasing the number of trials in an experiment). On the other
hand, the areas seen as significant in this combined analysis might not
actually reflect true overlap between the conditions – an area that was
strongly activated only in condition A might still appear as active in the
combined map, simply because it was consistently and strongly activated in
condition A, along with weaker activation in condition B (that was not
significant in condition B alone). In contrast, a conjunction analysis first tests
whether each condition is significant on its own, and then shows the overlap
between those conditions. A conjunction analysis is thus generally the better
approach because we can be certain that the areas identified in the
conjunction are truly significantly activated in each of the input conditions
alone. Conjunction/disjunction analyses can also be performed between
groups of participants. In this case, activation maps for the two groups would
be taken from the same experimental contrast (rather than two different
experimental conditions) and the brain areas significantly activated in both
groups would be shown by the conjunction between them.



fMRI Adaptation (fMRI-a)
Factorial and parametric designs are likely to be familiar to many readers due
to the fact that they are common in many areas of research, including
psychology. fMRI adaptation (fMRI-a) designs, however, were developed
to address an issue that is rather specific to this neuroimaging technique: each
voxel in an fMRI scan encompasses many tens or hundreds of thousands of
neurons. Within a brain area specialized for a particular function, individual
neurons (or localized groups of functionally related neurons, such as cortical
columns) are generally tuned to different parameters of the stimuli. For
example, in many areas of visual cortex, including primary visual cortex,
cortical columns are tuned to the orientation of simple lines. Thus some
neurons are tuned to vertical lines, some to horizontal, and some to other
angles of orientation. This organization can be readily identified using
invasive techniques such as recording from individual neurons, but the spatial
scale of this organization is not obtainable using conventional fMRI
techniques – a typical fMRI scan using 3 × 3 × 3 mm voxels would be
expected to contain many columns with different orientation tunings.
Because of this, we would expect that, on average, lines of any orientation
would be likely to yield equal activation in a voxel containing neurons tuned
to line orientation. In practice, by chance some voxels might have more
columns tuned to horizontal lines, and others more voxels tuned to vertical
lines, etc. – but nonetheless the spatial resolution of fMRI is too coarse to
identify individual cortical columns or other fine-grained levels of neural
organization.

fMRI-a was designed to overcome this limitation, and essentially tap into a
level of spatial resolution that fMRI does not inherently have. The principle
of this is based on a virtually universal property of neurons – adaptation –
which is that their firing rates decrease if the same stimulus is presented
repeatedly. In fact, this occurs even if the stimuli vary, as long as they have in
common whatever property the neuron is tuned to; thus presenting a series of
horizontal lines of different colours would lead to adaptation of neurons
tuned to horizontal orientation, but not neurons tuned to colour. In the fMRI
context, this means that if a brain area has multiple neural populations tuned
to different values of a stimulus property (like line orientation), then



activation should steadily decrease with repetition of stimuli that share a
particular value of that property (such as horizontal lines). Once this
adaptation has occurred, if a stimulus is presented of the same general
category that the region is tuned to, but with a different value of the tuning
parameter (such as vertical lines), then the region should show an increase in
activation levels – release from adaptation – and then re-adapt as the same
stimulus is repeated.

This technique was pioneered by Grill-Spector and colleagues, in a paper
published in 1999 (Grill-Spector, Kushnir, Edelman, Avidan, Itzchak, &
Malach, 1999). The researchers were interested in a part of visual cortex
known as the lateral occipital complex (LOC), located in the anterior-lateral
region of the occipital lobe, close to the boundary with the temporal lobe.
LOC had been implicated in object recognition in numerous studies, showing
greater activation to objects than non-object visual stimuli such as textures or
visual noise in a number of subtraction-design fMRI studies. As well,
parametric studies had shown that LOC responses were constant across four-
fold changes in the size of the stimulus, as well as the location of the stimulus
in the visual field. This was interpreted as suggesting that LOC was not
performing lower-level perceptual functions (which would be predicted to be
sensitive to size and stimulus location, as seen in areas such as primary visual
cortex) but rather the higher-order cognitive function of object recognition.
However, Grill-Spector and colleagues noted that different neural populations
in the LOC might in fact be sensitive to lower-level properties such as size;
however, because of the coarse level of resolution of fMRI the activation of
these different populations within each voxel would lead to similar levels of
fMRI activation regardless of stimulus size. In other words, two entirely
separate populations of neurons within each voxel might respond to small and
large stimuli, but when activation was averaged over the voxel (which is all
fMRI can provide), activation would be identical for different-sized stimuli.

To distinguish between these possibilities, and with the intent of more
strongly establishing the object-specificity of LOC, Grill-Spector and
colleagues conducted a series of fMRI-a experiments based on modifications
of a block design. In one of these experiments, shown in Figure 8.10, blocks
each consisted of a series of images of objects, including a variety of animals
and cars. These alternated with two types of control blocks: visual textures



(noise) and scrambled images. Critically, different experimental blocks were
designed to produce different amounts of adaptation. One block (labelled ‘1’
in the figure) involved the repetition of the same image 32 times throughout
the block, while the others involved differing numbers of different images
(‘2’ involved the alternation of two images, 16 times each, etc.). Thus
condition ‘1’ was expected to produce the greatest adaptation, and ‘32’ the
least (as it consisted of 32 unique images). The top right panel of Figure 8.10
shows the time course of fMRI data from area LOC. While all object blocks
elicited greater activation than control stimuli, the effect of adaptation is clear
when comparing the different experimental blocks: the ‘1’ condition shows
relatively weak activation that adapted to a level comparable to the noise
condition about halfway through the block, ‘32’ shows strong activation that
was maintained throughout the block, and the intermediate conditions show
differing levels of adaptation.

Having demonstrated adaptation in an fMRI experiment using the property of
object identity, Grill-Spector and colleagues went on to conduct several other
experiments to determine which stimulus properties LOC might adapt or not
adapt to. Over these experiments they demonstrated that LOC voxels were
more sensitive to changes in illumination and viewing angle, and less
sensitive to changes in the size or position of the stimulus. The fMRI-a
technique also revealed two functionally distinct subdivisions in LOC that
were defined by their different adaptation properties across the different
experimental manipulations. Thus fMRI-a can be an effective technique for
characterizing the functional specificity of brain areas in a way that is
potentially more sensitive than other types of experimental design.



Condition-Rich and Time-Continuous Designs
Some fMRI research takes a rather different approach to experimental design
and data analysis from the traditional approach of implying many trials of
stimuli falling into relatively few categories (experimental conditions).
Condition-rich designs employ relatively large numbers of experimental
conditions, often treating individual stimuli as conditions, rather than
grouping these into categories (for example, for face stimuli, each individual
is treated as a separate condition, rather than averaging across all faces)
(Kriegeskorte, Mur, & Bandettini, 2008). Such designs evolved within the
context of multivariate approaches to data analysis (discussed in the next
section), where the aim is to characterize unique response patterns across
voxels within brain areas, as well as between areas. To the extent that a brain
region responds similarly to different exemplars of a particular category (such
as faces), the distributed pattern of activation within a voxel should show
consistency across exemplars, but this can only be determined if each
exemplar is treated individually. Condition-rich designs also allow for
exploratory analyses in which, rather than focusing analysis on a single
hypothesis-driven research question (for example, does the fusiform face area
distinguish between faces and other types of visual objects?), one can
categorize stimuli along multiple dimensions (for example, face/non-face,
animate/inanimate, by colour, by size, by shape) and identify brain regions or
activity patterns that vary systematically with these dimensions.

Figure 8.10 Design and data from an fMRI-a experiment, published by Grill-
Spector and colleagues (1999). Of interest was BOLD fMRI activation levels
during blocks in which 32 images were presented, with an SOA of 1 s. The
left side of the figure shows examples of stimulus sequences in different
experimental blocks: ‘1’ presented an identical stimulus 32 times, ‘32’
presented 32 unique images, and the other conditions involved intermediate
levels of repetition. The right top panel shows the fMRI BOLD time course
from the lateral occipital cortex (LOC) region, which is commonly implicated
in visual object recognition. Blocks shown in dark grey involved presentation
of photos; the number above the block indicates the number of distinct
images in the block. As well, the experiment included blocks of visual
control images (textures and scrambled images), which are shown as light



grey blocks and labelled ‘c’, and baseline blocks consisting of a blank screen,
labelled ‘b’. For the image blocks, note the differences in both peak
activation levels, and how activation declines over the course of the block, as
a function of the number of distinct images. The right bottom panel shows the
relative mean amplitude of BOLD signal in LOC as a function of the number
of distinct images in the block, relative to the activation level in the 32
distinct images condition. Adapted with permission from Elsevier from Grill-
Spector et al. (1999)

Time-continuous designs take the concept of condition-rich designs even
further, by using stimuli that vary continuously over time (such as having
people watch a movie for the entire scan), and treating each individual time
point in the fMRI time series as a separate condition (Hasson, Furman, Clark,
Dudai, & Davachi, 2008; Haxby, Gobbini, Furey, Ishai, Schouten, & Pietrini,
2011). These time points can be labelled according to what stimulus
categories are present at each point in the movie (for example, faces, cars,
outdoor scenes), or alternatively the analysis can focus on the degree to
which similar patterns of brain activation occur across individual viewers at
specific time points.

While condition-rich and time-continuous designs may seem grossly



unconstrained from the perspective of traditional experimental design in
cognitive science or neuroscience, they are generally meant to address
different questions. For example, rather than testing a hypothesis that certain
stimulus categories are treated differently by the brain, these designs allow
for ‘late commitment’ (Kriegeskorte et al., 2008) wherein one presents the
brain with rich, naturalistic information and allows a data-driven
identification of the relevant dimensions that the brain activation represents.



Statistical Analysis



Univariate Analysis
Statistical analysis of fMRI data is not unlike that of other types of
neuroimaging or behavioural data. The most common way to analyse a
functional time series (individual run) is to use multiple linear regression, as
described earlier in the chapter: a time series is created for each experimental
condition of interest that indicates when each stimulus event (or block)
occurred, and this is convolved with a model of the HRF. This model time
series is then regressed against (correlated with) the time series at each voxel
in the brain individually – that is, a ‘mass univariate’ analysis approach.
Since typically an experiment comprises multiple runs per subject, and
multiple subjects, multiple levels of analysis are required. The output of the
multiple regression on an individual run yields a coefficient (sometimes
called a parameter estimate, or beta weight) at each voxel, for each condition
in the run; these essentially indicate the strength of ‘activation’ at each voxel
for that condition. More precisely, they reflect how similar the BOLD time
series is in each voxel to the modelled HRF. These coefficients, along with
the variance around the estimates of the coefficients are used as the input to a
second-level analysis, across runs within each participant. This second-level
analysis thus yields a statistical map of coefficients averaged across runs for
that subject. The results of the second-level analysis then serve as the input to
the third-level analysis, which tells us what the pattern of activation is across
subjects. These higher levels of analysis typically involve common statistical
approaches such as t-test, ANOVAs, or linear mixed effects. Although this is
a very common way of performing an analysis, different experimental
designs require different approaches, making this topic far more complex
than can be adequately addressed in this brief section. There are, however,
numerous authoritative books on the topic and the manuals provided with
most fMRI analysis software packages provide extensive information, with
examples, on this topic.



Multiple Comparison Correction
The aspect of fMRI statistics that is perhaps most important to understand is
the issue of multiple comparisons. This was raised earlier in our discussions
of ERP and MEG analysis, but it is perhaps most significant in fMRI. This is
because analysis is performed separately on each voxel in the MR image, and
these images typically contain hundreds of thousands of voxels (for example,
a set of 30 slices covering the brain, each 64 × 64 voxels, comprises 122,880
voxels). Statistical analysis typically yields p-values, and in many disciplines
p <.05 is generally considered statistically significant. However, this criterion
sets the likelihood of obtaining a ‘significant’ result by chance (a ‘false
positive’) at 5/100. Thus even in an fMRI image containing only random
noise, we could expect 5% of the voxels to appear ‘significant’; in our
example above, this would mean 6,144 false positives. For this reason, we
need some better way of controlling the false positive rate.

The typical approach to controlling the false positive rate taught in
introductory statistics classes is the Bonferroni correction. In this method, the
desired p value (for example, .05) is divided by the number of tests
performed, and the resulting value is used as the threshold for determining
whether each individual test is significant. For example, if we perform ten
tests then the Bonferroni-corrected p threshold for significance of each test is
.05/10 = .005. Thus a Bonferroni correction for our example fMRI study
would set the p threshold at approximately .0000004 (.05/122,880). However,
this very strict p threshold might make it difficult to find any significant
activation, and so we might end up missing true activations (that is, in
controlling our false positive rate, we would unacceptably inflate our false
negative rate). In practice, the number of voxels tested can be reduced
significantly by restricting the analysis to the brain itself, ignoring the
surrounding tissue and air space around the head, but this still generally
results in tens, if not hundreds, of thousands of statistical tests being
performed. Another issue with Bonferroni correction is that it assumes that
the outcome of each test is independent of every other one, but this is not the
case in fMRI – we actually expect the signal from adjacent voxels to be
correlated, for several reasons. Firstly, activated brain areas are in most cases
likely to be larger than single voxels, so adjacent voxels’ results are likely to



be correlated, rather than independent. As well, the physiology of the BOLD
response – specifically, the fact that we are measuring changes in blood
oxygenation in vessels around active tissue – further increases the likelihood
that adjacent activated voxels will show correlated results. Finally, we further
increase the correlation of the data from adjacent voxels by the spatial
smoothing that is typically applied in fMRI data preprocessing.

To address this issue, various approaches to multiple comparison
correction have been developed for, or adapted to, fMRI. One of the first
was based on a branch of mathematics, Gaussian random field theory
(GRFT), which prior to fMRI was considered a purely theoretical area with
no practical applications. However, mathematician Keith Worsley, working
with colleagues at the Montreal Neurological Institute and elsewhere in the
early days of fMRI, realized that this could be fruitfully applied to address
the multiple comparison problem (Worsley, 2001; Worsley, Evans, Marrett,
& Neelin, 1992). GRFT deals with Gaussian (normal) distributions in three
dimensions, and as discussed in the previous chapter under ‘Smoothing’, this
is a good approximation of how signal and noise are distributed in fMRI
images. What GRFT provides is a way of estimating how likely it is that a
cluster of contiguous voxels should all have values above a particular
threshold level. Thus rather than testing for significance in a massively
univariate sense (at each voxel), the GRFT approach applies a threshold,
uncorrected for multiple comparisons, to each voxel, but then – critically –
determines a p value for each cluster of supra-threshold voxels, where a
‘cluster’ is defined as all voxels above the individual voxel p threshold that
are adjacent to each other. This cluster-level probability reflects an estimate
of the likelihood that a cluster of that many supra-threshold voxels could
occur by chance. This approach also strikes a balance such that it is sensitive
both to small but strongly activated clusters and larger but overall less
strongly activated clusters. Another common approach involves using the
false discovery rate (FDR) (Genovese, Lazar, & Nichols, 2002). This
approach, which is widely used in genetics where large numbers of candidate
genes must be screened, tries to minimize the rate of false positives
adaptively, based on the distribution of p-values in the dataset under
consideration. Another well-regarded approach is non-parametric,
permutation-based testing, which was discussed in Chapter 5 in the context of
MEG (Nichols & Holmes, 2001).



Recent work in this area has drawn attention to the fact that the multiple
comparison correction approaches historically used in published fMRI
studies may have been overly lenient, contributing to published results that
do not replicate (Button et al., 2013b; Eklund et al., 2016; Poldrack et al.,
2017). These issues have their roots in several factors, some of which are not
unique to fMRI or even neuroimaging (such as pressure to publish, and a bias
in the literature towards publishing positive but not null findings), and some
of which are more specific to fMRI (such as the high cost of acquiring the
data, leading to relatively small sample sizes in individual studies). Lenient
procedures for multiple comparison correction have also been identified as a
significant source of problems in this regard. The positive outcome of this
increased scrutiny is that fMRI analysis software packages are changing
default parameters to use more stringent thresholds, and peer reviewers are
becoming more sensitive to issues of power and statistical sensitivity.
Nevertheless, as a critical consumer of the fMRI literature it is important to
have an appreciation of the importance of multiple comparison correction,
and the complex issues involved.



Region of Interest Analysis
In our discussion of mass univariate analysis and multiple comparison
correction, we assumed that the analyses were applied to every voxel in the
fMRI image (or at least every voxel in the image that was located in the
brain). This ‘whole-brain’ approach to analysis is perhaps the most common
way of approaching fMRI analysis, and is arguably the most objective.
However, in many cases a researcher may have specific questions and/or
hypotheses regarding specific brain areas – defined either anatomically or
functionally. For example, in studying visual object processing the inferior
temporal cortex is often of interest, whereas in studying language processing,
researchers often focus on peri-Sylvian areas (that is, around the Sylvian
fissure, including the inferior frontal gyrus, superior temporal gyrus, and
inferior parietal lobe). Whole-brain analysis can certainly be used in these
situations since, if activation in the expected areas is indeed modulated by the
experimental design, the analysis should identify them. However, there may
be theoretically well-motivated reasons to restrict the statistical analysis to
one or more regions of interest (ROIs). One obvious advantage of doing so
is that the multiple comparison problem is much-reduced relative to a whole-
brain analysis, since an ROI necessarily has far fewer voxels than the whole-
brain image. By reducing the number of tests that need to be corrected for,
one can gain sensitivity to relatively small experimental effects. Another
advantage is that by specifying the ROI a priori (before running the analysis),
one avoids issues of circularity that might arise with more vague pre-
specification of hypotheses (for example, simply stating ‘the inferior parietal
lobe’), followed by post hoc ‘confirmation’ in which any pattern of
activation obtained in a whole-brain analysis that overlaps with the broad
area predicted is taken as confirmation of the hypothesis. As well, one might
be interested in fine-grained patterns of activity within an ROI (see the next
section on multivariate analyses) that is defined on the basis of specific
parameters.

There are generally two ways of specifying an ROI: based on anatomy, or
function. Anatomically defined ROIs may be based on gross sulcal/gyral
landmarks (for example, the inferior frontal gyrus, or the intraparietal sulcus),
or on probabilistic atlases based on cytoarchitecture or other micro-



anatomical features. Using anatomical landmarks, one can choose to
manually trace the ROI on each individual’s structural MRI scan (without
spatial normalization); this is an extremely tedious and labour-intensive
process, however. An alternative is to spatially normalize all participants’
brains and then either manually trace the region once, or use an existing
MRI-based atlas that has the area already defined. The latter is generally a
preferable approach from the point of view of replicability, since other
researchers would have access to the same atlas and be able to use consistent
anatomical definitions. Anatomically defined ROIs – especially if using a
standard atlas – have the advantage of being replicable; however, they are
limited by the fact that studies have suggested that there is not a consistent
relationship between gross anatomical landmarks and either the underlying
cytoarchitecture or functional localization. For this reason, many researchers
prefer functionally defined ROIs. As the name suggests, these are defined
based on fMRI mapping. For example, if one wishes to investigate activation
patterns in the fusiform face area, one can functionally define this region on
the basis of an fMRI scan contrasting faces with control stimuli. In general, it
is advisable to base functional ROI definition on data from a separate scan
from the data that the ROI will then be used to analyse. Continuing our face
example, one might run a single blocked fMRI run alternating between faces
and control stimuli as the functional localizer, and then separate scans with
the stimuli and tasks of experimental interest. Otherwise one runs the risk of
circularity in analysing a dataset once to define the ROI, and then re-
analysing the same data for a second purpose.



Multivariate Analysis
An alternative class of analyses to mass univariate approaches are described
as multivariate approaches. Fundamental to multivariate analyses is that they
simultaneously consider the signal at multiple voxels, rather than performing
independent, parallel analyses at each voxel. This approach was first
described by Haxby and colleagues (Haxby et al., 2001) in a study examining
cortical activation in response to images of different object categories. Their
analysis focused on voxels in the inferior temporal lobe, an area commonly
involved in visual object recognition. Within this region, there are specific
areas that show stronger BOLD signal for certain object categories than
others, such as the ‘fusiform face area’ that responds more strongly to faces
than other objects. However, rather than focusing on areas defined by the
category to which they respond most strongly, Haxby and colleagues asked
whether the distributed pattern of BOLD signal strength across all voxels in
the object-sensitive inferior temporal cortex (hereafter called the ROI, or
region of interest) could predict which category of object was being viewed.
To do this, they collected fMRI data across multiple runs in a blocked design,
with 24 s blocks of stimuli from a given category alternating with 12 s rest
blocks. They then performed a typical, first-level mass univariate multiple
regression analysis on each run’s data to determine the strength of the BOLD
response of each voxel to each stimulus category.

In a typical univariate approach, the next steps would have been to conduct a
group-level mass univariate analysis to determine which voxels showed
significant differences between object categories. However, what Haxby and
colleagues did instead was to create a vector (a long string of numbers) for
each stimulus type containing the BOLD activation values for every voxel in
the ROI – regardless of whether the voxel was ‘significantly activated’ or not.
They created separate vectors in this way for the data from the even and odd-
numbered runs from each individual, so that they had two sets of data from
each person for each condition. Finally, they calculated the strength of
correlation between the odd- and even-numbered runs both within and
between stimulus categories. Specifically, they wanted to determine whether
the vectors representing the distributed pattern of activity in the even-
numbered runs for a given stimulus type were more strongly correlated with



the distributed activity patterns for the same stimulus type in the odd-
numbered runs, than with distributed activity patterns for other stimulus
categories. This is indeed what they found: the distributed pattern of activity
in one set of runs was able to predict, with 96% accuracy, which category of
stimulus was being viewed in the other set of runs.

While in principle this correlation still could have been primarily driven by
very strong responses in the voxels that were most selective for a particular
object category (for example, those that respond more strongly to faces than
any other category), this was found not to be the case. Haxby and colleagues
performed several follow-up analyses, including computing the correlations
after removing the voxels that showed the strongest category-specific
responses, and obtained similar results. While these findings do not
undermine the fact that certain brain regions may show selectively stronger
responses to one stimulus category than others, they do suggest that the most
‘selective’ brain regions are not the only ones involved in processing
information of a specific type. Instead, it seems like the distributed pattern of
activation over a larger brain area contains information that is specific to the
type of stimulus (or task) involved. For this reason, in multivariate analyses
the data are not typically spatially smoothed, since this would decrease the
unique informational value of each voxel.

The approach used by Haxby and colleagues is a type of linear decoding
approach, which falls into a more general class of multi-voxel pattern
analysis (MVPA). Vast numbers of studies have been performed using
MVPA subsequent to Haxby and colleagues’ pioneering paper, and these
approaches are now very much in the mainstream of fMRI research (and are
also being applied to source-localized MEG data). Many current approaches
involve using machine learning algorithms to identify and characterize the
features of distributed activation patterns that best distinguish between
different conditions and, in many cases, have yielded impressive results. For
example, Formisano and colleagues (Formisano, De Martino, Bonte, &
Goebel, 2008), based on activation in auditory cortical regions of the superior
temporal cortex, were able to reliably determine what phonemes were being
spoken and the identity of the speaker using multivariate analyses. Similarly,
vision studies have shown that it is possible to reliably reconstruct complex
natural images being viewed by people based on their fMRI activation



patterns (Kay, Naselaris, Prenger, & Gallant, 2008). Recent work has also
demonstrated consistency between distributed patterns of neural activation
and how neurally inspired computational models of visual recognition (deep
neural networks) represent visual information (Cichy, Pantazis, & Oliva,
2014).

One widely used approach to MVPA is called representational similarity
analysis (RSA; Kriegeskorte et al., 2008). This extends the logic of Haxby
and colleagues’ original study by using condition-rich or time-continuous
designs combined with explicit models of how information in the stimuli or
tasks might be represented by the brain. These models can be conceptual (for
example, categories such as faces, houses, tools, etc., or semantic properties
such as animate/inanimate) or computational (ranging from simple models
such as high- or low-pass filtering of images, to complex models that apply
more sophisticated and theoretically motivated computations).

In RSA, the first step is to obtain activation maps for each individual stimulus
(or time point, in a time-continuous design), using traditional mass-univariate
approaches – though again the resulting statistical maps are not thresholded,
but rather we obtain a value for each voxel representing its difference in
BOLD signal for the stimulus relative to baseline. These activation maps are
commonly then grouped into ROIs determined by the focus of the study (for
example, specific inferior temporal lobe regions for a study of visual object
processing). Although whole-brain data could also be used, it is common for
researchers to focus on ROIs, and sometimes an interest is in comparing
activation patterns between brain regions, which depends on defining those
regions and treating the data from each separately. Once the activation
patterns for each stimulus and ROI are obtained, correlations between the
maps for each pair of conditions (stimuli) are computed within each ROI.
This yields a ‘dissimilarity matrix’ – a measure of the ‘distance’ (or
dissimilarity) between activation patterns for each pair of stimuli; this value
represents as a single number the extent to which activation patterns for any
pair of stimuli are similar or dissimilar (although the technique is called
representational similarity analysis, the developers chose dissimilarity as their
preferred measure because it has certain computational advantages). This is
illustrated in Figure 8.11. This step is important for several reasons. For one,
it reduces a complex, distributed pattern of activation to a single number, and



moreover the numbers represent not the activation pattern for an individual
stimulus, but the relationships between activity patterns for different stimuli.
Another benefit of this approach is that it is agnostic with respect to the actual
distributed pattern of activation within the brain area, which means that
across individual participants in a study, we do not need to worry about
issues of anatomical overlap. That is to say, two people might have very
different patterns of activation within their fusiform face area to the same
face stimulus, but in RSA this doesn’t matter – because comparisons between
the fine-grained activity patterns are done entirely within each individual.
What ultimately matters at the group level is the extent to which each pair of
stimuli elicits similar or dissimilar activation patterns across subjects. For
example, to the extent that the fusiform face area is specialized for processing
face information, across individuals this region should consistently yield
higher similarity measures for pairs of faces, than for pairs involving a face
and some non-face stimulus.

Having obtained the stimulus dissimilarity matrices for each subject, the next
step in RSA is to compute similar dissimilarity matrices for each model of
how the stimulus is represented. For example, in Kriegeskorte and
colleagues’ (2008) original description of RSA, they ran each stimulus image
through a number of computational models of how the visual information
might be represented in the brain. These ranged from simple high- and low-
pass filtering, to more complex models of how primary visual cortex (V1)
neurons encode information (based on Gabor patches, which are essentially
2D sine waves of a particular orientation, representing a specific part of the
visual field). Thus for each model, we obtain a matrix showing how similarly
(or dissimilarly) the model treats each pair of images. Effectively, what we
are doing is positing that if a model is reflective of how a brain region
actually represents the stimulus information, then the pattern of dissimilarities
between stimuli generated by the model should match the pattern of
dissimilarities in activation of that brain area. Thus the next step in RSA is to
compare how similar each pair of dissimilarity matrices is – in other words,
we compute the dissimilarity matrix of dissimilarity matrices. These can be
quantified statistically, and also visualized in different ways. For example,
Figure 8.12 shows both the matrix of dissimilarities between models and
ROIs, and a visualization of these that groups more similar representations
(be they models or brain areas) together.



Figure 8.11 An example of a dissimilarity matrix used in representational
similarity analysis (RSA). In this simple example, four stimuli were used,
which fell into two categories: faces and houses (left, bottom). Distributed
activity patterns within an ROI were obtained for each individual stimulus
(left, middle). Then, correlations between the distributed activation patterns
for each pair of stimuli were computed, to create the dissimilarity matrix (top
left). Note that dissimilarity is computed as one minus the correlation value,
yielding positive-valued numbers ranging from zero (identical) to 2 (perfectly
negatively correlated). The top right panel shows an alternative visualization
in which dissimilarity values are simplified as either ‘similar’ (grey lines) or
‘dissimilar’ (red lines). Image adapted from Kriegeskorte and colleagues
(2008) under the Creative Commons Attribution License (CC BY)

Figure 8.12 End result of the RSA performed by Kriegeskorte and colleagues
(2008) and described in the text. The top panel (A) shows the matrix of
dissimilarities between distributed activation patterns in several brain ROIs



(names in red) in response to 96 unique images, and multiple models of
representations of those images. Names in black are simple computational
models; names in blue are complex computational models; names in green
are conceptual models. The bottom panel (B) shows the result of applying a
transformation (multidimensional scaling) to these results, which groups
ROIs and models according to their similarity; points that are closer in this
visualization can be considered to represent the image information in more
similar ways. Reproduced from Kriegeskorte and colleagues (2008) under the
Creative Commons Attribution License (CC BY)





Functional and Effective Connectivity



Functional Connectivity
Within a few years of the introduction of fMRI, a novel approach to data
analysis was developed that is widely termed functional connectivity or
fcMRI (Biswal, Yetkin, Haughton, & Hyde, 1995). Functional connectivity
analysis involves computing correlations (or covariance) in BOLD signal
between different brain areas. This can be contrasted with the approach of
correlating BOLD signal with an independently specified reference time
series determined by the timing of some external event such as stimulus
presentation or motor responses. It is important to note that in this context the
word ‘connectivity’ does not mean structural connectivity – direct axonal
(white matter) connections between brain areas (but see Chapter 10). A
correlation in BOLD signal implies some synchronization of activity or other
interaction between the correlated areas, but – critically – this could be
modulated either by direct structural connectivity, indirect connectivity
through one or more intervening brain regions, or the influence of another
brain region sending signals to the two functionally connected brain areas –
or even a chance correlation between two brain areas whose activity is not
truly correlated. These caveats notwithstanding, this technique provides a
potentially very powerful way of understanding brain activity using fMRI
(and other techniques; functional connectivity analyses can be performed
using MEG, EEG, and optical imaging data as well). While standard task-
related fMRI analysis approaches can identify a set of brain regions activated
during a particular task, fcMRI can provide insight into how these areas
interact as coherent networks, rather than a set of isolated areas. In this way,
functional connectivity is one way to move the discipline of fMRI beyond
‘neo-phrenology’ towards understanding the brain as a network – or a set of
networks.

Functional connectivity analyses can be performed both on task-based fMRI
data, and on ‘resting state’ scans in which the person being scanned is
instructed simply to lie still – either with eyes closed or open, and possibly
with a mark on a display to fixate on – without any other task to perform,
typically for between 5 and 15 minutes. In a task-based functional
connectivity analysis, one can naturally expect that all brain areas relevant to
the experimental manipulation will show correlated BOLD signal, since by



definition ‘activated’ areas are those whose BOLD signal correlates with the
experimental manipulation (for example, boxcar time series or more complex
block or event-related designs); thus all active areas can be expected to be
correlated with each other. However, in a functional connectivity analysis one
can specifically examine the time series only during the task-related blocks or
events. In this case, all areas will be ‘on’ relative to the baseline or control
condition periods of the scan. However, by focusing exclusively on activity
during only the ‘on’/task-related time periods, functional connectivity
analyses can determine whether some of the brain areas show stronger
correlations in activity during those ‘on’ blocks.

As noted, functional connectivity analyses can be performed on resting state
fMRI (rs-fcMRI, or simply rs-fMRI) data. From the perspective of an
experimental psychologist or cognitive scientist, this may seem odd: the
resting state is very unconstrained – people are typically told merely to rest
quietly, either with their eyes closed or open – and so we do not have any
objective insight into what sort of cognitive activity is going on during such
states. Indeed, it is entirely reasonable to think that different people would be
engaged in rather different mental activities. However, hundreds, if not
thousands, of rs-fMRI studies have been conducted to date and the patterns of
functional connectivity that emerge from them are quite consistent,
suggesting either that there is more commonality among what people do in
these states than might be thought, or that what is reflected in rs-fcMRI data
is not so much reflective of specific, moment-to-moment neurocognitive
activity so much as of the inherent patterns of connectivity or correlated
activity between brain regions, even when particular networks are not
actively engaged in a particular task. A typical rs-fcMRI map is shown in
Figure 8.13

Figure 8.13 Example of a resting state functional connectivity (rs-fcMRI)
map. During all scans participants kept their eyes open and fixated on a cross
on a screen. The arrow points to the seed voxel, located in the left inferior
parietal cortex. Areas in yellow showed the strongest positive correlation
with the BOLD time course in the seed region, while areas in green showed
the strongest negative correlations; areas in black showed weak or no
correlation. Data were collected across four 15 min resting state runs per
subject, at 7T with 1.6 mm spatial resolution. Reprinted from Vu and



colleagues (2017) with permission of Elsevier

Indeed, one of the major applications of rs-fcMRI is in comparing between
different groups or populations of people: because people perform no task,
there is no possibility that observed differences between groups are due to
differences in task performance. In contrast, this is a real concern in task-
related fMRI comparisons between groups. For example, one might wish to
compare BOLD signal in a group of people with Alzheimer’s disease (who
have memory impairments) to that of a group of age-matched, healthy
controls in a memory task. Likely, there would be differences in BOLD
signal between the groups. However, one would be challenged to know
whether the observed differences between groups were related to the causes
of the memory deficits in the Alzheimer’s group, or instead were an effect of
the fact that the Alzheimer’s group performed the task less well (so, for
example, they may have had to work harder, spending more mental
computation time on each trial; alternatively they may simply have not fully
processed information on some or all trials). Although a rs-fcMRI scan would
not solve the cause-and-effect question, it allows us to look for differences in
brain activity that we at least know cannot be attributed to differences in task
performance. In this way, a primary use of rs-fcMRI is as an endophenotype
or biomarker of a particular disease or other state. This could be used



diagnostically, for instance to identify a particular disease (possibly before
overt behavioural symptoms manifest), as well as to monitor the efficacy of a
particular treatment (on the assumption that functional connectivity patterns
would become more normal if the treatment was effective). It is important to
note, however, that in comparing functional connectivity patterns between
groups we are at something of an inferential disadvantage: typically in
experimental cognitive neuroscience, we aim to observe consequences (brain
activity) based on causes (experimental manipulations), and we use control
conditions to increase our confidence that the experimental manipulation
caused the observed changes in brain activity. On the other hand, with rs-
fcMRI the researcher typically does not explicitly manipulate anything, but
makes the inference that any observed difference in fcMRI between groups
(or over time) are causally related to the defining characteristics of the
groups. Because groups may vary along many different dimensions, besides
the one of primary research interest (for example, a patient group may be on
more medications, get less exercise, have less social interaction, etc. than a
control group), the ability to draw causal links is often weaker. This is, of
course, not exclusively a problem with rs-fcMRI but a more general
challenge to any study that does not involve experimental manipulations and
control, including the structural MRI techniques discussed in the next two
chapters.

There are two common approaches to analysing functional connectivity
patterns. The first, as described above, involves computing correlations in
BOLD signal between different brain areas. This can itself be performed in
two general ways. One is seed-based correlation, in which one chooses a
particular voxel or small area of the cortex as a ‘seed’ and correlates the
BOLD time courses from all other voxels in the brain with this seed time
course. The choice of seed region will naturally have significant effects on
the patterns of functional connectivity that result. One common approach is
to choose a voxel within a known (or hypothesized) network, since all
regions that are part of that network should correlated with this region’s
activity. Figure 8.13 shows an example of a seed-based correlation, with the
seed located in the left inferior parietal cortex – a common choice when
investigating what is often called the ‘default mode network’ (Fox, Vincent,
Van Essen, & Raichle, 2005).



An alternative approach, network-based correlation, is to use a large
number of seed regions, and compute correlations among each pair of seeds.
It is well-established that there is a high degree of smoothness or inherent
correlation among nearby voxels in fMRI signal, so it is unnecessary to use
every voxel in the brain in such an analysis. Typically, these approaches use
between 90 and 300 seed regions or nodes; the choice of the exact regions
and their number can have a significant impact on the results; however there
is still much research and little agreement on the best choices for these
parameters. One approach is to pick regions based on anatomical labels (for
example, each gyrus on the cortex); however, other researchers argue that
since any particular gross anatomical label may have functionally distinct
subregions, it is better to divide the brain into a larger number of areas that
are all of approximately the same size. Computing the pair-wise correlations
among all of the seeds yields a large matrix of correlation values; these can
then be thresholded to isolate the strongest correlations, and these network
maps can further be analysed using approaches such as graph theory – a line
of mathematics developed for analysing complex network relationships.
Graph theory-based analysis can identify features such as hub regions that
show functional connectivity with disproportionately large numbers of other
areas, and modularity whereby groups of brain areas that show high
correlations with each other are largely separated from other such densely
interconnected networks. The brain has been characterized using the graph
theory approach as having small-world properties, meaning that it consists
of a number of densely interconnected modules (sub-networks) which are
connected globally through a set of short paths (that is, any given node is
linked to any other one through a relatively low number of intervening
nodes). An example of a graph theory analysis is shown in Figure 8.14.

The second predominant approach to functional connectivity analysis is using
independent components analysis (ICA). This is a signal processing
method designed to separate complex signals into a set of components that
are maximally statistically independent of each other (this technique was also
discussed in the context of EEG artifact removal). In its implementation in
fMRI, ICA identifies maximally distinctive spatio-temporal patterns within
an fMRI dataset, such as an rs-fMRI scan (Damoiseaux et al., 2006). Each
pattern, or component, has a characteristic time course that is present in all
voxels within that component – although the strength (amplitude) of the time



course can vary across voxels. Also, although a consistent pattern of BOLD
signal over time is present at each voxel in that component, it explains only a
part of the variation in the time course for each voxel. In other words, the
time course of an individual voxel will not necessarily look like the time
course of the component that the voxel is a part of. This is important to
understand because it means that a given voxel may participate in more than
one spatial component, since its time course can be decomposed into multiple
contributing patterns of variation.

Figure 8.14 An example of a graph theory analysis applied to fcMRI data. A
set of brain regions of interest (nodes, shown in yellow) are first defined by
the researcher. Then, the BOLD fMRI time series from each node is
extracted, and correlations between these time series are computed for every
pair of nodes (indicated by the thickness of the blue lines). These correlations
are then thresholded to retain only the strongest correlations, which define the
paths (connections between nodes, shown as blue lines) in the network.
Principles from graph theory are then applied to define features such as
modules (a subset of nodes that show relatively high connectivity with each
other) and hubs (individual nodes that connect to a relatively large number of
other nodes, either within a module – provincial hubs – or between modules –
connector hubs)



An advantage of ICA is that it does not rely on any prior assumptions or
guesses on the part of the researcher as to what to choose as a seed region, or
how many and which regions to use, as is required in a network-based
correlation analysis. ICA instead uses all the voxels in the data and typically
yields a large number of components in an entirely ‘data-driven’ approach.
On the other hand, in addition to functionally connected neural networks,
many ICA components will capture systematic noise in the data such as
cardiac and respiration artifacts, head movement, and non-physiological
sources such as scanner drift. Although this can be a good thing – in the sense
that signal and noise are separated based on their having distinctive spatial
patterns – it also means that it is up to the researcher to decide which
components are ‘signal’ and which are ‘noise’. There are several principled
ways of making these decisions: for instance, physiological noise is very
regular over time and has distinctive temporal frequencies; head movement is
characterized by occasional, transient changes predominantly at the edges of
the brain. However, there is still a degree of subjectivity in deciding which



ICA components actually reflect brain activity of interest. One approach to
doing this is, rather than deciding at the level of individual rs-fMRI runs or
subjects which components are interesting, to combine ICA maps from many
scans across many subjects together, and use clustering algorithms to identify
components that occur consistently across individuals with similar spatial
patterns (Damoiseaux et al., 2006). An alternative approach is to combine all
of the scans from a group of people and use this as the input to ICA, thus
identifying one set of components across the entire set of subjects. This can
be followed by a step where these group-level components are regressed
against each individual subject’s scan to determine the degree to which that
component is present in each individual (known as ‘dual regression’ ICA;
Mackay, Filippini, & Smith, 2009).

Although functional connectivity approaches are very popular, they have
some inherent limitations. Firstly, as noted earlier, functional connectivity
does not equate to structural connectivity, and correlations between BOLD
activity in multiple brain areas could have several different interpretations
(Menon & Dougherty, 2009). Secondly, it is important to note that changes in
functional connectivity (that is, correlation values between two voxels or
regions) do not necessarily reflect actual changes in the relative strength of
interaction between the areas, nor can the direction of causation of any
changes be inferred. For example, it can be shown mathematically that even
in a simple network with three nodes, a change in the strength of correlation
between one pair of nodes can cause a change in the correlation between
other, indirectly connected nodes. A further mathematical limitation is that
changes in the amount of noise in the data can alter the estimated correlations
(functional connectivity) between regions, even if the true correlation values
themselves do not change. Thus if we are comparing rs-fcMRI between two
groups, and one group’s data are noisier (for example, due to more head
movement), then between-group differences might be identified but
misinterpreted as real differences in brain activity. Limitations such as these
do not undermine the use of functional connectivity approaches; however,
they do impose important limitations on the conclusions that can be drawn
from such analyses – a limitation which is not always evident in the
discussion sections of functional connectivity papers.



Effective Connectivity
Given the limitations of functional connectivity approaches, researchers have
developed a second class of analysis tools to measure effective connectivity,
in which the direction of influence between functionally connected brain
regions can be estimated – or more generally, effective connectivity attempts
to provide explanations or inferences of causality for functional connectivity.
These methods go beyond simple correlations and are generally applied to
task-based studies, rather than rs-fMRI data, because they typically rely on
experimentally induced changes in activity as the basis for making inferences
about the causal direction of those changes.

Figure 8.15 An example of five resting state networks (RSN) identified using
ICA. The left panels show the networks identified in a single individual,
while the right panels show the networks that were consistently identified
across a set of ten individuals. Each network shows consistent spatiotemporal
patterns of activity during the resting state. Reprinted from De Luca,
Beckmann, De Stefano, Matthews, & Smith (2006) with permission of
Elsevier



Granger Causality
The first method we will discuss can actually be applied to both task-based
and rs-fMRI data. This method is called Granger causality analysis (GCA),
which is part of a larger class of models known as multivariate autoregressive
models. GCA can be understood as an extension of basic correlation analysis.
In computing a correlation between two time series, we normally look at how
similar the two time series are over time. Effectively, this means we are
comparing the values of the two time series at each point in time. In GCA, we
extend this to look at the relationship between the data at a particular point in
time in one brain area, and the data at a slightly later (or earlier) point in time
in another area (the technical term for this is autoregressive modelling). In
this way we can determine whether the data in one brain region ‘predict’ the



data at a slightly later time in another brain area. If so, we can say that one
area ‘Granger causes’ activity in another area. This is illustrated in Figure
8.17. Ideally, this could be interpreted as the neural activity in the ‘Granger
causing’ area being propagated to, and causing (or at least influencing), the
neural activity in the second area. However, GCA results should be
interpreted with extreme caution. Recall that the shape and timing of the HRF
varies considerably between brain regions, even within individuals. GCA
makes the strong, but untestable, assumption that this variance is directly
related to differences in the underlying neural activity that drives the
haemodynamic response. However, the temporal relationship between neural
activity and BOLD response can be influenced by many factors, and is not
well understood. Thus it is impossible to test whether the directionality
suggested by GCA is valid or not. GCA is also based on several other
assumptions that are known to be violated in fMRI data, which raise further
questions about its suitability and about whether it should truly be considered
a form of effective, as opposed to functional, connectivity analysis (Friston,
2011).

Psychophysiological Interactions
Another approach to effective connectivity is called psychophysiological
interactions (PPI). Essentially, this involves determining whether the
correlation in BOLD activity between two regions (or more generally,
between one region and the rest of the brain) changes with an experimental
manipulation. As noted above, changes in correlations within networks are
themselves insufficient to infer causal relationships. What makes this
inference possible in PPI is that the effect of the experimental manipulation is
explicitly taken into account, by first multiplying the experimental time
course (that is, the stimulus and/or response time series) by the BOLD time
course from the seed or ‘reference’ voxel, as illustrated in Figure 8.17, and
then correlating the result with other voxels in the brain. In this way, the
reference time series contains information about how the experimental
manipulation modulated activity in the seed region, whereas in functional
connectivity analysis (or GCA), experimental manipulation is not taken into
account. This is why functional connectivity analyses can be performed on
resting state data – but it also makes clear that PPI analysis is only possible
on data in which there was an experimental manipulation, and not on rs-fMRI



data.

Figure 8.16 An example of Granger causality analysis. The two time series
represent BOLD signal from two different brain areas, the inferior frontal
gyrus (IFG) in the left (LH; blue) and right (RH; orange) hemispheres,
extracted from an individual who was reading the story over the course of the
entire five-minute fMRI run. Granger causality analysis was performed on
lags ranging from 1 to 8 time points, and the strongest correlation between
the two time series occurred at lag 6 (that is, 12 s; p = .022). We can therefore
say that the signal in the left IFG ‘Granger causes’ changes in activity in the
right IFG. This is illustrated by the dashed grey lines, which show the
correspondence between points in the left IFG time series and those lagged 6
time points later in the right IFG

As an example, imagine a task during which people navigate a maze in a
computer game (O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg,
2012). Two areas known to be involved in spatial navigation are the
prefrontal cortex and the hippocampus. Both might be activated in this task
relative to a control condition in which participants view a ‘fly-through’ of
the maze without controlling their movement. A PPI analysis could help us
differentiate between two possible interpretations: one, that the two areas
were simply both engaged in spatial navigation in some way; and the other,
that the two areas acted in concert during navigation, in a way that was
different than when simply watching the fly-through. Under the second



condition, the greater interaction between the areas would result in stronger
correlations in BOLD signal during the experimental than the control
condition. In other words, rather than simply looking at correlations of the
overall BOLD time series (that is, across the entire scan, including
experimental and control blocks or trials), or just during the experimental
condition, we would compare the strength of correlation between brain
regions during the experimental condition with the strength of correlations
during the control condition. Although in this example we have described
only two brain areas, as noted earlier in PPI analysis one can specify one
‘seed’ region of interest (ROI), and examine PPIs with every other voxel in
the brain, or with a limited set of other voxels or ROIs that are of theoretical
interest.

Figure 8.17 Regressor time series used in psychophysiological interaction
(PPI) analysis. The grey time series at the bottom shows the boxcar
experimental design convolved with the predicted HRF, alternating between
two conditions every 15.4 s. The blue line is the averaged BOLD time series
from a region of interest (for example, hippocampus in the example in the
text). The PPI regressor is created by multiplying the boxcar time series with
the ROI time series. The result is that the PPI regressor is correlated with the
ROI time series during the ‘on’ blocks, but anti-correlated with the ROI time
series during the ‘off’ blocks. Of interest in the PPI analysis is the interaction
between these two time series, which is shown in the purple line. The anti-
correlation between the PPI regressor and the original ROI time series results
in a model that tests for correlations with the activity of the ROI only during
the ‘on’ blocks; the correlation during the ‘off’ blocks is set to zero. In a PPI
analysis, areas found to be ‘effectively connected’ to the ROI are those whose
activity correlates with the PPI x ROI interaction – in other words, the areas
that show a stronger correlation with the ROI during the ‘on’ blocks than the
‘off’ blocks



The advantage of PPI over the more basic fcMRI analyses described above is
that because the experimental modulation is taken into account, we can have
confidence that changes in functional connectivity are related to the
experimental manipulation. Furthermore, PPIs represent task-specific
changes in the relationship between two brain regions over and above any
changes in signal that they show as a direct effect of the task manipulation.
PPI does have several limitations, however. Firstly, it is not a terribly
powerful method, and so may not yield any significant (or replicable) results.
Since er-fMRI designs have inherently lower power than blocked designs,
PPI is more likely to fail to find any significant relationships in event-related
designs. A further, more conceptual limitation of PPI analysis is that it cannot
tell us the directionality of any observed changes in the strength of
relationship between two areas. Continuing with the above example, if we did
find stronger correlations between prefrontal and hippocampal regions during
navigation than passive viewing, we would not be able to say whether
prefrontal cortex influenced hippocampal activation, or vice-versa – only that
they showed functional connectivity that was task-related. Thus although PPI
can be considered an ‘effective connectivity’ technique to the extent that it
gives us greater faith than simple functional connectivity analysis can as to
the nature of the change in correlation between areas – that is, that the change
is both indeed a change in ‘connectivity’ rather than activation levels of one
or more brain regions, and that it is related to a specific experimental



manipulation – PPI still falls short of being able to tell us the direction of
flow of information through a neural network.

Dynamic Causal Modelling
A more advanced approach has been developed in an attempt to overcome
the limitations of GCA and PPI, to allow us to make inferences about the
directionality of functional connectivity relationships in task-related fMRI.
This approach, dynamic causal modelling (DCM), attempts to estimate the
strength and direction of changes in BOLD signal over time (Friston, 2011;
Friston, Harrison, & Penny, 2003). It does so by using an explicit model of
the relationship between how neural activity is modulated by external input
(the experimental manipulation), combined with a second model of how that
neural activity relates to the observable BOLD signal. Note that this is more
sophisticated than a typical fMRI analysis, which attempts to directly model
the relationship between the experimental manipulation and the BOLD
response, without a mediating model of the neuronal activity. Another
important feature is that as a modelling technique, DCM does not simply test
one hypothesis against a null hypothesis, as is done in typical fMRI and
fcMRI analysis (that is: Is there activation or not? Is there a correlation
between two brain areas or not?). Rather, DCM tests the relative evidence
that the data provides in favour of each of a set of possible alternative models
describing connectivity between brain regions. A third distinguishing feature
is that, whereas a functional connectivity model provides only a single
connectivity value between a pair of regions (the correlation), in a DCM
connectivity values are specified separately in each direction between each
pair of regions. This is critical because it allows us to test the directionality of
the connectivity (‘activation flow’) – the connectivity value in one direction
can be larger than in the opposite direction. The parameters of a DCM (the
values that are estimated and can vary between the different models being
compared) include both these connectivity values (correlations) between each
pair of regions and – critically – explicit values estimating how much the
connectivity values change as the result of an experimental manipulation.
Within DCM, one can test multiple hypotheses as to whether any particular
pair of regions are functionally connected, as well as the directionality of how
that connectivity changes with a manipulation (effective connectivity).



As an example, refer to the simple model in Figure 8.18. In this example, we
are interested in the connectivity between three brain regions, and how this
changes with an experimental manipulation. Carrying on from the spatial
navigation example used above in the discussion of PPI, we could imagine
that Context 1 is the fly-through condition and Context 2 is the subject-
controlled navigation condition. Since we are dealing here with a DCM
model involving three brain regions, we could expand our ROIs from the
previous example to include the hippocampus, prefrontal cortex, and inferior
parietal cortex. The figure shows a possible difference between these two
contexts, specifically an increased connectivity strength from the prefrontal to
hippocampal node. Note that we can model the directionality of this
connection because we have separate connection strengths for each direction
between pairs of reciprocally connected nodes. Although this simple example
includes only three nodes, DCM can scale to larger networks. However, in
doing so many more models must be compared, which increases
computational demands. For example, a network with only six nodes has
32,768 different possible connectivity models! At present, the computational
complexity of DCM limits the number of nodes in these models to around
eight; however, with advances in both the algorithms underlying DCM and
the computational power available, this limit can be expected to steadily
increase. This would allow for DCM to be used for network discovery, in
the same way that graph theory (discussed earlier) allows one to test all
possible pairwise connections between a large set of nodes. Critically,
however, DCM offers the advantage of information concerning the
directionality of influence, which graph theoretical approaches do not.
Ultimately, DCM will have to deal with the same questions raised earlier in
the context of graph theory: what is the most appropriate way to choose the
number and location of the nodes? However, at this point because DCM is
relatively limited in the number of nodes it can practically handle, it is more
commonly used in cases where the researcher has explicit, a priori predictions
about the key regions involved in a particular network – for example based
on task-related fMRI analyses or even on functional connectivity analyses.

Figure 8.18 An example of a simple three-node neural network model that
could be used in dynamic causal modelling (DCM). This is based on a
hypothetical example in the text, comparing effective connectivity between
two experimental contexts: passively viewing a fly-through of a virtual 3D



maze, and actually navigating through it. The three brain areas (nodes) of
interest are the hippocampus (H), a region of the frontal lobe (F), and a
region of the parietallobe (P). Arrows indicate effective connections between
nodes; note that not all nodes are predicted to be connected in both directions
in this model. In this hypothetical example, spatial navigation increases the
effective connectivity from the hippocampus to the frontal cortex, as shown
by the thicker arrow and increased connectivity value. Adapted from a
diagram by Karl Friston (2011)

While DCM can be considered the most rich and complex approach to
attempting to understand how brain networks are connected, it does have
some limitations. DCM originally required an experimental manipulation, or
data from two different groups, to provide the systematic context leading to
the observed changes in connectivity. However, recent advances allow the
network discovery approach to be applied to rs-fMRI data as well, making
this less of a concern. As well, DCM is limited in the complexity of the
networks it can be applied to, although this could change with future
developments. A more fundamental and significant concern is that DCM’s
advantage over other functional connectivity measures relies on its
mathematical models relating experimental manipulations to neuronal
activity on the one hand, and neuronal activity to BOLD responses on the
other. This necessarily requires an explicit model of the HRF. As discussed
earlier in this chapter, there is no single correct model of the HRF across all
brain regions within an individual, let alone across individuals. Thus the
accuracy of DCM is inherently limited by how the HRF is modelled. DCM
does have some advantage over simple convolution of the HRF with the



stimulus time series, because it integrates the intermediate step of relating
experimental manipulations to BOLD responses via an explicit model of
predicted neural activity. Nevertheless, the results can only be as accurate as
this model, and it can be demonstrated that inaccuracies in the model can
affect the results.

For example, Handwerker and colleagues (2012) applied DCM to simulated
fMRI data (used so that the ‘truth’ was known). They compared DCM
estimates in a simple case involving two nodes that were modulated by an er-
fMRI manipulation in exactly the same way. This meant that the two nodes
had no effective connectivity – although their responses were correlated with
each other, this was because the experimental manipulation affected both
areas; the experiment did not induce any change in the strength of the
correlation between brain regions. However, to test the ability of DCM to
deal with variable HRFs, Handwerker and colleagues compared DCMs when
the same HRF model was used for both nodes, with a case in which one of
the nodes (Node 2) was convolved with an HRF whose timing was lagged by
1 s relative to the first node. This means that the timing of the (modelled)
brain activation did not change – only the relationship between the brain
activation and the BOLD response. DCM nevertheless indicated in this latter
case that Node 1 predicted Node 2’s activity; in other words, DCM
erroneously suggested effective connectivity that did not exist in the
underlying neural responses, but rather was due to differences in the coupling
between neural activity and BOLD response in the two brain areas. Further
research is needed to better understand how robust DCM is across a range of
plausible differences in HRFs.

Summary

The design of fMRI experiments must necessarily take into account the unique nature of the
BOLD HRF, in particular its sluggish timing relative to direct measures of neural activity
like EEG or MEG. Blocked designs involve presenting multiple trials of the same
experimental condition in a row (a block), alternating with blocks of other experimental
conditions. This allows the BOLD response to summate over the duration of the block,
resulting in a relatively strong signal. In contrast, event-related fMRI designs must account
for the fact that stimuli occurring closely together in time will produce overlapping BOLD
responses. If these BOLD responses occur at fixed intervals, it can be difficult or even
impossible to distinguish the responses from different trials. However, by jittering (varying)
the inter-stimulus intervals, BOLD signal can be recovered without having to wait for the
BOLD signal to return to baseline after each trial.



Another consideration in fMRI designs is that the BOLD signal is arbitrary and only
meaningful with reference to the magnitude of the BOLD signal in some comparison
condition. As a result, the interpretation of a direct contrast between two different
experimental conditions may be complicated by the fact that one, or both, conditions might
show reduced BOLD signal relative to a neutral baseline condition such as viewing a
fixation cross. For this reason, it is often a good idea to include such a low-level baseline
condition as well as conditions control for stimulus or task features in subtractive designs.

Conjunction analyses can be used to draw stronger conclusions from fMRI analyses, by
identifying brain regions that are significantly activated across multiple experimental
contrasts. If these contrasts are each thought to involve a specific cognitive process, then by
showing conjunction one can have greater confidence that the brain activation pattern is
related to the cognitive process. Disjunction analyses can likewise be used to identify brain
areas involved in one contrast, but not in another. Finally, fMRI-adaptation designs can be
used to characterize distinct populations of neurons within a given brain region or voxel.
Adaptation refers to a decrease in BOLD signal with repeated presentation of the same
stimulus or stimulus category. If the brain region responds with increased response when
some feature of the stimulus is altered, this can indicate that unique neurons within the
region respond to the differentiating features of the ‘de-adapting’ stimuli.

Statistical analysis of fMRI data typically involves several levels of analysis. The first-level
analysis usually involves using multiple regression on the time series of each fMRI run to
identify voxels whose BOLD signal systematically varies (correlates) with some aspect of
the experimental design. If there are multiple runs for each participant, these are combined
within individuals in a second-level analysis. Finally, data are combined across participants
(and/or between groups of individuals) and statistically analysed, often using familiar
statistical techniques like t-tests, ANOVAs, and linear mixed effects. A mass univariate
approach is usually applied, in which the same statistical test is applied at every voxel in the
image. This creates a significant multiple comparison problem, because conducting so many
separate statistical tests is likely to yield many false positive results (Type I error). For this
reason, it is critical to employ some form of multiple comparison correction that is
appropriately validated for fMRI data. Alternatives to the mass univariate approach include
a variety of multi-voxel pattern analysis (MVPA) approaches that examine distributed
patterns of BOLD signal strength across all voxels in a region of interest, or the whole
brain, as a function of stimulus features or experimental conditions. MVPA can provide
unique insights that complement traditional mass univariate analyses.

In addition to examining activation patterns in specific brain regions, fMRI data can be used
to examine interactions between different brain areas. Functional connectivity methods
examine correlations in BOLD signal between different brain areas, but cannot provide
insight into the direction of influence – which area’s activity leads to changes in the activity
of another area. Effective connectivity techniques allow researchers to estimate the
directionality of influence between different brain areas, but are limited by the assumptions
that they rely on in making these estimations.

Things You Should Know

Blocked fMRI designs involve presenting experimental conditions in blocks of trials
of the same type, each of approximately 30 s duration, and alternating with blocks of



other experimental conditions. Event-related (er-fMRI) designs involve randomly
interleaving trials of different experimental conditions. Blocked designs typically
provide the best SNR and experimental design efficiency, but limit the types of
experiments that can be performed (for example, if an element of surprise or
unexpectedness is required). Event-related designs are more flexible with respect to
the types of experimental designs they allow, but can have lower SNR and efficiency
than blocked designs.
The fact that the BOLD HRF takes 10–15 s to rise, peak, and return to baseline
imposes limits in how closely trials can be placed together in er-fMRI designs.
Randomly jittering the inter-stimulus intervals between trials can help improve the
efficiency of an er-fMRI design relative to allowing sufficient time for the HRF to
return to baseline after each trial.
Statistical analysis of fMRI data typically employs a ‘mass univariate’ approach, in
which the same statistical test is applied to every voxel in the image. Individual time
series are usually analysed using multiple linear regression, by convolving the time
series of each experimental condition with a model of the HRF, and comparing this
to the time series at each voxel. At the group level, common statistical methods such
as t-tests, ANOVAs, and linear mixed effects are typically used.
Multivariate analysis techniques are a class of alternatives to mass univariate analysis
of fMRI data. While there are a number of different types of multivariate analysis, in
general they consider and compare the distributed patterns of activation across
voxels, either within regions of interest or across the whole brain. This approach
recognizes the fact that fMRI data may contain systematic relationships between
BOLD signal and experimental contrasts besides simply which individual voxels
show changes above a given statistical threshold.
A significant consideration in mass univariate analysis is the risk of Type I error
(false positives) due to the large number of statistical tests performed. For this
reason, some form of multiple comparison correction should be applied. There are
many approaches to this, some of which are less rigorous than others. It is important
to be mindful of the advantages and disadvantages of different multiple comparison
approaches, as well as different thresholds for significance for a given method, as
these can significantly influence the results. In particular, being too liberal at this
stage may yield results that are not replicable.
It is often critical in fMRI experiments to include a baseline condition – such as
having participants stare at a fixation cross – to establish the BOLD signal level when
no stimulation or task is occurring. This is because the BOLD fMRI signal is
measured in arbitrary units, and so the BOLD signal ‘activation’ levels have no
objective, independent interpretation. When contrasting directly between two
experimental conditions, such as ‘target’ and ‘control’ conditions, significant
differences may not always represent stronger ‘activation’ in the target relative to the
control condition, because one or both conditions might show reduced BOLD signal
relative to baseline. Interpretation of the results of a contrast might be very different
if one or both conditions show reduced BOLD signal relative to baseline, compared
to showing increased signal relative to baseline.
Conjunction analyses involve identifying brain regions that show significant
activation across different experimental contrasts. This can allow researchers to make
stronger inferences about the nature of cognitive operations performed by brain areas.
Disjunction analyses, in contrast, highlight brain areas that are activated in one
experimental contrast but not in the other.
fMRI-adaptation designs capitalize on the fact that neuronal firing rates – and BOLD



activity – show decreases over time when the same stimulus, or class of stimulus, is
presented repeatedly. Such designs can provide sensitivity to different populations of
neurons that may co-exist within a given voxel or cortical region. If different
populations of neurons, tuned to different stimulus features, exist in an area, then
BOLD signal in that area should show a ‘rebound’ from adaptation when one
population is adapted, then another is stimulated.
Functional connectivity refers to the analysis of correlations in activity between
different brain regions. Functional connectivity analyses cannot inform us as to the
direction of influence of the regions involved, however. In contrast, effective
connectivity analyses provide estimates of the direction and strength of influence of
one brain area on another. However, an important limitation of both types of analysis
is that they cannot determine whether two functionally or effectively connected areas
have direct anatomical connections, or whether their activity is mediated through one
or more intervening anatomical regions.

Further Readings
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Academic Press.
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Learning Objectives
After reading this chapter, you should be able to:

Define and contrast cytoarchitecture and myeloarchitecture.
Explain what probabilistic cytoarchitectural maps are, and how they can be used in MR
imaging.
Define morphology, and contrast manual and computational morphological approaches in
structural brain imaging.
Describe how MR imaging can be used to create maps similar to those obtained through
cytoarchitecture.
Explain the basic steps involved in a typical computational neuroanatomical analysis.
Contrast the dependent measures used in voxel-based, deformation-based, and tensor-
based morphometry.
Describe two approaches to estimating cortical thickness.



Introduction
Structural neuroimaging has a unique position within cognitive neuroscience.
Clearly, an understanding of neuroanatomy is relevant – since the brain is the
centre of cognition – but at the same time, most cognitive neuroscience
methods (other than lesion-deficit studies) focus on dynamic measures of
brain activity – those that change over short periods of time. Because
experience – perception, cognition, and action – is transient, it naturally
makes sense that in order to understand human experience we need measures
that have sufficient temporal resolution to capture the associated changes.
Neuroanatomy is relatively stable over time, at least at the level accessible by
non-invasive neuroimaging (at the cellular level, we know that quite rapid
reconfiguration of synapses, dendrites, and even axons can occur with
experience). Thus simply assessing the size of a particular brain area, or its
cortical thickness, or connectivity patterns, can tell us little about how a
person performs a transient cognitive activity such as producing a word or
remembering a spatial location. On the other hand, there are profound
changes in neuroanatomy over the lifespan that certainly do relate to
concomitant changes in cognitive function. As well, even at a similar point in
development, individuals’ neuroanatomy may vary in systematic ways with
respect to factors such as their intelligence, personality traits, and disease
states. On yet shorter time scales, research has suggested that measurable
anatomical changes can occur over days or weeks. Such changes have been
related to experience – particularly learning – and thus exemplify a type of
dynamic change that can be measured by structural imaging.

A second important facet of structural imaging is the recent upsurge of
interest in mapping the human connectome – how different brain areas are
connected to each other, which can be imaged using an MRI technique
known as diffusion tensor imaging (DTI). Drawing on parallels with how
advances in our understanding of the genome have revolutionized science
and medicine, the notion of the connectome has gained significant traction in
both the scientific and popular media. DTI and connectomics are the topic of
the next chapter, so we will set aside further discussion of this topic for the
time being.



Thirdly, an accurate and detailed understanding of both the constants, and
inter-individual variation, in neuroanatomy is a vital foundation for other
functional imaging techniques: having a maximally (ideally, microscopically)
detailed anatomical ‘frame’ on which to map the results of functional
imaging studies can help to resolve many important questions and provide a
level of understanding that temporal dynamics alone could not support.
Indeed, influenced by early lesion-deficit case reports by Broca and
Wernicke, neuroanatomists working in the early part of the twentieth century
used structural evidence to support the notion of a highly modular,
functionally specialized organization of the cortex. For example, in 1904
Korbinian Brodmann – who spent his life studying the comparative
neuroanatomy of different animals – wrote:

The specific histological differentiation of cortical areas provides
irrefutable proof of their specific functional differentiation … The large
number of distinct structural zones suggests a spatial specialization of
various individual functions, and finally the all-round sharp demarcation
of many areas indicates inexorably a strictly circumscribed localization
of their corresponding physiological function. (Brodmann, 1999)

This underscores the importance of understanding the structural organization
of the brain to discerning how it functions. In many cases, imaging
techniques like fMRI or MEG reveal large, extended areas of activation
which may either comprise a single, functionally specialized area, or multiple
areas subserving different aspects of function for the process under
investigation. Anatomical mapping can provide a framework on which to
map functional data that allows for richer and better-informed interpretation
of the functional data.

In this chapter we discuss several different approaches to structural imaging.
We will start with efforts to link structural imaging at the level of resolution
possible using non-invasive techniques with humans, to microscopic-level
imaging that is only possible postmortem. We then turn to morphometry, the
study of the size and shape of brain regions, which involves manual or semi-
automated tracing of brain structures. Finally, the majority of the chapter
focuses on computational neuroanatomy – morphometric approaches that



use automated algorithms to derive a variety of measures from structural MRI
in a less subjective, and more efficient way than traditional morphometric
methods.



Linking Micro- and Meso-Scales of Cortical
Organization
As we saw in Chapter 1, the brain is organized into many distinct regions
with sizes on the order of centimetres. Structurally, these regions are defined
– and differentiated from each other – by the types, densities, and distribution
of cells across cortical layers (cytoarchitecture), local connectivity patterns
(myeloarchitecture), receptor types and densities, and gene expression
patterns. This level of organization was characterized by various
neuroanatomists over the twentieth century, most notably by Brodmann
whose numbered ‘areas’ are still widely used as a reference system in
functional imaging. A number of different maps are shown in Figure 9.1. The
anatomical distinctions between these regions strongly imply that they
support different functions and have different connectivity patterns with other
areas. Indeed, the spatial scale of these meso-maps is in the order of
millimetres to centimetres, which is comparable to the scale of regional
organization that the results of functional imaging studies (for example,
fMRI, PET, and MEG) suggest. At the same time, defining these meso-level
areas based on their cyto- or myeloarchitectonic properties is impossible
using any non-invasive imaging technique currently available. Although we
are able to obtain structural MR images at well below the 1 mm level using
high-field scanners (especially in postmortem brains where extremely long
scan times are possible), this is far from detailed enough to characterize any
of the cellular- or subcellular-level properties that define these areas;
moreover, most of the micro-anatomical techniques used in such mapping
require the use of stains or other invasive biochemical agents that are only
suitable for non-living tissue. Indeed, high-resolution structural MRI scans
appear to predominantly reflect myelin density (since contrast is driven
primarily by differences between fat and water; myelin is composed
predominantly of fat whereas cell bodies and inter-cellular space are more
predominantly water). Thus even if spatial resolution were not an issue, this
technique would not be sufficient to fully characterize a brain region in terms
of all of the anatomical features that define it.

We are thus left with a very significant gap: although non-invasive functional



imaging techniques are capable of resolving activity at the level of these
meso-maps – which appears to be a critical level for understanding brain
organization – we cannot actually define these maps cyto- or meylo-
architectonically in a living individual. Although many neuroanatomists have
defined cytoarchitectural maps of the human brain (such as the examples
shown in Figure 9.1), there are fundamental barriers to the usefulness of these
maps in interpreting neuroimaging data. For one, most of these maps were
created before the advent of neuroimaging, and there is no reliable way to
directly map them onto a structural MR image – the maps simply exist as
pictures, typically drawn by hand onto a schematic representation of a brain.
Even Brodmann areas, which are widely used as a reference system in
neuroimaging papers, are typically assigned based on a gross approximation
– the assignment of areas to a 3D coordinate system for use in brain imaging
was originally done by Talairach and Tournoux (1988) for their atlas ‘by
hand’, working to approximately map Brodmann’s original drawing to the
sulcal and gyral patterns of their reference brain. In other words, no
cytoarchitectural information from the reference brain was actually used to
make the assignment of these areas. A second problem with these historical
maps is that there are many of them, and they differ in the number of regions,
their locations, the boundaries between them, and the types of information
used to make these assignments. This is due both to differing approaches to
fixing and staining the brains, and differing criteria as to how to define
regions. Moreover, for these historical maps the only way the definition of
regions could be done was by eye, and so there is a significant element of
subjectivity – and potentially bias – in these maps. A final limitation is that
none of these maps provide any characterization of the extent to which the
cytoarchitecturally defined regions vary between individuals – either
generally or more specifically with respect to easily observed, gross
anatomical landmarks such as sulci and gyri.

Figure 9.1 Examples of cytoarchitectural maps produced by different
neuroanatomists over the course of the twentieth century. Reprinted from
Zilles and Amunts, 2010 with permission of Springer Nature



In an effort to address these problems, neuroanatomists have been working to
develop a probabilistic atlas relating micro- to meso-scale neuroanatomy,
using postmortem tissue from a set of ten human brains. This is called the
JuBrain project (Mohlberg, Eickhoff, Schleicher, Zilles, & Amunts, 2012) –
based in Jülich and Düsseldorf, Germany – working as part of the Human
Brain Project. This work involves scanning the brains with very high-
resolution structural MRI, and then fixing the brains, staining them to
highlight cell bodies, slicing them very finely (20 µm), and then
photographing the slices using computer-controlled microscopy (Amunts,
Schleicher, & Zilles, 2007; Amunts, Schleicher, Bürgel, Mohlberg, Uylings,
& Zilles, 1999; Zilles & Amunts, 2010). The slice images are then processed



using computer algorithms to characterize the cytoarchitecture automatically.
These algorithms define a grey level index (GLI), which reflects cell
density. Systematic variation in GLI across different cortical layers is used to
define cytoarchitectural regions and their boundaries, as shown in Figure 9.2.
These cytoarchitectural maps can be directly mapped onto each individual’s
structural MRI, and all ten individuals’ MRIs have been spatially normalized
to the MNI152 template. This allows JuBrain to provide a probabilistic
cytoarchitectural atlas, which tells the user, for any given point in the
MNI152 space, what the probability is (across those ten postmortem brains)
that the location is part of one or another cytoarchitectural region. Due to the
painstaking nature of this work, the entire brain has not yet been mapped out
– although that is the ultimate goal. Parallel efforts are under way to develop
similar probabilistic atlases of myeloarchitecture, receptor mapping, and gene
expression patterns. It is hoped that technological advances will help make
these efforts more automated, and thus speed the progress of these efforts; as
of this writing, the available JuBrain atlas represents over 20 years of work
by a large team of scientists, and even the cytoarchitectonic component of the
mapping is not yet completed – so the scale of this ambitious enterprise is
clearly enormous.

An important early finding of this work was that the cytoarchitectonic
boundaries vary with respect to gross sulcal and gyral anatomy across
individuals. In other words, although there is an intuitive appeal when
looking at the cortical surface to consider each gyrus a functional area,
separated from other areas by sulci, this is not a reliable approach. In reality,
cytoarchitectonic boundaries may well occur somewhere on the surface of a
gyrus or midway down the bank of a sulcus, and do not consistently respect
the large-scale folding patterns of the cortex. This is not universally true: in
some cases the folding patterns do line up with cytoarchitectonic boundaries
fairly consistently. This is particularly true of primary sensory and motor
cortices, but for ‘secondary’ or higher-level ‘associative’ cortical areas the
relationship between gross anatomy and cytoarchitecture is less consistent.
The bottom panel of Figure 9.2 shows examples of variability for a primary
sensory and higher-order associative region. This is not to say there is no
consistency – even for higher-level cortical regions such as Broca’s area
(Brodmann’s areas 44 and 45), researchers were able to identify a ‘core’
region that showed 100 overlap between all ten postmortem brains. However,



it is important to recognize that there is variability among individuals, and
with respect to sulcal and gyral folding patterns. Thus although
neuroanatomists have traditionally used the sulci and gyri as anatomical
landmarks for defining cortical areas (for example, Broca’s area is defined as
the left inferior frontal gyrus of the left hemisphere) – and neuroimagers have
followed this practice – this was largely for the sake of convenience: these
were easily observed landmarks that appear relatively consistent across
individuals. This has important implications for the preprocessing and
interpretation of neuroimaging data, as we discuss below.

Figure 9.2 Examples of how the probabilistic cytoarchitectonic maps
contributing to the JuBrain project are created. The top three panels show
slices of stained tissue from the occipital cortex of a single postmortem
human brain. The top left panel shows the border (red line) between two
visual areas, V2 and hOc3d. The top middle panel shows the grey level index
(GLI) profiles for each of these areas: V2 in blue, and hOc3d in green. The
top right panel shows how the border between these areas was identified
automatically on the basis of GLI profiles. In this panel, the y axis shows
Mahalanobis distance, a multivariate statistical method used to quantify how
different the GLI is for adjacent profiles along the cortical surface. The
border between areas is identified as where the Mahalanobis distance of GLI
profiles is maximal. The bottom panels show the probabilistic maps from the
JuBrain atlas for two other cytoarchitectonic areas: primary somatosensory
cortex (Brodmann area – BA – 1) on the left, and Broca’s area (BA 44) on
the right. Areas in red represent the greatest overlap between individuals
(100%), while dark-blue areas represent the least overlap. Note that while
both areas show inter-individual variablity, the primary sensory area shows
less variablity, and virtually all of this variability is restricted to a single
gyrus (the postcentral gyrus), bordered by sulci. In contrast, Broca’s area (an
example of higher-order associative cortex) shows greater spatial extent of
variability between individuals, and this variability crosses several sulci and
overlaps with different additional gyri in different individuals (the dark blue
areas). Top panel from Amunts and Zilles (2015); bottom panel generated the
JuBrain online viewer (jubrain.fz-juelich.de, retrieved 15 September 2016)



Recently, a parallel effort has been made to identify consistent meso-level
maps across individuals based solely on multimodal, in vivo MR imaging.
This effort is based on the premise that if there is indeed a meso-level of
brain organization that is consistent across humans, then it should emerge
from meso-scale imaging methods. However, any one imaging technique (or
experimental paradigm in functional imaging) is unlikely to be sufficient to
reliably delineate this level of organization. Thus Glasser and colleagues
(2016) combined data from multiple structural and functional MR imaging
modalities. The data were obtained from 449 individuals as part of the
Human Connectome Project – a massive, multi-site neuroimaging project.
These included T1- and T2-weighted anatomical images (the ratio of which
was used to compute myelin density), diffusion-weighted images (see next
chapter), fMRI data from seven cognitive tasks (which allowed for 86 distinct
contrasts), and functional connectivity derived from rs-fMRI data.

The data preprocessing involved several innovations over the more
‘traditional’ steps described in the Chapter 6. Firstly, only data from the
cortical surface were used. This involved segmenting the grey matter from
other tissue types (in the structural images) and then flattening this to a



cortical surface representation, which was further tessellated to a mesh of
approximately 30,000 vertices (an important data reduction step – compare
this to the more than 200,000 voxels in the 2 mm MNI template image).
Images from each individual were then coregistered by matching first the
major sulcal patterns – a coarse-grained approach that relies on the high
degree of similarity across individuals in major anatomical landmarks such as
the central sulcus and Sylvian fissure, similar to the spherical surface-based
approach described in Chapter 6. This was followed by a step using more
complex features of the data, including the myelin density and rs-fMRI
connectivity maps. The motivation for performing registration this way,
rather than the traditional approach based solely on matching anatomical
shape or features (that is, the linear affine and non-linear methods described
in the fMRI chapter), comes from the cytoarchitectural work described
above: cytoarchitecturally defined areas (and by extension, areas defined by
functional and connectomic data) do not always match well with gross
sulcal/gyral anatomy. Thus if functional data are used to help inform the
registration, greater accuracy is likely to result. Glasser and colleagues
reported that their approach of registering images based on features from
myelin density and rs-fMRI maps led to 30–50% less spatial distortion of the
images than traditional registration, and ultimately resulted in much higher
overlap of activation in task-based fMRI data.

The researchers took a conceptually similar approach to that used in the
JuBrain project for identifying borders between areas. Borders are sharp
changes in relevant properties of the cortex (for example, cell density in
cytoarchitecture; myelin density or connectivity patterns in human
neuroimaging data). In cytoarchitecture, the borders are identified by finding
points along the cortical surface of maximum ‘dissimilarity’ between cell-
density profiles. For the in vivo human data, the researchers computed the
spatial derivatives of each imaging modality map. The spatial derivative is a
mathematical computation that represents the slope, or rate of change, in each
map. In other words, a voxel in a spatial derivative map does not reflect the
data at that point in the brain, but rather how much the data change between
points adjacent to that location. Contours in the spatial derivative map are
thus likely to represent borders between areas, since they represent the areas
of greatest change in the maps. This is illustrated in Figure 9.3: panels (a) and
(b) show myelin density and fMRI maps, respectively, and panels (e) and (f)



show their corresponding gradient maps. Identification of the area borders
was performed in a semi-automated way by two expert neuroanatomists,
based on data averaged across 210 subjects. The neuroanatomists defined
borders based on gradient contours that occurred in at least two distinct
imaging modality maps and were consistent in their approximate location
between cerebral hemispheres, along with several other criteria. The borders
were then refined by an automated algorithm that identified the most
probable shape of each border, based on features in the data. The validity of
these areas was confirmed in several ways, including assessing how well the
maps from the original set of 210 subjects matched those from a separate
group of 210 subjects, and using machine- learning algorithms to determine
how reliably the set of brain regions could be identified in individual
subjects. Ultimately, this work identified a set of 180 distinct cortical areas in
each cerebral hemisphere – a number quite consistent with those estimated on
the basis of cytoarchitectonic data by early twentieth-century neuroanatomists
such as von Economo and Koskinas (1925), and Vogt and Vogt (1919). This
parcellation is shown in Figure 9.4, and it is interesting to compare this to the
historical maps shown above in Figure 9.1.



Morphometry
Morphometry is the study of shape, in this case the shape of the brain and its
component structures. Although most of this chapter is devoted to methods
aimed at automating this process – and thus making it more objective and less
observer-dependent – here we will briefly discuss more ‘traditional’, manual
approaches to morphology. This approach involves obtaining high-resolution
(typically 1 mm3) anatomical MR images (typically T1-weighted). A trained
neuroanatomist then traces the outline of the neuroanatomical structure of
interest (for example, the hippocampus) on each slice of the MR image, using
software designed for this purpose. While some software packages allow the
user to trace on a subset of images (such as every third slice) – and then
interpolates the tracings for the intervening slices – this can result in reduced
accuracy due to the complex 3D structure of the brain. Once the structure has
been traced through all the slices of the image in which it can be identified,
the software can compute quantitative measures, such as the volume and
surface area of the structure. These measures can then be compared between
groups of subjects, or tracked within individuals over time (for example, in
studies of progressive disease).

Figure 9.3 Identifying putative cortical area borders based on spatial
gradients of multimodal neuroimaging data. Reprinted from Glasser et al.,
2016 with permission of Springer Nature



Manual tracing has some important limitations, which is why researchers
have developed alternative techniques. For one, it is a very time-consuming,
labour-intensive process. Accurately tracing a structure that may appear on
dozens of 1 mm slices of brain is slow and tedious. Moreover, it requires
extensive knowledge of neuroanatomy, including an appreciation of the range
of variability that a particular structure can take across individuals. Further, it
is often rather subjective. Some structures, such as the hippocampus, are
reasonably well-delineated anatomically; however, others are less so. In
particular, there are relatively few definite boundaries between areas of the
cerebral cortex, and many of these depend on triangulating on the basis of
other anatomical landmarks. Since these landmarks in turn are likely to vary
between individuals, this can make the entire process difficult to accurately
replicate. Indeed, it is common practice to have multiple anatomists trace
each brain structure of interest in each subject in a study, and use either
average measures derived from this, or some other process of resolving
inconsistencies. This process, however, dramatically increases the time and
cost of doing the research, and reduces its accuracy while still not



guaranteeing that the same results would be obtained from the same data
using a new group of anatomists. Moreover, many of the changes detected by
the automated methods we will discuss later are so small (for example, in the
early stages of neurodegeneration) that they could be missed (or lost in the
variance) in manual tracing. As well, a significant investment of time is
required to train people to do this work, but it is extremely boring. As a
result, very intelligent, highly trained people must spend long hours
performing menial work, and relatively few people are likely to want to
perform this work for long periods of time, which in turn necessitates training
new workers. This method is also very limited in what it can tell us –
essentially only the volume of a structure and its surface area. It cannot tell
us, for example, what proportion of a structure is grey versus white matter.
Since each structure has to be traced individually, it is uncommon for more
than one or two structures to be traced at all, meaning that much information
might be missed (if anatomical changes occurred in brain areas other than
those traced). As well, it is conceivable that a structure might change shape
without changing volume, or that the ratio of grey to white matter might
change without the volume changing.

Figure 9.4 The 180 cortical areas defined in the meso-map created by
Glasser and colleagues (2016) on the basis of multimodal in vivo MRI data.
Colours represent how the individual areas relate to rs-fMRI data, as shown
in the legend at the bottom of the figure. Reprinted from Glasser et al., 2016
with permission of Springer Nature



Fortunately, semi-automated methods of identifying and tracing anatomical
structures have been developed that overcome some of the issues of
subjectivity and labour intensiveness. These approaches generally rely on
template MR images on which the target structure(s) have been identified.
One example of this is diffeomorphic mapping, which can be used on the
hippocampus and other ‘closed’ structures (that is, those with clearly defined
boundaries; this would not be applicable to regions of the cerebral cortex
because they are ‘open’ and do not have clear macroscopic boundaries). The
MRIs of individual participants in a study are registered to the template,
using a rigid-body linear transformation that does not alter the size or shape
of the individual’s brain (similar to co-registration of functional and structural
images within an individual, as described for fMRI studies in Chapter 6). A
second step then identifies the target structure, and defines the outer surface
of the structure. Thousands of points are then defined on the surface (using
tessellation), and the distance of each point on the individual’s brain structure
to that of the template is computed (where the template represents an average
of many healthy people). An advantage of this method is that it can provide
more complex metrics than simply volume and surface area; for example,
shape changes and relationships between volume and shape can be



quantified. While such semi-automated processes are less subjective and
error-prone than purely manual methods, they still have limitations. Firstly,
the anatomical structures of interest must be accurately identified and labelled
(by hand) on each image contributing to the template (although this one-time
investment of effort pays far greater dividends than manual tracing of every
person in every study a lab conducts). Secondly, the process is referred to as
‘semi-automated’ because identification of the target structures still relies on
anatomical landmarks being manually identified on each study participant’s
brain. While these are generally fairly objective and easy to identify, this step
is time consuming and makes replicability more difficult. The limitations of
manual and semi-automated approaches to morphometry have led to the
development of numerous automated approaches to computational
neuroanatomy, which we turn to next.



Computational Neuroanatomy
Computational neuroanatomy is a broad range of techniques that employ
automated algorithms for quantifying morphological changes in brain
structures. Because they are automated, they avoid the issues of subjectivity
and labour intensiveness that limit manual and semi-automated methods.
Moreover, they operate across the entire brain simultaneously, and so they
provide a comprehensive view of the brain rather than being limited to certain
anatomical structures. The primary approaches to computational
neuroanatomy are voxel-based morphometry (VBM), deformation-based
morphometry (DBM), and tensor-based morphometry (TBM), as well as
cortical thickness measures such as voxel-based cortical thickness (VBCT)
and surface-based cortical thickness (SBCT). Although each of these
methods produces a different metric, they have in common the fact that they
rely on automated spatial normalization methods not only to align individual
brains with each other and/or a template, but also to compute the
quantification itself. Conceptually, this makes sense – since spatial
normalization involves computing the transformations that change the size
and shape of one brain (typically that of an individual) to another (typically a
template), the spatial transformation necessarily encodes the information
about how the individual’s brain differs in size and shape from that of the
template. The various approaches to computational neuroanatomy vary in the
normalization algorithms they use, and what measures are derived from
these, but at their core they all rely on quantifying the spatial normalization
process.

All of the approaches to computational neuroanatomy involve similar
preprocessing steps. First is brain extraction, in which the brain is identified
and extracted from the surrounding tissue (for example, the skull) in the
image. The second step, tissue segmentation, is required for some
techniques (including VBM and VBCT); in this step the grey matter, white
matter, and CSF are identified and separated from each other, yielding
separate output images for each. There are different algorithms for this, but
they generally rely on a combination of templates and the inherent contrast
between tissue types in the T1-weighted image. Tissue segmentation is
followed by spatial normalization (often called registration), and then



statistical comparison. The type of spatial normalization, and what measures
are derived from this for statistical comparison, are largely what distinguishes
the different approaches, as we will see below.



Experimental Design
From a cognitive neuroscience perspective, experimental design for
computational neuroanatomy studies is relatively straightforward – one does
not need to worry about things like the optimal control condition, task
difficulty, numbers of stimuli, etc. However, there are nonetheless several
important factors to consider. First off, broadly speaking there are two types
of studies that can be performed: longitudinal and cross-sectional.
Longitudinal studies involve tracking the same individuals over time, to
quantify within-individual changes in anatomy. Thus multiple MRI scans are
obtained from each individual. This approach is common in studies of
learning, development, aging, and neurodegenerative diseases. Cross-
sectional studies involve comparing different groups of individuals, at a
single point in time. For example, a group of people with a particular disease
such as Alzheimer’s may be compared to a group of age-matched, healthy
controls. The two types of design can be combined: two different groups
might be studied longitudinally, with cross-sectional comparisons made at
different time points. In general, longitudinal designs are more sensitive and
powerful because each individual acts as their own control. In a cross-
sectional design, any differences between groups could be due to factors that
differ between the groups other than the main difference of experimental
interest (for example, one group might have a disease and the other be
healthy controls, but they might also differ in education levels, how active
they are, etc.). In a longitudinal design, we have measures from the same
individual over time, so any changes in anatomy should be attributable to
changes that individual has experienced (for example, progression of the
disease). However, longitudinal designs should still employ control groups,
to ensure that any changes that are seen over time in the group of interest are
specific to that group and not simply changes that could be seen in any
random sample of individuals. For example, in an older population diagnosed
with dementia, we would want to know that the changes observed over time
were specific to people with dementia and not just the result of normal aging.

Although longitudinal studies are more sensitive, they take longer to conduct
(since they necessarily involve gaps of time between the multiple scans), and
cost proportionally more (since they require multiple scans per participant).



The duration of the study can also create other problems. For instance, any
longitudinal study suffers from attrition – people dropping out of the study –
which can be hard to predict but requires starting with a greater number of
participants than are ultimately expected to be needed to have sufficient
statistical power. Even for people who do not drop out of the study, there is a
risk that some people will miss a scan at one of the time points, either
resulting in missing data, or data acquired at a different point in time (relative
to their other scans) than other participants. Outside of participant issues,
another issue with long-term studies is that computational neuroanatomy –
perhaps more than other methods – is very sensitive to MRI scanning
parameters. Thus the scanner should not have its software or hardware
changed or upgraded over the duration of the study. Because MRIs are multi-
user resources, often controlled by entities who have priorities other than a
particular individual research study, it can be difficult for a researcher to
prevent (or sometimes even predict) such changes – especially for studies that
last a year or longer. At the very least, the researcher should maintain a close
working relationship with whoever manages the MRI facility.

While the most common use of computational neuroanatomical methods is to
compare groups of people and/or map changes in structure over time, it is
also possible to use these methods in correlational studies. For example, in a
training study a simple (longitudinal) question might be whether, as a group,
people who received a particular type of training show localized changes in
cortical thickness. A more nuanced question – which would also increase our
confidence in there being a causal link between the training and observed
structural changes in the brain – would be to correlate changes in cortical
thickness with performance on a learning task. This would allow us to
determine whether, for example, people who showed greater learning also
experienced greater changes in cortical thickness. Even outside of a
longitudinal design, correlations with behaviour can be interesting. For
example, one could investigate whether reaction time in a visual attention
task correlated with cortical thickness in regions of the brain known to be
involved in visual attention.

Another issue of experimental design is which MRI pulse sequence to use.
For most morphometry methods, T1-weighted structural MR images are
employed. This is a very routine type of scan that any MRI machine is



capable of; however, for quantitative neuroanatomy the quality of these
images needs to be higher than for other purposes (such as fMRI, or even
clinical diagnosis). The images need to have very good SNR, and excellent
contrast. That is, the grey matter, white matter, and CSF should all be very
distinguishable from each other. While T1 weighting inherently creates
contrast between these tissue types, with some scanning parameters the
borders – especially between grey and white matter – may be vague and
difficult to distinguish. This is problematic because, as we will see, an
important step in any computational neuroanatomical approach is automatic
segmentation of these tissue types, based on contrast. If the grey–white
matter boundary is not clear in the image, this segmentation will fail and
further analysis cannot be performed. An important point to note here is that
methods that rely on such segmentation generally perform well with data
from the cerebral cortex, but less well (often quite poorly) with subcortical
data, because segmentation of grey from white matter in subcortical
structures can be more difficult. If subcortical structures are of interest, then
scanning parameters should be optimized for that purpose. Likewise, lesions
and other types of neuropathology create odd intensity values in the T1-
weighted MR images and pose significant problems for segmentation.
Special steps need to be taken if data with such pathology is to be used,
usually involving acquiring different MR images with different contrast
weighting (for example, both T1 and T2). Another important consideration is
image homogeneity: on many scanners some areas of the image tend to be
brighter than others (irrespective of grey–white matter contrast). For
example, unless the individual has a very large head, the back of their head
will tend to be closer to the head coil of the MRI scanner than the front of
their head (since the back of the head rests on the head coil), and this
proximity can make the image brighter at the back of the head. Proper tuning
of the head coil and scan parameters can account for this, but this is
dependent on the technical expertise available at each MRI centre. Such
inhomogeneities can sometimes be compensated for in post-processing of the
images, but it is incumbent on the researcher to know what to look for and
correct such inhomogeneities as needed.

A final consideration is the data-processing pipeline. In any experiment, the
same processing and analysis steps should be applied to every dataset. This
is, hopefully, obvious as good experimental practice in any situation –



inconsistent treatment of the data can lead to variability in the results that
could be misattributed to experimental factors (such as differences between
groups). However, even for a study as a whole, there are many options in
terms of algorithms and parameters that the researcher needs to make
informed decisions about. In the context of computational neuroanatomy,
perhaps the most significant is the choice of normalization algorithm – since
the results in many cases are derived directly from the type and amount of
change in the brain images that occur in the normalization step. Thus it is
critical for a researcher working in this field to understand the choices that
are available (and, indeed, spatial normalization is an ongoing area of
research with new algorithms constantly under development), and recognize
that these choices may impact the outcome of their studies.



Voxel-Based Morphometry (VBM)
voxel-based morphometry (VBM) is probably the most well-known and
widely used approach to computational neuroanatomy. This is not because it
is necessarily the ‘best’ approach (indeed, this really depends on the research
question), but it is easy to perform in the widely available SPM software
package, which makes the method quite accessible. VBM, as typically used,
is a measure of the local grey matter ‘concentration’ in the area around a
given voxel (although white matter or CSF data can be used instead of grey
matter). VBM operates by segmenting the brain image into different tissue
types and then applying spatial normalization. Normalization proceeds
through two steps. The first is a linear affine step that matches each
individual’s brain to a standard template (such as the MNI152 average brain),
getting the best approximate match by adjusting the size and global shape of
the brain. This is followed by a non-linear step, which induces more local
(finer-grained) ‘warps’ in the individual’s brain image to make it better match
the shape of the template brain. Non-linear warping is essential in
computational neuroanatomical methods such as VBM, because linear
methods are not precise enough to match an individual’s brain to a template
at the level of accuracy needed; this differs from fMRI where many studies
use only linear normalization methods (though even for fMRI, non-linear
methods generally yield better accuracy). A key step in the registration
process in VBM is that after the non-linear warping is applied, a correction is
applied to each voxel to account for the amount of expansion or contraction
that voxel experienced during registration. This is done by multiplying the
voxel’s intensity value by its relative volume before versus after warping. So,
if a voxel is doubled in size, its intensity in the normalized image will be half
of what it was in the original image. This step is critical to VBM (and the
interpretation of the results), because the computation of grey matter
concentration is based on voxel intensities relative to their volume. Thus, this
step effectively preserves the original amount of grey matter in each
individual’s brain after normalization.

Of course, as discussed in Chapter 7, even non-linear registration is not
perfect, and there will always be some residual differences in shape between
any individual brain and the template. This is a limitation of VBM that is



important to keep in mind – although any MRI-based technique is limited by
the spatial resolution of the original image, the effective resolution of VBM is
somewhat lower than that due to limitations in the registration accuracy.
However, VBM accommodates this through an additional step: spatial
smoothing. This is done in the same way as was described in the fMRI
chapter, using a kernel in the range of 4–16 mm. As in fMRI, the choice of
kernel is driven by the matched filter theorem, which states that the optimal
filter kernel size matches the spatial extent of the expected differences. In
practice it is unlikely that the researcher will know this (unless the study is a
replication of previous work), but prior literature can be used to guide the
choice; changing the kernel size by a couple of millimetres is unlikely to
significantly impact the outcome of the study, although kernels of 4 and 16
mm might well identify different patterns of differences. As in fMRI, spatial
smoothing serves several functions: blurring the images slightly helps
account for small inaccuracies in the registration; as well, it serves to make
the distribution of the data more statistically normal (Gaussian), which
improves the reliability of the subsequent statistics; finally, it also reduces
spatial noise in the image (again by the matched filter theorem – not only do
we optimize identifying effects at the spatial scale of our kernel, but we
minimize interference from noise at a finer spatial scale). A very important
consequence of smoothing to keep in mind is that once smoothed, the data
value (image intensity) at each voxel does not represent the grey matter
concentration at that voxel – it represents the local grey matter concentration
in a region around the voxel, with the size of the region dependent on the size
of the smoothing kernel. Again, the effective resolution of the VBM map will
be lower than the actual resolution of the image, but the explicit application
of a spatial smoothing kernel will help quantify and standardize the level of
effective resolution across the brain, and across subjects.

Statistical comparison of images between groups is performed after
smoothing. Similar to how fMRI data is typically analysed, in VBM ‘mass
univariate’ statistics are used in which the same statistical test is performed
separately at each voxel in the image, with corrections for multiple
comparisons typically implemented using Gaussian random field theory. The
statistics are commonly t-tests, since VBM studies are typically designed to
compare between two groups (for example, a clinical group and healthy
controls), although ANOVA could be used if there are more than two groups



in the study. While VBM was originally developed for cross-sectional
designs, it can be readily applied to longitudinal designs as well. For
example, a t-test could be used to compare the VBM maps of a group of
people at two different time points (for example, in a learning study), or more
complex statistical methods (such as regression) could be used to compare
changes over time between different groups.

As noted above, VBM is a measure of grey matter concentration (or
concentration of another tissue type such as white matter). However, the term
‘concentration’ has a very specific meaning in the context of VBM, which
may at first seem non-intuitive. It is not the same as grey matter density as
might be measured in a cytoarchitectonic study, where the microscopic
spatial resolution allows the number of individual cell bodies in a given
volume to be accurately quantified. The MR images used in VBM do not
have anywhere near the resolution or sensitivity for us to be able to measure
cell-packing density. In a T1-weighted MR image, the original intensity value
of each voxel (prior to normalization) is related to the proportion of the voxel
actually containing grey matter; even after segmentation some voxels overlap
both grey matter and another tissue type, such as CSF or white matter (this is
called a partial volume effect), and so these would have lower proportions –
or ‘concentrations’ – of grey matter. Importantly, however, in VBM
‘concentration’ also refers to the fact that the data are adjusted by the amount
of expansion or contraction each voxel experienced during spatial
normalization. A voxel in the normalized image that corresponds to an area
of the brain that shrank relative to its original size and shape, would have
greater concentration because that voxel represents data from a larger area of
grey matter in the un-normalized brain. Likewise, a voxel that is expanded
during the normalization process will have its intensity (concentration) value
reduced proportionately. Thus, after normalization the intensity value at each
voxel reflects a combination of its original intensity and the amount of size
change it underwent.

Understanding this is critical to interpreting VBM data, and to recognizing
the limitations of the technique. In a pragmatic sense, since VBM is always
focused on differences (either between groups, or within individuals over
time), obtaining statistically significant differences is meaningful because it
reflects differences in grey matter concentration. If one group shows



localized reduction in the VBM metric relative to another group, we could
conclude that there was less grey matter measured in that region. However,
because of the limitations of what a T1-weighted MR image is sensitive to, it
may be challenging to interpret such changes further. For example, a
reduction in the thickness of the cortex in a given region would result in a
decrease in grey matter concentration in a VBM study. However, since VBM
does not measure cortical thickness directly (see below for techniques that
do), this would be only one possible inference. Since T1-weighted MR
images are primarily sensitive to concentrations of myelin, changes in myelin
density could also impact VBM results (although myelin concentration is
relatively low in grey matter). There are a number of other possible reasons
that differences could occur in a VBM study and importantly, some of these
could reflect technical errors rather than neurophysiologically interesting
reasons. Some of these are depicted in Figure 9.5. Most importantly, errors in
registration of the images could result in erroneous results. This is why highly
accurate, non-linear normalization methods are required. Ideally, any such
errors would occur randomly across datasets, rather than following
systematic patterns that differ between groups. However, systematic
differences are possible; for example, if a patient group is characterized by
systematically different brain shapes, or if one group was positioned
differently in the scanner (for example, to accommodate a clinical need), or if
one group tended to move in the scanner more than the other (note that
motion correction is not possible for structural MR images because – unlike
fMRI images – the entire scan comprises a single time point and brain
volume). Differences in cortical folding can also result in VBM differences,
since a fold occurring in a voxel will result in a higher concentration of grey
matter than a non-folded segment of cortex. Other technical errors, such as
errors in the tissue segmentation step (resulting either in grey matter not
being correctly recognized as such, or white matter or CSF being mis-
categorized as grey matter) can also impact the results.

Figure 9.5 Several different factors could result in measured changes in a
VBM study. Some of these might be neurophysiologically interesting,
whereas others reflect technical errors. Reprinted from Ashburner and Friston
(2007) with permission of Elsevier





Deformation-Based Morphometry (DBM)
As with VBM, deformation-based morphometry (DBM) is a measure
based on quantifying the changes that occur to a brain image when it is
spatially normalized. However, while VBM reflects differences in grey
matter concentration, DBM reflects differences in the relative positions of a
brain structure between different groups, or within individuals over time. In
other words, DBM is sensitive to changes or differences in the shape of the
brain. DBM is based on the parameters calculated by the spatial
normalization algorithm that reflect the magnitude and direction of
movement of each voxel from its position in the original (un-normalized)
image to the normalized (template) image. DBM results can be quantified
either at the whole-brain level, or at the individual voxel level. At the whole-
brain level, values from every voxel in the grey matter are combined and
reduced to a single number that reflects the amount of shape change the brain
underwent during normalization. This can be useful in providing an overall
sense of how much the shapes of different groups’ brains differ (for example,
at different ages during development). Alternatively, voxel-level data can be
analysed to identify more localized changes in shape.

Figure 9.6 shows a schematic example of DBM data from a slice of the brain.
Each voxel is represented as a vector (a pair of numbers reflecting the
magnitude and direction) which can be visualized as an arrow representing
the direction and amount of movement that each voxel experienced during
the normalization process. Note that these vectors represent local changes,
after removing any global changes (in brain size, shape, and/or rotation) that
were applied to the image in the first stage of the registration. This figure is
schematic in the sense that we are only visualizing the deformation vectors in
one dimension; in fact, the deformation information at each voxel is a
complex ‘vector field’ that contains three vector elements representing the
shape change (size and direction) in three dimensions. These are called 3D
deformation fields. Understanding this is important because this
representation of the data is more complex than in other methods we have
previously discussed, such as fMRI or VBM. In those methods, we have a
single value at each voxel (representing intensity). Having three values at
each voxel necessitates the use of different statistical techniques, as discussed



below, as well as presenting challenges for visualization. As well, further data
processing is required prior to statistical analysis, because in DBM we are
interested specifically in the direction and distance of the change in position
of each voxel, but not in the change in size of the voxel, or other
transformations that were applied during normalization such as global scaling
and rotation of the image. Thus after obtaining the 3D deformation fields
additional steps are required to derive the desired directional information
from the fields. This is relatively straightforward mathematically, and is
routinely performed in DBM software.

Figure 9.6 An example of a single slice of a DBM map, showing the amount
and direction of movement that was applied to each voxel by spatial
normalization. Note that while normalization induces three-dimensional
changes in brain shape, this 2D image shows only the component of this
movement that occurred in the axial (horizontal) plane. Reprinted from
Ashburner and Friston (2004) with permission of Elsevier



As noted, the 3D vectors at each voxel in a DBM image necessitate that
different statistics be used, because instead of a single data value per location
we have several. Thus multivariate statistics are employed, which involve
computing the parameters that best fit the entire set of 3D vectors, rather than
fitting a single (intensity) value as we do in univariate statistics. Commonly,
this is done using MANOVA or MANCOVA (multivariate analysis of
variance/covariance), which are well-established methods in statistics for
dealing with multivariate data. The critical statistics produced by these
methods are known as Hotelling’s T2 and Wilks’ lambda, and these can be
used to summarize the degree of shape change between two sets of data
(groups or time points) across the whole brain. Alternatively, Hotelling’s T2
can be applied on a voxel-by-voxel basis to provide more precise information



as to the location of the changes in brain shape. However, it is critical to
understand that the voxel locations resulting from such an analysis do not
represent the locations of shape changes themselves. Rather, given that we
are comparing different groups (or time points), any statistical differences tell
us that the brain structure at that voxel location is in relatively different
positions in the two groups (or time points, for a longitudinal design).
Another limitation of DBM is that the multivariate methods – by design –
reduce very complex information to a simpler form that captures the most
prominent features of the differences between groups but at the cost of a
more thorough characterization. As we will see in the next section, tensor-
based morphometry (TBM) builds on DBM to provide more detailed
information concerning the nature of shape changes in the brain.



Tensor-Based Morphometry (TBM)
tensor-based morphometry (TBM), like VBM and DBM, is based on
measurements derived from the spatial normalization of brain images.
Whereas VBM provides a measure of tissue concentration, and DBM a
measure of the differences in position of brain structures, TBM is a measure
of changes in the volume of brain structures (although it can be extended to
other aspects of shape change as well). The ability to capture localized
volume changes makes TBM particularly useful in longitudinal designs (for
example, of brain growth during childhood, or atrophy in old age), although it
can be applied in cross-sectional experiments as well. TBM starts from the
same data as DBM: the deformation fields that mathematically describe the
mapping from the original brain image to the normalized one, after
accounting for global changes in brain volume, shape, and position.
However, whereas DBM uses the deformation fields themselves, TBM is
based on measures derived from the deformation fields, known as the
Jacobian matrix. This matrix captures local information from the
normalization for each voxel, including volume changes, rotation, and
shearing (changes in the shape of a voxel independent of changes in its
volume). Figure 9.7 illustrates how the shapes of individual voxels are
changed by the normalization process, and the corresponding Jacobian matrix
values.

Figure 9.7 The left panel shows a slice of a normalized image, overlaid with
a grid showing how each original (square) voxel’s shape was modified by the
normalization. Note how individual voxels may have changed in size and
shape, but may also have experienced rotation or shearing (non-uniform
shape changes). The right panel shows the Jacobian determinants; bright
areas represent locations in which the gridlines moved farther apart as a result
of normalization, while darker areas represent gridlines moving closer
together. Reprinted from Ashburner and Friston (2007) with permission of
Elsevier



The most common application of TBM uses the Jacobian determinant, a
measure derived from the Jacobian matrix that specifically captures the
volume changes. While this discards other, shape-related changes (for
example, rotation, shearing), it can be very useful because often volumetric
changes are of primary interest in a study. This simplification facilitates both
data analysis and interpretation. For example, studies of brain growth in
development, and atrophy in various neurodegenerative disorders, may be
primarily focused on characterizing where in the brain, and to what degree,
volume changes occur. Moreover, the volume changes implicitly capture the
effects of rotation and translation, even if they do not quantify them directly.
This can be seen in Figure 9.7: because the number of voxels in the image do
not change during normalization, translation and rotation both effect changes
in the volumes of voxels, and likewise volume changes necessarily induce
translation, rotation, and shearing. Volume changes are also intuitively easy
to understand. Thus by basing TBM on these changes, the researcher can
report the data in a way that is readily interpretable by people who are not as
well versed in the field, yet still implicitly captures the complex 3D changes
in shape that exist. Alternatively, the researcher may choose to adopt a more
complex approach that integrates additional measures from the Jacobian
matrix, since all of these metrics are amenable to the general TBM method.

An additional attraction of TBM, relative to DBM, is that taking the Jacobian
determinant results in a single value per voxel, and so familiar univariate



statistical methods can be used (like in fMRI or VBM), rather than
multivariate statistics. Although multivariate statistics are entirely valid
analytical techniques, as we saw in the discussion of DBM they typically
require some simplification prior to interpretation, which can result in a loss
of information. As well, multivariate statistics require greater statistical
understanding both on the part of the researcher and, ultimately, the reader of
the scientific paper, which means the results may be less broadly accessible,
or more open to misinterpretation. The interpretation of TBM using the
Jacobian determinant is also relatively straightforward, even relative to the
other computational neuroanatomy methods we have discussed: whereas
VBM reflects a somewhat abstract metric of grey matter concentration, and
DBM tells us that certain voxels may be in relatively different positions
between groups/time points, TBM tells us how much size change has
occurred. Note, however, that VBM and TBM can be seen to lie along a
continuum: since VBM’s calculation of grey matter concentrations is
multiplied by the change in volume that each voxel experienced during
normalization (and in fact, this is done using the Jacobian determinant), VBM
maps will contain information that overlaps with TBM. However, TBM is a
more ‘pure’ measure of volume changes because this is specifically what the
Jacobian determinant encodes. VBM, on the other hand, combines volumetric
changes with any other changes that may have occurred in grey matter that
affect intensity in a T1-weighted MR image. While this makes VBM
somewhat more complicated to interpret, it also means that VBM may be
sensitive to differences that TBM is not.



Cortical Thickness Measures
All of the computational neuroanatomical methods discussed so far are
voxel-based analysis methods that operate on 3D brain-imaging data. While
they can all be informative, any voxel-based method is limited by partial
volume effects – the fact that a voxel may contain a mixture of different
tissue types (such as grey matter and white matter). Moreover, even changes
that have a straightforward interpretation (like volume changes in TBM) are
somewhat general in that the same magnitude of volume change could be
caused by growth in one direction (for example, the cortex becoming
thicker), or along multiple dimensions (for example, a local area of the brain
growing). Given that the cortex comprises a sheet covering the outer surface
of the brain, and that it is organized into layers, it is desirable to be able to
quantify cortical thickness directly. Here we will discuss two methods for
doing this.

The first method is voxel-based cortical thickness (VBCT) mapping
(Hutton, De Vita, Ashburner, Deichmann, & Turner, 2008; Hutton,
Draganski, Ashburner, & Weiskopf, 2009). VBCT was developed as an
extension of VBM, and is based on very similar methods. The critical
difference is that in VBM, after the T1-weighted MR image is segmented
(into grey matter, white matter, and CSF), the data analysis focuses solely on
a single tissue type (typically grey matter). In contrast, in VBCT the CSF and
white matter images are not discarded but used to define the inner and outer
boundaries, respectively, of the cortex. A mathematical approach known as
the Laplace equation is then used to calculate the distance from every point
on the outer surface of the grey matter to its corresponding point on the inner
surface. Since the cortex is a complex, curved 3D shape and its thickness
varies, finding the ‘corresponding points’ on the outer and inner surfaces of
the cortex is not as simple as drawing a straight line through the cortex, as
Figure 9.8 shows. Instead, a formula known as the Laplace equation is
applied in the following manner: for each voxel on the outer surface, the
straight line that is exactly perpendicular to the outer surface of the cortex at
that point is found. This connects the outer surface to the next voxel layer
below it, where the procedure is then repeated: finding the straight line from
the outer surface of that voxel layer to the next voxel layer. This process is



repeated until the inner surface is reached. Then, the process is repeated
going from the inner surface to the outer surface, and the average of the
outer-to-inner and inner-to-outer distance values is computed to arrive at a
thickness measurement. Additional steps are performed to identify small sulci
which, at the resolution of the MR image, might appear as unusually thick
sections of cortex as illustrated in Figure 9.8. This is done by starting with the
white matter image, finding its outer surface, and then adding a single layer
of voxels (representing grey matter) to the image. After each layer is added,
the Laplace equation is computed to characterize the thickness of the newly
added cortical layer. This thickness should be relatively consistent across the
cortex but, as panel (c) of Figure 9.8 illustrates, for small sulci this process
will result in estimated thicknesses that are exceptionally large (since the two
banks of the sulci will be ‘merged’). When such abnormally large thickness
values are identified, the algorithm labels these as sulci and treats these
differently to calculate the true cortical thickness within the sulcus. This
entire procedure results in a 3D image in which the intensity values of voxels
within the cortex are the estimates of the thickness of the cortex at that point.
Thus, travelling through the cortex from a point on the outer surface to its
corresponding point on the inner surface, all voxels will have the same value.
As a result, although the images can be treated as 3D volumes for statistical
analysis and visualization, it is also sufficient to analyse only the values from
the outer surface of the cortex. This can be visualized on an inflated or flat-
mapped brain as shown in Figure 9.9.

Figure 9.8 Procedure for calculating cortical thickness using the VBCT
method. Panel (a) shows how the Laplace equation is used to identify
corresponding points on the inner and outer surfaces of the cortex, without
being constrained to straight lines. Panel (b) shows an example of a small
sulcus which, in the MR image, has no identifiable CSF between its opposite
banks. To the VBCT algorithm, this will likely end up being treated as an
exceptionally thick portion of cortex, rather than a fold. To account for this
VBCT includes a correction method as shown in panel (c). Successive layers,
each one voxel thick, are added starting from the inner surface (white matter),
and the Laplacian is calculated after the addition of each layer. In this way,
small sulci can be identified as locations in which the thickness increases by
significantly more than the size of a single voxel. Reprinted from Hutton and
colleagues (2008) under the Creative Commons Attribution License (CC BY)



An alternative to the voxel-based approach described above is surface-based
cortical thickness (SBCT) calculation (Fischl & Dale, 2000). This approach
relies on a rather different method of representing the inner and outer layers
of the cortex, prior to calculating thickness. Voxel-based methods, as the
name suggests, operate at the voxel level, meaning that they represent the
brain image data in a 3D Cartesian coordinate system (that is, a grid).
Because this leverages computational methods developed for other brain-
imaging applications, including fMRI and VBM, this approach may have
intuitive appeal for users, and is also computationally relatively simple and
efficient. SBCT approaches, in contrast, require an additional and
computationally intensive step to create a model of the cortical surface. This
is based on the same methods described for spherical surface-based
normalization in Chapter 6. The approach begins with the segmentation of
the T1-weighted MR image into grey matter, white matter, and CSF, just like
VBCT or VBM. However, rather than focusing on the grey matter
component, SBCT starts with the white matter segment. It creates a
tessellated representation of the outer surface of the white matter. Thus the
key difference in algorithms at this point is that VBCT represents the surface
as a set of voxels in a 3D image, whereas SBCT represents the surface as a



smooth, connected set of triangles of varying size and shape, connected by
points at their vertices. This tessellation is initially very jagged, because it is
based on cube-shaped voxels, and so in the next step it is smoothed using
techniques from computer vision known as deformable surface algorithms.
This creates an interpolated surface that has a higher resolution than the
original MR image, and faithfully represents the smooth, complex shape of
the outer surface of the white matter – which is also the inner surface of the
grey matter. The outer surface of the grey matter is created by taking a copy
of the white matter surface, and inflating it in 3D (again using deformable
surface algorithms) until the vertices reach the boundary of the CSF
identified by the initial tissue segmentation step. In other words, the grey
matter (and its thickness) is not computed directly from the grey matter
component of the tissue segmentation, but is interpolated as the space
between the white matter and CSF. Algorithms for creating surface-based
representations are quite complex and time-consuming to run, both because
of the complexity of the mathematics involved, and more so because they are
prone to various types of errors, such as ‘holes’ and ‘tears’ in the surface, and
erroneous connections (for example, two points on opposite sides of a sulcus
might end up connected – similar to the issue of small sulci described above
for VBCT). Automated methods for identifying and correcting these issues
have been developed, but add to the computation time. Once the surfaces are
computed, thickness is estimated in a manner similar to that described for
VBCT, performing point-to-point mapping between the inner and outer
surfaces. Figure 9.10 shows examples of the inner and outer surfaces of the
grey matter, and how the thickness is calculated as the space between them.

Figure 9.9 Example of VBCT results from a study investigating changes in
cortical thickness with age, across a group of 48 people ranging in age from
22 to 60 years. Reprinted from Hutton and colleagues (2009) under the
Creative Commons Attribution License (CC BY)



Figure 9.10 Surface-based cortical thickness (SBCT) calculation and results.
The top left panel shows the inner cortical surface (which is the outer surface
of the white matter) while the top right panel shows the outer cortical surface
(the grey matter–CSF boundary). The grey matter thickness is computed as
the difference between these two surfaces, after they have been converted to
tessellated meshes. The bottom panels show this an example of applying this
method to comparisons between two groups of people with different types of
dementia, each compared with healthy controls. Coloured regions represent
statistically significant differences in cortical thickness, with yellow
representing greater statistical significance. Top panel reprinted from Dale,
Fischl, and Sereno (1999) with permission from Elsevier; bottom images
reprinted from Clarkson and colleagues (2011) with permission from Elsevier



Thus the difference between voxel- and surface-based methods lies not so
much in how thickness is calculated, but rather on how the MR images are
processed prior to the thickness calculations. VBCT is more computationally
efficient and may fit better within the context of data-processing steps – and
software – that a researcher is familiar with if they have previous experience
with VBM or fMRI. However, although at some stages of processing VBCT
interpolates the MR images to higher resolution than the original MR images
(from 1 mm down to 0.5 or even 0.25 mm), it ultimately has lower inherent
spatial resolution than SBCT, and may have less accuracy due to partial
volume effects. The greater computational complexity employed in SBCT
results in greater spatial resolution due to the change from voxel- to surface-



based (tessellated) representation of the data and the use of deformable
surface algorithms that are able to represent the complex curvature of the
cortical surface more precisely than cube-shaped voxels ever can. A
comparison of these methods found that while both performed similarly in
detecting between-group (patient versus control) differences and classifying
individuals as patients or controls, the SBCT method was most sensitive to
changes over time in longitudinal data (Clarkson et al., 2011).

Summary

Structural neuroimaging provides complementary information to functional imaging. While
structural measures cannot tell us about the computations performed by a brain area, or the
cognitive operations it supports, structural methods such as cytoarchitectonics can help
shape and constrain our understanding of the brain’s functional organization because areas
that are micro-anatomically distinct are likely to function differently. Viewing the brain as a
set of functionally and anatomically distinct regions as the meso-scale can aid in the
interpretation of functional imaging data by receding hundreds of thousands of individual
voxels to a more tractable set of regions whose activation and connectivity can be
compared. While historical approaches to structural neuroanatomy used either invasive
methods (such as postmortem histological examination), or labour-intensive, difficult-to-
reproduce tracing methods on structural MR images, modern approaches have provided
automated solutions.

Computational neuroanatomy refers to the class of automated techniques for characterizing
morphometry – the size, shape, and (in some cases) composition of brain areas. These
techniques typically employ a common pipeline involving brain extraction, segmentation of
different tissue types (grey matter, white matter, CSF), spatial normalization, and statistical
comparison. Statistical comparison typically involves contrasts between different groups of
participants (for example, people with a disease relative to healthy controls), or between the
same individuals over time in longitudinal studies (for example, in development or with
disease progression or treatment). Cross-sectional studies can be used to compare different
age groups without the need for obtaining scans from the same individuals over long
periods of time.

Computational neuroanatomical techniques differ primarily in the dependent measure that is
derived for statistical analysis. Voxel-based morphometry (VBM) is one widely used
method that characterizes the ‘concentration’ of grey matter (or other tissue types) in a
measure that is sensitive both to the intensity of MR signal in each voxel, and its size.
Deformation-based morphometry (DBM) measures the amount of change in shape
experienced by each brain (or voxel) during spatial normalization, while tensor-based
morphometry (TBM) provides measures of the change in volume of brains/voxels during
spatial normalization. Another class of techniques measure critical thickness. While this
does not represent shape information the way morphometric techniques do, it has a
relatively intuitive and straightforward interpretation. Cortical thickness can be measured
either using surface-based or voxel-based techniques. Surface-based techniques are
generally considered to be more accurate, but are much more computationally complex and
intensive.



Things You Should Know

Cytoarchitecture refers to the types, densities, and distributions of cells across
cortical layers, while myeloarchitecture refers to the types, densities, and
distributions of local connectivity patterns across layers. Both can be used to define
meso-scale anatomical regions, but do not necessarily yield the same patterns of
organization.
Cytoarchitecture and myeloarchitecture cannot be determined from MRI images
because they require microscopic examination of tissue. However, by combining
structural MR imaging with histological examination of postmortem brain tissue,
probabilistic maps can be created that predict the cytoarchitecture of a given brain
region in living humans.
Recent work has defined and identified meso-scale cortical regions based on a
combination of anatomical and functional features, based entirely on MRI scans, that
show correspondence with other parcellation schemes based on cytoarchitecture and
myeloarchitecture.
Morphology is study of shape; in structural brain imaging it refers to the study of the
size and shape of brain regions and how these are influenced by factors such as
development, experience, and disease. Traditional approaches to morphology
required manual tracing and measurement of individual brain regions, which is
labour-intensive and challenging to reproduce. Automated methods have thus been
developed to obtain morphometric measurements more quickly and reliably; these
are referred to as computational neuroanatomy.
In general, computational neuroanatomy involves obtaining structural MR images,
extracting the brain from non-brain tissue, segmenting the brain tissue into different
types, spatial normalization, and statistical comparison.
Voxel-based morphometry is a measurement of the concentration of grey matter (or
another tissue type) on a voxel-by-voxel basis in the brain. This measure combines
information regarding the intensity of each voxel and its size relative to other brains.
Deformation-based morphometry describes the amount of movement different voxels
in the brain undergo during spatial normalization. As such, the measure reflects how
different a given brain is in size and shape from a reference brain. This can be
computed either as a single value for the whole brain, or as values at each location
(voxel) in the brain. DBM can identify differences in shape between groups (or over
time), but is somewhat nonspecific regarding the nature of those differences.
Tensor-based morphometry measures the amount of change in volume that each
voxel (or the whole brain) undergoes during spatial normalization. Compared to
VBM, TBM is a more straightforward measure of brain volume, but VBM may
capture information that TBM does not.
Cortical thickness is the distance between the outer and inner surfaces of the cortex,
but is often operationalized as the distance between CSF and white matter. This can
be calculated either from surface-based representations of the cortex, or from 3D,
voxel-based representations. Voxel-based measures are more straightforward to
compute, but may have lower spatial resolution and be more subject to imaging
artifacts.
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10 Connectomics: Diffusion Tensor Imaging
(DTI) and Tractography



Learning Objectives
After reading this chapter, you should be able to:

Explain how the diffusion of water provides an indirect means of imaging white matter
tracts.
Describe the pulse sequence used for DTI.
Describe the preprocessing steps involved in DTI analysis, and explain the rationale for
each.
Explain the measure of fractional anisotropy and how it can be used.
Explain the difference between diffusion tensor calculations and tractography.
Contrast voxel-based and tract-based approaches to analysing diffusion MRI data.
List several ways in which tractography analyses can be used in research and clinical
settings.
Identify limitations of diffusion imaging-based approaches to tractography.



Introduction
Connectomics is the term applied to the study of brain connectivity. This
term is quite new, with the first uses of the term ‘connectome’ appearing in
the literature in 2005 (Sporns, Tononi, & Kötter, 2005). However, the study
of anatomical connections within the brain precedes the development of this
term by roughly 200 years, when it was commonly known as hodology
(Catani, 2011). In 1809 Johann Reil first published a report of a method of
soaking the brain in alcohol that made it more amenable to dissection, thus
allowing him to identify white matter fibres running between different parts
of the brain (Reil, 1809). Reil’s findings were greatly extended by Karl
Burdach, who published a three-volume textbook of anatomy between 1819
and 1826, which included Latin names for many major white matter tracts in
the brain that are still in use today, such as the arcuate fasciculus and
cingulum (Burdach, 1819). While Reil’s and Burdach’s work focused on
anatomical description, in the late nineteenth century Theodor Meynert
developed a ‘hodological’ theory of brain function that integrated brain
connectivity into a model of how learning, memory, movement, and language
depended on convergence – or association – of information from multiple
brain areas (Meynert, 1885). Indeed, the work of Meynert and his students is
today termed the ‘associationist school’. Meynert was a Viennese psychiatrist
whose primary interest was in elucidating the physiological bases of mental
illness, and who mentored such luminaries as Sigmund Freud and Carl
Wernicke. Meynert also developed a taxonomy in which connections within
the brain were divided into three categories: projection (in and out of the
cortex to other parts of the brain), commissural (connections between
hemispheres), and association (connections between cortical areas). Building
on Meynert’s work, Wernicke published in 1874 the first proposal of a
‘disconnection’ syndrome in which a neurocognitive function (in this case,
language) could be disrupted not only by damage to a cortical region, but also
by damage to white matter connections between cortical regions.

A limitation of early work in hodology was that methods were limited to
postmortem dissections of the brain, which relied on significant skill, could
only identify the largest fibre bundles in the brain, and did not afford means
of fine-grained examination or quantification. However, at the same time as



interest in the practical implications of white matter connections was
developing, novel staining techniques were being pioneered that allowed
microscopic visualization of both cell bodies and connections. This led to
significant work into the twentieth century in characterizing brain
connectivity at micro-, meso-, and macro-anatomical scales, the description
of many circuits within the brain, and an understanding of the roles of these
circuits in specific behaviours and diseases. A direct consequence of this
work was the development of frontal lobotomy as a technique for treating
psychiatric patients: based on animal work showing reduced aggression in
monkeys after connections between the thalamus and frontal lobes were
severed, it was posited that a similar treatment could be applied to people
suffering from psychosis (Moniz, 2006). This approach was found to create
more manageable patients and was widely popularized in America by
neurologist Walter Freeman and neurosurgeon James Watts from the late
1940s through the 1960s, when the many negative consequences of the
technique became widely appreciated. The notion of surgical disconnection
also led to the development of the technique of severing the corpus callosum
as a treatment for intractable epilepsy, which led to research by Roger Sperry,
Michael Gazzaniga, and others characterizing the unique cognitive
capabilities of the two cerebral hemispheres.

In spite of the advances to our knowledge provided by hodology, through
most of the twentieth century there were still only limited ways of studying
brain connectivity, and none that were useful in vivo or non-invasively.
Continued advances in staining techniques allowed for approaches such as
injecting a tracer into a brain region and allowing it to diffuse down axons
from neurons in that region to the areas that the axons projected to, allowing
for in vivo and, in some cases, activity-dependent mapping in animals.
However, these techniques still involved toxic traces and required sacrifice of
the animal at the end, making them unsuitable for use with humans. In 1994
however, Basser, Mattiello, and LeBihan published the first report on an MRI
technique known as diffusion tensor imaging (DTI; Basser, Mattiello, &
LeBihan, 1994), which quickly led to the development of non-invasive, in
vivo MRI-based tracing of white matter tracts in humans through the close of
the twentieth century and up to the present.



What Are We Measuring?
The connectome is the complete set, or matrix, of connections in a brain –
although in practice the connectome is the subset of those connections that
we are able to map out given the available technology. The connectome is
composed of two types of elements: brain regions and the connections
between them. In its simplest form, the connectome can be conceptualized as
a square matrix, as shown in Figure 10.1, with the complete set of brain
regions along both axes, and the presence or absence of a connection between
each pair of areas coded as 1 or 0, respectively. For each connection defined
in the matrix, however, a full description of the connectome would include
properties such as the direction of the connection (sometimes distinguished
from the connectome as the projectome), connection strength, whether it is
excitatory or inhibitory, and even features such as the conduction delay,
myelination, etc. The goal of such a rich and detailed description of the
human connectome is far from being achieved, however ambitious large-
scale, multi-centre research projects such as the Human Connectome
Project have been developed to pursue these goals.

As outlined in Chapter 1, connections in the brain involve projections
extending from neurons: axons carry the spiking output of neurons when they
generate action potentials, and dendrites receive input from axons and
summate all of their inputs to modulate postsynaptic potentials and possibly
trigger action potentials in the receiving neurons. Most neurons’ axons are
coated in a myelin sheath, which is composed of oligodendrocytes (a type of
glial cell) and high in fat content. The myelin serves to electrically insulate
the axons, allowing faster and longer-distance propagation of action
potentials. Since the brain is organized on multiple scales, connectivity can
likewise be characterized this way: there are very short-range connections
between neurons (micro-scale; for example, between cells within a region),
then there are connections within a region (for example, between cortical
columns; meso-scale), and finally there are long-range connections between
different brain areas (macro-scale) – and this over-simplifies what is really a
continuum of connectivity distances and types. The white matter of the brain
is composed primarily of axonal projections, which is why in T1-weighted
anatomical MR images it appears bright relative to the grey matter of the



cortex – the high fat concentration in the myelin causes relatively slower
relaxation than in the grey matter, which is composed largely of cell bodies
and has relatively little fat.

At present, our ability to resolve structural connections using in vivo
neuroimaging methods is limited to the longer-range connections (although
as with all areas of neuroimaging, these limits are constantly being pushed
through technique development). Our ability to identify these connections
based on MR imaging is based almost entirely on a technique known as
diffusion-weighted imaging (DWI), which has a number of derivative
techniques including diffusion tensor imaging (DTI) and diffusion MRI
tractography (terms which we will explain later). DWI goes a step beyond
typical structural imaging, in which contrast is largely driven by the relative
proportions of water and fat in each voxel. These ‘static’ imaging techniques
allow us to identify white matter and distinguish it from grey matter or CSF,
and even to identify white matter lesions (such as occur in multiple sclerosis).
However, the resolution of these structural techniques is far from high
enough for us to be able to resolve individual axons in order to identify their
orientations and the paths that they follow.

Figure 10.1 An example of a connectome matrix, showing the presence or
absence of white-matter pathways between a set of 47 sensory and motor
areas of macaque cortex. The area labels are provided only on the y axis, but
the same areas, in the same order, are plotted along the x axis as well.
Because the connectivity matrix does not encode information concerning the
direction of the connections, the matrix is symmetrical across the diagonal
(grey squares). Although this example was based on 505 pathways identified
using invasive tracing studies, the same type of matrix can be derived from
diffusion MRI data. From Honey, Kötter, Breakspear, & Sporns, 2007,
copyright 2007, National Academy of Sciences USA; used with permission



DWI allows us to infer information about the orientation of fibres within a
voxel through a specific MRI pulse sequence. Like virtually all MR imaging,
the principle of diffusion MRI is based on hydrogen atoms, and more
specifically water. Although white matter has a high fat content, the inside of
the axons is filled largely with water (along with electrolytes such as sodium
and potassium). Regardless of whether an action potential is propagating
along the axon or not, the water molecules inside of axons have relatively
stable positions – that is to say, there is no flow of water within an axon from
one end to the other. However, simply due to the inherent heat energy in the
brain, all molecules – including water – move randomly over very small
distances. This random movement is known as Brownian motion and is not
a unique property of axons – essentially all atoms and molecules experience
Brownian motion unless there is no heat energy (that is, if they were frozen to
absolute zero). This motion is very slight; within the living brain over the



course of 50 ms (about the time of a DWI measurement), a water molecule
will diffuse about 10 µm. What is special about the Brownian motion of
water molecules inside axons, however, is that it is anisotropic – that is,
because the fatty myelin sheath is hydrophobic (resists water), the water
molecules inside axons tend to diffuse preferentially along the direction of
the axons, rather than across their cell walls. In contrast, diffusion in other
parts of the brain, such as grey matter and CSF, is isotropic – it occurs in
every direction with basically equal probability since there are no barriers to
the molecules’ diffusion. This is an oversimplification, because in grey matter
there are axons as well as cell bodies, and cell walls as well as intracellular
structures can act as barriers to diffusion. However, in white matter the
amount of myelin is very high due to the dense packing of axons. More
importantly, white matter is largely composed of fibre bundles – large
numbers of axons running in parallel and connecting the same or nearby
brain regions – so that within a white-matter voxel there will be a high
proportion of axons within which water is diffusing preferentially along the
same direction.

There are a couple of important points to note about DWI. Firstly, although
myelinated axons are a significant reason for anisotropic diffusion in the
brain, this is not the only mechanism causing anisotropic diffusion. Axons
themselves – even if not myelinated – can cause anisotropic diffusion along
their length due to the relatively low permeability of their cell walls to water.
This has been demonstrated, for example, in mouse embryos at a
developmental stage when axons exist, but are not yet myelinated. Based on
comparisons between immature and adult brains, it has been estimated that
60% of anisotropic diffusion in adult white matter is attributable to the axons
themselves, with the other 40% to myelin (Mori, 2007). However, this
estimate may be inaccurate because of changes in the density of axons that
occur with development; other data suggest that myelin may account for only
20% of the anisotropy of diffusion. Another caveat is that if a voxel in a DWI
image contains a mixture of axonal fibres oriented in different directions, the
net diffusion from that voxel may have relatively low anisotropy even though
the voxel is densely packed with oriented fibres, because diffusion does not
preferentially occur in a single direction (the measurement from the voxel
simply averages all of the diffusion directions). These caveats are particularly
important to keep in mind when comparing DWI data between different



research groups: although decreased anisotropy may indicate a reduction of
myelin, it could also be caused by increased crossing fibres, or even other
cellular-level processes that affect water diffusion.

Thus although DWI is commonly used as a measure of white-matter integrity
and orientation, it must always be remembered that we are not imaging
white- matter tracts directly – we are inferring them from water diffusion.
Another important point to realize is that DWI measurements cannot inform
us about the direction that information flows along a tract. The random
diffusion of water occurs equally in both directions along a fibre, and is not
influenced by the propagation of electrical potentials along the axon. Finally,
always remember that this diffusion is not a biological process – it is a
physical one that requires only ambient heat energy. Thus DWI works
similarly in living and cadaver brains. This is an important point and one that
is often misunderstood – for instance, people sometimes have a
misunderstanding that the movement of water molecules is related to the
conduction of action potentials. Always remember that DWI is a structural
imaging method.



How Do We Measure It?
A DWI pulse sequence is one that is sensitive to the Brownian motion of
water molecules. As in much of MR imaging, the specifics of diffusion
weighting are obtained through manipulation of the gradient magnetic fields
(gradients). Recall that in addition to the strong standing magnetic field of the
MRI scanner (for example, 1.5, 3.0, or 7.0 T), additional magnetic fields that
change along a particular direction can be induced transiently. This is how
slice selection and phase and frequency encoding are performed in structural
imaging. In diffusion imaging, slice selection is performed in the same way
as in conventional structural imaging described earlier in this book. However,
after this, things happen quite differently.

The principle of diffusion imaging is that we can use a magnetic field
gradient to ‘tag’ water molecules according to their location along a
particular axis. This phase encoding is achieved through a dephasing
gradient applied soon after the RF excitation pulse. Recall that RF excitation
provides energy at the resonant (Larmor) frequency of the molecules, causing
the net magnetization vector to tip from the longitudinal to the transverse
plane. Applying the dephasing gradient after RF excitation increases the
magnetic field at one end of the axis of the gradient, and decreases it at the
other end. Since the molecules’ precessional frequency is directly related to
the magnetic field strength, the effect of the gradient is to speed up precession
at one end and slow it down at the other. This in turn induces a phase roll
when the gradient is turned off: all the molecules return to precessing at the
same speed (frequency), but due to their transient acceleration/deceleration
along the gradient axis, they have different phases. This is illustrated in
Figure 10.2. This phase roll serves to ‘tag’ the water molecules according to
their position along the gradient. Then, a certain amount of time is allowed to
pass. During this time, as diffusion occurs the water molecules will travel
along random paths, thus changing their locations. As a result, the smooth
phase roll induced by the dephasing gradient will be disrupted as molecules
precessing with a given phase move to other locations. Following this
diffusion time, a second, rephasing gradient is applied. This gradient works
to ‘unwind’ the phase roll induced by the dephasing gradient. At this point, if
no diffusion had occurred and all water molecules were in the same locations



as when the dephasing gradient was turned off, the rephasing gradient would
reset all phases along the gradient axis to be the same. However, since water
molecules in fact diffused, the rephasing gradient is only partially effective at
resetting the phases – the more a molecule has moved, the more its ‘reset’
phase will differ from the original phase associated with its ending position.
Immediately after the dephasing gradient, the signal is read out (the echo
time, or TE). At this point, if no diffusion had occurred along the gradient
direction, signal would be strong all along this direction (though it would still
vary according to the density of water molecules in each voxel). In contrast,
the more diffusion that occurred along the direction of the gradient, the less
effective the rephasing will be and the more signal loss that will occur. In
other words, signal intensity in a diffusion-weighted image is high when little
diffusion occurred, and low when more diffusion occurred.

Figure 10.2 Schematic diagram of the effects of a diffusion MRI pulse
sequence. The left panel shows that, initially, all hydrogen atoms precess in
synchrony, with their axes aligned with the main magnetic field (B0). A
magnetic field ‘winding’ gradient is then applied across the slice, leading to a
‘phase roll’ whereby precession rates vary across the slice (middle panel).
This serves to ‘tag’ protons according to their position in the slice. Then, a
rephasing (‘unwinding’) gradient is applied. The top right panel shows what
would happen if no water diffusion occurred: rephasing would cause the
phase of all molecules to come back into alignment. However, if the
molecules diffused randomly between the winding and unwinding pulses, we
end up with the state shown in the bottom right panel, where few protons
have the original phase. Moreover, because some of the original protons in
the excited slice diffused outside of the slice, we have fewer total excited
protons contributing to the signal in the slice. As a result, greater diffusion
leads to a reduced diffusion-weighted signal



Note that throughout the above description the term, ‘along the gradient
direction’ was used repeatedly. This is an important point: a single diffusion-
weighted acquisition is sensitive only to diffusion along a single direction.
Thus a number of acquisitions are required, using gradients along different
directions, in order to determine primary directions of diffusion in each voxel
in the image. In principle, a minimum of three directions are required for a
three-dimensional image. It is not necessary to obtain as many gradient
directions as there are possible directions of diffusion in the brain, because a
direction of diffusion that is intermediate between two measured directions
will show some evidence of diffusion along each of the measured directions,
so the true direction of diffusion can be inferred by combining the images.
Even so, obtaining only three directions of diffusion would provide very
limited information and so the estimation of true diffusion directions would
be prone to significant inaccuracy. As well, a single voxel may contain
diffusion in multiple directions, and resolving these require obtaining
diffusion measurements in more directions. Finally, computation of the
diffusion tensor (described later in this chapter) is necessary for many of the
uses of DWI in cognitive neuroscience, and mathematically this requires a
minimum of seven directions of diffusion to be measured.

In practice, a large number of diffusion gradient directions (typically in the
range of 55–90) are obtained in a typical DWI scan for connectomics
research. Note that although MRI scanners typically only have three sets of
gradient coils, aligned with the primary spatial dimensions of the scanner
bore, a gradient field along any direction can be created by combining these
gradient coils in different ways. Offline processing (discussed below) serves



to combine these images to derive a number of measures such as the primary
direction of diffusion within each voxel. In addition to acquiring multiple
directions, it is critical to obtain one or more ‘baseline’ images using the
same pulse sequence, but without diffusion weighting along any direction
(this is often called a b = 0 image, because b is a measure of diffusion
weighting). This unweighted image is essential because the signal at each
voxel is primarily determined by its tissue composition, with the diffusion
due to Brownian motion causing relatively small changes in the strength of
this signal. Therefore, analogously with fMRI, we can only compute the
amount of diffusion that occurred along a particular direction by subtracting
the image measuring diffusion along that direction from the baseline scan.

Having described the basics of DWI, there are some details that are worth
discussing. Firstly, although DWI is sensitive to the very small, Brownian
motion of water molecules, other movements of liquid occur in the brain as
well. These movements, such as blood flow and CSF circulation, generally
occur on a larger scale (recall that Brownian motion amounts to only about
10 µm in the time used to acquire a diffusion-weighted image). These larger-
scale, ‘bulk’ movements of molecules look very different to a DWI sequence
than Brownian motion. This is because of both the higher speed at which
such flow occurs, and the fact that in general such flow will be coherent in its
speed and direction across all nearby molecules (as opposed to random for
Brownian motion). Thus if blood is flowing through a vessel in a DWI voxel,
the refocusing pulse will cause ‘perfect’ rephasing – all the protons will be
precessing in phase with each other and thus no signal loss will occur (there
will be an overall phase shift relative to the case when absolutely no
movement of molecules occurred, but this doesn’t matter at readout time). In
practice, the situation is more complex because it is likely that the direction
of such bulk flow will not be perfectly parallel to the direction of the
diffusion being measured, and there may be bends in the blood vessel or a
number of capillaries captured within the voxel, with flow occurring in
different directions. Thus such bulk flow may have some impact on reducing
signal in the voxel. However, because rates of blood and CSF flow are much
higher than the speed of Brownian motion, a pulse sequence tuned to detect
Brownian motion will be largely insensitive to such flow.

It is also worth noting that there are a variety of DWI pulse sequences that



vary to differing degrees from the basic one described above. Both spin echo
and gradient echo sequences can be used; however, the one that is almost
universally used at present is echoplanar imaging (EPI) – the same type of
sequence used in fMRI. EPI sequences for DWI are quite different in their
specific parameters from those used in fMRI, but the benefits and costs of
EPI are similar. EPI allows for fast imaging, which reduces artifacts due to
blood and CSF flow as well as head movement (including pulsations of the
brain with each heartbeat), as well as yielding reasonable scan times for
whole-brain acquisitions. A typical whole-brain DWI scan with
approximately 50 directions and a spatial resolution of 2 × 2 × 2 mm may
take 10–15 min using EPI, which feels long enough to a person having to
hold still in an MRI scanner! Another parameter that varies between
sequences is whether the sequence uses a refocusing gradient pulse that is in
the opposite direction to the dephasing pulse, or in the same direction. This
may seem counterintuitive – a refocusing pulse in the opposite direction will
cause phase unwinding as described above, whereas one in the same direction
as the original pulse will create even more dephasing. However, in the case
where the same direction is used for both pulses, they are separated by a 180°
RF pulse which serves to invert (flip) the NMV such that the refocusing pulse
has the desired effect.

In practice, there are a few parameters that the researcher performing DWI
must decide on. One is the spatial resolution. As with all MR imaging, SNR
decreases nonlinearly with voxel size, and so there is always a trade-off
between getting the best spatial resolution, and obtaining a strong enough
signal. Currently voxel sizes on the order of 1–2 mm isotropic are standard,
although the lower bounds of this are being pushed using very high field (7
T+) scanners; indeed, the greatest demand for such high-powered magnets is
for doing DWI much more than for fMRI. The number of directions obtained
is limited by the hardware and scan time, but in practice numbers in the range
of 50–100 are feasible; for basic DTI there is not necessarily a large benefit to
increasing the number of directions from 50 to 100, but for more advanced
analysis techniques that can be applied in tractography; more directions
provide a significant improvement. The other parameter that has a strong
influence on the image quality is known as the b-factor. This number reflects
both the strength of the gradient along the diffusion direction, and the
duration that it is on for. Increasing either of these factors increases



sensitivity to diffusion, and so b is a convenient way to summarize these two
related parameters. In practice b = 1000 is a good minimum for DTI, with
some approaches using much higher (for example, 5000–8000) values. A
critical limitation on the parameters chosen for DWI is the fact that applying
a large number of RF pulses and cycling high-amplitude gradient magnetic
fields on and off can actually heat the tissue of the person being scanned. All
MRI scanners have built-in safety mechanisms that calculate the SAR
(specific absorption rate – a measure of how much RF energy the body can
safely absorb without heating) of a sequence and prevent the use of settings
that would endanger the participant. However, these safety settings
(combined with the specific hardware and pulse sequences available) may
place limits on the parameters of the DWI sequence. In some cases, using
too-ambitious parameters can actually cause the MRI system to stop mid-
scan and not allow scanning to start again until the machine has cooled down.

Cardiac artifacts are also problematic in DWI. With every heartbeat, the brain
pulses with the force of blood being pumped into it. This pulsation is large
enough that it can often be observed by the naked eye when the brain is
exposed, for example during neurosurgery. This pulsation causes changes in
the size and shape of the brain, particularly around the ventricles and outside
edges of the brain. In DWI, these have the effect of increasing the amount of
phase dispersion across the brain (that is, creating greater phase roll than was
induced by the MR gradients alone), which in turn artificially inflate
measures of diffusion. The best way to deal with this problem is cardiac
gating. This involves measuring the heartbeat (EKG, or electrocardiogram)
of the person being scanned, using a chest strap which is connected to the
MR scanner. The scanner can then time the acquisition of each image to
occur at the same point in the person’s cardiac cycle, thus eliminating any
artifacts caused by the brain being in different phases of pulsation on
different acquisitions.



Data Analysis



Preprocessing
Like fMRI data, DWI data requires preprocessing prior to analysis to remove
artifacts and optimize our sensitivity to effects in the data. Most of these steps
are fairly straightforward and uncontroversial, and are easily performed in
any mainstream DTI analysis software. These steps can be broadly broken
down into three stages: artifact correction, alignment to a standardized
template (normalization), and derivation of diffusion tensor parameters. A
DWI dataset comprises a set of brain volumes that each have a different
diffusion direction, as well as the unweighted baseline (b = 0) image or
images. These images are typically all saved in a single data file for export
from the MRI scanner. In addition, two other pieces of information are
required for analysis: the set of gradient (diffusion) directions corresponding
to each brain volume in the file, and the associated b value for that volume.
These are typically stored in the header (meta-data) portion of the raw image
files, but many analysis packages require them to be extracted to separate
files.

Artifact Correction
As with fMRI, small head motions can cause significant distortions to DWI
data, and these can be corrected using the same motion correction algorithms
used for fMRI data. As well – and more importantly – Eddy currents are an
artifact induced by the gradients during DWI data collection that cause spatial
distortions, particularly along the phase encoding direction. Eddy currents are
loops of electrical current induced in conductive pieces of the MRI hardware,
such as the cryostat containing the liquid helium needed to cool the coils that
maintain the standing, strong magnetic field of the MRI scanner. These
currents are created through Faraday’s laws of induction (the right-hand rule),
and induce their own magnetic fields that are opposite to those that induced
them in the first place. Thus, Eddy currents resist the electromagnetic fields
that are intentionally produced by the MRI pulse sequence, which can cause
lags and other distortions in the fields. This is a problem since MR imaging is
so dependent on the precise timing and spatial gradients specified in the pulse
sequence. Eddy currents can cause geometric distortions of images,



misregistrations between different diffusion weighting directions, and
ultimately miscalculations of the directions of diffusion in individual voxels.
Both Eddy currents and motion can be corrected in a single step; indeed, in
some software there is only an ‘Eddy current correction’ step – but this also
accomplishes motion correction. Although historically the same motion
correction algorithms used on fMRI data were applied to DWI data for this
purpose, these were shown to have some shortcomings, especially for data
collected with very high b values. More accurate methods have been
developed specifically for DWI data, and are included in analysis software
packages.

In addition to Eddy current and motion correction, another step that is often
applied is to correct for magnetic field inhomogeneities. Because DWI data
are typically acquired using a fast pulse sequence like EPI, they are subject to
the geometric image distortions caused by such sequences that were
described in the fMRI chapter. If the researcher acquires a ‘field map’ scan in
addition to the DWI data, this can be used to correct for these distortions. The
effects of this step will be to improve the accuracy of both the registration of
the DWI data to the anatomical image, and of the diffusion computations in
areas where geometric distortion is present.

Spatial Smoothing
Spatial smoothing is typically performed on DWI data, as with fMRI and
VBM data, and for similar reasons. That is, smoothing helps to reduce
spatially random noise and small errors in misregistration between subjects,
while at the same time enhancing true differences – assuming that the spatial
extent of the differences is roughly the same as the smoothing kernel (the
matched filter theorem). However, there are some drawbacks to smoothing.
Firstly, as with other types of MRI data, it may not be known in advance
what the spatial extent of a difference will be, and this may vary across
different parts of the brain. This makes it difficult to choose an optimized
kernel size. Indeed, differences in the choice of smoothing kernel size have
been shown to lead to different conclusions from the same DWI dataset
(Jones, Symms, Cercignani, & Howard, 2005). Secondly, although
smoothing can reduce the effects of imperfect spatial registration, it does so
in a rather blunt way, smoothing equally in a sphere around each voxel.



Misregistrations may have more complex spatial patterns that are not
properly corrected simply by smoothing. Finally, smoothing can amplify
partial volume effects that occur when a voxel contains a mixture of different
tissue types (such as both grey and white matter), or a mixture of fibre
orientations (such as when two tracts are close to each other). This is because
the blurring will tend to spread partial volume effects from the voxels where
they occur, to adjacent voxels that may not have contained partial volume
effects prior to smoothing. Thus in general – especially since voxel sizes for
DWI are generally much smaller than for fMRI – relatively conservative
(small) smoothing kernels should be used.

Diffusion Tensor Calculations
Computing the diffusion tensor is the key first step in getting useful
information out of DWI data. Indeed, diffusion MR imaging is commonly
referred to as diffusion tensor imaging (DTI) because this step is so central to
any of the analysis approaches that may be applied to the data. The purpose
of calculating the diffusion tensor is to reduce the raw image, with its many
different diffusion-weighted directions, to a single image that reflects the
primary direction of diffusion of water in each voxel. This process starts with
the preprocessed raw data, which are the set of brain volumes with different
diffusion weightings, each with the b = 0 (unweighted) image subtracted.
These are called apparent diffusion coefficient (ADC) images. These ADC
values for the different directions are combined mathematically to compute
the diffusion tensor matrix at each voxel. In turn, from this matrix we can
derive six parameters that define an ellipsoid (a 3D oval), which is a visual
representation of the primary direction of diffusion in each voxel, as well as
the degree of anisotropy of the diffusion. Figure 10.3 shows examples of
different ellipsoid shapes, and their interpretations.

Interpreting these ellipsoids is somewhat intuitive, but does require some
deeper understanding. If the voxel has isotropic diffusion, the ellipsoid will
be a perfect sphere. Conversely, if the voxel has highly anisotropic diffusion,
the ellipsoid will resemble the shape of a cigar, with its long axis following
the strongest (principal) direction of diffusion. The six parameters calculated
from the diffusion tensor matrix include three values encoding the shape of



the ellipsoid; these are the principal eigenvalues, (labelled λ1, λ2, and λ3)
which encode the relative amount (strength) of diffusion along the primary
direction of diffusion and the two directions orthogonal to the first. The other
three parameters are the eigenvectors (v1, v2, and v3), which encode the
direction of diffusion for each of these eigenvalues. An important point to
note here is that – while v1 and λ1 encode the primary direction and strength
of diffusion, respectively, in that direction – the second and third
eigenvectors and eigenvalues (λ2, λ3, v2, and v3) do not represent the second-
and third-strongest directions of diffusion. This is because the second and
third eigenvectors are required mathematically to be orthogonal to the first. In
general, if a voxel contains only fibres running in a single direction, this is
not an issue since the primary eigenvector will represent the direction of
those fibres, and the ellipsoid will be quite elongated in that direction.
However, voxels may contain a mixture of fibres oriented in different
directions (crossing fibres). In this case, the ellipsoid will have a more
complex shape. For example, a ‘pancake’-shaped ellipsoid would indicate
that there is not one, but two strong directions of diffusion. However, since
the second eigenvector is mathematically required to be orthogonal to the
first, the orientation of the two ‘flat’ axes of the pancake may not reflect the
true directions of diffusion. This is illustrated for the simpler 2D case in
Figure 10.4. We will return to the issue of crossing fibres later, as more
complex mathematical approaches are needed to distinguish voxels
containing crossing fibres from those that lack strongly oriented fibres in any
direction, and to estimate the directions of those crossing fibres. For the time
being, keep in mind that cigar-shaped ellipsoids likely represent the presence
(and direction) of fibre bundles, whereas voxels whose ellipsoids look like
pancakes, spheres, or other shapes may either not contain white matter tracts,
or contain a mixture of fibres of different orientations.

Figure 10.3 Examples of different ellipsoids that could be derived from DTI
data. Each ellipsoid represents the direction and strength of diffusion in three
dimensions. For simplicity, only the two strongest directions of diffusion are
indicated with lines and arrows; the strongest direction of diffusion (first
eigenvector) is shown in red, and the second-strongest direction orthogonal to
the first direction (second eigenvector) is shown in blue. Arrowheads are
drawn at both ends of these lines to emphasize the fact that DTI does not
provide information as to the direction of diffusion. The first two spheres on



the left (A and B) represent isotropic diffusion; however, the strength of
diffusion is twice as great in the leftmost example. The remaining ellipsoids
represent increasingly anisotropic diffusion, moving C to F. The two
rightmost ellipsoids (F and G) represent the same strengths of diffusion, but
in different primary directions

Because the interpretation of ellipsoid maps is not entirely intuitive, and is
somewhat removed from our primary goal in connectomics (characterizing
fibre tracts), a more common way to show DTI data is to plot coloured maps
of the direction of the principal eigenvector at each voxel. An example of this
is shown in Figure 10.5. Diffusion along the principal axes (x = left–right; y =
anterior–posterior; z = inferior–superior) are represented by primary colours
(red, blue, and green, respectively), and angles off of these principal
directions are represented by blends of the primary colours in proportion to
the angle. These maps are useful for visualizing three-dimensional fibre tract
orientations in two-dimensional images. However, they are of limited use in
performing quantitative, statistical analyses of DTI data – in part because
each voxel is represented as a 3 × 3 matrix rather than a single value. For
quantitative analysis, we turn to other measures.

Figure 10.4 Schematic examples illustrating how varying compositions of
fibre orientations within a single voxel (top row) influence the diffusion
tensor ellipsoid (bottom row). Within the ellipsoid, the first and second
eigenvectors are drawn. Although DTI is performed in three dimensions, this
2D example serves to illustrate the key points more simply. (A) shows a
voxel containing fibres of a single orientation; its tensor ellipsoid shows a
clear direction of diffusion. Likewise, (B) and (C) show voxels containing
fibres of single orientations; the angle of the first eigenvector reflects the
orientation of the fibres. (D) shows a voxel that contains equal numbers of
fibres of two orthogonal orientations (crossing fibres); its primary and
secondary eigenvectors are of equal length, indicating that the voxel does not
reflect orientations of a single direction. In (E), we again have orthogonal
crossing fibres, but there are more fibres in one direction than the other. As a



result, the tensor ellipsoid is not round – as in the case of equal numbers of
crossing fibres – but nor is it as oval as in (A), (B), or (C). Moreover, this
case is indistinguishable from (F), in which there are equal numbers of fibres
in two directions, but the directions are not orthogonal to each other. Finally,
(G) shows a case of randomly oriented fibres. The tensor ellipsoid in this case
is indistinguishable from (D). Overall, this figure emphasizes that DTI is an
imperfect means of estimating white-matter tract orientation, especially when
a voxel contains crossing fibres

The most common metric derived from DTI data is fractional anisotropy
(FA). FA is computed as a fraction of the difference in the size of each of the
three principal eigenvectors, relative to their summed length (mathematically,
FA is a measure of normalized variance along the principal eigenvectors). In
other words, FA represents the anisotropy of the voxel, regardless of its
orientation. FA values can range from 0 to 1, with 1 representing diffusion
along a single direction only, and 0 representing perfectly isotropic diffusion.
Overall, white-matter voxels will tend to have higher FA values than grey-
matter voxels, and within the white matter high FA values will be found in
voxels through which pass a relatively large number of fibres running in a
single direction. FA is often interpreted as a measure of ‘white-matter
integrity’ since if white matter were to break down in a particular location,
diffusion would become less anisotropic and FA would consequently
decrease. However, FA is an imperfect measure of white-matter integrity;
voxels that contain a mixture of fibres running in two or more different
directions will have a lower FA value than voxels with fibres all running in
the same direction, even though both contain high proportions of strongly
oriented fibres. FA is also susceptible to partial volume effects, which occur
if a voxel contains a mixture of white matter tracts and other tissue (such as
blood vessels, CSF, or grey matter). Nonetheless, FA remains a popular
metric in DTI studies because it is easy and quick to compute and can be
(cautiously) interpreted in terms of white matter integrity. As well, because



we have reduced the tensor from a 3 × 3 matrix to a single number, FA lends
itself readily to voxel-by-voxel (mass univariate) statistical analysis, which is
readily available in most software packages and makes for straightforward
statistical comparisons – for example between groups of people, or within
groups over time. Several other metrics can be calculated from the diffusion
tensor, including mean diffusivity (MD; the average of the three
eigenvalues), relative anisotropy (RA; the standard deviation in eigenvalues
divided by MD), and volume ratio (VR; the sum of the eigenvalues divided
by MD). However, the interpretation of these measures is often less clear or
relevant than FA, so FA is the most commonly used.

Figure 10.5 Directionally encoded fibre orientation maps of an axial slice of
a human brain, using colour to represent the primary direction of diffusion for
anisotropic voxels. The colour wheel on the right indicates how colour is
used to represent fibre orientations in 3D. Adapted with permission from
Elsevier from Mori and Zhang (2006)

While FA measures have value, they do not tell us anything about the
orientation of the fibres in each voxel. As noted above, although visual
examination of directionally encoded fibre orientation maps such as those in
Figure 10.5 can be informative, it is not immediately intuitive how those
could be quantified. Although we could compare orientation along the
primary diffusion direction between groups of people, there are likely to be
few cases where we would expect actual changes in the orientation of a fibre
bundle, rather than the strength of diffusion. Furthermore, perhaps the



greatest appeal of DTI to cognitive neuroscience is its ability to inform us
about connectomics – how brain areas are connected to each other. This is, by
definition, not something that can be studied at the level of individual voxels.
Rather, we need to identify fibre tracts running through the brain, ideally
identifying the areas in cortex and/or midbrain that are connected by these
fibres. Even if we are interested in measures of tract integrity, we may wish
to quantify the integrity of a tract as a whole, rather than on a voxel-by-voxel
basis. To address such questions, we need to perform tractography.



Tractography
Tractography is the process of mapping white-matter tracts that connect
different brain regions. When we view a coloured image of primary diffusion
directions, such as Figure 10.5, we perform a sort of tractography ‘by eye’ –
we can follow the apparent pathways over space by mentally ‘connecting the
dots’ of similarly coloured voxels. A similar process can be performed
computationally, using one of a variety of methods. The simplest of these is
streamlining, which involves starting from a particular voxel and identifying
which surrounding voxel’s principal eigenvector is best aligned with the
principal eigenvector (the strongest direction of diffusion) of this voxel.
Conceptually, we can think of drawing a line through the voxel along the
principal eigenvector direction and identifying the voxels adjacent to the
starting voxel that the line passes through. This is shown in Figure 10.6.
Depending on the research question, one can either start with a single ‘seed’
voxel and follow a streamline in both directions from there, or identify two
regions of interest (ROIs) and find tracts that connect them (one can go even
further and specify ‘waypoints’ between the starting and ending ROIs that
tracts must pass through). In the latter case, it is normal to run the tracking
twice: once starting from each ROI. Either way, the process of ‘connecting
the dots’ by following the principal eigenvectors is continued through
adjacent voxels until some termination point is reached. Several stopping
criteria can be defined. One is FA value: low FA suggests a lack of oriented
fibres (or a mixture of orientations), and so it is logical to stop when the
streamline reaches a voxel whose FA value is below a threshold that reflects
certainty in the orientation of the voxel. Another criterion is the degree of
bend from one voxel to the next: although there are some fibres in the brain
that bend at fairly sharp angles (including the descriptively named ‘U-
fibres’), in general when performing tractography we expect that the fibres
we are tracking will bend only slightly from voxel to voxel. A third option is,
if one is performing point-to-point tracking (to identify tracts that run from
one location through a second location), then when the streamline from the
starting point reaches the second point, the tracking stops. Alternatively,
however, one could allow the streamlining to continue until an FA or angular
threshold is reached.



Figure 10.6 Schematic 2D illustration of streamlining to identify voxels
connected in a tract. The shading of each square (voxel) represents its degree
of anisotropy, as does the shape of the ellipse. Two streamlines (black
arrows) are shown, originating from two adjacent voxels (stars). A streamline
follows the principal direction of diffusion through each voxel to identify the
adjacent voxel that is most likely part of the same tract. This is subject to
several constraints, including the maximum amount a streamline can bend
over a particular distance. Another constraint, shown in the right-hand tract,
is that the streamlining process terminates when an isotropic voxel is
encountered. Adapted with permission of Elsevier from Mori and Zhang
(2006)

The streamlining approach has a number of limitations. Firstly, it is quite
sensitive to noise. Although noise is a problem in any neuroimaging, in
streamlining the issue is magnified by the fact that we are dealing with a
single voxel at a time; this has several consequences. For one, the streamline
is dependent on the particular voxel chosen as the starting point. If the
particular voxel chosen is noisier or has a less accurate representation of the



true orientation of fibres in that general area, the streamline may be
inaccurate. Likewise, greater noise or inaccuracy in any voxel along the
streamline will cause a misestimation of the true orientation of the fibre, and
any such errors will be magnified as the streamlining process continues. As
an analogy, if you fail to make a necessary left turn in Albuquerque, then
many miles later you may find yourself in Denver rather than Los Angeles!
As well, if noise results in an FA value below the stopping threshold, tracking
may stop entirely.

Other limitations of streamlining stem from true anatomical features. As
mentioned earlier, streamlining methods have a threshold constraining the
amount that a tract can bend within a certain length; if the fibre being tracked
truly bends at an angle greater than this threshold, the tracking will fail.
However, the angular thresholds used are generally based on anatomical
knowledge so this is typically only a concern if one is attempting to track U-
fibres. Other anatomical features include branching and crossing fibres. If a
tract branches, a streamline may have equal probability of following one of
the two branches, and will either fail or reveal only one of the branches. If
two fibre pathways cross in a particular voxel, the situation becomes more
difficult. If a voxel has equal numbers of fibres running in two perpendicular
directions, the FA ellipsoid will have a pancake shape (with the first and
second eigenvectors being of equal length) and so the primary direction of
diffusion will be indeterminate. In this case, angular constraints on the path
of the tract may help the streamline pass through this voxel rather than
bending sharply; alternatively tracking may break down. A breakdown is
more likely if a larger proportion of fibres cross the voxel perpendicular to
the streamline because then the primary direction of diffusion will be
perpendicular to the streamline entering the voxel. In other cases, the fibres
may cross at angles less than 90 degrees. These cases are even more
problematic because the tensor calculations work by defining a primary
direction of diffusion in the voxel, then define the second and third
eigenvectors as being orthogonal to that direction. In other words, rather than
the first eigenvector representing the direction of one of the two tracts, and
the second eigenvector representing the other tract, the primary eigenvector
will follow the average of the two fibre pathways – a direction midway
between them that doesn’t accurately reflect the direction of either true
pathway. These limitations were illustrated earlier in Figure 10.4.



A number of approaches have been developed to deal with the limitations of
streamlining, which may be used singly or in combination. One approach is
smoothing (sometimes called regularization). Just as with fMRI, the idea
behind smoothing is that adjacent voxels are likely to have similar
orientations, whereas noise is random across voxels. Therefore averaging the
information from each voxel with that from adjacent voxels should reinforce
the true directionality, while reducing noise. Another approach is called
‘fitting’, in which – rather than simply aligning the streamline with the
principal eigenvector of each voxel – the streamline incorporates information
from previous voxels such that it forms a smoother line. This is essentially a
variant of the ‘maximum angle’ constraint; rather than providing a stopping
criterion, however, it simply smooths the line running across multiple voxels.
Conceptually related to fitting is the tensor line approach, which carries the
‘momentum’ of the streamline from high-FA voxels through those with lower
FA. Thus rather than breaking down, streamlining can continue through
voxels with higher noise or uncertainty – as long as the region of low FA is
surrounded by areas of higher FA.

A rather different strategy is incorporated in probabilistic tractography.
Although there are several variants of this approach, in general they all run
the streamlining multiple times. Each time, a slightly different orientation is
used for each voxel. These orientations deviate from the principal eigenvector
pseudo-randomly, within certain limits. The range of these limits is
determined by the DTI ellipsoid, and is related to the estimated probability of
the principal direction of diffusion. Thus in areas of high certainty the range
of variation is small, whereas in areas of high uncertainty (such as low FA or
high probability of crossing fibres) a wider range of possible directions of the
streamline are fitted. Repeating this process many times allows one to
estimate the reliability of the streamlining and determine where the highest
areas of uncertainty are. Other approaches, such as first marching and
simulated annealing are particularly good at differentiating voxels where FA
is low due to noise or a lack of oriented fibres, from voxels that contain
crossing fibres. For example, simulated annealing does this by fitting an
equation with two terms representing two different orientation directions and
finding a solution that fits both directions as well as possible. Often such
algorithms operate in a two-stage fashion, such that the subset of voxels that
have high uncertainty (and thus being likely to contain crossing fibres) are



first identified, and then multiple directions are estimated only in this subset
of voxels. This is important because attempting to optimize a two-direction
solution at voxels containing only one direction of fibres would work poorly
and could cause errors.

Other constraints can be imposed by the user based on prior anatomical
knowledge. One of the most simple and obvious ones is the brute force
approach. This involves simply tracking from (or through) multiple adjacent
seed/ROI voxels rather than picking a single seed voxel or a start/end pair of
voxels. The brute force approach reduces the dependency of the solution on
the particular choice of seed voxel and makes it more robust to noise; this can
be combined with any of the solutions described above. However, it is
important that the user be confident that all of the voxels within the seed/ROI
are truly part of the same tract, or else the streamlines may deviate at some
point, resulting in a more confusing solution. Using the two-ROI, point-to-
point tracking approach can also help minimize propagation-of-error issues
because tracks that go far ‘off the mark’ will not reach the endpoint ROI. As
well, running the tracking in both directions between ROIs and averaging the
solutions will tend to be more robust than tracking in a single direction,
especially if using curve-fitting or tensor line approaches since tracking into a
noise region may be more robust from one direction than another. For both
single-point and point-to-point tracking, another option is to include masks.
These are areas of the brain that the user is very certain should not contain
any fibres from the tract of interest; streamlines that enter these areas either
stop or are removed entirely from the solution.



Spatial Registration and Normalization
Because DWI scans are optimized for sensitivity to water diffusion, and are
subject to geometric distortion, they do not show anatomy as clearly as a
typical T1-weighted structural MR image. Therefore a high-resolution T1
image is typically collected and used both to map an individual’s diffusion
data to their anatomy, and also to warp the individual’s brain to a standard
template (such as the MNI152 average brain) for group analysis. The process
of doing this is the same as was described for other types of MRI data
(including fMRI and computational neuroanatomy), and benefits from using
non-linear, rather than linear affine, registration. However, since non-linear
registration approaches generally work by attempting to match the overall
shape of an individual’s brain to a template, this does not guarantee that the
actual tracts have been aligned – getting one individual’s brain shape to
match the template may force voxels from a particular tract into locations
that, in the template, belong to another tract. This concern can be ameliorated
in part by using less severe forms of nonlinear registration (typically the
software has options such as the degrees of freedom that control the amount
of warping that can occur). Non-linear registration can also compound the
partial volume effects mentioned in the previous section: in warping and then
resampling the voxels, data from two distinct tracts could be combined in
some voxels. Another issue with non-linear registration is that if the brains
involved have gross structural differences (for example, due to pathology),
spatial normalization will correct for these but in doing so may introduce
other differences. This is particularly true if these differences are systematic,
as in the comparison between a patient group and healthy controls (such as
enlarged ventricles in one group, or atrophy). In this case, the process of
matching the brains’ shapes may introduce systematic differences at the
individual voxel level that are difficult to detect.

One way of addressing this, at least in part, is to perform all of the analysis of
an individual’s DWI data (for example, calculation of diffusion tensors,
fractional anisotropy, and tractography) in the individual’s ‘native’ space, not
in the spatially transformed space. Because spatial normalization necessarily
changes the voxel values in the image, it is always preferable to perform as
much of the analysis as possible on the data prior to applying any



transformations; the spatial transformations are then applied to the results of
the individual-level analyses. However, this practice alone does not eliminate
the issues described in the previous paragraph, because data from a particular
tract can still become misaligned, or merged with another tract, during
normalization. However, it is standard practice to perform DTI calculations in
an individual’s native space.

An additional approach is to perform analysis on FA values averaged over
entire, anatomically defined tracts, rather than performing voxel-wise
analysis. A limitation of this approach is that it requires the user to work with
pre-defined tracts; however, at this point in time there are established atlases
and models of major white-matter tracts to use as the basis for such
definitions. Alternatively, one can define the tract(s) based on tractography
performed on the subjects in the experiment under analysis; for example,
using an ROI-based approach as described in the previous section. A more
advanced approach, which helps control for errors in streamlining in
individual subjects’ data as well as registration errors, is model-based tract
segmentation. In this approach, pre-defined models of major white-matter
tracts are used as a starting point, based on a white-matter atlas. However,
rather than simply using the tracts as defined in the atlas – which assumes
both perfect registration of each individual to the standard template, and that
there is no inter-individual variability in tract shape or size – the algorithm
uses these as a starting point but estimates the true shape and centre of each
individual’s tract based on models of the normal range of variation in shape
of the tract. A limitation of this approach is that prior anatomical models of
the tract(s) to be analysed are required, although these can be created if they
do not already exist.

Rather than performing tract-based segmentation, another approach that can
reduce the issues caused by spatial normalization is skeletonization. This
reduces the normalized data to a white-matter ‘skeleton’ derived from the
averaged, normalized FA maps of all of the participants in a particular
analysis. This is in some ways similar to the tract-based segmentation
approach described in the previous paragraph; however, it is ‘tract-agnostic’
in that it does not require any prior information concerning the location or
shapes of tracts. Rather, the centres of major tracts are identified by an
algorithm that finds the maximum local FA values throughout the averaged



FA map (since FA will presumably be highest at the centre of a tract). This
results in a map consisting of thin (single-voxel) lines representing the
centres of the major tracts. To address the issue of imperfect alignment
between subjects (that is, the centre of the tract in the average may not
represent the exact centre in every individual), for each subject the algorithm
searches the FA values close to each voxel in the FA skeleton, to find the
maximum local FA value for that subject (assuming this to be the tract centre
for that individual). The algorithm then projects (copies) this value to the
corresponding voxel within the FA skeleton for that subject. This procedure
can be thought of as a more intelligent or principled non-linear warping
process, based on assumptions about the local microstructure of tracts rather
than trying to match the overall shape of the brain. It also helps reduce the
influence of partial volume effects, because centres of tracts with local
maximum FA values are the least likely to contain crossing fibres or other
tissue types (since high FA indicates strong diffusion primarily along one
direction). A limitation of this approach is that because it is based around
local maximum FA values, it is insensitive to smaller white matter pathways
and smaller branches. As well, it is insensitive to differences in the size of
white-matter tracts, which might occur between groups or over time (for
example, with disease progression or learning). It is also important to note
that this process is typically applied on FA, not tractography data. However,
once the skeleton is obtained from the FA data, it can be used to mask other
types of data, including tractography data in which voxel values contain
orientation information.



Statistics

Voxel-Wise Analysis
As noted earlier, maps of voxel-wise measures such as FA can be analysed
essentially the same way as fMRI or VBM data. First, the FA (or MD, or
other metrics; for the present discussion we will use FA for simplicity) maps
of each individual subject in the study are registered to a common template
(such as the MNI152). Following spatial normalization, ideally accompanied
by additional techniques such as tract identification or skeletonization as
discussed in the previous section, values are compared at each voxel – either
between groups of people (for example, healthy controls versus a patient
group) or within a group, at different time points (for instance, to study
progression of a disease, or effects of a treatment). Correction for multiple
comparisons should be performed as for fMRI and VBM.

An important consideration in analysing DTI data, however, is that the
statistical methods typically employed in such mass univariate analyses –
such as ANOVA or linear mixed effects modelling – are not appropriate.
These methods assume a normal distribution of data values (and of noise),
but this has been shown not to be true for DTI data, at least not consistently
throughout the brain (Ellingson, Groisser, Osborne, Patrangenaru, &
Schwartzman, 2016; Jones et al., 2005; Marenco et al., 2006). Therefore
nonparametric statistical techniques are more appropriate. Nonparametric
statistical techniques were introduced in the MEG chapter, where more
details can be found.

Tract-Based Analysis
A significant limitation of voxel-based analyses is that they provide no
information about tracts or connectivity. It is possible, just as with fMRI or
VBM data, to look up the locations of significant voxels in an atlas in order
to determine which tracts any observed effects are in. However, atlases are
approximations and so some voxels may be misidentified as being part of the



wrong tract in a particular dataset. Performing tractography and/or
skeletonization can help minimize the risk of mislabelling a tract, but voxel-
wise analyses do not tell us about the tract as a whole. Further, as noted
above approaches such as skeletonization may prevent us from detecting
differences in the periphery of tracts – the core of a tract may be similar
across groups, but the overall size/volume may differ or tract integrity may be
lower only in the more peripheral aspects of the tract (although in practice
this would likely appear identical to a difference in tract volume). One
approach to overcoming this is to compute mean FA within each tract, and
use this as the basis for statistics. However, averaging over many voxels
along the length of a tract can cause an appreciable loss of information –
subtle differences may not come out in the average, and if differences do
emerge, it will be unclear whether they characterize the tract as a whole or
some sub-part of it.

One approach that integrates streamlining into a voxel-based analysis is
probabilistic tracking, which was described above. From a statistical
standpoint, what is interesting about probabilistic tracking is that, given a
particular seed ROI (or pair of ROIs in point-to-point tracking), the values at
any voxel are not simply binary values (indicating that a voxel is either part
of the tract, or not). Instead, the value at each voxel in the image represents
the estimated probability that the voxel is part of the tract. Having
continuously varying values means that, across subjects, we can perform
statistics whose results reflect these probabilities.

As this discussion of DTI computation and analysis has likely made apparent,
there is no single ‘right’ way to analyse DTI data, and indeed far less
agreement within the field as to what the best approach to preprocessing and
analysis is compared to some other methods, such as fMRI (though even
there, there are considerable differences of opinion). It is also worth noting
that there are some cases where quantification of tracts is not required. For
example, one might perform a voxel-wise analysis and then use tractography
only to identify which tract(s) pass through areas identified as having
significant differences. In clinical applications, a neurologist or surgeon may
wish to visualize tracts to determine whether and how they have been altered
in an individual patient, for example by a brain tumour. Such visualization
could help understand a pattern of symptoms, or plan a surgical approach.



However, for the most part all humans have largely similar tractography
patterns; in research applications typically the differences that are looked for
are relatively subtle and require quantification and statistical analysis for
interpretation.



Applications and Limitations



Applications
A common use of DTI is to compare people with a specific disease or
condition with healthy controls, using voxel-wise analysis of FA. One disease
that has been studied extensively is schizophrenia, which we will use as a
case study here. A meta-analysis of studies comparing people with
schizophrenia with control subjects combined data from 15 publications,
representing a total of 407 patients and 383 controls (Ellison-Wright &
Bullmore, 2009). The analysis revealed two clusters of lower FA in the left-
hemisphere white matter of the patient group: one in the frontal lobe and one
in the temporal lobe. Each cluster was about 2 cm3. To identify which tract(s)
each significant cluster involved, the authors performed tractography on a
single healthy person’s data (someone who was not part of any of the studies
in the meta-analysis). Based on this, the authors identified five distinct tracts
passing through the frontal lobe cluster, and four passing through the
temporal lobe cluster. These are shown in Figure 10.7. While this study is
important in identifying consistencies across studies, it nevertheless has
limitations, as its authors note. Firstly, since the tractography was based on a
single individual, it is possible that one or more of the tracts identified were
not actually affected by schizophrenia but rather were implicated due to
misregistration. As well, it is interesting that the areas of lower FA were
relatively small, focal clusters overlapping a number of tracts rather than
more elongated effects that followed a particular tract. This may in part be
due to the fact that the meta-analysis took as its input the coordinates of the
peak between-group differences in each study; however, such clusters are not
atypical in individual DTI studies. It is possible that the voxel-based
approach, particularly combined with spatial smoothing, creates patterns that
appear more ‘blob-like’ than naturally occur in the white matter itself. This
underscores the importance of understanding the preprocessing and analysis
steps used when interpreting neuroimaging data.

Figure 10.7 Fibre tracts passing through two regions of interest identified as
having abnormal FA values in a meta-analysis of DTI studies of
schizophrenia. The top panels show fibres passing through a region of the left
frontal lobe, and the bottom panels show fibres passing through a region of
the left temporal lobe. Reprinted with permission from Elsevier from Ellison-



Wright and Bullmore (2009)

Another example shows an extension of probabilistic tractography: using DTI
for anatomical segmentation. This was elegantly demonstrated in a paper by
Behrens and colleagues (Behrens, Johansen-Berg, & Woolrich, 2003) in
which they used each voxel in the thalamus as a seed point, and used
probabilistic tracking to determine where that thalamus location connected to
in the cortex. The resulting map, shown in Figure 10.8 is quite compelling:
adjacent voxels in the thalamus connected to adjacent regions in the cortex,
and these patterns reflected what was previously known about the
organization of thalamic nuclei and their projections to the cortex, from
invasive and postmortem tracer studies. More broadly, this demonstrated a
connectivity-based approach to anatomical segmentation that can be used to
complement the cytoarchitectonic and micro-scale myeloarchitectonic maps
described elsewhere in this book. Like those other anatomical maps,
connectivity-based maps could be used to help interpret the results of fMRI



or other localization-based functional imaging techniques like MEG. For
example, one could determine whether an area of activation represented a
single connectivity-defined region, or multiple regions. As well, such
connectivity maps could be combined with effective connectivity analysis to
help constrain the set of possible effective connectivity models being
compared to those that were anatomically plausible. As described in the
previous chapter, recent multimodal MR imaging has used DTI in
combination with other structural and functional measures to derive a
consistent parcellation scheme for the cerebral cortex.

Figure 10.8 Connectivity-based parcellation of the thalamus. Tracts were
computed from each voxel in the thalamus to the cerebral cortex, and then
each thalamic voxel was assigned a colour based on which region of the
cortex it was most likely to be connected to. Panel (a) shows the colour
coding of major cortical regions, and (b)–(d) show different views of the
thalamus, with colours reflecting the cortical area each voxel was shown to
be connected to. The results reflect the known organization of thalamic
projections to the cortex. Reprinted from Behrens and colleagues (2003) with
permission of Nature Publishing Group



Limitations
DTI is a powerful technique and provides essentially the only non-invasive
way to study the white-matter pathways of the brain in living organisms. As
such they provide an exciting complement to functional and other structural
techniques, which can enrich our understanding of how the brain works.
There are, however, numerous limitations of DTI that should always be kept
in mind. These include questions concerning the validity of the technique, the
relationship between structural and functional connectivity measures, and the
diversity of ways in which the data can be analysed.

A first way of assessing the validity of DTI is not using tissue at all, but
‘phantoms’ – objects designed with specific properties to validate imaging
protocols. The validity of DTI for tracing specific pathway shapes has been
demonstrated both using software models of tracts, and phantoms made of
non-biological tissues such as rayon or dialysis fibres (Hubbard & Parker,
2009). Other studies have used biological samples with highly oriented fibres
such as muscle, spinal cord, and the optic chiasm. The optic chiasm is a
particularly interesting test case because it has a very characteristic and well-
understood shape, is composed of axons, and a significant number of these
cross each other. The validation work has consistently demonstrated the
validity of DTI in tracking white matter fibres (Hubbard & Parker, 2009).
These approaches are also valuable in testing new pulse sequences or analysis
techniques, as they provide a ‘gold standard’ for comparison.

Aside from DTI, the primary methods for performing tractography in brain
tissue are through postmortem fixation and dissection of the brain, and
chemical tracer methods. Postmortem dissection is really useful only for
visualizing major white- matter bundles, and suffers from the limitation that
major tracts that can be characterized this way (such as the longitudinal
fasiculi and corona radiata) are defined purely on visual inspection of the
gross anatomy; at a finer-grained level these tracts probably contain
numerous terminations and branches that connect many different brain areas.
However, it is certainly possible to test whether the major tracts identifiable
through postmortem dissection match what is seen with DTI. Lawes and
colleagues compared postmortem dissections with in vivo DTI tractography



from different individuals (Lawes et al., 2008), using detailed qualitative
analysis of the overall morphology of major tracts (such as where tracts
constricted, where they fanned out, and so on). The correspondence between
DTI and dissection was found to be very high; an example of this can be seen
in Figure 10.9.

Another approach to validation in both humans and animals is to determine
whether DTI shows the predicated effects in disease states or development.
For example, multiple sclerosis (MS) is associated with demyelination, and
people with MS show reduced FA in white matter that corresponds with other
markers of the location of focal demyelination (plaques) such as T2-weighted
MR imaging. Similarly, since myelination occurs over the course of
development, FA is expected to be lower in juvenile brains and this has been
repeatedly demonstrated.

Figure 10.9 Comparison of DTI reconstruction of a white-matter fibre tract
(the right temporo-parieto-occipital pathway) with postmortem dissection of
that tract from the same individual. Panel (i) shows the isolated tract as
reconstructed using DTI; (ii) shows the dissected tract exposed in the fixed,
postmortem brain; (iii) shows the tract after removal from the brain,
highlighting its similarity with the DTI-reconstructed version; (iv) shows the
average location of the tract across 15 individuals; and (v) shows the inter-
subject variability in tract location (with yellow representing lower
variability, and red representing higher variability). Reproduced with
permission of Elsevier from Lawes et al., 2008





Since it is possible to perform DTI on animals, and indeed on animals
postmortem (since Brownian motion of water molecules occurs similarly in
living and dead tissue, assuming the temperature is the same),
correspondence between chemical tracer and DTI measures can be made.
Chemical tracer methods are considered the ‘gold standard’ for tractography,
and they are far more precise than DTI because they involve injecting a
chemical in specific cell bodies and then allowing it to diffuse throughout
those cells (the tracer typically does not exit the cell as it is designed not to
cross the cell membrane). The tracer will diffuse down the axons and thus
identify the projection targets of the injected cells. This technique is not
applicable to humans as it involves injection of potentially toxic chemicals,
and requires postmortem dissection to identify the projection targets of the
cells. Nevertheless, many studies have validated DTI using chemical tracer
studies (Hubbard & Parker, 2009). A particularly interesting development is
the use of MR-visible tracers. For example, a manganese isotope, Mn2+, is an
effective chemical tracer that can be injected into cells, and is visible in MR
imaging because it is paramagnetic. Thus Mn2+-injected animals can be
scanned with both DTI and Mn2+-sensitive pulse sequences and the results
compared directly, within individual animals. Because of the invasiveness of
chemical tracer methods (even MR-compatible tracers are not safe to
administer in humans), they are only applicable to animal models. Thus an
important limitation is that while they support the validity of DTI in general,
one can question how such information can be extrapolated to humans. One
recent study, however, addressed this issue by comparing chemical and DTI
tracing in macaque (monkey) brains with DTI tractography in humans, using
projections to the ventral prefrontal cortex (Jbabdi, Lehman, Haber, &
Behrens, 2013). These projections were of interest because they are well
documented in monkeys, and have complex trajectories. Overall, the
researchers found high correspondence between gold-standard chemical
tracing and DTI in both macaques and humans. Where there was a lack of
correspondence, it was not between chemical tracing and DTI within
monkeys, but between monkeys and humans. Because of the high
correspondence between methods within monkeys, the authors concluded that
this likely represents a true between-species difference rather than an error or
limitation of the DTI technique – which indeed emphasizes the value of DTI
in humans, as well as the limitations of extrapolating from animal to human



data.

Several other issues are not as well resolved. While DTI is a valuable
technique for performing tractography, streamlining breaks down near the
grey matter due to the decreasing FA values. Thus while we can extrapolate
streamlines to make guesses as to where the fibre tracts enter the cortex, we
cannot actually visualize this directly. Therefore it is difficult, if not
impossible, to determine for certain whether a tract terminates in a particular
cortical (or subcortical) area, or simply passes by it. Relatedly, tracts that pass
perpendicular to a given region of cortex – that is, the tracts seem to pass by
the area, rather than pointing towards or terminating in it – may in fact have
branches that infiltrate that area of cortex. There is hope that novel imaging
protocols and analysis techniques can reduce this uncertainty, by allowing
more reliable tracking into areas of low FA, but at present this is a critical
limitation to keep in mind: not only can we merely infer the white-matter
tracts from DTI based on water diffusion, but even if we accept the validity
of such tracking we can never be entirely sure that the fibres connect to
specific grey-matter regions. That said, for tracts that are well understood and
have been mapped in postmortem brains, we have a very good idea of their
termination points in the cortex and so can use this information to validate the
inferences we make about the same tracts as identified by DTI.

Related to this, another question is how DTI measures of structural
connectivity compare to estimates of functional or effective connectivity,
such as those provided by fMRI or source-localized MEG or EEG. Recall
that functional connectivity refers simply to correlations in activity between
brain regions, while effective connectivity makes inferences as to the
direction of information flow. Because DTI measures (random) Brownian
motion, we cannot infer the directionality of information flow from DTI data.
Thus DTI cannot help constrain functional or effective connectivity estimates
regarding directionality. However, DTI can help restrict the range of
connectivity models one is willing to entertain in an effective connectivity
analysis – if there is no structural evidence for a connection between brain
areas, then one might best avoid positing such a connection in an effective
connectivity model. The danger in this is that DTI might not have the
resolution to identify a tract that does exist, especially if it is small, crosses
other tracts, or bends to a greater degree than allowed by the streamlining



algorithm. Another consideration – especially for functional connectivity – is
that two brain areas may be functionally connected without being structurally
connected. For example, one brain region (A) may project to two other
regions (B and C), and so those areas (B and C) may show correlated activity
– functional connectivity – in the absence of a direct structural connection
due to their common influence by A. With these caveats in mind however,
the combination of tractography with functional imaging is an exciting area
that holds great promise for the future.

Finally, it is worth noting – as has likely been apparent in this section – that
perhaps more than any other application of MRI in cognitive neuroscience,
there are many possible (and valid) approaches to data preprocessing and
analysis. While fMRI yields essentially a single type of value (BOLD signal),
a wide range of measures can be obtained from a DTI scan, and different
scanning parameters (particularly b value and field strength) can yield
different measurements and levels of resolution that can provide qualitatively
different information. Even with a given dataset, one can ask many different
questions, look at a variety of measures, and use different algorithms that
make different assumptions about the underlying data. Thus doing DTI well
involves a deep and extensive understanding of the technique, its limitations
and trade-offs, and the many ways in which data can be analysed. While this
is true of any cognitive neuroscience technique, it is perhaps amplified in the
case of connectomics.

Summary

Connectomics is the study of connections between the brain, with the ultimate goal being to
describe the projectome – the complete set of connections in the brain and their directions.
While brain connectivity can be studied down to the microscopic level using invasive
techniques, at present our ability to characterize connectivity non-invasively in humans is
limited to techniques based on diffusion MR imaging. This is an indirect approach in which
the natural, random Brownian motion (diffusion) of water molecules is measured; because
the fatty myelin sheath prevents water diffusion, water molecules inside axons tend to
diffuse along the length of axons rather than in any other direction. By using a sequence of
dephasing and then rephasing magnetic field gradients, systematically applied along many
different directions, one can infer the existence and orientation of major white matter tracts
from the diffusion directions of water.

After a series of preprocessing steps, including correcting for motion artifacts and Eddy
currents, the diffusion tensor is calculated to identify the primary direction of diffusion
(eigenvector) in each voxel, as well as the two directions orthogonal to that direction (which
are not necessarily the second or third strongest directions of diffusion). From here, a



number of different measures can be computed, allowing many possible dependent
measures from a single scan. Some of these analyses are performed voxel-wise in a mass
univariate approach. A common measure that can be derived from the diffusion tensor is
fractional anisotropy (FA), which reflects the degree to which diffusion in a given voxel is
anisotropic (preferential in one direction) rather than isotropic. FA within known white-
matter tracts is often described as a measure of ‘white-matter integrity’, since lower FA
reflects less anisotropic diffusion, which could be caused by thinner or degraded white
matter. However, because there are many possible reasons why FA could change,
interpretations should be cautious and consider alternative explanations as well as seeking
support through converging evidence from other sources. One important consideration is
that FA will be lower in voxels that contain fibres oriented in more than one direction, such
as locations of crossing fibres. Advanced analysis techniques have been developed to
identify possible crossing fibre locations and distinguish these from other causes of low FA.
Tract-based approaches involve performing some form of streamlining to trace paths across
multiple voxels, to determine the start and end points of tracts. These generally involve
defining seed points, either at one or both ends of a tract, or somewhere along the middle.
While tractographic analysis can provide useful descriptions and visualisations, a current
challenge is in identifying quantitative ways of characterising and analysing fibre tracts
based on these data. Another challenge in tractography is that, because diffusion becomes
more isotropic in grey matter, it can be challenging to determine the actual endpoints of
white-matter tracts in the cortex.

While DTI is a powerful technique, as with all cognitive neuroscience techniques it has
some significant limitations. Chief among these are that it is an indirect measure in which
we infer the existence and direction of fibre tracts from the diffusion of water – we are not
imaging the white matter itself. While there exists clear validation of the technique in that
diffusion MR tractography reveals tracts that are highly anatomically consistent with those
identified through ‘gold standard’ methods such as dissection, our interpretation of changes
in DTI measures such as FA is more speculative. Further work is needed in order to be able
to draw stronger associations between DTI-based measures and parameters relevant to
understanding brain anatomy and function, such as intactness of white matter, the size and
number of connectivity fibres, or the information-carrying capacity of a tract. It is also
important to always remember that DTI is an anatomical technique, and does not reveal
anything about the activity or information carried along a fibre tract.

Things You Should Know

Water molecules naturally move randomly due to the influence of heat energy, which
is known as Brownian motion. The fatty myelin sheath of the axons that carry action
potentials from one neuron to another block water diffusion, meaning that water
diffuses preferentially along the length of axons (anisotropically).
Diffusion tensor imaging (DTI) uses a specialized EPI pulse sequence to characterize
the direction of water diffusion. This involves applying dephasing, and then
rephasing magnetic field gradients along a particular direction after RF excitation. If
water molecules stay in the same location, their signal will cancel out between the
dephasing and rephasing gradients; however, diffusion will cause imperfect
rephasing, resulting in measurable signal change. By repeating this along many
different directions, and comparing to a scan without diffusion gradients, the amount
and direction of diffusion can be computed.



After correction for head motion and Eddy currents, diffusion-weighted MRI data
can be subjected to diffusion tensor analysis to determine the principle direction of
water diffusion in each voxel of the image. Spatial registration and normalization are
commonly applied, as in fMRI, to normalize the size and shape of individuals’ brains
to a standard template. This is normally performed after computing the diffusion
tensor.
Fractional anisotropy (FA) is a common measure derived from the diffusion tensor. It
reflects the proportion of diffusion in the primary direction relative to diffusion in the
two directions orthogonal to this direction. FA is a common measure used in mass
univariate, voxel-wise analyses of DTI data. It is often interpreted as a measure of
white-matter integrity, although other interpretations are possible.
Beyond voxel-wise measures, DTI data may also be analysed through tractography,
to characterize tracts that pass through many voxels in the image. These rely on
streamlining to determine the most likely direction of a tract from one voxel to the
next, given the primary direction of diffusion in each voxel. Tractographic
approaches can involve one or more seed regions, which can serve as starting,
ending, and/or middle points of a hypothesized tract. These approaches can be
informed and constrained by prior knowledge regarding the locations and end points
of different tracts. The streamlines provided by tractography are more descriptive
than quantitative, but can be used to help characterize the locations of changes in FA
as well as to understand connectivity patterns.
Tractography analyses can be used in a variety of ways. In research usually the focus
is on comparing different groups of individuals; for instance, to identify regions of
white matter differences between people with a particular disease and healthy
controls, or over time (for example, in studies of development, ageing, or learning).
Another use is in deriving connectivity-based parcellations of the brain. These may
aid in the functional and anatomical characterization of different brain areas, based
on their unique connectivity patterns. Tractography maps may also help in the
development, testing, and interpretation of models from functional connectivity
analysis, to constrain the range of models to those that are anatomically plausible.
While the anatomical characterization of white matter tracts by DTI is highly
consistent with the results of ‘gold standard’ postmortem mapping techniques, much
remains poorly understood about the nature of the DTI signal and, in particular, how
to relate quantitative measures of water diffusion to neurally relevant parameters
such as the intactness of white matter, and the size, density, and number of axons
within a tract. As well, DTI cannot provide information regarding the direction of the
white-matter projections it identifies.

Further Readings

Johansen-Berg, H., and Behrens, T.E.J. (Eds.) (2013). Diffusion MRI: From Quantitative
Measurement to In vivo Neuroanatomy. New York: Academic Press.

Jones, D.K. (Ed.) (2010). Diffusion MRI: Theory, Methods, and Applications. Oxford:
Oxford University Press.

Mori, S., and Tournier, J.-D. (2013). Introduction to Diffusion Tensor Imaging and Higher
Order Models. New York: Academic Press.



Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural
description of the human brain. PLoS Computational Biology, 1(4), e42–47.



11 Positron Emission Tomography (PET)



Learning Objectives
After reading this chapter, you should be able to:

Explain the origins of the PET signal at the subatomic level.
Explain how PET data is acquired and reconstructed.
Define PERs and list the names and uses of several.
Describe the potential risks of PET and how they are mitigated.
Explain the constraints that PET imposes on experimental design in cognitive
neuroscience.
List several use cases for PET over fMRI in cognitive neuroscience research.
Discuss the value of multimodal PET.



Introduction
Positron emission tomography (PET) is a unique imaging modality in several
ways. Firstly, although it is very safe, PET is nominally more invasive than
other imaging techniques because it involves introducing radioactive tracers
into the body. Secondly, although – like fMRI – PET allows indirect
identification of neural activity levels through measurements of blood flow
and tracking the uptake of oxygen, PET can also be used to map the
distribution of many other molecules in the brain, including receptors and
neuromodulators, as well as disease markers such as amyloid (a hallmark of
Alzheimer’s disease).

PET was first developed in the 1970s and has steadily evolved as a technique
over time. The basis of PET imaging is introducing a radioactive tracer with a
very short half-life into the body (through injection or inhalation), and then
recording how it gets distributed in the tissue of interest. Because the
radioactivity is very short-lived and used in low concentrations, PET is a safe
technique to use – although precautions need to be followed concerning the
handling of the radioactive materials, and the number of scans that an
individual can undergo in a specified period of time. As such, whether PET is
truly a ‘non-invasive’ technique can be debated, but at worst it is minimally
invasive and it is certainly safe.

PET imaging was really the first technique that was able to localize activation
in the living human brain non-invasively (that is, without surgery), with
pioneering work done at Washington University in St. Louis, USA, in the
1980s. This work was a landmark in creating the field of cognitive
neuroscience, and required collaboration between radiologists, physicists, and
cognitive psychologists to jointly develop both the imaging technique itself,
and appropriate ways of designing experiments to isolate and localize
particular cognitive functions. Indeed, it was a report on this work published
in Discover magazine in the late 1980s that prompted me, the author of the
book you are reading, to pursue studying cognitive neuroscience as a career.

Clinically, PET has a number of uses. Its primary application is in oncology
where it is used for diagnosis, and to assess the extent and nature of different



cancers, document their progress, and track the effects of treatment on
different types of cancer. PET is also used in cardiology to assess perfusion
and the viability of heart muscle. In neurology it can be used in the diagnosis
and characterization of epilepsy as well as brain cancers. Most recently PET
has found a role in the diagnosis of dementias, including Alzheimer’s disease,
and in tracking the effects of treatment. Experimentally, PET can be used as a
functional imaging technique as well as to assess the distribution of drugs in
the brain and their actions. We will discuss these applications below, but first
we will describe the fundamentals of how PET works.



What Are We Measuring?
PET uses ionizing radiation – radiation that has sufficient energy to liberate
subatomic particles (such as electrons) from atoms. This is in contrast to non-
ionizing radiation such as light, heat, radio, and microwaves. The radioactive
materials used in PET imaging are called positron-emitting radioligands
(PERs). These are variants of common atoms such as oxygen (O), fluorine
(F), and iodine (I) that are chemically unstable because they have one more
proton than they have neutrons in their nucleus (recall that an atom is
composed of a nucleus of protons and neutrons – usually in equal numbers –
along with a surrounding cloud of electrons). These atoms do not remain
unstable for long after they are created; the imbalance in charge is resolved
by one of the protons being converted to a neutron. To do this, the positive
charge of the proton is released; this positively charged particle is called,
quite logically, a positron. There are two possible fates for a positron. As it
moves, it gradually loses energy through interactions with other subatomic
particles, including electrons, protons, and neutrons. Ultimately, it may lose
virtually all of its energy and combine with a negatively charged electron to
form a particle called positronium. This is the fate of approximately one-third
of positrons in the body. The other two thirds combine with an electron prior
to losing all of their energy. In this case, the result of the positron–electron
collision is annihilation, which causes a release of electromagnetic radiation
in the form of a pair of photons (light particles), which travel in
approximately 180° directions from one another. This process is shown in
Figure 11.1. It is these photons that are detected and measured in PET
imaging, using coincidence detectors that produce output when two photons
are detected arriving at detectors 180° opposite each other within a very short
time window (effectively, simultaneously). The proton in the original atom’s
nucleus, whose positive charge was ejected, becomes a neutron (since it now
has zero charge), thus creating a stable nucleus; as part of this process an
electron is ejected as well, to balance the overall charge of the atom.

Figure 11.1 Schematic example of positron emission and subsequent
annihilation. In the left panel, the atom is unstable because it has one more
proton (positive charge; p+) than neutrons (n0). The instability results in the
loss of one positive charge (proton), which is emitted from the nucleus as a



positron (e+). Upon leaving the atom, the positron collides with an electron
(e-), and both are annihilated, resulting in the formation of two photons (Q),
which travel in approximately 180° directions (wiggly lines). To balance the
charge of the atom, an electron is ejected as well (although this has no direct
relevance to PET imaging). The right panel shows that after positron
emission, the atom is converted from unstable oxygen to stable nitrogen, with
one less proton and electron, and one more neutron. In the notation for
oxygen (O) and nitrogen (N), the top number (mass number) indicates the
total number of particles in the nucleus, while the bottom number (atomic
number) indicates the number of protons

It is important to understand that while the process described above is the
most common fate of a positron, other fates are possible; a number of factors
contribute to uncertainty and thus limit the spatial accuracy of PET imaging.
Firstly, three rather than two photons may be produced, although this occurs
in less than 1% of cases. Secondly, the paths of the two photons relative to
one another may vary from strictly 180°, often by half a degree or so.
Thirdly, a photon may be deflected by a nearby electron – a phenomenon
known as Compton scattering – resulting in the photon pair travelling in
directions quite different from 180°. The photon may also be converted to a
pair of electrons – known as pair production – and thus never reach a
coincidence detector. A large proportion of photons are also absorbed by



tissue and thus never reach a coincidence detector. Thus not all annihilation
events are actually detected, and of those that are, some may be inaccurately
localized because the photons do not reach rings exactly 180° opposite each
other. This mislocalization is shown in Figure 11.2. Another issue limiting
the accuracy of PET is that positrons travel some distance from their
originating nucleus prior to annihilation. This distance varies depending on
the PER, as a function of the energy inherent in the atom; atoms with higher
atomic numbers (that is, more neutrons and protons) have higher energy and
thus their photons typically travel farther prior to annihilation. On average,
these travel distances range from approximately 1 to 6 mm, though at the
maximum this can reach over 14 mm. Modern PET scanners have ways of
coping with these issues to increase their accuracy; nevertheless, the physics
of positron generation and photon travel impose limits on the ultimate spatial
resolution and accuracy of the scanners.



How Do We Measure It?



Physics and Instrumentation
The basic components of a PET scanner are a bed for the subject to lie on, a
set of rings of coincidence detectors, and the instrumentation involved in
recording and storing the coincidence events. A contemporary commercial
PET scanner is shown in Figure 11.3. In addition to the scanner, an essential
part of any PET imaging centre is a cyclotron – a facility for making the
PERs necessary for imaging. PERs necessarily have a very short half-life (the
time it takes for 50% of a radioactive substance to decay), because they need
to decay significantly within a short period of time once they are introduced
in to the body, to ensure reasonably short-duration scans and safety of the
recipient. Because of this, they cannot be stored for any significant length of
time. Thus most PET scanning facilities consist of both a scanner and
cyclotron facility, although in some cases PERs are shipped to the imaging
centre from a cyclotron in another location, on a daily basis. An example of a
cyclotron facility is shown in Figure 11.4. These requirements mean that a
PET facility is very expensive to build and to maintain, and PET scans may
cost two to three times more than MRI scans.

A PET scanner consists of a set of detector rings, each of which is composed
of a number of scintillation detectors, arranged in a circle as shown in
Figure 11.5. A typical scanner will have on the order of 40–50 detector rings;
in the simplest acquisition mode each detector ring corresponds to a single
slice in a PET image, although more sophisticated 3D acquisition methods
allow for increased numbers of slices by combining data across rings.
Because the particles emitted by positron decay are photons – light particles –
the scintillation detectors are necessarily devices that are sensitive to light.
They are made of crystals composed of materials that have specific properties
in terms of how they react to light; in particular, they react to photons having
the specific energy generated by positron decay, 511 keV (kiloelectron
Volts), rather than reaching to light more generally (so that PET scans do not
have to be conducted in total darkness). When a scintillation detector absorbs
the photons emitted by positron decay, it reacts by producing light of its own
– a phenomenon known as luminescence.

Figure 11.2 Example of how coincidence detection works, and how



mislocalization can occur. Two different annihilation events are shown. In the
top one, the photons are emitted at 180° angles to each other, and reach
coincidence detectors along the straight line defined by their path (shown in
blue). This is an accurate coincidence detection. In the bottom example, one
of the photons encounters an electron along its path, and this intersection
causes the path of the photon to change. Thus when the two photons from this
annihilation event reach the coincidence detectors, the straight line between
them (shown in red) does not intersect with the origin of the photons. This
coincidence event would be mislocalized to a location along the red line

Figure 11.3 A commercial PET scanner. Like many current offerings, this
model combines PET and CT imaging in one unit. The benefits of combined
PET–CT imaging are discussed later in this chapter. Image copyright



Siemens AG, Munich/Berlin; used with permission

Figure 11.4 A cyclotron facility used to produce positron emitting
radioligands (PERs) used in PET scanning. Radioactive materials are kept
inside the heavily shielded container on the left, with the necessary apparatus
for the technician to manipulate and view the process safely outside the
shielding on the mechanical arms in the centre of the picture. Image used
with permission of Lawson Health Research Institute, London, Ontario,
Canada



Figure 11.5 Schematic diagram of a set of six PET detector rings, each
consisting of a large number of scintillation detectors (shown as small
rectangles) arranged in a circle. The head of the person being scanned would
be placed in the centre of these rings

Since the output of scintillation detector crystals is light, they must be
connected to devices that turn light into electricity so that the data can be
recorded. The devices that do this are called photodetectors and in PET



scanners these can be one of two types: photomultiplier tubes (PMTs) or
semiconductor-based photodiodes. Photodiodes have lower SNR and are
sensitive to temperature, so generally PMTs are used, although newer
generations of photodiodes are replacing these. PMTs are devices containing
a series of photocathodes in a vacuum. Photocathodes are materials with a
property that when a photon of sufficient energy reaches them, they absorb
that energy and use it to release photoelectrons. An important property of
photocathodes is that, as term ‘photomultiplier’ suggests, they can release
more than one photoelectron for each photon received, and when a set of
photocathodes are arranged in series (like a set of mirrors angled to reflect
light back and forth along a path), a single photon can result in the production
of a large number of photoelectrons, thus amplifying the signal before it is
recorded at the end of the photomultiplier tube. A more recent alternative to
PMTs are avalanche photodiodes (APDs). Unlike conventional
photodiodes, APDs inherently multiply the input light signal (the
‘avalanche’) – similar to the action of PMTs – by virtue of the photoelectric
effect whereby an electron excited by the arriving photon excites other
electrons. The advantages of APDs are both that they are much smaller than
PMTs, and that they are not influenced by magnetic fields, while PMTs are.
The latter property is important in new combined PET–MRI scanners that
have been developed and released commercially in recent years (discussed
later in this chapter). APDs are subject to heating, however, and therefore
require additional engineering to keep them cool.

Each scintillation detector, or channel, in a PET scanner typically consists of
several crystals, typically connected to a number of photodiodes. While a
one-to-one coupling of crystals to PMTs is possible, in a system capable of
3D scanning of a human this would involve a very large number of electronic
channels, which would make the scanner prohibitively expensive. As well,
PMTs are very large so reducing their number reduces the overall size of the
scanner. Clever systems have therefore been developed to allow high spatial
resolution in a reduced number of channels, called block detectors. Each
block detector consists of a grid of scintillation detector crystals (for example,
8 x 8 crystals, each approximately 4–14 mm in size) connected to a smaller
number of PMTs (for example, 4) or a somewhat larger number of APDs (for
example, 9, owing to their smaller size). The input from each crystal (that is,
unique sensor location) is directed to all photodetectors in a uniquely



weighted fashion, such that the location of the individual crystal that was
excited can be recovered in post-processing. The array of photomultipliers is
connected to electronics that encode and transmit the signals separately for
each scintillation detector, allowing spatial resolution in each channel
equivalent to the number of crystals in the array. An example of an APD-
based block detector is shown in Figure 11.6.

A number of materials are available for use as the crystals in scintillation
detectors; development and testing of new crystal materials is also an active
area of research and development. The choice of crystal is based on a trade-
off between a number of factors. These include the stopping power of the
material for photons specifically of 511 keV; decay time of the luminescence;
the amount of light output; and the energy resolution (how sensitive the
material is to variations in photon energy level). Stopping power is
important because greater stopping power means a greater proportion of
emitted photons are detected, and thus higher signal-to-noise. Decay time is a
critical parameter because it places limits on the temporal resolution of the
scintillation detectors. This is not related to the temporal resolution of PET
scanning (for example, how quickly whole-brain images can be obtained);
rather it is important because the coincidence events that PET scanners are
designed to detect are on the order of a few nanoseconds (ns) and a material
with long decay times will be more likely to record false coincidences. In
contrast, a short decay time not only increases the proportion of true
coincidences detected, but allows the system to record more coincidences per
unit time, resulting in higher signal-to-noise ratio (SNR). Light output is
important because this is the signal that is recorded; higher light output
increases both spatial and energy resolution of the scanner. Energy
resolution refers to how sensitive the crystal is to the energy level of the
photons detected; Compton-scattered photons lose energy and so better
energy resolution means that the scanner is better able to reject Compton-
scattered photons and record a greater proportion of coincidence events
caused by photons that travelled 180° relative to each other. A common
material used in scintillation detectors is bismuth germanate, Bi4Ge3O12
(BGO), due to its combination of good ability to stop photons generated by
positron decay, its relatively short decay time, and good energy resolution.
Other common options include lutetium oxyorthosilicate doped with cerium
Lu2SiO5:Ce (LSO), sodium iodide doped with thallium (NaI(Tl)), and barium



fluoride (BaF2).

Figure 11.6 Diagram of a block detector used in PET imaging. At the top is
an 8 × 8 array of detector crystals, in this example made from Lu2SiO5:Ce
(LSO). Below this is the array of photodetectors; this example uses APDs.
Many older models use PMTs which are much larger than APDs, so this
layer would be a few centimetres thick with PMTs. Note the cooling channels
that are required to dissipate the heat generated by the APDs. A typical
scanner might contain 128 such block detector modules in total, or 8192
individual detector elements. Image copyright Siemens AG, Munich/Berlin;
used with permission



Data Acquisition and Image Reconstruction
Data acquisition in PET involves detecting true coincidence events while at
the same time minimizing the number of ‘false alarms’ caused by random
events. Coincidence detection is a conceptually simple process: pairs of
scintillation detectors are linked by a circuit that generates an output if,
within a short time after one photon is recorded by one detector, a second
photon is registered in the opposite detector. For each detector in a ring, a
range of detectors opposite to it in the ring – for which a straight line between
the two detectors passes through the imaging field of view – are connected by
coincidence detectors. This is shown in Figure 11.7; the paths between pairs
of coincidence detectors are called lines of response. The time window for
allowable coincidence events is very short, as low as 3–4 ns. Since the bore
of a PET scanner is typically about 1 m (100 cm) in diameter, and photons
travel at the speed of light (3 × 108 m/s), a photon travels the entire diameter
of the scanner in 3.3 ns. Depending on the timing properties of the crystals
used in the scintillation detectors, the size of the coincidence window may be
somewhat larger than 4 ns, but because of the time it takes for photons to
travel, even crystals with more precise timing resolution cannot have
coincidence windows below 3 ns.

Figure 11.7 A diagram showing valid lines of response between a single
block detector and other detectors in the same ring. Each blue line between a
pair of detectors is a line of response. Note that not all possible pairs of
detectors form valid lines of response, because lines connecting pairs that are
too close together would fall outside the scanner’s field of view (grey shaded
area)



A coincidence detection is considered a true event if the two photons are
collected within the timing window between a pair of detectors that are
considered to have valid geometry (see Figure 11.7), as long as both photons
have energy levels within the acceptable range. This is related to the energy
resolution of the crystal material and is designed to reduce the number of
false alarms triggered by Compton-scattered photons. However, random
events are nevertheless prevalent in PET imaging; on average in water a
photon travels 7 cm before encountering and being deflected by an electron.
Since the head is somewhat denser than water, and more than 7 cm in
diameter, it follows that many of the photons emitted by positron decay are
Compton-scattered prior to reaching a coincidence detector. The rate of
random coincidences increases as the square of the activity level of the PER
in the tissue, multiplied by the coincidence window – that is, non-linearly –
whereas the rate of true detections only increases linearly with activity level.
This means that as activity increases, the rate of random coincidence
detections goes up much faster than the rate of true detections.



Because of the high proportion of false coincidence events, measures must be
taken to optimize the proportion of true events detected, while minimizing
random event detections. Using a relatively narrow range of acceptable
energy for detected photons (centred on 511 keV) is one step that is taken to
do this, although this is in part limited by the choice of crystal material in the
scintillation detectors. Another important means of improving accuracy is to
estimate the rate of random-scattered events. This is typically done ‘offline’
(not when a person is in the scanner), using a water-filled cylinder into which
the PER can be introduced to a specific location (such as a small tube through
the centre of the cylinder) in a controlled fashion. Since the actual location of
the PER is restricted, and known, it is easy to estimate the proportion of
randomly scattered photons in the reconstructed image because these are all
the photons that are localized outside of the PER-containing part of the
cylinder.

One of the more interesting – and perhaps initially non-intuitive – aspects of
PET imaging is how images are reconstructed. PET imaging is typically done
in 2D; although the reconstructed images are three-dimensional, the 3D
images are constructed from a set of 2D slices, with each slice corresponding
to one detector ring. It is also possible to do ‘true’ 3D PET imaging, but this
technique is used to improve sensitivity to activation, rather than to improve
spatial resolution. We will discuss 3D PET later, but first we will describe 2D
image reconstruction. Perhaps the most surprising thing about PET imaging
is that the location of any individual positron decay event – the origin point
of the photons that are recorded – cannot be known. All we know is that an
event occurred along a particular line between two coincidence detectors, but
not where along that line the event occurred. Although in principle it is
possible to know this, using what is called time of flight imaging with a
scintillation crystal that has very high temporal resolution, this is not
typically done. Instead, the location of activity is estimated from the total
photon counts along each line defined by pairs of coincidence detectors.

The process of reconstructing the image from lines defined by coincidence
detector pairs is called back-projection, because lines of response are drawn
back across the imaging space (field of view of the PET scanner) between
coincidence detectors that detected valid photon pairs. The initial process of
detecting photons is called ‘projection’; back-projection image reconstruction



mathematically reverses this process. One can imagine that these lines of
response are drawn darker the more coincidence events were detected along
that line. Since a photon pair emitted from a particular location is equally
likely to reach any pair of coincidence detectors whose connecting line passes
through the location of the positron decay, the back-projected image should
be darker in areas where more photon emissions occurred, because more lines
will cross there. This is illustrated in Figure 11.8.

Figure 11.8 Back-projection in PET image reconstruction. A single
coincidence event (left) tells us only that an annihilation event occurred
somewhere along the line of response, but not where along that line.
However, during image reconstruction the data from each point in the image
is derived from the sum of all coincidence events that were detected along
any line of response passing through that location. This is called back-
projection, as the data are projected back from all of the coincidence detector
pairs to the image space. This is illustrated in the right panel for a target
location shown in yellow; note that, for simplicity, not all lines of response
passing through the target location are shown

Because there are a limited number of coincidence detectors, a back-
projected image contains blurring artifacts that would make a circular source
look more like a multi-pointed star. This is because the back-projected image
will be blurred along the lines of response, but not along lines that fall in
between pairs of detectors. This artifact is less pronounced as the number of



coincidence detectors in the scanner increases, but is nevertheless a source of
artifact. To correct for this, PET images are spatially filtered during
reconstruction (typically using specific types of filters such as ramp or
Hanning filters). For this reason, the reconstruction process for PET images is
commonly called filtered back-projection. Filtering prior to back-projection
also corrects for another issue in image reconstruction. This is the fact that
more lines of response cross through the centre of the imaging field of view
than through more peripheral areas. Appropriate filtering prior to back-
projection compensates for this oversampling of the centre of image space.

As noted earlier, although 2D PET imaging is sufficient to generate a 3D
image by assembling a series of slices derived from each detector ring, true
3D imaging can increase sensitivity. Due to scattering and absorption of
photons, PET is an inherently insensitive technique, with only approximately
0.5% of emitted photons being recorded by a detector ring in 2D imaging.
Since photons are equally likely to travel in any direction, limiting
acquisition to photons that travel within the plane of a single detector ring
grossly undersamples the number of positron emission events that occur in
the body, even ignoring all the Compton-scattered and observed photons.
Thus in 3D imaging we increase the sensitivity of the PET scan by also
registering coincidence events between detectors located in different detector
rings. The geometry of this is shown in Figure 11.9. By allowing 3D data
acquisition, sensitivity of PET imaging can be increased five- to seven-fold.
However, as with 2D imaging, some parts of the 3D imaging space are
oversampled relative to others; it can be seen in Figure 11.9 that more
between-ring lines of response pass through the centre of the imaging space
defined by the set of slices, than through parts of the head located closer to
one or the other end of the set of slices. Thus a correction factor must be
applied during 3D imaging reconstruction, but ultimately the gains in
sensitivity are greater in the centre of the imaging volume than at its
periphery.

Figure 11.9 Comparison of 2D and 3D image acquisition schemes for PET.
In 2D imaging, coincidence events are only detected within a single detector
ring/image slice. In 3D imaging, coincidence events are detected both within
a ring, and also across different rings. This increases both the spatial
resolution, and the overall SNR since a much larger number of coincidence



events can be detected



Positron-Emitting Radioligands (PERs)
One of the biggest strengths of PET for cognitive neuroscience is the wide
range of PERs available; more than 50 PERs have been used in human brain
imaging, and more are in constant development (Jones & Rabiner, 2012;
Matthews, Rabiner, Passchier, & Gunn, 2012). Two of these are perhaps
most familiar to cognitive neuroscientists, due to their extensive use in
functional imaging, especially prior to the advent of functional MRI. The two
PERs commonly used to map ‘brain activation’ are radio-labelled oxygen
(15O; note that for radioactive isotopes, the superscript number before the
element name is the ‘mass number’, and indicates the total number of
neutrons and protons in the nucleus. By convention, this mass number is
specified for radioactive isotopes, and/or when distinguishing different
isotopes. By this convention, ‘regular’, non-radioactive oxygen would be
written as 16O and fluorodeoxyglucose as 18F or FDG). However, as we
discuss below, a much wider range of PERs are available that specifically
map particular receptor types or subtypes – allowing mapping of specific
neuromodulator systems and activity – as well as to map other physiological
markers such as β-amyloid in Alzheimer’s disease.

15O is the most commonly used PER for functional PET imaging because, as
a form of oxygen, it is carried by the blood, crosses the blood–brain barrier,
and is taken up in neural tissues in proportion to their levels of activity.
Different measures can be derived using 15O PET; the most common are
quantifying the cerebral metabolic rate of oxygen (CMRO2) and measuring
rates of regional cerebral blood flow (CBF). An attraction of 15O is that its
half-life is only about two minutes. This means that if a person performs a
particular task or experiences a particular type of sensation over the two-
minute period of peak activity, after 15O is administered, the distribution of
positron emissions in the brain can be attributed to the effects of that
task/stimulation. After a relatively short wash-out period, another dose of 15O
tracer can be administered under a different task/stimulation condition,
without contamination of that image with residual radioactivity from the
preceding scan. Further details of PET experimental design using 15O are
discussed later in the chapter.



In contrast, if a tracer with a longer half-life is used, then either the
participant has to perform the task for longer, or a long wash-out period is
required after each condition. FDG has a much longer half-life than 15O (110
minutes) and so is not feasible for use in most task-related functional imaging
studies. However, since it is radioactively labelled glucose – which is
converted to a primary energy source in the brain – FDG can be used to
examine the rates of cellular metabolism in different brain regions. This can
be performed in people while they are resting, in particular to compare
healthy people with different clinical populations, and to map changes that
occur with development and ageing.

As noted above, PET offers many imaging possibilities beyond simply
identifying areas that change in neural activity. A wide range of PERs (also
known as PET tracers, ligands, or radiopharmaceuticals) are available that
allow researchers and clinicians to map sites of the synthesis of different
neuromodulators, as well as their receptor-binding activity. A number of
PERs have been developed for imaging the dopamine system, including a
dopamine precursor (18F-DOPA) to track dopamine synthesis, a dopamine
transporter label, and labels specific to different types of dopamine receptors,
including D1 and D2 receptors. These have been very useful in studying
diseases that affect the dopaminergic system. For example, Parkinson’s
disease involves the degeneration of dopamine-producing neurons, and radio-
labelled dopamine tracers can reveal both rates of dopamine synthesis in the
brain (indicative of the stage of the disease) as well as activity at dopamine
receptors before and after treatment (which can show the efficacy of a drug in
reaching its targets). An example is shown in Figure 11.10. Similarly, for
serotonin there are PERs for specific serotonin receptor subtypes and
serotonin transporter. PERs also exist to label opioid, nicotinic,
benzodiazepine, and cannabinoid receptors, as well as enzymes that break
down neuromodulators, including monoamine oxidase (MAO) and
acetylcholinesterase.

Figure 11.10 Comparison of dopamine transporter (18F-DOPA) imaging in
three groups. Healthy controls show high levels of dopamine in the basal
ganglia (red areas). In contrast, people with Parkinson’s disease (PD; right
panel) show much lower levels of dopamine in the basal ganglia. In this study
the PD group were carriers of a mutation of the gene LRRK2 which causes



dominant inheritance of PD. The middle panel shows clinically unaffected
carriers of the same LRRK2 mutation; these people had intermediate levels of
dopamine transporter. Reprinted with permission of Elsevier from Stoessi,
Martin, McKeown, and Sossi (2011)

PERs have also been developed to bind to particular proteins. A particularly
successful example of this is Pittsburgh Compound B (PIB) which binds to β-
amyloid, a protein that forms plaques in the brains of people with
Alzheimer’s disease and is considered one of the hallmarks of the disease.
PIB has been used in many studies to map the extent of β-amyloid plaque
development in people with Alzheimer’s, as well as to image the effects of
candidate drugs designed to reduce β-amyloid. An example of this is shown
in Figure 11.11. More recently, a PER that binds to the tau protein (present in
neurofibrillary tangles; the other hallmark of Alzheimer’s disease) has been
developed, allowing researchers to better understand the progression of
Alzheimer’s disease, and how it differs from healthy aging and other forms of
cognitive impairment. Other clinical areas where PET imaging has been
extensively used include epilepsy, schizophrenia, depression, anxiety, and
cerebrovascular disease.

Figure 11.11 PIB (Pittsburgh Compound B) imaging of β-amyloid density in
four groups of older adults. Comparing the top two groups, it is clear that
there is much greater PIB binding throughout the brain in people with
Alzheimer’s disease (AD) than healthy, age-matched controls (red and yellow
indicate the highest binding). The bottom two rows show the comparison of
two groups of adults with mild cognitive impairment (MCI) who were at high
risk of developing AD but did not have that diagnosis at the time of imaging.
The ‘MCI converters’ group later developed AD (an average of eight months



later) whereas the non-converters did not. The data demonstrate that those
people who later developed AD had much higher levels of PIB months prior
to developing AD, indicating that PIB could serve as an early marker to
identify those who will develop AD. Reprinted with permission of Elsevier
from Forsberg and colleagues (2008)

The development of PERs is an active area of research in drug development,
because PERs can be used to image drug activity in vivo. This includes
mapping whether a drug is actually taken up in its target areas; assessing the
relationship between drug dosage and the amount of the drug actually taken
up in tissue (since levels measured through blood draws may not reflect
actual uptake); the effects of a drug on a target other than a receptor (for
example using PIB to map β-amyloid levels); and downstream effects of a
drug, such as glucose metabolism or neuromodulator release. The ideal
characteristics of a PER include being selective for the target of interest, and
having a molecular structure that allows labelling with radioisotopes that
have appropriate properties (including a short half-life, and being otherwise
safe for use in the human body). Selection of the PER must be made with the
target in mind as well; the target should have a high affinity for binding the
PER (so that the PER ‘sticks’ to the right places), combined with a limited
capacity for binding the PER (so that binding is in proportion to the density
of the target, as opposed to taking up large amounts of the PER everywhere).
Extensive research is done in developing PERs, to characterize these
properties along with the pharmacodynamics of the compound – such as how
long it takes to reach peak concentrations in target tissue, how those



concentrations relate to the dose administered, how long it takes for the PER
to wash out, how it is metabolized, and so on. For neuroimaging, an
additional important criterion is that the PER needs to cross the blood–brain
barrier.



Radiation Safety
An obvious concern to anyone when they first learn about PET imaging is the
safety of introducing radioactive compounds into the human body. Terms
such as ‘nuclear’ and ‘radiation’ commonly have a negative connotation and
indeed, high doses of radiation can be dangerous – the most common
consequence being cancer – and even fatal. At the same time, our bodies are
capable of handling small doses of radiation, and in fact we are exposed to
low doses of radiation in our daily lives, including from the sun and from the
Earth. Many common medical procedures other than PET involve low doses
of radiation, including X-rays and CT scans. As well, certain treatments,
particularly for cancer, involve higher doses of radiation directed at the
cancerous tissue. In a clinical context, the exposure to radiation is considered
safe and any possibility of increased risk of cancer is outweighed by the
benefits of accurate diagnosis and effective treatment of serious medical
conditions. However, in the context of basic research and even early-stage
clinical research – when the participants are unlikely to derive any direct
benefit from the exposure to radiation – the question of safety requires even
more careful consideration.

As a starting point, we must be able to quantify a dose of radiation. Radiation
itself is commonly measured in becquerel (Bq), where 1 Bq = 1 event of
radiation emission per second. Another, related unit is the curie (Ci). The
becquerel is a very small unit, whereas the curie is a very large one; 1 Ci =
3.7 x 107 Bq. However, these are rates of emission rather than strictly
quantities of energy. In physics, energy quantity is typically measured in
joules (J). However, the effects of radiation on the human body depend on the
amount of energy absorbed by the body and by the mass of the body, and are
measured in units of gray (Gy), where 1 Gy = 1 J absorbed per kilogram of
body weight. A further refinement of this measurement is required because
different types of radiation are not equally harmful. Thus to accurately
quantify the effective dose of radiation an animal is exposed to, the amount
of radiation in gray must be weighted by a factor corresponding to the
harmfulness of the radiation. For example, the types of radiation commonly
used in medical imaging, including X-rays and gamma rays, have a weighting
factor of 1, while alpha particles have a weighting of 20 because they are



much more harmful to the body. Multiplying radiation dose in gray by the
appropriate weighting factor results in a measurement in units of sievert (Sv)
– which is the unit commonly used in safety guidelines.

One sievert is a substantial dose of radiation – exposure to 1 Sv in a single
dose creates a risk of later developing cancer of approximately 5%, and a 10
Sv exposure is likely to lead to death within days or weeks. Safe levels of
exposure are thus measured in fractions of a sievert. Although official safety
guidelines vary by country and industry, a commonly used guideline
developed by the American Conference of Governmental Industrial
Hygienists specifies 20 mSv (thousandths of a sievert) as the threshold limit
value (TLV) per year for people who work around radiation (including X-ray
technicians, people in labs where radiation is used, nuclear power plants,
etc.), with a further restriction of a total cumulative exposure of 50 mSv over
a five-year period. The recommended TLV for the general public specified by
the International Commission on Radiological Protection is 1 mSv; however,
many people are exposed to higher levels than this simply from the
radioactive ‘background’ of their daily lives, including the sun (especially
during air travel, where the thinner atmosphere at higher altitudes provides
less protection from radiation from outer space), and the earth (for example,
radon gas is common in many homes). Average background exposure may be
in the order of 2.5 mSv per year.

In medical imaging, two important concepts related to radiation exposure are
the equivalent dose and the effective dose. Equivalent dose reflects the fact
that not all tissues in the body are equally affected by radiation; effective
dose is the sum of the equivalent doses of the various organs of the body. For
example, the testes and ovaries are most affected (accounting for 20% of the
effects of radiation), with the lungs, colon, bone marrow, and stomach being
the next-most affected tissue types (12% each). The limits specified in the
previous paragraph are the effective dose limits; separate limits can be
specified for different parts of the body depending on their susceptibility. For
example, the limit for the lens of the eye is lower than for the hands or feet.
In assessing the effects of a PER administered during a PET scan, it is thus
important to be able to quantify the distribution of the PER in the body, as
well as knowing its half-life so that the total dose over time can be estimated.
Recognition of the uneven effects of radiation on the body can inform



administration strategies. For example, since the lungs are particularly
susceptible, injecting 15O may be preferable to inhaling it; the effects of PERs
on the bladder (where ultimately the PERs are concentrated to void from the
body as urine) can be reduced by having people drink lots of water and
urinate frequently.

In adult PET scans, effective doses of radiation can range from 5 to 30 mSv,
while in paediatric studies the effective doses may be much higher due to the
lower mass of a child – in some cases coming close to 100 mSv even though
the actual quantity of PER may be lower than for an adult. While these levels
are well in excess of what is considered safe for occupational exposure, the
risks in these cases are considered to outweigh the harms since the people
receiving these doses typically have cancer and would most likely die (or die
sooner) without the PET scans. In research studies where the participant will
not benefit from the PET scan, more conservative limits are imposed. A
typical research PET scan involves an exposure of 7–8 mSv which, while still
above the recommendation for the general public, is well below what is
considered safe for people working around radiation. However, a person
should undergo at most only two to three such scans per year so as to keep
the cumulative dose within safe limits.

It is also important to recognize that the radiation used in PET imaging poses
a potential risk to the researchers and staff conducting the imaging, and so
appropriate safety protocols must be in place at the PET facility. These
include how the PERs are handled and how materials such as syringes are
disposed of, as well as how long anyone stands near a participant following
PER administration, as radioactivity from an injected person can affect those
standing within 1 m of that person. While these incidental levels of exposure
are comparatively low (on the order of µSv, or thousandths of a mSv), over
time their cumulative effects on people working routinely in these
environments should not be overlooked. In summary, it is important to
recognize that PET scanning, when done in the context of appropriate safety
guidelines, is very safe and does not pose significantly increased health risks
to either the person being scanned, nor the staff involved in the scanning. At
the same time, understanding radiation safety is critical and anyone engaging
in PET research should be properly trained.



Experimental Design
Designs for functional PET imaging should follow the general guidelines for
good experimental design discussed in previous chapters. A significant
limitation of PET, however, is that it has such poor temporal resolution.
Using 15O imaging, a single scan takes approximately 90 s to acquire. During
this period, the participant should be ‘on task’ the entire time, and should
only be performing a single task or seeing a particular kind of stimuli or
experimental condition, since the scan results will reflect cumulative brain
activity over this entire 90 s period of time. This creates challenges because
in many experimental designs, alternating conditions and unpredictability of
the stimuli are essential. For example, in a typical ‘oddball’ paradigm that
would elicit a P3 ERP component, a series of standard stimuli are punctuated
at unpredictable intervals by an occasional deviant stimulus, which evokes
the P3. Brain activity summed over a 90 s scan in this paradigm would not
allow us to distinguish activity between standard and deviant trials. In many
other paradigms – even if occasional, unpredictable stimuli are not central to
the task – we are interested in comparing the brain responses between
different conditions and some level of unpredictability is necessary. This is
because virtually any stimulus that is repeated multiple times or in a
predictable pattern will lead to behavioural habituation and neural adaptation.
‘Habituation’ is defined as a decrease in response to a stimulus with
repetition; more pertinent to a discussion of measuring brain activity is
adaptation, which is a decrease in neural response with repeated/predictable
stimuli. Adaptation is an inherent property of the brain that allows neurons to
code information – news of differences in the environment – by not
responding strongly to things that are constant. However, in neuroimaging
experiments, adaptation is typically something to be avoided as it makes the
target neural responses more difficult to detect.

The temporal constraint on PET is one of several reasons why fMRI replaced
it as the dominant, high spatial resolution imaging technique in cognitive
neuroscience (along with lower cost and no concerns about radiation).
However, several clever designs were developed as attempts to overcome the
temporal limitations of PET. For example, one can employ a parametric
factorial design in which the level of a certain variable is systematically



varied over scans, and then areas whose activity is correspondingly
modulated with this variation are looked for. For example, in an oddball
paradigm, during each scan a series of standard stimuli could be presented,
alternating with deviant stimuli. Critically however, the number of deviant
stimuli would be varied across the scans: in one scan, perhaps 10% of stimuli
would be deviants, in another 20%, and in another 30%. Control scans
containing no deviants could also be included. The expectation would be that
areas of the brain that specifically responded to deviant stimuli would show a
systematic increase in activation from the 0% to the 30% deviant scans. A
similar design was employed in an influential, early PET study on language
processing, which examined the effects of speech rate on brain activity in
different regions of the temporal lobe (Price et al., 1992). Superior temporal
lobe regions in and around primary auditory cortex showed a linear increase
in activity as the rate of speech (words per minute) was increased. In contrast,
activity in the temporal-parietal junction (classically termed Wernicke’s area,
and thought to be associated with accessing word meanings) remained
constant across speech rates, though it showed greater activity to all speech
conditions than to a non-linguistic control condition. The authors were thus
able to demonstrate a distinction between sensory regions that were sensitive
to physical features of the stimuli, and ‘cognitive’ regions sensitive to the
content irrespective of irrelevant physical properties.

In many other applications of PET, experimental design is much simpler.
Often the goal of the study is to compare activity of a particular
neuromodulator system between groups. For example, contrasting people
with a particular clinical diagnosis versus healthy controls, or examining a
patient group over time to study disease progression or the effects of a
treatment. In these cases, scans are typically done while the participants are
simply lying awake in the scanner with no particular task (that is, resting state
scans, similar to rs-fMRI). In other cases it might be of interest to examine
neuromodulator activity between different experimental conditions. However,
many PERs have sufficiently long half-lives that each scan is necessarily tens
of minutes in duration – and with long washout periods required between
scans – which precludes including multiple experimental conditions in a
scanning session.

On the other hand, depending on the experimental design this may not be a



problem. For example, Koepp and colleagues (Koepp, Gunn, Lawrence, &
Cunningham, 1998) compared two, 50 min PET scans – one during which
subjects played a simple but challenging video game, and the other in which
they simply rested quietly. Participants were informed that after the scans
they would be paid an amount based on their score in the video game, thus
increasing the stakes and expected reward derived from playing. The PER
used was raclopride ([11C]RAC), which binds dopamine type-2 (D2)
receptors. This was chosen because dopamine is known to be involved in
neuronal reward systems. As shown in Figure 11.12 [11C]RAC binding was
reduced in the striatum (basal ganglia – an area known to be involved in
reward processing and learning) during video-game playing compared to rest,
and was lower in people who scored highest in the video game. This
demonstrated that video-game playing – and indeed, performance in the game
– was related to endogenous dopamine release; greater levels of self-
produced dopamine resulted in fewer available receptors for the externally
administered dopamine marker to bind to. (This may seem counter-intuitive
at first, but the [11C]RAC competes with endogenous dopamine at the
receptors, so uptake levels of the PER are inversely proportional to
endogenous dopamine levels.) Each scan had to be 50 min long due to the
half-life of [11C]RAC, although during each 50 min scan the researchers were
able to obtain multiple measurements of PER levels, as seen in Figure 11.12.
This experimental design worked around the necessity of these long scans for
each condition by using a single task that was engaging for participants for
that period of time (playing a video game), and a research question that
centred around relatively long-duration states rather than brain activity
associated with transient events. Nevertheless, because the within-subjects
experimental design required scanning each person under both rest and video
game conditions, each participant had to undergo two separate scans on
separate days.

Figure 11.12 Data from Koepp and colleagues (Koepp et al., 1998)
comparing raclopride ([11C]RAC) uptake in the left ventral striatum in two 50
min experimental conditions: a baseline condition during which participants
performed no task, and a condition in which participants played a video game
in which a higher score resulted in a higher cash payment at the end of the
study. [11C]RAC binds to dopamine D2 receptors, which are involved in



reward processing. Decreased [11C]RAC binding reflects higher levels of
intrinsic dopamine, so the left panel of the figure demonstrates greater
dopamine release during video game playing. The right panel shows that the
video-game–baseline difference in [11C]RAC binding was greatest in people
who scored highest on the video game. The middle panel shows the location
of the changes in [11C]RAC binding in the basal ganglia – an area known to
be involved in reward processing and learning. Centre image copyright
Nature Publishing Group and reproduced with permission; data plots adapted
from Koepp and colleagues (1998)

Another interesting recent application of PET to cognitive neuroscience
involves comparing neuromodulator activity between healthy individuals
who vary along a continuum of some trait, such as personality traits. For
example – again investigating the dopaminergic reward system – multiple
studies have shown an association between dopamine levels and traits such as
impulsivity and novelty-seeking (Bernow et al., 2011; Leyton, 2002; Oswald
et al., 2007; Zald et al., 2008).



Improving Temporal Resolution
Multimodal neuroimaging involving PET is an emerging area of research.
One interesting example of this builds on the field of resting state fMRI (rs-
fMRI), discussed earlier in this book. This paradigm has garnered great
interest over the past decade and more, because it allows comparison of brain
activity in the absence of any stimuli or task, which allows researchers to
avoid confounds present in task-related fMRI when comparing between
groups of people who may perform the task differently, or with different
levels of difficulty or success. It also allows us to investigate interactions
between brain areas – functional connectivity – to gain a better understanding
of neural networks rather than the neb-phrenological approach of looking at
activity within individual regions. Although functional connectivity can be
examined under task conditions as well, rs-fMRI is where much of this
approach was developed and remains an active area of research.

However, rs-fMRI has also generated controversy precisely because no task
is involved. Thus we cannot be certain what people are doing during these
scans, though there is inevitably a high degree of individual variability.
Moreover, because we do not fully understand the physiological mechanisms
relating the BOLD fMRI response to neuronal activity, we do not really
understand what changes, neurophysiologically, when the strength of a
correlation between two brain areas as measured by fMRI changes. Passow
and colleagues (Passow et al., 2015) sought to understand better the nature of
the resting state by using fMRI and FDG PET with the same group of
participants, to relate BOLD fMRI measures with rates of glucose
metabolism. Although numerous previous studies had compared fMRI and
functional PET scans within the same groups of individuals, what was most
interesting about this study is that the authors developed a novel approach to
PET that allowed for greater temporal resolution using FDG than had
previously been obtained. Participants underwent an MRI scan, including a
7.5 min resting state fMRI scan, followed immediately on the same day by a
PET scan, which included a 60 min resting state FDG scan. Critically
however, the authors developed a novel technique in which the PET images
were reconstructed as a set of 12 separate images, each 5 min in duration –
rather than as a single 60 minute scan. This allowed the authors to examine



correlations in the fluctuations in FDG activity over time, between different
brain regions – comparable to a typical rs-fMRI analysis, albeit over a time
scale roughly ten times as long. The results of this analysis demonstrated that
the activity of a very similar set of brain areas showed correlated BOLD
fMRI and FDG PET signals. This in turn supported the contention that the
correlations observed in rs-fMRI reflect changes in cerebral metabolism,
allaying concerns that rs-fMRI might merely reflect correlated changes in
blood flow unrelated to actual brain activity.

Figure 11.13 Functional connectivity maps obtained from the same group of
people, scanned with FDG PET and resting state fMRI (rs-fMRI).
Red/yellow areas are those showing significant correlations in signal over
time with a ‘seed’ location in the posterior cingulate cortex. The data show
highly similar spatial patterns from the two imaging modalities, suggesting
that rs-fMRI reflects correlations in metabolic activity between brain areas.
Excerpted from Passow and colleagues (2015), licensed under Creative
Commons CC BY-NC-ND 4.0



Data Analysis
Data analysis of functional PET images shares many similarities with fMRI
analysis, but is in some ways less complex. Functional PET data are not time
series (the study described in the previous section being a notable exception).
Rather, each scan integrates measurements over a specific period of time (for
example, 90 s for 15O PET or 20–60 min for 18F fluorodeoxyglucose PET)
and in 15O PET typically multiple scans are acquired in each of several
conditions – at least, a baseline and an experimental condition).

As with fMRI, data need to be motion-corrected, although again because the
scans are not time series, this is simpler. An average of all the individual
scans can be created, and each individual scan realigned to that using the
same linear registration methods used for fMRI. Since PET scans are not
sensitive to contrast in the brain that is relevant to anatomical description
(such as between grey matter, white matter, and CSF), on their own PET
scans cannot be very accurately aligned to a standard template such as the
MNI152 average brain. Ideally, a structural MR image from each individual
will be obtained and this would be used in registration – the PET images can
be registered to the structural MR image, and the MRI can be used for spatial
normalization to allow warping of each individual’s functional data to a
standard MRI template. Failing this, many modern PET systems are actually
combined PET–CT scanners and so a CT scan can be obtained in the same
session as the PET scans. While CT does not offer the same level of
resolution or grey–white-matter contrast as structural MRI, it yields good
quality anatomical images that can improve the quality of the registration.
Spatial smoothing is also applied to PET images, typically using a Gaussian
kernel as with fMRI; however, since the inherent spatial resolution of PET is
somewhat lower than for fMRI, the smoothing kernel will in general be larger
(perhaps 10–12 mm).

One preprocessing step that is recommended for PET (but not fMRI) is grand
mean scaling, where the values in each image are normalized by dividing
them by the mean values for that image, then multiplied by 100. This results
in the mean activity in each scan having the same value of 100. This is done
because the overall tracer levels may vary from scan to scan; for example,



typically all the PER used in a scanning session is prepared at one time, and
so over the course of the session the radioactivity is continuously degrading.
Thus the level of PER activity in the sample injected in the last scan of the
session will be lower than that injected in the first scan. In comparing a set of
scans from one experimental condition with those of another, if there
happened to be overall higher tracer levels in the scans from one condition,
this could bias the results. Grand mean scaling (or ‘global normalization’)
serves to counter this potential bias. Statistical analysis of PET images
typically involves a repeated-measures ANOVA design, since multiple
measurements (scans) are typically made for each experimental condition.



Multimodal PET
While PET scanning on its own can be valuable, the unique properties of
PET can also be combined with other imaging techniques to increase its
power. In particular, it is now quite standard for scanners to be combined
PET/CT scanners, rather than solely PET. This is a natural fit, because CT
involves the use of X-rays and the two technologies not only co-exist without
technical interference, but CT actually improves the quality of PET scans.
More recently, combined PET–MRI scanners have been developed. Although
these are not widely available at this time, they represent an important step
forward and are likely to become the clinical standard in the future, enabling
both improved clinical applications and a new range of research applications
combining the strengths of each of these techniques.



PET–CT
Computerized tomography (CT, also known as computerized axiom
tomography, or ‘CAT scans’) is an imaging modality based on X-rays. While
conventional X-ray images produce only a single two-dimensional image
taken from a single perspective, CT scanners incorporate an X-ray device that
rotates around the person being scanned, acquiring many images from
different angles and then using computer algorithms to create higher-
resolution, 2D or 3D images from these. Clinical CT was developed
beginning in the 1960s and first became available in the 1970s, and has since
become a mainstay of diagnostic imaging for the head as well as other
organs. Contrast in CT images is based on the ability of different types of
tissue to block X-rays. It is sensitive to contrast between bone, fat, and water;
however, its soft tissue contrast (for example, between grey and white matter
and CSF) and spatial resolution are inferior to that of MRI. Therefore, a CT
scan of the head does not allow visualization of gyral and sulcal anatomy
with the same precision as structural MRI. It is, however, very useful in
diagnosing different types of stroke (for example, haemorrhagic – bleeding –
vs. ischaemic – caused by clotting), tumours, and other pathologies in the
brain, and provides much more anatomical precision than PET alone.

Combining CT with PET was a natural and logical technical development, as
both rely on radiation detection (albeit different types of radiation), and there
are clinical advantages to doing both scans at the same time. For one,
accurate PET scanning requires attenuation correction, which compensates
for the fact that different tissues absorb PERs differently (especially bone).
CT scans provide ideal information for PET attenuation correction, especially
if the scans are obtained without the patient moving (that is, in the same
scanner). In a PET-only scanner, a ‘transmission scan’ is required to perform
attenuation correction, which takes much longer than a CT scan, and so PET–
CT scanners shorten the overall required duration of a PET scan.

The second advantage of combined PET–CT is for spatial registration of the
images. If the PET scan is performed alone, and an anatomical CT or MRI
scan is performed in a different scanner at different times, there is greater
potential for inaccuracies when later registering the images. A CT scan



obtained at the same time as the PET scan, with the person in the same
position, facilitates anatomical registration. Combined PET–CT also saves
time and money, because a CT scan only takes a few minutes to perform, and
so it is far more efficient to do this at the same time as the PET scan, rather
than scheduling a separate appointment for a CT scan on a different scanner.
Since PET scans are sensitive to PER distribution rather than contrast that is
relevant to anatomical localization, they provide poor anatomical
information. For example, if the PER is hardly taken up around the outside
edges of the brain, then it can be hard to even determine the shape or spatial
extent of the brain in a PET scan – which obviously makes localization of
activity more challenging. A CT scan can facilitate more accurate localization
of PET data. Although an anatomical MRI can provide much better
anatomical localization, this could add significantly to the cost of the study,
whereas including a CT scan within the PET protocol adds very little cost.
Even if an MRI scan is obtained, registering the MRI to the PET scan is
facilitated if there is an anatomical CT scan available that was acquired with
the person in the same position as when the PET scans were obtained.



PET–MRI
One of the most exciting developments in functional imaging is the
emergence of combined PET–MRI scanners, such as the one shown in Figure
11.14. While PET–CT offers some advantages over PET alone, MRI offers
many advantages over CT. For one, MRI produces much higher-resolution
anatomical images and can be tuned to a variety of different contrasts. Thus a
combined PET–MRI scan can yield (in addition to the functional PET data)
high-resolution T1-weighted anatomical images, images with other weighting
such as T2 that may be useful in localizing pathology (for example, tumours),
MR spectroscopy, diffusion-weighted images, and even fMRI. Also, unlike
PET–CT, where the two types of images must be acquired sequentially, PET–
MRI scanners can obtain both types of image simultaneously. This is
obviously very efficient, and means that during a PET scan (which can be
quite lengthy, on the order of 30–90 minutes for some PERs) a whole range
of MRI scans can also be obtained. Clearly this is both a good use of time and
money, and also facilitates anatomical localization of the PET images. As
with combined PET–CT, PET–MRI also facilitates attenuation correction,
although the process is less straightforward and (at least at present) less
accurate. It is nonetheless possible and this technology is an active area of
research and development.

Figure 11.14 A PET–MRI scanner that allows PET and 3T MRI imaging in a
single unit. Image copyright Siemens AG, Munich/Berlin; used with
permission



Combined PET–MRI has several other advantages that can improve the
quality of both the PET and MRI scans. One limitation of PET is the partial
volume effect, which is caused by its limited spatial resolution. Some
anatomical structures are smaller than the resolution of a PET scan (which is
on the order of 3–5 mm), and as well the grid of PET voxels usually does not
align perfectly with the borders between anatomical structures. Thus data
from PET voxels often contains a heterogeneous combination of tissue types
or anatomical structures, which limits the precision with which PET signals
can be localized or assigned to a particular anatomical region. MRI scans can
be used to segment the tissue into different types, and improve the spatial
precision of PET. Another feature of combined PET–MRI that improves the
quality of PET scans is motion correction. PET scans take extended periods
of time, during which some motion on the part of the participant is inevitable.
If an MRI scan is conducted at the same time that has relatively high
temporal resolution (for example, an EPI scan), then conventional MRI
motion correction techniques can be applied to the MRI data, and the motion
vectors derived from this (that is, the amount and direction of motion
estimated over time) can be applied to the PET data. This improves both the



spatial precision of the PET scans, and the quality of the attenuation
correction.

PET–MRI can improve the quality of PET scans by aiding in quantification.
Accurate reconstruction of PET scans depends on time-activity curves that
are based both on the pharmacokinetics of the PERs (that is, how the PERs
are absorbed and how they break down), but also on the rate and volume of
blood flow through the tissues that are being scanned. In conventional PET
this can be done by invasive methods such as cannulating the participant
(placing a measurement tube in an artery or vein); however, with MRI, non-
invasive techniques are available, including time-of-flight MRI angiography
to map the blood vessels and to measure actual rates of blood flow through
the vessels. Another means of improving the accuracy of PET quantification
is by including a combined PET–MRI scan of the trunk of the body, prior to
the brain scan. Although this adds time to the scan, it improves the estimation
of PER uptake. This is because while uptake is generally estimated based on
body mass alone, uptake in fat is considerably less than in other tissue types.
The PET–MRI body scan allows estimation of lean body mass – as distinct
from the mass of fat in the body – and thus more accurate uptake estimates.

PET–MRI can also be used to test and validate new imaging techniques. For
example, new MRI methods have recently been developed to measure iron in
the brain as a proxy for β-amyloid deposits, which can be validated using a
PER such as PIB which is sensitive to β-amyloid density (recall that β-
amyloid is a hallmark of Alzheimer’s disease). PET–MRI also has a larger
role in the imaging of dementia, as each technique on its own offers some
unique diagnostic abilities. For example, recent studies have combined
resting state fMRI and DTI with PIB PET to gain a better understanding of
how β-amyloid deposits relate to functional changes seen in AD, showing a
decrease in functional connectivity for areas with β-amyloid deposits (Myers
et al., 2014).

PET–MRI offers great potential for new insights and clinical applications in
many areas, including oncology, epilepsy, vascular disorders, as well as in
basic research. The ability to simultaneously obtain fMRI data and measure
activity of particular neuromodulator systems will allow us greater insight
into the functioning of the healthy brain, disease mechanisms, and the effects



of pharmaceutical agents. While the advent of fMRI largely displaced PET as
a routine functional imaging technique, combined PET–MRI opens the door
to using fMRI for localizing changes in neural activity with high spatial and
relatively high temporal resolution, while simultaneously leveraging the
unique capabilities of PET for molecular imaging of physiological markers
that MRI is incapable of detecting.

At the same time, it must be realized that combined PET–MRI is a much
more expensive and technically challenging enterprise than using either
technique on its own. Firstly, the cost of a combined PET–MRI scanner is
very high since each is distinct and expensive technology on its own and
combining the two presents additional engineering challenges. Secondly,
running PET and MRI scans rely on almost entirely different sets of skills
and knowledge. PET technicians must be trained to safely handle and
administer radioactive materials, and understand how to work with the
critical time constraints imposed by the rapid breakdown of PERs. In
contrast, MRI technicians must be educated in MRI safety, as well as having
a detailed understanding of MRI physics, the applications of the many
different types of MRI pulse sequences, and how to adjust the parameters of
each of these sequences to the needs of the scan. As a consequence, at least at
the present time few people have the proper training to act as combined PET–
MRI technicians, and so a pair of technicians is required to run simultaneous
scans. In clinical settings, PET and MRI scans are interpreted by different
medical specialties – nuclear medicine and radiology respectively – and so
combined scans require additional professional expertise and collaboration as
well. Likewise, the technical demands of processing and analysing PET and
MRI data are very different so not only do researchers need far more training
than if they were to use only one type of imaging modality, but they may
need to have additional expertise to figure out how best to combine the data
types. At present, no mainstream software is available that is designed to
combine PET and MRI data for research applications. Thus while PET–MRI
holds immense promise, it is also one of the most advanced and technically
challenging areas of research at this time.

Summary

PET imaging is unique among the neuroimaging techniques covered in this book, both in
that it is mildly invasive (to the extent that radiation is used, albeit at safe levels), and in that



it offers the ability to image a wide range of biochemical markers beyond those indexing
neuronal activity. PET requires PERs, which are characterized by chemical instability that
results in radioactive emission of positrons. Positrons are annihilated when they meet
electrons, resulting in creation of a pair of photons that are detected by scintillation
detectors arranged in rings around the person being scanned. The vast majority of
annihilation events do not result in both photons of a pair reaching the detector rings, for
reasons including that they disperse in other directions, or are scattered, or absorbed by
tissue. For these reasons, to gain sufficient signal-to-noise ratio PET scans involve
accumulating photon coincidence events over time, typically several minutes to an hour.
Accumulating coincidence events over time is also necessary for accurately estimating the
PER concentration in any given brain region (or voxel in the image), because a coincidence
event along a particular line of response does not tell us where along that line the positron
originated. To reconstruct a PET image, a method called filtered back-projection is used.
This considers, for each voxel in the image, all the coincidence events along lines of
response passing through that voxel; filtering is used to account for the inherent spacing
between individual lines of response that is imposed by the spacing of the scintillation
detector crystals in the detector ring.

As well as the need to accumulate sufficient coincidence events to obtain good SNR, an
additional limitation on the temporal resolution of PET is that the PER takes time to be
flushed from the body, limiting how quickly one scan can follow another. This, along with
safety limits on radioactive exposure, limits how many scans an individual can have in a
given session, or in a year. For this reason cognitive neuroscience experiments involving
PET must block conditions into relatively long time periods, rating from 90 s (for 15O
measures of cerebral blood flow) to an hour (for 18FDG measures of glucose metabolism).
PERs can be developed for a wide range of biochemical targets. These include indirect
markers of neural activity like cerebral blood flow or glucose metabolism, neuromodulators
like dopamine and serotonin, and disease markers like β-amyloid.

Although PET has some significant limitations relative to fMRI – including much lower
temporal resolution, moderately lower spatial resolution, and the need to use radioactivity –
it has some advantages as well. These include the ability to image neuromodulator
concentrations and disease markers, as well as the fact that there is no magnetic field or RF
energy that, in MRI, precludes scanning people with some implanted devices such as
cochlear implants. An exciting recent technical advance is scanners that combine PET and
MRI in a single unit. These open up possibilities of simultaneous multimodal neuroimaging
that could provide greater insight into functional brain activation, as well as enhanced
understanding of the physiological processes underlying the fMRI BOLD response.

Things You Should Know

The PET signal is created by radioactive decay of atoms that are unstable due to
having one more proton than neutrons. Such atoms stabilize by converting one proton
to a neutron, emitting a positron in the process. Positrons travel a short distance
before encountering an electron and being annihilated, resulting in the formation of a
pair of photons which travel in opposite directions at the speed of light.
PET scanners detect and localize these positrons through scintillation detectors tuned
to the photons emitted by positron annihilation. PET scanners consist of a number of
detector rings; the number of these determines the number of slices the PET image



can contain. Coincidence detectors are used to identify pairs of photons that arrive
simultaneously at two detectors along a line of response passing through the tissue.
Since the origin of the photon could be anywhere along that line of response, PET
data must be reconstructed through back-projection. This involves computing, for
each location in the image volume, the number of detections occurring along lines of
response passing through that location. This can be done exclusively within each
detector ring, for 2D imaging, or across rings for 3D imaging.
The radioactive substances introduced into the body for PET imaging are called
positron-emitting radioligands (PERs). These generally involve a chemically unstable
atom bound to a molecule of physiological interest, such as oxygen or glucose. PERs
have a short half-life and therefore must be synthesized in a cyclotron shortly before
use. Common PERs for functional imaging include oxygen (15O, for measuring
cerebral blow flow or oxygen metabolism) and fluorodeoxyglucose (18FDG, for
measuring glucose metabolism). As well, a number of PERs are used to trace specific
neuromodulator systems, including 18F-DOPA for dopamine, or markers of specific
diseases, such as Pittsburgh Compound B (PIB) which binds to β-amyloid, a
hallmark of Alzheimer’s disease.
Because PET uses radioactive tracers, there is the potential for harmful levels of
radiation exposure when working with PET or having a PET scan. The amount of
radiation exposure associated with an adult receiving an individual PET scan is
higher than recommended for incidental exposure by the general public, but well
within the ranges considered safe for people who work around radiation. The risks of
PET are mitigated by safety standards that ensure safe handling of PERs, and limit
the number of PET scans that a person can receive in a year.
The time required for a single PET scan is determined by the PER being used – both
by how long it takes to accumulate in the tissue of interest, and how long it takes to
degrade or be flushed out by the body. Studies using 15O require approximately 90 s
per scan, while 18FDG studies take approximately 20–60 min. This limits the types
of cognitive neuroscience experiments that can be performed with PET, since
participants must perform a single task/experimental condition for the duration of a
scan. Recent technical advances have allowed researchers to obtain measurements at
multiple time points during long scans, allowing for some improvement in temporal
resolution.
While fMRI has largely supplanted PET in cognitive neuroscience research, PET
nevertheless has some unique capabilities. Most notably, the ability to synthesize
PERs for many different physiologically relevant compounds allows for direct
imaging of different neuromodulator systems and disease markers, which is not
possible with fMRI. Because PET does not use radio waves or magnetic fields, it is
also safe and feasible for use with people who would typically be excluded from
fMRI, such as cochlear implant users. As well, PET is completely silent, whereas
fMRI creates very loud acoustic noise, so some studies of auditory processing may
benefit from PET.
PET scanners often integrate CT scanners, which are based on X-rays. This
combination allows for improved quality and accuracy of the PET scans through
attenuation correction, as well as improved spatial registration and anatomical
localization. A recent advance is combined PET–MRI scanners, which have several
advantages. These include improved spatial localization, accuracy in quantifying
PER concentrations, and simultaneous acquisition of fMRI and PET-based
neuromodulator concentration measures – creating the ability to relate fMRI BOLD



signal to more direct and specific indices of neural activity.
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12 Near-Infrared Optical Imaging (fNIRI)



Learning Objectives
After reading this chapter, you should be able to:

Explain how the concentration of a substance can be determined using spectrophotometry,
and how this principle is applied in fNIRI.
Distinguish between the fast and slow optical signals, and what each measures.
Describe the basic hardware necessary for fNIRI.
Explain why multiple wavelengths of light are required for fNIRI, and the costs and
benefits of using more than two wavelengths.
Describe common sources of noise in fNIRI.
Explain the limitations on spatial and temporal resolution in fNIRI.
Compare and contrast the three ways of measuring fNIRI signal.
Describe the preprocessing steps typically employed for fNIRI data.
Discuss how fNIRI can be combined with other imaging techniques.



Introduction
Optical imaging involves shining light on biological tissue and measuring
what is reflected back. For neuroimaging there are invasive forms of optical
imaging, which require exposing the surface of the cortex, as well as non-
invasive forms which involve shining light through the skull. The invasive
approach is commonly used in animal studies, although it has been used in
human neurosurgical settings as well (Pouratian, Sheth, Martin, & Toga,
2003). This chapter will focus exclusively on the non-invasive techniques.
The origins of optical imaging are in the field of analytical chemistry, where
spectrophotometry was developed as a way of measuring the concentration
of a compound in a solution. Its application to biological tissue can be traced
back to World War II, when Glen Millikan first demonstrated that
quantitative measurements of light transmission were sensitive to the
oxygenation of blood and muscle (Chance, 1991). This discovery led to
ongoing development of the technique, which has many modern applications.
A very common one is pulse oximeters used in hospitals, which clip on to the
finger and use light to measure pulse and oxygen levels in the blood; some
modern ‘smart watches’ likewise use light to measure heart rate. Non-
invasive optical imaging of the brain was first demonstrated by Frans Jöbsis,
who reported measurements of haemoglobin oxygenation in the brain using
near-infrared (NIR) light in 1977 (Jöbsis, 1977). Jöbsis determined that the
skull was quite transparent to light in the NIR range, allowing for non-
invasive measurements of the brain. This work stimulated further research on
the topic, and the development of novel technologies for neural NIR
measurements throughout the 1980s and early 1990s. Throughout the 1980s,
the research was largely focused on developing and validating NIR imaging
(NIRI) as a method of measuring blood oxygenation in the brain. In the early
1990s, the first functional (fNIRI) studies were published, attracting the
interest of cognitive neuroscientists interested in non-invasive functional
brain imaging techniques. Much like the early development of fMRI – in
which three independent research groups published the first papers
demonstrating the technique in the same year – the first fNIRI were published
in 1993 by four different groups (Chance, Zhuang, UnAh, Alter, & Lipton,
1993; Kato, Kamei, Takashima, & Ozaki, 1993; Okada, Tokumitsu, Hoshi, &
Tamura, 1993; Villringer, Planck, Hock, Schleinkofer, & Dirnagl, 1993). (An



interesting note is that Britton Chance, who led one of these studies, was 80
at the time of that publication and had been publishing in the area of
biological spectrophotometry since before World War II; he continued to be
an active leader in the development of optical brain-imaging techniques until
his death in 2010 at the age of 97!)

Although non-invasive optical brain imaging has existed for approximately
the same amount of time as fMRI, it is not nearly as prevalent. That is to say,
there are far fewer research groups using the technique and there are far
fewer publications using fNIRI than fMRI. There are several reasons for this.
Firstly, while fMRI uses equipment that is widely available (due to its
ubiquity in hospitals), optical imaging relies on specialized equipment that,
while available from serval manufacturers, is research-dedicated. Related to
this, fMRI built on a large, established knowledge and technological base
concerning MRI; this technical development has been driven by the
economic forces supporting mainstream clinical care. In contrast, fNIRI was
a new technique built on a novel technology (though spectroscopy had been
around for a long time prior, its application to non-invasive imaging of the
brain was a unique technical challenge) that has not found widespread
clinical utility. The fact that fNIRI relies on novel technology also means that
in the early stages each research group was largely developing its own
technology. Although a number of commercial systems are now available,
there is a high degree of heterogeneity among the commercial offerings,
along with many groups continuing to use ‘homebrewed’ systems. This in
turn affects generalizability, and also creates dilemmas for potential new
adopters of this imaging approach. Another limitation of optical imaging
compared to fMRI is that light only penetrates about 1–3 cm through the
skull, meaning that there is much brain activity that occurs too deep inside
the head for fNIRI to measure. With the superficial cortical regions that
fNIRI can measure, the spatial resolution is limited by the scattering of light
to about 10 mm, which is much lower than fMRI. As well, localization of
optical signals in the brain is an ill-posed problem and thus carries inherent
ambiguities and uncertainty. In contrast, MRI provides high spatial
resolution, highly accurate localization, better SNR, and requires less
technical knowledge and skill to use for cognitive neuroscience research
(assuming the MRI centre has specialized technicians and physicists, as is
common).



One might wonder, then, why anyone would pursue optical imaging at all.
The answer is that it holds great promise on several fronts. Firstly, the cost of
purchasing and maintaining the equipment is far less than an MRI (and
comparable to EEG), and does not involve the specialized siting requirements
or constraints of MRI (such as a shielded room, and eliminating
ferromagnetic materials and electromagnetic fields). Optical-imaging set-ups
can be very lightweight and portable, and relatively insensitive to head
motion, making them suitable to situations where MRI would not be feasible.
For example, optical imaging is quite appropriate for studies of infants,
people with cochlear implants, or experiments involving head or body motion
– none of which are practical for fMRI. At the same time, fNIRI can measure
essentially the same signal as fMRI – blood oxygenation – and in fact permits
a wider variety of measurements, since the technique allows separate
measurements of oxygenated and deoxygenated haemoglobin, as well as total
blood volume and oxygen saturation. In addition to haemodynamic signals,
optical imaging can detect much faster signals that are in the order of
temporal resolution afforded by EEG and MEG. As such, optical imaging
likely has the most as-yet-unrealized potential of any imaging technique in
this book. Indeed, it is an area of high growth, with the number of published
papers using the technique doubling every three and a half years (Boas,
Elwell, Ferrari, & Taga, 2014).

As a final note, the current heterogeneity in the field in terms of approaches
to using the technique is reflected in the diversity of terms used by different
researchers to refer to this technique. These include fNIRI, (f)NIRS (near-
infrared spectroscopy), DOI (diffuse optical imaging), DOT (diffuse optical
tomography), NIT (near-infrared tomography), NIN (near-infrared
neuroimaging), and EROS (event-related optical signals). In general these
largely refer to the same thing, although with some subtleties that we will
touch on later in the chapter; in this chapter we will use ‘fNIRI’ to refer to all
types of non-invasive optical imaging.



What Are We Measuring?



Slow Optical Signals
Detection of slow optical signals – the haemodynamic response – is by far
the most prevalent form of optical imaging. It has a SNR that is close to that
of fMRI and so is relatively easy to detect, compared to the fast signal (which
is discussed in the following section). The BOLD response was discussed in
the fMRI chapter; recall that it typically takes 2–3 s to begin to rise after a
stimulus, peaks after roughly 6–8 s, and returns to baseline after 12–20 s. A
feature of fNIRI compared to fMRI is that we can separately measure
concentrations of oxygenated haemoglobin (oxy-Hb) and deoxyhaemoglobin
(deoxy-Hb), as well as combining these to derive a measure of total blood
volume (tHb). In contrast, the BOLD fMRI signal reflects the ratio of oxy-Hb
to deoxy-Hb, but is largely dominated by oxy-Hb. This is because oxy-Hb is
present in much higher concentrations than deoxy-Hb, especially in activated
tissue (refer to the fMRI chapter for more details on the BOLD response). A
point to note here is that fNIRI publications sometimes refer to the measured
response as ‘BOLD signal’; however, it should be kept in mind that this is not
identical to the fMRI BOLD signal; tHb is probably closest to fMRI BOLD
signal but is derived in fNIRI from the combination of two measured signals
– oxy-Hb and deoxy-Hb – whereas in fMRI BOLD it is directly measured.
An interesting consequence of this is that whereas BOLD fMRI provides a
signal in arbitrary units (which are not interpretable on their own), fNIRI’s
separate measurements of oxy-Hb and deoxy-Hb can provide quantitative
measurements of the concentration of each of these components, in standard
units (though this requires calibration that is not possible with all fNIRI
systems). Figure 12.1 shows an example of the three measures obtained using
fNIRI. As expected, oxy-Hb and deoxy-Hb have opposite time courses, and
the tHb signal largely follows the shape of oxy-Hb, but somewhat attenuated.
Akin to the ‘brain versus vein’ debate discussed in the context of fMRI, a
concern in optical imaging is the extent to which the recorded signal
originates from the small vessels directly feeding neurons (capillaries), as
opposed to larger vessels; fortunately, blood vessels larger than about 1 mm
in diameter tend to completely absorb light, so only smaller vessels scatter
light and contribute to the fNIRI signal.

Figure 12.1 Example time course of response measured using fNIRI to a 5 s



long stimulus. oxy-Hb = oxyhaemoglobin; deoxy-Hb = deoxyhaemoglobin;
tHb = total haemoglobin

Although we are estimating haemoglobin-based signals, fundamentally what
we are measuring in fNIRI is light transmitted through the head. Light is
transmitted from an emitter (sometimes called ‘source’) into the head, and
measured by a detector located some distance (typically 3–4 cm) away;
collectively the emitters and detectors are called optodes. As they travel
through the head, the individual photons of light will be scattered as they
encounter different molecules; as well, some will be absorbed. As a result,
the light received at the detector contains a small proportion of the total light
emitted, and from photons that travelled a variety of different paths through
the head. Studies of how light is scattered in tissue have shown that the
majority of photons’ paths that pass through the cortex and reach the detector
fall within a crescent- or banana-shaped path between emitter and detector, as
shown in Figure 12.2. The intensities of light used in fNIRI are limited by



safety considerations; with intensities at the source being in the range of
milliwatts to microwatts. Combined with the scattering properties of the
tissue, this limits the penetration depth to a maximum of 2–3 cm through the
adult skull (although deeper penetration can be achieved at the same intensity
through the thinner skulls of infants). This is an important factor because, as
shown in Figure 12.2, it means that fNIRI is only sensitive to activation in the
superficial parts of the cerebral cortex, not even the depths of cortical sulci.
As well, the distance between the scalp and brain differs across the head,
being typically closest at the front of the head and farthest at the midline
parietal area, and so fNIRI’s sensitivity to brain activation is not uniform
across the head. Another important thing to note is that not all of the photons
that comprise the recorded fNIRI signal actually pass through the cortex at all
– in fact, the majority of photons only pass through the superficial layers.
Furthermore, only a small percentage of the photons from an emitter reach a
given detector (regardless of whether they passed through cortex or only
superficial layers), both because many are absorbed and – although Figure
12.2 shows the optical path in two dimensions – the light source is aimed
perpendicular to the scalp, so the light is equally likely to travel in any
direction through the head. Ultimately, it is estimated that fully three-quarters
of the light energy is absorbed by non-brain tissues, and only about 3%
reaches the cerebral cortex (Scholkmann et al., 2014).

Figure 12.2 The range of most probable paths of NIR light through the
cerebral cortex forms a crescent- or banana-shaped path between the emitter
and detector, typically separated by 3–4 cm. Note that this does not reflect the
entire range of possible paths of photons from the emitter through the head,
but rather those that pass through the cortex and reach a particular detector.
Permission obtained via iStock.com



NIR light has wavelengths in the 650–950 nm range; for reference, the visible
spectrum of light ranges from approximately 400 nm (violet) to 700 nm (red),
so NIR imaging uses some wavelengths that are in the red range of the visible
spectrum, and some that are truly infra-red and invisible to the naked eye.
Intuitively, this choice of wavelengths makes sense: firstly, blood is red, and
changes hue depending on how oxygenated it is; secondly, if you hold your
hand up on a sunny day, you will see a reddish tinge around the edges of your
fingers because light at this end of the spectrum passes through tissues
relatively easily, compared to shorter wavelengths. Indeed, for non-invasive
imaging a key requirement is that the skin and skull be relatively transparent
to the wavelengths used, so that the light can pass into the brain and back out
again.

Typically, two wavelengths of light are used in NIRI, shining either
simultaneously or in a rapidly alternating fashion. Two wavelengths are used
because a primary goal is to discriminate oxy-Hb from deoxy-Hb, and these
have different profiles of light absorption. Thus the two wavelengths of light
are chosen to optimize discrimination of oxy-Hb from deoxy-Hb. Figure 12.3
shows the absorption profiles of oxy-Hb and deoxy-Hb, along with other
biological constituents that are present in high concentrations and absorb
light; these light-absorbing compounds are collectively termed
chromophores. From this figure it is evident why the NIR range is used: not
only do oxy-Hb and deoxy-Hb have distinct profiles in this range (in
comparison to their overlap in most of the visible spectrum), but water (the
most ubiquitous compound in the body) has virtually no absorbance in this
range, meaning it will not confound the measurements.



The data shown in Figure 12.3 suggest that certain wavelengths are optimal
for optical imaging, based on where the maximal separation between oxy-Hb
and deoxy-Hb occurs. However, different systems use different pairings of
wavelengths, based on different assumptions and goals. A common pairing is
690 and 830 nm, although using something in the range of 760–780 nm for
the lower wavelength is also common. A significant amount of theoretical
work has gone into determining what the optimal wavelengths are, but these
are all based on sets of assumptions and necessary simplifications.
Wavelength choice is ultimately a mathematical optimization problem that
needs to account for not only the absorption spectra of oxy-Hb and deoxy-
Hb, but also other chromophores and the intervening tissues, including scalp,
skull, and hair. Because of the number of chromophores in the head, and their
range of concentrations within and between individuals, there is no single,
obvious correct answer. Several studies have also considered including more
than two wavelengths of light (up to 5), or even a continuous spectrum over
the NIR range in order to optimize distinguishing the haemodynamic signal
from other chromophores. However, there are safety limits on the amount of
light (power) that can be transmitted through the head, and this total power
needs to be divided by the number of wavelengths used. The intensity of the
light source directly impacts SNR, so using only two wavelengths is in
principle the best way to maximize detection of a functionally relevant signal.

Figure 12.3 Light absorption profiles of oxy-Hb, deoxy-Hb, and other
prevalent chromophores in human tissue. Spectra are given with respect to
the specific concentration in mM. CtOx = cytochrome oxidase. Reprinted
with permission of Elsevier from Scholkmann and colleagues (2014)



Although fNIRI is sensitive to changes in oxy-Hb and deoxy-Hb, it is also
sensitive to a number of other physiological and non-physiological factors
that contribute noise to the measurements. A significant contributor to noise
is the extra-cerebral (non-brain) tissues that the light passes through which, as
noted above, absorb most of the light energy transmitted. Among these, a
particular source of noise is non-brain blood flow, especially through vessels
in the scalp and meninges (the layers covering the surface of the brain). In
principle, in an experiment contrasting fNIRI signals under different
experimental conditions, non-cerebral blood flow might be considered
irrelevant since it would not be expected to be modulated by the experimental
manipulations. However, this is not strictly true. For example, body
movements – including hand movements as might be produced during motor
responses, as well as speaking or other movement – cause changes in cerebral
blood flow and pressure that will affect both the oxygenation and dilation of
scalp blood vessels. As well, blood flow is affected by autonomic nervous
system arousal, which can change depending on a person’s state, including
the affective or arousing value of stimuli. Head movements can also
dramatically affect the optical signal, if the optode moves with respect to the
scalp. This issue varies depending on the type of system used (see below), but
at the very least a good system for fixing the optodes to the scalp is
important, and excessive motion should be avoided when possible. Another
contributor to noise is the hair: dark hair especially absorbs a significant
amount of light. Thus it is important to carefully comb the hair away from



each optode; nonetheless data from people with darker hair may have lower
SNR than from fairer-haired or bald individuals.



Fast Optical Signals
In addition to slow, haemodynamic signals, NIR optical imaging is capable of
detecting neural signals that change much more rapidly. These so-called fast
optical signals (FOS) vary on the same time scale as EEG and MEG (that is,
at the millisecond level) and can be measured using essentially the same
equipment as the slow signals (though not all hardware capable of recording
slow signals is capable of recording fast signals, as discussed in detail later).
However, when the technique is focused on the fast signals it is typically
given a separate name (and, naturally, an associated acronym): this is often
EROS, for ‘event-related optical signal’. This is useful insofar as the nature
of the measurements is rather different, but it is important to remember that
EROS/FOS is really a different approach to using fNIRI technology, rather
than an entirely different technology.

The fast optical signals arise from activity-dependent changes in how light is
scattered by the cerebral cortex (Gratton, 2010). This phenomenon was first
reported in vitro, in isolated neurons and brain tissue slices, and appears to be
dependent on the opening and closing of neuronal ion channels. It is thought
that the fast signal in non-invasive optical imaging is driven by changes in the
size of neurons: as ion channels open during neuronal depolarization
(pushing the cell towards an action potential), the cells swell, especially
around the dendrites where the majority of receptors are located. Conversely,
if a cell is hyperpolarized (making it less likely to fire), the cell shrinks. The
changing proportion of intracellular versus extracellular fluid appears to
affect light scattering and drive the fast optical signal. Data suggest that fast
optical signals are generated by both pyramidal cells and interneurons (cells
that largely form local connections within a brain area). Conversely,
EEG/MEG signals are largely driven by pyramidal cells with little or no
contribution from interneurons. As such, we can expect that although fast
optical signals will have similar temporal patterns to EEG/MEG
measurements, the signals from these different techniques are not expected to
be identical, and EROS can be a complement to EEG/MEG rather than a
replacement.

The fast optical signal has been somewhat more controversial in the literature



than the slow signal. Several lines of evidence support the existence of the
fast signal and its neural origin (Gratton, 2010). Firstly, as noted above, a fast
optical signal based on cell swelling has been reported in numerous in vitro
studies where the cells can be observed directly, eliminating the ambiguity
that comes from relying on non-invasive in vivo measurements alone.
Secondly, the temporal dynamics of the fast signal match what would be
predicted from EEG/MEG studies. Thirdly, numerous studies have compared
fast optical signals between different experimental conditions using
appropriately controlled tasks and stimuli, and shown not only statistically
reliable differences in experimental comparisons, but a lack of such
differences in control comparisons. It is worth noting that some published
studies have either failed to find reliable effects, or questioned whether they
were of neural origin or artifactual (Radhakrishnan, Vanduffel, Deng,
Ekstrom, Boas, & Franceschini, 2009; Steinbrink, Kempf, Villringer, &
Obrig, 2005). However, methodological questions limit the interpretability of
these studies, and subsequent work seems to have addressed the concerns and
further confirmed the existence of the fast signal (Chiarelli, Di Vacri,
Romani, & Merla, 2013). An example of the fast signal and its
correspondence to simultaneously recorded ERPs is shown in Figure 12.4.
Nevertheless, the vast majority of non-invasive optical imaging studies have
focused on the slow signal. One primary reason for this is likely the fact that
the slow signal has higher SNR and thus is easier to detect and obtain
significant results for, thus increasing the likelihood of success of an
experiment, and reducing the number of trials needed per condition. As well,
measuring the fast signal requires specifications that not all fNIRI systems
possess.

Figure 12.4 An example fast optical signal (EROS) time course (left), and
comparison with simultaneously recorded ERPs (right), during visual
stimulation (a chequerboard pattern in which the squares rapidly changed
between black and white), averaged over two groups of participants (older
and younger adults). Note that the peak of the EROS time course, at
approximately 80 ms, corresponds to the peak of the earliest visual
component, C1 (appearing as a negativity at electrode Pz); the C1 component
is known to be generated in primary visual cortex (Brodmann’s area 17).
Reprinted with permission of Elsevier from Fabiani and colleagues (2014)



In principle, a unique advantage of optical imaging is that one can obtain
both ‘fMRI-like’ and ‘EEG/MEG-like’ signals using the same imaging
device (MEG is probably the better analogy here, given the depth limitations
of fNIRI). Indeed, some studies have analysed both fast and slow signals
from the same data (Chiarelli, Romani, & Merla, 2014). In practice, things
are more complicated for a few reasons. First off, there are differences in how
the data are preprocessed and analysed (for example, artifact removal) which
requires a thorough understanding of the differences between the two signals,
and likely distinct processing streams. As well, the temporal nature of the fast
versus slow signals influences how experiments should be designed in the
first place, along the lines of differences between ERP and fMRI
experiments. For example, for fast signals one might wish to have randomly
intermixed trials from different conditions with relatively short inter-stimulus
intervals, whereas for slow signals one might want to block multiple trials of
the same condition together to improve SNR, or provide longer and/or
jittered inter-stimulus intervals to allow sufficient baseline periods in event-
related designs. Secondly, although the techniques broadly rely on the same
technology, not all hardware that is capable of measuring slow signals can
record fast signals. Thus an experimental set-up and data-processing stream
that is optimal for measuring one signal may not be optimal for the other.

Since measuring fast signals relies on similar technology to slow signals, we
will generally discuss these together in the remainder of the chapter, noting
differences as relevant. However, there are a few notable differences that bear
mention here. For one, we noted in the previous section that at least two
wavelengths of light are necessary for measuring the slow signal, because we
wish to distinguish oxy-Hb and deoxy-Hb signals. With fast EROS
measurement, there is only one signal to measure, and so a single wavelength



is sufficient; often, 830 nm is used. Secondly, current optical imaging
technology imposes a limit on the temporal resolution of measurements;
while sampling rates of up to 1000 Hz are possible from a single optode,
increasing the number of sensors necessitates a decrease in sampling rate for
reasons discussed in the next section. Thus the effective sampling rate for a
multi-optode system may be limited to 50 Hz or less, meaning that samples
are separated by 20 ms or even longer. This is not a limit that is specific to
fast signal measurements; however, it is more of a limitation for these since,
by definition, we wish to record a rapidly changing signal. In contrast, the
slow nature of the BOLD signal means that low sampling rates are less of a
concern. Not only does this limit the highest temporal frequencies that can be
measured (recall that the Nyquist theorem states that the highest frequency
we can accurately capture is a half to a third the sampling rate), but it also
affects the SNR of the recordings. This is because the more time points we
have, the more information we have to be able to separate true signal from
noise. As well, although many sources of noise such as head movements and
dark hair are equally relevant for fast and slow signal measurement, other
noise sources are more of an issue for fast signals. In particular, artifacts
associated with heartbeat (which has a frequency of about 1 Hz) need to be
removed via filtering, ICA, or some other mechanism.



How Do We Measure It?



Overview
Broadly speaking, all fNIRI systems involve optodes (emitters and detectors);
some way of affixing the optodes to the scalp; hardware that generates the
light; photodetectors that detect the transmitted light; and software that
records the data. There are a wide range of options, however, for each of
these components, leading to perhaps greater heterogeneity among fNIRI
systems than any other technique discussed in this book. Beyond the specific
component choices (but also related to these), a key differentiator between
different fNIRI recording systems – and experiments – is how the
measurements are obtained. There are three different technologies to do this,
as illustrated in Figure 12.5. The first and most common, continuous wave
(CW), simply shines light of a particular wavelength (or wavelengths) and
measures absorption of the light at the detectors. The other two methods,
which are collectively called ‘time-resolved techniques’, are more complex,
but offer advantages in terms of sensitivity and precision. Frequency-
domain (FD) measurements involve varying the intensity of the light at a
particular frequency. This allows for the measurement not only of absorption,
but also the timing of light arriving at the detector; for this reason, FD
systems are used for measuring fast signals. In contrast to these other two
techniques, which both involve continuous light (either intensity-modulated
or not), time-domain (TD) measurements involve rapid pulses of light and
offer even greater temporal sensitivity than FD systems. FD and TD
approaches are capable of quantitative measurements of oxy-Hb to deoxy-Hb
concentrations; CW can only provide relative measurements of these
concentrations between different experimental conditions. We will discuss
each of these technologies later in the chapter.

Regardless of the choice between CW, FD, and TD systems, many
considerations and design features are common to all of these technologies.
First of all, any fNIRI system needs to be able to generate light with very
specific properties, transmit that light to specific locations on the head (via
emitters), and record what is emitted at one or more locations on the head
(via detectors). The light is typically generated within a hardware ‘box’ and
transmitted to the head via optical fibres, rather than placing the light sources
directly on the scalp. There are two types of lights sources currently in use for



optical imaging systems: light-emitting diodes (LEDs) and laser diodes
(LDs). LEDs have several benefits, in that they are lower-cost and it is very
easy to adjust their output intensities. However, a disadvantage is that they
have a relatively wide bandwidth, typically on the order of 25–50 nm – so
specifying a pair of light sources of 690 and 830 nm could actually result in
sources of 665–715 and 805–855 nm. This would result in less accurate
measurement and separation of the chromophores. LDs, on the other hand,
have very precise, narrow bandwidths of less than 1 nm, and also perform
well at high frequencies – essential for FD and TD systems. However, they
are only available in a limited set of wavelengths, so the desired wavelengths
for a particular system may not be achievable. LDs are also larger than LEDs
and thus impose limits on how small a system can be. Because they are
lasers, LDs also carry additional safety considerations. Firstly, they should
not be shone directly into the eyes – an issue which simply requires proper
training of system users and safe handling of the equipment, and can also be
mitigated by design of the optodes. The other is that in principle, lasers could
generate pulses strong enough to cause heating of the tissue and discomfort
or even burns. However, these concerns are easily addressed in the design of
the instruments to ensure they follow established international safety
guidelines. Thus the amount of radiation the head is exposed to during fNIRI
is much lower than would be experienced simply being outside on a sunny
day.

Figure 12.5 Comparison of continuous wave, frequency domain, and time
domain fNIRI approaches. In each panel, the intensity of light from the
emitter is represented as IO and the light recorded by the detector (after
passing through tissue) as I; the distance of the optical path through the tissue
is quantified as d. In all cases, the intensity of the light is attenuated after
passing through the tissue, due to both absorption (quantified as the
absorption coefficient, µa) and scattering (µs). Note that in frequency domain
imaging, not only is the light attenuated, but there is a phase delay, quantified
by φ. In time domain imaging, the photons contained in a brief pulse of
transmitted light arrive at the detector over a range of times, creating a
distribution (point spread function) of intensity values over time, I(t).
Reprinted with permission of Elsevier from Scholkmann and colleagues
(2014)



Different technologies are available for the light detectors as well. One of
these, photomultiplier tubes (PMTs), will be familiar from the chapter on
PET imaging. These involve a material that releases an electron when a
photon touches it, combined with a tube that allows the electron to trigger the
release of additional electrons, amplifying (multiplying) the signal. These are
extremely sensitive and allow the system to count individual photons, which
is the highest level of precision obtainable. They also allow for very fast
measurements, which is an important consideration in FD and TD systems.
However, photomultiplier tubes are sensitive to magnetic fields and ambient
light, and are also comparatively large in size and have high electricity
demands. The sensitivity to magnetic fields is a particular consideration
because with other technologies, fNIRI can be done inside an MRI scanner.
One alternative is photodiodes, in which photons are absorbed by a
semiconductor, resulting in a change in voltage that is then recorded.
Photodiodes are simpler to use as they have lower electricity requirements,



are smaller, and are not sensitive to magnetic fields or ambient light.
However, photodiodes do not internally amplify the signal as photomultiplier
tubes do, meaning that additional engineering (for example, preamplifiers) is
required to obtain good SNR. A third technology is the avalanche
photodiode, which works by light changing internal voltage, like
photodiodes, but has an internal amplifying characteristic (the ‘avalanche’)
more like photomultiplier tubes, overcoming the issue of weak signals noted
for photodiodes. Avalanche photodiodes, like photodiodes, are small,
insensitive to magnetic fields and ambient light, and allow even faster
sampling than photodiodes. Their major disadvantages are that they have
high, specialized voltage requirements, and are sensitive to temperature and
thus typically require some sort of internal cooling. The use of a fourth
technology, silicon photomultipliers, is currently under investigation as
these offer the advantages of avalanche photodiodes combined with the
single-photon counting abilities of photomultiplier tubes. However, this
technology has not yet found its way into any commercial imaging devices.

The optodes must be held in place against the head in some way, and several
considerations are important here. First of all, optical fibres are typically
made of glass and are quite fragile, so the system needs to protect the fibres
from breaking, ensuring they do not bend much. Secondly, the fibres need to
be held perpendicular to the head to ensure full and even distribution of the
light; as well, some sort of optical insulation needs to be provided around the
tips of the optodes to prevent interference from ambient light, which can
wash out the desired signal otherwise. Thirdly, the fibres need to be placed in
a specific arrangement, both relative to the head/brain of the subject, and
relative to each other. Emitter and detector fibres need to be located in
specific positions relative to each other, and with spacing that provides
optimal signal as discussed above. Most systems have source and detector
optodes at distinct locations; however some have a source and emitter at each
optode location. Different systems fix optode position in different ways. The
majority of these use a stretchable cap such as is used in EEG; others use a
band that can be placed over different parts of the head, or a hard-shell
helmet. An example is shown in Figure 12.6. One current limitation of all
fNIRI systems is that due to the per-channel expense, the fact that there is an
optimal emitter–detector separation distance, and the fact that increasing the
number of channels decreases sampling rate, most systems do not provide



full-head coverage. Commercial systems typically have in the range of 1–50
each of emitters and detectors. Many systems are designed in a modular
fashion: either the optodes can be plugged into various different locations in
the cap/helmet, or the array of optodes are held in a fixed position relative to
each other on a flexible pad that can be positioned over different parts of the
head. Thus the researcher can place the optode array over the part of the brain
that is of interest in a particular study. Some systems, however, are less
flexible; for example, there are systems specifically designed to be placed
over the forehead that are designed only to record frontal lobe activity.

Figure 12.6 An example fNIRI system. The left panel shows optodes secured
to the scalp by an elastic cap, much like that used in EEG systems. The
optodes are the black cylinders; this example also includes EEG electrodes
(discs connected to coloured wires). The middle panel shows a close-up of
one optode, which would plug into a circular holder in the cap. The right
panel shows the complete hardware system; on the middle shelf is the
hardware box that generates the light and records the signals. Images
courtesy of NIRx Medical Technologies LLC

The number of channels and their positioning is another consideration. One
important consequence of the banana-shaped path that light travels through
the brain is that there is an optimal range of distances between emitter and
detector optodes. The lower limit of this range is imposed by the fact that
photons that penetrate into the brain must necessarily travel a certain distance
from the emitter before re-emerging from the head; photons that re-emerge
close to the emitter very likely only penetrated the surface layers of the head



and did not reach the brain. The maximum distance between emitter and
detector, on the other hand, is limited by several factors. One is the fact that,
because the majority of photons that pass through the brain do follow the
banana-shaped path, they tend to emerge from the head within a relatively
narrow range of distances; some photons travel further through the cortex,
but longer paths increase the likelihood that the photon will be absorbed or
scattered away from the scalp, reducing SNR at greater separation distances.
The other consideration is that in general, researchers wish to achieve the best
spatial resolution possible; greater emitter–detector distances reduce spatial
resolution since the signal can originate from anywhere between the two
optodes. The majority of fNIRI systems use separations of 2–4 cm, as this has
been determined to be optimal to capture the majority of photons passing
through the brain. In some cases (primarily for fast signals), separations up to
6–7 cm may be used. In this latter case, usually closer separations are used as
well, so signals from a given emitter are recorded from multiple detectors at
different distances. If possible, it is also ideal to have multiple emitter–
detector pairs sampling the same brain tissue (that is, different paths cross
through the same brain region), as this will increase SNR. Figure 12.7 shows
how emitter–detector separation distance affects the depth and extent of
cortex that the light passes through, demonstrating why 3-4 cm is a
commonly used separation distance.

Figure 12.7 Simulation data showing photon sensitivity profiles at a range of
emitter–detector separation distances. Colours represent the intensity of light
reaching any given point in the tissue, and contour lines show each order of
magnitude loss in sensitivity from peak, truncated after 5 orders of
magnitude. In this simulation, sensitivity to the cerebral cortex is best at
separations of 30 mm or more. Note that at separations greater than
approximately 35 mm there is no increased sensitivity to deeper regions of
cortex; however, due to the greater lateral separation there is increased
ambiguity as to where along the optical path a particular activation signal
originates from. Reprinted from Strangman, Li, and Zhang (2013), licensed
under Creative Commons BY 4.0



A related topic is how we conceptualize the number of ‘channels’ in an fNIRI
system, and how the spatial arrangement (montage) of optodes is determined.
Obviously, this depends significantly on the number of emitters and detectors
the system has, which is a significant differentiator between systems – both in
terms of the overall number of optodes, and the balance between emitters and
detectors. Some systems have more emitters than detectors, while others have
the opposite. In general, though, we can call a path between a single emitter
and detector a channel, since this represents the light transmitted through one
particular part of the brain. Because the emitted light travels in all directions
through the head from each emitter, the light from a given emitter can be
received by multiple detectors – creating multiple channels – and conversely
a detector can receive light from multiple emitters. Thus, a system with four
emitters and one detector would be considered a four-channel system. The
number of channels is not always as simple as multiplying the number of
emitters by the number of detectors, however, because this depends on the
arrangement of the optodes and their distances. Systems with a large number
of optodes are likely to include many possible emitter–detector pairs that are
too far away from each other to be combined as a channel. As well, in
systems with many channels, there will likely be some optodes that are
completely surrounded by other optodes (making all possible pairings
feasible), and others on the edge of the array that have optodes only on some
sides. Sensor numbers notwithstanding, the scattering of light in the head
itself imposes a lower limit on the spatial resolution of fNIRI to about 10
mm.



An important issue in optical imaging is how to determine, at a given
detector, which emitter generated the photons that are received. As can be
seen in Figure 12.6, in a multi-channel system the emitters and detectors are
interspersed and so a given detector will inevitably sense light from multiple
emitters (likewise, an single emitter’s light may be picked up by multiple
detectors). Accurately localizing the signal depends on knowing which
emitter–detector pair that signal is coming from. The solution to this problem
is called multiplexing. This is a generic term that refers to different ways of
combining multiple, distinct signals and separating them later, as is done with
technologies such as cellular phones and computer networking. Optical
imaging systems typically use one of three types of multiplexing. In time
multiplexing, only one emitter is turned on and transmitting light at any
given time. The system cycles through turning each emitter on and off in
turn, and once each has been on once, the cycle begins again. In this way, the
system knows at any given time to associate the data received at the detector
with a particular emitter. A disadvantage of this approach is that it imposes a
limit on the temporal resolution of such systems, since increasing the number
of channels increases the amount of time required to cycle through all the
channels. Each emitter only needs to be on for 1–2 ms, so with a low number
of channels (for example, four emitters), this is not much of a problem, as the
sampling rate can be in the order of 100–200 Hz. However, with a larger
number of emitters the sampling rate can drop to 50 Hz or lower. As noted
earlier, this is less of a concern for haemodynamic (slow) signal imaging, but
does impose limitations on the temporal resolution when performing fast
imaging. Another option is frequency multiplexing. This is achieved by
modulating the intensity of the light at different frequencies for each emitter.
These frequencies are very high – typically in the kHz range – and allow for
separation of the signals at the detector by applying a fast Fourier transform
to isolate the amount of light received at the distinct frequency associated
with each emitter. Alternatively, the hardware in the amplifier that receives
the signals may have separate channels that are tuned to the frequencies of
individual emitters. An advantage of frequency multiplexing is that all
emitters are on continuously, so data can be received simultaneously across
all channels. Thus there is no limitation on sampling rate or temporal
resolution imposed by frequency multiplexing, because the rates of frequency
modulation are very high. The third – and least-common – approach is code
multiplexing. All emitters are active simultaneously; however, they are each



switched on and off (very rapidly) according to different sequences or
‘codes’. Conceptually this is similar to frequency multiplexing in that the
data from all emitters are mixed together at the receiver, and then decoded
because each emitter has a different ‘signature’. The difference is that
frequency multiplexing uses regular, sinusoidal frequencies as the signatures,
whereas code multiplexing uses non-periodic, on–off pulses as the signatures.



Continuous Wave Imaging
Continuous wave (CW) imaging is the most common form of fNIRI. Light of
a specific frequency and intensity is continuously transmitted from the
emitter, and the attenuation (absorption) of the light is calculated as the
reduction in intensity of light received by the detector. This process of
quantifying the concentration of a compound via light absorption was
originally demonstrated in ex vivo conditions, by chemists. The basic
relationship between light absorption and concentration of a solution is
described by an equation known as the Beer–Lambert law. Absorbance is
defined as the ratio of the intensity of the input light, to the intensity of the
output light after it passes through the solution. Mathematically, this is
described as:

A = log10(IO/I)

where IO is the original intensity and I is the transmitted intensity. The Beer–
Lambert law describes how this relates to the concentration of the material
the light passed through:

A = log10(IO/I) = εlc

where l is the length of the transmission path, c is the concentration of the
solution, and ε is the absorption coefficient, a constant specific to the
particular compound being studied. Obviously things get much more
complicated in biological tissue with so many different compounds in the
‘sample’ (the head), but here we’re starting from a simple case of measuring
the concentration of a single, pure compound in a solution.

The Beer–Lambert law is easy to understand intuitively if we think of a test
tube full of clear water. In this case, light will pass easily through it, so there
will be little absorption. If we add a drop of food dye to the water, the colour



will change slightly. The molecules in the food dye absorb some of the light
passing through the test tube, reducing the amount of light that reaches the
receiver. As we increase the amount (concentration) of dye in the test tube,
the solution will get darker, and thus absorption will increase, and the
brightness of the transmitted light will decrease. The Beer–Lambert law
specifies a direct mathematical relationship that allows us to quantitatively
determine the concentration of the dye in the solution by measuring the
amount of light absorption, as long as we know the absorption coefficient of
the dye.

In CW fNIRI, a modified Beer–Lambert law (MBLL) is applied that takes
into account the scattering of light in biological tissue, and uses the
absorption coefficients of oxy-Hb and deoxy-Hb, allowing us to measure the
concentrations of oxy- and deoxy-haemoglobin. Of course, there are many
compounds other than oxy-Hb and deoxy-Hb in the head that will affect light
transmittance, but in fNIRI the simplifying assumption is made that the
concentrations of all these other compounds remain constant during the
measurement, and only oxy-Hb and deoxy-Hb change. Although this may not
be exactly true, it is not unreasonable to expect that the concentration of other
compounds with significant absorbance at the chosen wavelength(s) of light
will not change systematically with an experimental manipulation.

Another limitation of the MBLL is that it assumes that the medium that the
light passes through is homogeneous. This assumption is violated in the
brain, because haemoglobin is only present within the blood vessels, and not
any of the other tissue that the light passes through. However, the impact of
this assumption being violated is only that fNIRI significantly underestimates
the true concentrations of oxy-Hb and deoxy-Hb in the small vessels; the
measurements of their relative concentrations – and, critically, changes in
these – are still proportional to the true values.

A more significant limitation of the MBLL is that it includes a constant called
the differential path length (DPL) factor, which accounts for the scattering
of light that occurs in biological tissue but not in test tubes. This factor varies
considerably between individuals – by as much as 15% – and so using an
incorrect value can yield a significant degree of error in measurement. The
DPL can be measured using FD or TD fNIRI, but not with CW imaging –



leading to greater inaccuracy when using CW in particular. However, the
factors known to affect DPL include age, sex, and wavelength, so in a typical
study with a relatively restricted age range and an even balance of
participants of each sex, using a particular wavelength, the true amount of
error is likely to be much less than 15%, and is further mitigated by the mere
fact of averaging data across individuals (some of whom will have larger
error, and others smaller).



Frequency-Domain Imaging
While CW fNIRI is the most commonly used technology – due to its relative
technical simplicity, ability to perform haemodynamic imaging reliably, and
its use in the majority of commercially available imaging devices – its major
limitation is that it can only measure the intensity of light received, but not
timing information. While CW devices transmit light at a constant intensity,
frequency domain (FD) devices modulate the intensity of the emitted light at
a very high rate (100–500 MHz). Using this technology, three measures can
be obtained. The first is average intensity, comparable to a CW measurement;
the second is intensity changes at the frequency the light is modulated at; and
the third (and most interesting) is phase delay. Phase delay allows for
estimation of the average arrival time of photons at the detector. This is
possible because the light intensity is modulated at a high sinusoidal
frequency: phase refers to the timing of the peaks of intensity. The farther a
photon travels between the emitter and detector, the more phase lag it will
demonstrate relative to the original source light. Thus in a FD system, the
phase of the light received at the detector is compared with a ‘reference’
phase, which is determined by passing the same light transmitted from the
emitter through a vacuum tube with known light transmission properties, to a
detector.

This phase delay information is useful because the time it takes for photons to
travel from the emitter to the detector is proportional to the distance they
travel: light that passes through the superficial tissues but not the brain will
have faster transmission times than light that passes more deeply, through the
brain. As a result, the light received at the detector will contain a mixture of
phase delays, which effectively average together so that what is measured is
the mean phase delay. The timing information obtained from phase delay
measurements improves SNR, relative to CW imaging, for several reasons.
Firstly, phase delay is more sensitive to signals from deeper tissues, because
the photons passing deeper take longer to arrive at the detector, and these
longer times (large values) have a greater influence on the mean phase delay
than the smaller values generated by peripherally travelling photons.
Secondly, since the phase delay signal is sensitive to path length, it can offer
enhanced spatial resolution because changes in brain activity at different



depths are in principle distinguishable, given the right analysis algorithms.
Finally, because the measurements relate to time and not absolute intensity,
phase delay measurements are much less sensitive than CW to artifactual
changes in light intensity. These changes can be caused by ambient light, but
especially by movement of the optodes relative to the head, which commonly
occurs with head movement. Phase delay measurements are therefore
especially advantageous with infants or in studies that involve movement.
The benefits of phase delay measurements are applicable to measuring both
slow and fast optical signals. However, due to the intrinsically lower SNR of
fast signals, FD imaging is particularly valuable for fast optical imaging.



Time-Domain Imaging
Time-domain (TD) fNIRI builds on the principles of FD imaging, in the
sense of looking at the timing of the optical signal rather than its intensity.
However, TD fNIRI has much greater temporal sensitivity than FD. In TD
imaging, a pulsed laser is used as the light source, rather than a continuously-
on light source that varies in intensity, as in FD. The timing of the pulses in
TD imaging is extremely fast, with each pulse lasting only tens of
picoseconds (10-12 s, or quadrillionths of a second). Combined with a very
fast detector capable of counting single photons, a TD system is able to
precisely quantify the temporal distribution of when the photons from each
pulse are received at the detector. The resulting measurement is the
distribution of time-of-flight (DTOF) of the individual photons originating
from a single pulse of light. This is shown in Figure 12.8. A TD fNIRI time
series thus comprises a series of DTOF measurements. The value of the
exquisite temporal resolution of TD fNIRI is not in the sampling rate it
affords to the fNIRI signal per se, but rather to the ability of each TDOF
measurement to differentiate between photons arriving at the sensor at
different times. Because the time it takes a photon to travel from the emitter
to detector is proportional to the distance it travels, the early portion of the
DTOF represents photons that travelled shorter paths (more peripheral, non-
brain paths), whereas the later portion of the DTOF represents farther-
travelling photons – those that most likely passed through the cortex. This
allows improved sensitivity to true neural signals by focusing analysis on the
later portion of the DTOF (for example, only those photons received later
than the mean or peak of the distribution, or only those within a selected time
window). This is a significant technological advantage, since CW and FD
fNIRI signals are inherently dominated by the light that passes through
peripheral tissues.

Figure 12.8 Distribution of time-of-flight (DTOF) values obtained in time-
domain (TD) fNIRI. Each point represents the number of individual photons
recorded at a detector at a given time after transmission from the emitter,
summed over a large number of transmitted pulses of light. Blue circles are
the system impulse response function, representing light transmitted over a
known distance through a vacuum tube rather than through the head. Red



diamonds are the data from light transmitted through the head. Note that the
overall DTOF of the light transmitted through the head is shifted to the right,
reflecting the additional time taken by photons to pass through the tissue.
Since the majority of photons do not pass through the brain but follow shorter
paths through superficial tissues, the peak of the measured DTOF primarily
represents those superficially travelling photons, while later time periods
reflect light that passed through the cortex. The shaded area from 2000–3000
ps represents a probable period during which the data primarily reflect
cortical activity. Thus, intensity data can be analysed only from this time
window to avoid confounds from superficial tissues. Adapted with
permission of Elsevier from Torricelli and colleagues (2014)

Besides its better ability to isolate neural from nuisance signals, TD fNIRI
has other advantages as well. One is the ability to easily measure the
necessary optical properties of each head that is imaged. Recall that
accurately calculating concentration of oxy-Hb and deoxy-Hb using the
MBLL relies on knowing the absorption coefficient, and also that one
important source of error in CW fNIRI measurements is the differential path
length (DPL) factor. Both of these parameters vary between individuals, but
in CW and FD imaging either default, assumed values have to be used for
these, or time-consuming and sometimes awkward calibration steps have to
be performed for each individual (such as measuring optical signals at a
number of different emitter–detector distances); DPL cannot be obtained
from CW measurements. TD imaging, in contrast, allows relatively rapid
calculation of these parameters for each individual without relying on
multiple emitter–detector distances. Beyond the increase in accuracy
provided by this ability to calibrate for each individual, this calibration also



means that measurements provided by TD fNIRI can be truly quantitative
measures of concentration, rather than relative measurements – which are all
CW or FD can provide. This also allows TD imaging to estimate a
quantitative value of another parameter – oxygen saturation in tissue – which
is of importance in some clinical applications.

Another advantage of TD fNIRI is that its sensitivity is not affected by
emitter–detector distance. Recall that with CW and FD imaging, there is an
optimal range of emitter–detector distances that maximize the detection of
photons that passed through the brain. Too short distances result in detecting
primarily photons that travelled through superficial (non-brain) paths, while
at too long a distance the amount of detected light is reduced; the depth of
penetration is also dependent on emitter–detector distance. At the same time,
however, greater emitter–detector separation results in reduced SNR due to
fewer photons that travel that far. In TD imaging, because we separate
photons based on their time of arrival, a single sensor can distinguish
between deeper and shallower travelling photons. Signals from deeper tissue
can be obtained without increasing emitter–detector distance and the
concomitant reduction in signal strength. Signals from deeper tissues will
nonetheless be weaker in TD imaging, simply because the odds of a photon
being absorbed or scattered away from the detector increase with depth.
However, the advantage is that TD offers good depth resolution with single
emitter–detector separation. Indeed, TD fNIRI can even be performed with
zero (null) emitter–detector separation (Torricelli et al., 2005), again based on
the principle that we can exclude earlier arriving (superficial) photons and
focus on the later arriving (deep) ones. Using null emitter–detector separation
holds significant promise in terms of improving spatial resolution of fNIRI.
First of all, the zero separation means that all detected photons can be
localized to a very narrow vertical column directly under the optode.
Secondly, the lack of separation between emitter and detector optodes allows
for potentially very dense placement of the optodes on the head. This
overcomes the limitation that, although the theoretical limit of fNIRI’s spatial
resolution is ~1 cm, the requirement of placing optodes 3–4 cm apart
enforces a reduction in spatial resolution.

TD fNIRI requires specialized equipment, even compared to other types of
fNIRI. Firstly, the light source itself is different, because rather than constant



illumination, the source has to produce very short, precise pulses. This is
done using pulsed lasers, which can generate short bursts of light (100 ps or
less) at high frequencies (up to 100 MHz). There are a few technologies
available for this, including solid state lasers, pulsed diode lasers, and
supercontinuum fibre lasers. Solid state lasers are the most commonly used,
as they have good power and a range of available wavelengths of light.
However, they are comparatively large, and switching them between
wavelengths can be slow. Pulsed diode lasers are more compact, but are less
powerful (resulting in lower SNR) and need extended warm-up time (one
hour) before they can be used. Supercontinuum lasers are a relatively new
technology with good power and other favourable optical properties.
However, as a new technology there are still issues related to power and
robustness that need to be addressed before they can enter widespread use.
The detectors used in TD imaging likewise have higher demands than other
types of fNIRI, as they need to have both very high sensitivity to light (in
order to count individual photons), and to be very fast. The most common
approach is known as time-correlated single photon counting. This can use
a variety of light detectors, including photomultiplier tubes (PMTs), micro-
channel plate PMTs, single-photon avalanche photodiodes, and hybrid
detectors that combine a PMT and avalanche photodiode. Time-correlated
single photon counting works on the principle that in the narrow time
windows used for detection (a few thousand ps), the odds of detecting even a
single photon are quite low. Thus to determine the DTOF a relatively large
number of sampling cycles are required to detect enough photons to reliably
estimate the DTOF. This does not significantly impact the temporal
resolution of the fNIRI measurements because the individual samples in
TCSPC are so fast, so tens or even hundreds of thousands of measurements
can be taken in a second. The technology required to detect single photons is,
necessarily, extremely sensitive to light. This imposes an upper limit on the
intensity of the light coming from the emitter, so as not to saturate or even
damage the detector. This is why the odds of detecting a single photon in a
narrow time window are so low, but also imposes limits on the SNR of these
systems.

In spite of its many advantages, TD fNIRI is still quite obscure, and has a
number of limitations. First of all, the technology required for this type of
imaging is larger, more fragile, and more expensive than for CW or FD



fNIRI. In fact, there are virtually no commercial systems available; the
majority of research using TD fNIRI has been conducted using systems
designed and built by individual research groups. The lack of commercial
availability largely limits the technique to research aimed at further
developing the technique, or to people with access to those labs conducting
technique development. This is because building, using, and maintaining
such ‘one-off’ systems is not feasible for the typical cognitive neuroscience
lab whose efforts are focused on using the technique to do research on
functional brain organization, rather than making a particular technology
work. However, as research advances and new technical innovations make
smaller and lower-cost systems feasible, the advantages of TD imaging will
likely result in its becoming a more mainstream technique. Another important
limitation is that TD systems typically have lower contrast-to-noise ratios
(CNR) than CW systems. This is due in part to the fact that the specifications
for TD imaging are different and more specific than for CW, limiting the
choice of components, and thus in some cases the performance of those
components. As well, as noted above the high sensitivity of the single-photon
detectors limits the intensity of light used, and thus imposes a limit on SNR
that is not present for CW or FD systems.



Data Analysis
Although we have seen that there are several ways of acquiring fNIRI data,
ultimately all of these methods generate time series data from a set of
channels. In this sense, the data, and how they are processed, share
commonalities with other time series methods we have examined, including
EEG, MEG, and fMRI. Many of the preprocessing and analysis steps will
thus be familiar, although the nature of optical data imposes some
differences. Most notably, the raw time series data need to be converted; for
example, in CW data from intensity values to haemoglobin concentrations
using the MBLL. Another step unique to optical imaging is attempting to
separate signals or neural origin from light that passed only through
superficial layers of the head. As well, much like EEG or MEG data the
researcher has the choice of simply analysing the data from each channel, or
performing source localization (often called tomographic imaging in the
fNIRI context) and reporting data in terms of 3D spatial coordinates in the
brain. This in turn will affect the type of statistical analyses that are
performed. Another important consideration is whether the interest is in the
fast or the slow optical signal – some preprocessing steps are generic to all
forms of the data, whereas others (such as filter settings) are dependent on the
signal of interest.

As with other imaging modalities, there are a variety of software packages
available for fNIRI preprocessing and analysis, including both commercial
and open source offerings. Because of the many types of optical imaging, and
– as we will see – different ideas about the ideal processing pipeline, these
packages vary considerably in the types of tools they offer, and are under
active development. As always, for someone interested in starting to do
optical imaging, the best approach is to read widely, and take a course or
spend time in a lab that already has expertise in analysing similar data. As a
critical consumer of the fNIRI literature, it is important to recognize that
there is much less standardization or even agreement on the best procedures,
so it is important to pay close attention to the steps performed on the data,
especially in trying to compare data between labs.



Data Conversion
The first step in the optical-imaging pipeline is to convert the raw time series
data into the signal of interest. For CW data, this typically involves applying
the MBLL to convert intensity values into concentrations of each
chromophore of interest (that is, oxy-Hb and deoxy-Hb). This simple
statement belies a fair amount of underlying complexity and subtlety though,
because in general the MBLL as applied to optical imaging is a grossly over-
simplified model of how light is actually transmitted through the many-
layered and highly heterogeneous medium of the head. As a result, ongoing
work is directed at improving the MBLL for the specific use case of fNIRI,
and different software packages may implement this in different ways.
Regardless of the particular implementation used, the resulting time series
data represent concentration values; typically two time series are generated
per channel: one for oxy-Hb and one for deoxy-Hb. As noted earlier, the
haemoglobin concentration values may be specified in relative terms
(arbitrary units), or in absolute terms. CW data can generally only be
specified in relative terms, whereas FD and TD data can yield absolute values
if appropriate calibration is done.

For FD data, a fast Fourier transform is typically used to isolate the signal at
the frequency that the light intensity was modulated at, and the phase delay at
this frequency is compared to the reference phase. Thus the resulting data are
a time series of photon time-of-flight values, which can be used in this form
if analysing the fast signal. If the interest is in the slow signal, the phase shift
data can be converted to haemoglobin concentrations using the MBLL.

For TD data, the raw data are time series of DTOFs, which can be converted
to haemoglobin concentrations according to the MBLL. However, since the
key advantage of TD imaging is the fact that the DTOF separates
early/superficial from late/neural signals, typically the intensity values from
the DTOF are first separated by time. There are several different approaches
to doing this. The simplest is to designate a particular time window, or a set
of time windows, and extract mean intensity values from each. Using
multiple time windows can be especially valuable if there is an interest in 3D
imaging and obtaining good depth resolution within the cortex. Other



approaches use changes in variance (since variance increases with time
within the DTOF) or other more complex statistical models. In all cases, with
TD data the measured DTOFs are compared with a reference distribution (the
instrument response function, or IRF) that is obtained by placing the emitter
and detector optodes directly against each other to determine the DTOF of the
system itself.



Quality Assurance
As with any data, the first step that should always be performed is quality
assurance. This involves – at least – visual examination of the raw data time
series to ensure that they look as expected. Because optical imaging relies on
contact of sensors with the scalp, one common source of poor-quality data is
poor contact here – either throughout the scan due to a poorly placed (or
damaged) optode, or transiently due to movements. It is not uncommon for
some channels to be removed completely for some participants due to optode
problems.



Motion Correction
Although motion artifacts are an issue in both fMRI and fNIRI, the sources of
these artifacts in fNIRI are very different: in fMRI the problem is the
movement of the head within the magnetic field, whereas motion artifacts in
optical imaging data generally are the result of the optodes moving relative to
the scalp. With fNIRI, such gross overall movements of the head through
space are not necessarily a problem and, indeed, one oft-touted advantage of
fNIRI is its ability to be used in freely moving participants. However, sudden
shaking of the head, touching the optodes, and even some types of
contractions of facial muscles can cause movement of the optodes relative to
the head, resulting in artifacts because the amount of light transmitted and/or
received will be drastically reduced when the contact between optode and
skin is reduced. For this reason it is best practice to consider and try to
minimize such movements during the experiment. As well, movement is less
likely if the optodes are firmly attached to the head; thinner (or no) hair tends
to result in less optode movement, whereas thick hair can be more
problematic. The manifestations of motion artifacts in the data tend to look
like either transient ‘spikes’ (large changes that return to/close to baseline),
shifts that do not return to baseline, or low-frequency fluctuations. As in
fMRI, a particularly problematic type of motion is that which is correlated
with the effects of interest in some way – for example, movements created by
participants’ responding to the task.

Identification of motion artifacts can be done on the time series data using a
simple threshold-based method. This looks for periods where the change in
amplitude and/or standard deviation of the signal exceeds a pre-defined
threshold within a relatively narrow period of time. The simplest approach is
to then simply mark those segments of time and remove them or otherwise
ignore them in data analysis. However, in general it is preferable to correct
the motion artifacts rather than lose data. Having identified motion-
containing segments of the data as described above, one approach to
correction is spline interpolation, which creates a mathematical model of the
shape of the motion artifact. Once the best fit of this model is identified, it is
subtracted from the data. Another approach uses a Kalman filter, which is an
algorithm that is more often used in predicting the trajectories of spaceships,



missiles, and controlling the movement of robots. Kalman filters are
particularly suited for making predictions concerning the future values of
some measurement, based on past values, in the presence of noise. The
Kalman filter compares the variance of the time series during periods marked
as containing motion with variance during motion-free periods, and uses this
information to predict what the data would have looked like without the
motion artifact. This is analogous to predicting the true trajectory of a rocket
when it passes behind a cloud, based on visual observation of its trajectory up
until it disappeared.

Other motion correction approaches take a more complex approach to
identifying the artifacts than simply looking at amplitude or variance.
Principal components analysis (PCA) breaks the data into a set of
uncorrelated component time series. Components with high variance tend to
be artifactual (since artifacts tend to be large relative to physiological data),
so the components that explain the most variance in the data can be removed.
This can be effective, but PCA runs the risk of removing real data along with
artifacts in cases where the motion is correlated with the task. A preferable
alternative is independent components analysis (ICA), which we discussed in
the context of EEG artifact correction. ICA uses more complex, higher-order
statistical properties of the data than PCA to separate the signal into
independent components. As a result, the components are not necessarily
uncorrelated from each other, but are more likely to originate from different
sources. Another approach is discrete wavelet filtering, in which a wavelet
– a short ‘snippet’ of a waveform with a particular shape – is fit to a time
series by shifting, stretching, and/or scaling it to best represent features in the
data. This relies on the fact that motion artifacts will occur relatively rarely
and have a different shape than the physiological data of interest, and so
outliers in the fitted wavelet distribution can be assumed to be artifacts, and
removed. Another approach is correlation-based signal improvement. This
is based on the assumption that true oxy-Hb and deoxy-Hb signals are, in
general, strongly negatively correlated. Since head motion affects the optode
– and thus measurements of both oxy-Hb and deoxy-Hb similarly – during
head motion the two chromophores’ signals will be strongly positively
correlated. The algorithm thus simply corrects for motion by removing the
correlated component of the signal. A limitation is that the correlation
between oxy-Hb and deoxy-Hb is in practice variable and so the approach



relies on an assumption that is not met. A comparison of several of these
methods (not including ICA) found that all significantly improved the data
quality relative to not performing motion correction (Brigadoi et al., 2014).
Of them, discrete wavelet filtering was the most robust and reliable. Another
study (Robertson, Douglas, & Meintjes, 2010) compared wavelet filtering
with ICA and found that while wavelets were effective at removing ‘spike’-
type artifacts, ICA was more effective overall, including dealing with slower-
changing artifacts. A limitation of any study comparing motion correction
techniques, however, is that it is hard to know if the results will generalize to
other datasets. In general, any approach to motion correction is preferable to
not performing this step, but the optimal algorithm may have to be
determined in each lab based on the nature of the data being collected.



Short-Distance Correction
Depending on the optode array, some channels may have relatively short
emitter–detector separation distances (2 cm or less). For CW and FD systems,
these short-distance channels provide little, if any, usable information about
brain activity because few photons will have travelled deeply enough over
this separation to penetrate the cortex. One option in this case is to simply
discard data from any such short-distance channels. However, another option
is to use these short-distance channels to model the noise: since they are
expected to be dominated by blood flow in the scalp and other non-brain
tissues, they can be used to estimate and subtract these noise signals from
other channels that also contain neural signals. In the simplest approach, one
can simply use linear regression to subtract the short-distance channel signal
from the data from long-distance channels. Other approaches improve on this
using adaptive or Kalman filtering. These approaches can reduce noise by
anywhere from 3–60%, with somewhat better noise reduction for oxy-Hb
than deoxy-Hb. Many implementations of short-distance correction have
involved deliberate design of the optode configuration for this purpose, by
adding detectors very close (for example, 5 mm) to each emitter explicitly for
the purpose of using these for correction. More generally, it is recommended
that distances of 15 mm or less be used for short-distance correction, to
ensure sensitivity only to superficial haemodynamic signals.



Separating Signals from Noise
As with other types of time series data, temporal filtering is an important step
in fNIRI preprocessing to enhance signal detection and reduce noise. The
type of filtering, and particularly the cut-offs, naturally depend on whether
the researcher’s interest is in the fast or the slow signal, since these occur on
very different time scales. For slow haemodynamic signals, the filtering
needs are similar to fMRI studies: low frequencies are high-pass filtered to
reduce effects of drift in the signal, as well as low-frequency aliasing of
signals such as pulse and breathing that occur at frequencies higher than the
sampling rate of the system, while high frequencies are low-pass filtered –
typically with a cut-off twice as high as the frequency of stimulation – since
modulation of the haemodynamic response at these higher rates would not be
experimentally relevant, and thus would only contribute noise. The actual
filter settings chosen need to consider the nature of the acquisition system (in
particular the sampling rate, which determines the highest frequency that can
actually be sampled without aliasing), as well as the frequency of stimulation.
For slow signals, the high-pass cut-off is typically around 0.01 Hz, while
low-pass cut-offs range from 0.1–0.8 Hz. For fast signals, a similar high-pass
cut-off (0.01 Hz) can be used, since low-frequency artifacts are unwanted;
however, since the fast signal is (by definition) rapidly changing, a higher
low-pass cut-off (for example, 10–30 Hz) must be used to ensure that the fast
neural signal is not filtered out.

Other approaches may be used, however. For example, if one is using
regression to identify a stimulus-locked HRF that lasts for about 10 s – or
perhaps 30 s in the case of a block design – the presence or absence of, say,
30 Hz noise will likely have little effect on identifying the HRF unless the 30
Hz noise is very large. Therefore, some researchers may choose not to apply
low-pass filtering at all, beyond what is needed during recording to prevent
aliasing. Removing low frequencies is more important because these can
manifest as slow drift that affects estimation of the baseline, or the overall
ability to detect experimental effects. However, instead of filtering other
approaches can be used. One involves using linear regression, with simple
polynomials modelling the low-frequency drift, such as linear, quadratic, and
cubic trends. A more sophisticated approach is wavelet-based detrending –



essentially, modelling short periods of fluctuation at particular frequencies
and with particular shapes. An advantage of wavelet-based detrending is that
it can be applied in a regression framework that also includes the predicted
HRF. Compared with an approach that attempts to remove low-frequency
signals prior to statistical analysis, wavelet-based detrending allows for
greater similarity between the wavelets modelling low-frequency noise, and
the expected haemodynamic response. In contrast, the cut-offs used in
conventional filtering need to be conservative to ensure that the
haemodynamic response is not filtered out along with the noise.

Another approach, touched on earlier in the context of motion correction, is
ICA. In principle, ICA is able to separate components of the signal that are
statistically independent of each other, and therefore different noise signals
should emerge as separate components from task-related physiological
signals. ICA has been demonstrated to be effective in this regard for fNIRI.
However, as with other applications of ICA, there are a few caveats to
consider. Firstly, the number of components is constrained by the number of
independent sources of information, which in this case is the number of
channels. Thus in low-channel systems it may not be possible to derive as
many independent components as are needed to model all of the different
sources in the signal. Applying other artifact correction or removal
techniques – such as filtering – prior to ICA can also improve the results by
limiting the number of different sources of information that ICA has to
separate. Finally, ICA does not always perfectly separate signal from noise,
and is dependent on the operator to decide which components to keep or
discard. Thus while is it a very useful tool, ICA should not be the sole
approach to artifact removal.



Source Localization: Optical Tomography
The issues faced in localizing fNIRI signals have many parallels with other
imaging techniques we have covered already. Like EEG and MEG, fNIRI
uses measurements made from a set of sensors located around the head.
Source localization is thus an inverse problem, which is by definition
mathematically ill-posed, meaning it has an infinite number of possible
solutions. However, unlike EEG but more like MEG, source localization is
somewhat simplified by the fact that the range of possible origins of the
measured signal is quite constrained. In MEG, the constraint comes from the
limited propagation of magnetic fields; in fNIRI, the constraint arises from
the limited penetration depth of the NIR light used. Source localization in
fNIRI also has some conceptual overlap with PET, where back-propagation is
used to infer the sources of photons based on the multiple lines of response
passing through a given point in the head; in fNIRI, more than one channel
(emitter–detector pair) may involve a path through the same section of the
brain (especially when a large number of channels and/or multi-distance
measurements are used), which can both increase SNR and reduce
uncertainty concerning localization.

The simplest way of analysing fNIRI data, as with EEG/MEG, is to simply
analyse the time series data from each channel and not worry about where,
exactly, in the brain the signals come from. In some cases, this may be
sufficient to answer the research question. For instance, in a study relating
motor cortex activity to hand movements, it might be sufficient to place a
small array of optodes over the general region of the motor cortex (using the
International 10–10 System as a guide) and assume that any task-related
signal changes originated in the hand area of the motor cortex. On the other
hand, in spite of its limited depth penetration and spatial resolution, fNIRI
can provide relatively fine-grained spatial information – indeed, one of the
most appealing features of the technique is its ability to provide cortical
localization of the BOLD signal with lower cost, and fewer (or at least
different) constraints, than fMRI. At the same time, given variability in head
size and brain anatomy, even if the optodes are placed on each participant’s
scalp systematically (for example, using the International 10–10 System) one
can expect individual variability in which brain areas each optical channel



captures. Thus simply averaging the same channels together across subjects
without consideration of individual anatomy may lead to far less accurate
results than could be obtained using more sophisticated methods.

Many approaches are available for localizing fNIRI signals, which vary in
their complexity, assumptions, and requirements. In general, source
localization of fNIRI data is referred to as optical tomography (including a
range of names and acronyms such as diffuse optical tomography or DOT).
One key differentiator among techniques is whether an anatomical MRI scan
is required or not. In general, having an MRI scan from each participant will
yield the most accurate localization results. At the same time, this
requirement adds complexity, time, and cost to the study. Thus several
approaches have been developed to co-register fNIRI data to a standard brain
template. In large part the process works similarly regardless of whether an
individual’s own MRI or a standard one is used. First of all, the locations of
the optodes need to be registered to the MR image, which can be done either
with reference to the International 10–10 System (if optodes are placed
according to such a system), or more accurately by using a digitizer that
creates a 3D representation of the location of each optode as well as the shape
of the head. The optode location information is then co-registered with the
structural MR image using algorithms similar to those described in the fMRI
and MEG chapters. The next step is to segment the different relevant tissue
types (for example, skull, CSF, grey matter) and represent each as a
tessellated surface individually, from the MRI scan. This is essentially the
same process as described for source localization in the MEG chapter.
However, relative to MEG and EEG, optical signals are more dramatically
affected by the thickness of the scalp (that is, the tissue outside of the skull)
so the thickness of this needs to be modelled accurately, whereas with
M/EEG it is at best a minor consideration. Thus whereas M/EEG source
localization often uses boundary element models (BEMs), which represent
each tissue type as a 2D surface, fNIRI source localization uses finite
element models (FEMs), in which layers are represented in 3D, as surfaces
with varying thickness.

Having co-registered the optode locations with the cortical surface and
intervening tissues, the next step is to identify, for each subject, the brain
region that each optical channel is sensitive to. This is a variant of the



forward solution introduced earlier for MEG/EEG source localization. In this
case, we need a computational model that defines the range of possible paths
a photon may take between each emitter–detector pair, and the probability
that a photon will take each of those possible paths. The simplest approach to
this problem actually ignores the possible range of paths and projects the
location of each optode from the scalp to the surface of the brain (for
example, by taking the cortical surface point with the shortest distance to the
optode or projecting a line from the optode to the scalp, tangential to the
surface of the scalp), and then defines the channel at the cortical level as the
space in between the projected emitter and detector locations. However, this
ignores much of what is known about the complexity of light propagation
through the head, and is subject to a fairly high degree of error. As well, it is
not amenable to multi-distance measurements.

A variety of more sophisticated approaches have thus been developed. One
uses the MBLL; if the data is analysed at the channel level, then a single
MBLL formula is used with generic values for the absorption and scattering
coefficients. In the tomographic application of this approach, different values
of these coefficients are assigned to each voxel in the image (or vertex on
each surface) depending on the tissue type and its measured thickness. A
more sophisticated approach to the forward problem uses a model known as
the Boltzman radiative transfer equation (or photon diffusion equation),
which provides increased complexity in modelling light scattering in tissue.

The forward solutions model how light is predicted to pass through the brain,
given the set of optodes and the anatomy and optical properties of the tissue.
However, as with M/EEG, localizing the origin of the measured fNIRI
signals involves solving the more-complex inverse problem. This involves
using the forward solution that was computed, to determine from a
measurement which among the infinite range of possible distributions of
paths is most likely given the data. As well, some form of regularization
(mathematical compensation) must be made for the fact that there are far
fewer independent measurements (channels) than there are possible locations
in the brain contributing to that measurement. Common approaches to this
include the Tikhonov regularization, spatially variant regularization (SVR),
and depth-compensated DOT (DC-DOT).



Statistical Analysis
As with other areas of fNIRI, there are many options available for statistical
analysis of the data. Fortunately, these should all be familiar from previous
chapters and techniques covered in this book. Since fNIRI data are
fundamentally time series data, analysis methods used in M/EEG and fMRI
are generally applicable here. For the slow optical signal, studies generally
use block designs. Because these offer better SNR than event-related designs
– and fNIRI generally suffers from lower SNR than fMRI – this is an ideal
situation when the experimental question is amenable to it. On the other
hand, event-related designs are readily implementable when the experimental
situation demands, and can be quite robust, as shown in Figure 12.9. Many
early studies took a relatively simple approach to analysing block designs, by
simply averaging the signal across all blocks of the same condition and
performing either t-tests between pairs of conditions, or ANOVA for more
complex designs. However, as with fMRI this ‘sledgehammer’ approach
discards much useful information from the time series, and may be overly
susceptible to noise. Thus more recent studies tend to use the general linear
model (GLM) to perform a multiple regression analysis. This offers
advantages over averaging in that the GLM can include nuisance variables to
model out expected effects that are not of interest; for example, linear drift
could adversely affect the estimation of averages for each block in a simpler
analysis, whereas a linear drift term could be explicitly modelled in a GLM
analysis.

The approach to GLM analysis is much the same as in fMRI: the stimulus
time series is convolved with a model of the haemodynamic response
function (HRF) and then this is regressed against the data. This can be done
either with the data from each channel, or from each voxel if source
localization has been performed. There are several nuances that differentiate
fNIRI from fMRI analysis, however. For one, whereas fMRI yields a single
measure (BOLD signal), fNIRI typically provides at least three signals: oxy-
Hb, deoxy-Hb, and tHb; as well some systems allow for other measurements
such as oxygen saturation. It is not uncommon to perform analysis on at least
oxy-Hb and deoxy-Hb, and report the results of each separately. Studies that
have compared these measurements generally find similar results for each



(Hassanpour et al., 2014), although because the magnitude of oxy-Hb tends
to be larger than deoxy-Hb or tHb, this may show the greatest sensitivity to
experimental effects. Alternatively, some papers simply analyse the signals
from each wavelength of light used in the fNIRI system rather than
converting to haemoglobin measurements, although this approach makes the
data somewhat less interpretable than measurements that reflect more easily
understood quantities such as haemoglobin concentration. One also has a
choice of which model of the HRF to use, as in fMRI. Given that deoxy-Hb
changes tend to be more transient than those in oxy-Hb, it may be the case
that different models are more appropriate for the different signals. As with
fMRI, subject-specific HRFs derived from separate reference scans (for
example, simple finger-tapping) tend to yield more robust results than using a
generic HRF, but with the same caveats as in fMRI: the HRF may vary from
location to location in the brain, and also this procedure adds time to the
overall experimental protocol. An example of the results of this approach to
analysis are shown for source-localized data in Figure 12.9.

Another important difference between fMRI and fNIRI analysis concerns
multiple comparison correction. In fMRI, we typically have tens or hundreds
of thousands of voxels, and thus statistical tests, and so we must properly
account for the high likelihood of finding false positives. Likewise in fNIRI,
we have some number of channels or, if performing source localization, some
number of voxels in the brain; source localization typically generates voxels
of approximately the same size as in fMRI, although these are limited to the
surface of the brain. However, a key difference is that the degree of spatial
correlation between voxels is quite different in the two techniques. In fMRI,
it can be approximated by a Gaussian (normal) distribution. However, in
fNIRI the spatial correlations between voxels are much higher: the data from
many voxels are estimated by a much lower number of optical channels –
potentially as low as 1, and even if a high-density, multi-distance set-up is
used there are far more voxels than channels. Thus in fMRI, nearby voxels
are correlated primarily because both BOLD signals and physiological noise
extend over larger distances than the size of a single voxel; however, the
measurements of each voxel are independent due to the nature of fMRI’s
spatial sampling. By contrast, in optical imaging the data contain both
physiological- and measurement-related correlations because the same
channel is being used to estimate the data at multiple voxels. For this reason,



the most common approach to multiple comparison correction in fMRI,
Gaussian random field theory, is inappropriate for fNIRI. However,
alternative methods have been developed, including use of a ‘tube’ formula
that considers both physiological and measurement-related correlations (Ye,
Tak, Jang, Jung, & Jang, 2009). Alternatively, the false discovery rate (FDR)
method – which is also used in some fMRI and other neuroimaging studies –
can be used as it makes no assumptions about the nature of spatial
correlations.

Figure 12.9 An example of GLM-based analysis of source-localized fNIRI
data. In this study (which included both blocked and event-related stimulus
runs), participants viewed a rotating chequerboard stimulus (a, top) that
alternately stimulated the left and right visual fields. Due to the crossed
nature of the visual system, this should yield activity in right and left
occipital lobes, respectively. Data from the oxy-Hb signal were source-
localized and the resulting time courses for each voxel in the brain were
analysed using the GLM. Panel (a) shows the time course for an individual
participant during the blocked run, for individual voxels in the right (red) and
left (blue) primary visual cortex. Panels (b) and (c) show the HRFs from the
block design run, obtained by averaging across blocks. Panels (d) through (f)
show the equivalent data from the event-related (randomized stimulus order)
runs. Panel (g) shows the fitted HRFs for individual ten participants/runs
from the block design runs, as well as the average of these (cHRF, black)
which was used as the model HRF for analysing the event-related data.
Panels (h) and (i) show the thresholded statistical parametric maps for one
individual from the blocked runs for left and right hemifield stimulation,
respectively, while (j) and (k) show the comparable results from the event-
related runs for that individual. Image reproduced with permission of Elsevier
from Hassanpour, White, Eggebrecht, Ferradal, Snyder, & Culver (2014)



For the fast optical signal, the approach to analysis is necessarily different
because the target signals are not related to blood oxygenation and are thus
not expected to have the shape of the HRF. As well, such studies typically
use event-related designs since the fast signal is amenable to this. Different
research groups have approached this problem either more like er-fMRI
analysis, or more like ERP analysis. In the former, the GLM is used to
analyse the continuous time series, with the difference being that rather than
an HRF a simpler model of the expected activation is used, such as a short-
duration (for example, 30 ms) square wave (often called an impulse response
function, or IRF). In such cases, multiple lags of this IRF may be included
since the delay of the onset of the experimental effects, and their duration, are
not known in advance (Chiarelli et al., 2014). In the more ERP-like approach,
the continuous time series is segmented into short epochs around the onset of
each stimulus (for example, from 100 ms prior to 1000 ms post-onset),
baseline-corrected (by subtracting the mean of the post-stimulus period from



each time point), and averaged across trials. Then, as in ERP analyses, mean
intensities can be analysed within time windows of interest using t-tests or
ANOVAs.



Multimodal Imaging
Optical imaging is perhaps the technique that is most amenable to
combination with other neuroimaging and neurostimulation techniques. This
is because the parts of the fNIRI system that come into contact with the
participant (the optodes) can easily be manufactured without any metal or
electronic components. Light is transmitted between the fNIRI hardware and
the head using optical fibres, which are made of glass or plastic, and the
equipment for affixing these to the scalp can be made from plastic, rubber,
and fabric. Thus there is no electromagnetic interference generated by fNIRI
that would contaminate EEG, MEG, or MRI measurements, nor will the
fields generated by TMS or TES affect the optical measurements. (Although
some types of photodetectors are affected by magnetic fields, these can be
located outside the shielded MRI room.) Furthermore, light can travel for
very long distances in optical fibres with very little effect on the signal
quality (optical fibres are commonly used to transport signals over tens or
even thousands of kilometres), so in situations such as MRI where the fNIRI
hardware needs to be kept well away from the participant (for example, in
another room), it is easy to adapt the system to using long optical fibres
running from the participant in the scanner to the hardware in another room,
through a waveguide in the MRI room’s shielding.

There are two general reasons why one would want to combine fNIRI with
another imaging method. One is to gain a richer understanding of a particular
neurocognitive process; the other is to further our understanding of what
fNIRI actually measures. For example, Cui and colleagues (Cui, Bray,
Bryant, Glover, & Reiss, 2011) performed simultaneous fMRI and CW fNIRI
on a group of participants under several different task conditions, to better
understand how fNIRI measurements relate to underlying activity. This
treated fMRI as a ‘gold standard’ for localization. The results yielded several
interesting insights. For one, scalp–brain distance was negatively correlated
with the fMRI–fNIRI correlation; in other words, for areas of the brain that
are farther from the scalp (and thus the fNIRI sensors), SNR is poorer and so
the ability to detect brain-related signals is weaker. In this study (which used
somewhat limited coverage of the head), brain–scalp distance was found to
be greatest over the parietal lobe, and smallest over the frontal lobes. As well,



although fMRI and fNIRI signals were significantly correlated when
activation was present, the contrast-to-noise ratio (CNR) was consistently
higher for the fMRI signal than either oxy-Hb or deoxy-hB fNIRI signals.
Finally, the authors identified the voxels within the path of each fNIRI
channel that correlated best with the fMRI signal, in order to determine what
point along the optical path fNIRI is most sensitive to. The results showed
that the strongest contributions came from regions 2–2.5 cm under the scalp,
but were fairly evenly distributed along the banana-shaped path between
emitter and detector. Overall, the results of this study showed good
agreement between the localization of fNIRI and fMRI signals, as shown in
Figure 12.10.

Figure 12.10 Comparison of localization of haemodynamic signals obtained
from several task contrasts using simultaneous CW fNIRI (deoxy-Hb and
oxy-Hb signals) and fMRI BOLD in a study by Cui and colleagues (2011).
Reprinted with permission of Elsevier

Other studies have used fast optical signals to aid in localizing the sources of
EEG signals (Mathewson et al., 2014; Medvedev, Kainerstorfer, Borisov, &
VanMeter, 2010), and also to localize and characterize changes in motor
cortex activity induced by TMS (Parks, Maclin, Low, Beck, Fabiani, &
Gratton, 2012). A number of commercially available systems have been
developed to facilitate multimodal imaging involving fNIRI, such as caps that
allow interleaved placement of optodes and EEG electrodes, as shown in
Figure 12.6.



Summary

Functional NIRI employs the principles of spectrophotometry, which is a technique for
calculating the concentration of a material in a liquid by passing light through the substance.
In the case of brain imaging fNIRI involves shining near-infrared light into the head and
measuring the amount of light transmitted at a location a few centimetres away from the
source, to measure the concentrations of oxygenated haemoglobin and deoxyhaemoglobin.
As such, fNIRI is an indirect measure of neural activity, based on a physiological marker
very similar to what is measured in fMRI, and the shape and time course of the fNIRI HRF
is very similar to that of BOLD fMRI. However, whereas the fMRI BOLD response is
sensitive to the ratio of oxy-Hb to deoxy-Hb, fNIRI provides separate measurements of the
concentrations of each of these, as well as combining them for a measure of total blood
volume. In addition, fNIRI can measure a ‘fast signal’ that has timing more similar to
EEG/MEG measures and is thought to reflect changes in intra/extra-cellular volume (cell
swelling) that occur with ion flux across cell membranes.

Broadly speaking, there are three ways to obtain fNIRI measurements. Continuous wave
(CW) systems shine light of a specific frequency and intensity continuously during
recording, and measurements are based on the drop in light intensity at the detector relative
to the emitter. Frequency-domain (FD) systems also shine light continuously, but modulate
the intensity of the light at a specific frequency, which allows for measurement of both light
absorption (as in CW fNIRI) and timing. The timing information provided by FD systems
allows them to measure both slow and fast signals, whereas CW systems can only measure
slow signals. Time-domain (TD) systems send a series of rapid pulses of light, which allow
for enhanced temporal sensitivity relative to FD. Beyond simply improving the temporal
resolution of fNIRI, the temporal information provided by FD and TD can improve
sensitivity to true brain activation. This is because light that does not pass through the brain,
but only superficial tissues of the head, will arrive at the detector sooner than light that
passes through the brain, and indeed signals from deeper in the brain will arrive later than
those from more shallow brain regions. Time-based measurements are also less sensitive to
head movements than CW data.

Regardless of the types of measurement, all fNIRI systems depend on sources of light
(LEDs or lasers), optical fibres to transmit the light to and from the head, optodes to
interface with the head, and light detectors such as photodiodes or photomultipliers.
Although fNIRI has existed for as long as fMRI, it is used much less widely, and the
hardware and data-analysis technologies employed are quite variable. While a number of
commercial fNIRI systems exist, many other systems are purpose-built in individual labs –
especially the most technically advanced systems. Due to cost and other constraints, few
fNIRI systems provide full head coverage, but instead consist of a small array of emitters
and detectors that are placed over the brain region of interest for a given study. Like MEG
data, fNIRI data can be analysed either at the sensor level, or by performing source
localization – often called optical tomography in this context.

As a neuroimaging technique, fNIRI has several strong points. It is wearable, and relatively
lightweight and insensitive to head movement, making it a good technique to use with
infants, children, and other people who might not do well in an fMRI or MEG scanner. As
well, it is silent (unlike fMRI), has low operating costs (unlike fMRI or MEG), and few
contraindications (so, for example, people who could not have an MRI scan due to
implanted metal or devices could participate in an fNIRI study). The spatial resolution of



fNIRI is limited in that light only penetrates a few centimetres into the head, and with most
approaches there is a minimum separation distance between light emitters and detectors that
limits spatial resolution laterally to approximately 2–3 cm. At the same time, this spatial
resolution is sufficient to resolve localized brain activity at the meso-anatomical scale, and
activity measured with fNIRI aligns closely with what is obtained with fMRI, within
cortical regions that are accessible to fNIRI.

Things You Should Know

Spectrophotometry is a technique for determining the concentration of a substance by
shining light through the substance and measuring the amount of light absorbed.
Absorbance is related to concentration through the Beer–Lambert law. In fNIRI, light
of specific wavelengths is shined through the head in order to measure the
concentrations of oxygenated and deoxygenated haemoglobin.
The slow optical signal refers to that generated by oxy-Hb and deoxy-Hb. This is an
indirect measure of neural activity very similar to the BOLD response measured by
fMRI. In contrast, the fast signal changes on a time scale similar to EEG and MEG
signals, and is thought to be directly related to cell swelling and shrinkage that occurs
as activity-dependent ion channels open and close.
Performing fNIRI requires sources of light that have specific, narrow-band
wavelengths and controllable intensity; a means of transmitting the light to the head
(fibre optics and optodes); and light detectors (photodiodes or photomultipliers). It is
important that the optodes touching the head hold the fibres securely (to resist
motion-related artifacts) and protect the measurements from ambient light.
The wavelengths of light used in fNIRI are chosen to maximize sensitivity to oxy-Hb
and deoxy-Hb, while minimizing the interference from other chromophores (light-
absorbing compounds) including water. Because oxy-Hb and deoxy-Hb have
different light absorption profiles across the near-infrared spectrum, a minimum of
two wavelengths must be used in fNIRI in order to distinguish these two
chromophores. Commonly, one wavelength shows greater absorption by oxy-Hb
while the other shows greater absorption by deoxy-Hb. Using additional wavelengths
could help reduce contamination of the signal by other (non-haemoglobin)
chromophores, but there is a limitation on the total amount of light energy that can
safely be transmitted into the head, which must be divided by the number of
wavelengths used. Thus increasing the number of wavelengths decreases the strength
of the signal obtained from each.
A major impediment to fNIRI signals is the hair, especially when it is dark and/or
thick, as this can block light transmission. Although fNIRI is less sensitive to head
movement than is fMRI, movement of the optodes can create large artifacts,
especially if the movement allows ambient light to reach the optodes. Another source
of noise arises from the fact that most of the light coming from the emitter does not
pass through the brain, but only through more superficial tissues. As well as reducing
the signal overall, this can contaminate the signal since blood vessels outside the
brain will also contribute to the haemodynamic signal measured.
The spatial resolution of fNIRI is limited both by the fact that safe levels of light
energy only penetrate a few centimetres into the head, and that the light emitters and
detectors must be placed 2–4 cm apart to allow light to reach the brain. The fact that
the brain is variable in its distance from the outer surface of the head also creates
variable depth resolution across the head. Time-domain fNIRI holds the promise of



improved spatial resolution by more accurately estimating the signal from deep
sources, and allowing for reduced emitter–detector distance. Most fNIRI systems also
limit coverage to one part of the head, meaning that whole-brain imaging is not
usually possible. The temporal resolution of fNIRI is limited by the fact that light
from multiple emitters will reach each detector, requiring some form of multiplexing
that can reduce the time between measurements for each channel. Thus there is
commonly a trade-off between number of channels and sampling rate.
The fNIRI signal can be measured in three ways. Continuous wave (CW) imaging
involves shining a light of constant intensity and wavelength, whereas frequency
domain (FD) imaging involves modulating intensity sinusoidally at a specific
frequency. FD imaging is less sensitive to head movement than CW, and also
provides information regarding the timing of light transmission through the head,
whereas CW only provides intensity (absorption) information. FD is thus required for
measuring the fast signal. Time-domain imaging has greater temporal precision than
FD imaging, by using very brief pulses rather than continuous transmission of light.
This allows for measuring the distribution of travel times of individual photons,
which allows researchers to filter out signals whose transmission times are too short
to have passed through the brain, as well as resolving signals from different depths of
penetration.
Preprocessing of fNIRI data requires steps similar to M/EEG and fMRI, including
temporal filtering, and removal or correction of head-movement artifacts. ICA may
also be used to isolate signals from various noise sources. Unique to fNIRI is the
need for short-distance correction, which attempts to remove signal from photons that
passed through superficial, rather than brain, tissues. Source localization of fNIRI
signals is in principle similar to the approach used in M/EEG: forward solutions are
determined based on models of brain anatomy and the physics of signal transmission,
and then the combination of activation strengths at different sources that best matches
the observed data is determined through an iterative process. However, because in
fNIRI the signal is optical, the principles of signal transmission employed are very
different. For instance, the thickness of the skull should be determined at each
location rather than assuming a constant value, because this impacts the transmission
of light far more than magnetic or even electrical signals.
The fNIRI technique naturally lends itself to pairing with other imaging modalities.
For instance, fNIRI systems are generally safe to use in MRI environments as the
hardware placed on the participant’s head is generally non-metallic and does not
interfere with electromagnetic fields. Likewise, fNIRI produces no electromagnetic
noise that would interfere with M/EEG recordings, and so can be used with these
devices. Indeed, a number of systems allow for fNIRI optodes and EEG electrodes to
be fitted into the same caps, allowing for simultaneous recording. For these same
reasons, fNIRI is also compatible with neurostimulation techniques discussed in the
next two chapters.
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13 Transcranial Magnetic Stimulation
(TMS)



Learning Objectives
After reading this chapter, you should be able to:

Describe how TMS stimulates the brain.
Describe common ways of determining the location of TMS stimulation in the brain.
Describe several different protocols for delivering TMS, including their temporal patterns
and effects.
Describe the primary neurochemical means by which TMS is thought to operate.
List the types of controls necessary for ensuring the causal relationship between TMS and
observed results.
Identify important risks and safety considerations in performing TMS.



Introduction
The next two chapters focus on non-invasive brain stimulation (NIBS)
techniques (sometimes abbreviated NTBS for non-invasive transcranial brain
stimulation). These include transcranial magnetic stimulation (TMS) and
transcranial electrical stimulation (tES). TMS involves inducing a transient
electrical current in the cortex via the right-hand rule, using a strong magnetic
field. In contrast, tES involves direct application of a weak electrical current
to the scalp, which is conducted to the brain. Each of these methods actually
comprises a set of techniques, as we will discuss in detail in this chapter and
the next. It is worth noting that cognitive neuroscience research can also be
done using invasive stimulation methods, although these are beyond the
scope of this book. These include direct electrical stimulation of the cortex
during neurosurgery (often used clinically to identify motor or language
cortex so that critical areas can be avoided during resection), using electrodes
implanted for the purposes of epilepsy monitoring (recording electrodes
placed on the surface of the cortex can sometimes also be used for
stimulation), and using implanted brain stimulators such as deep brain
stimulators (DBS).

The techniques in this chapter differ fundamentally from those described in
previous chapters, in that they necessarily involve an intervention – applying
electrical or magnetic stimulation to the brain – rather than recording brain
activity. At the same time, however, the use of these techniques falls squarely
within the paradigms of cognitive neuroscience that should by now be
familiar to the reader. Most cognitive neuroscience involves the application
of some sort of stimulus – be it visual, auditory, or via another sensory
modality – and then measuring some sort of response – either a behavioural
one or using a neuroimaging technique (or both). In brain stimulation studies,
the stimulus is electromagnetic (though this may be combined with sensory
stimulation and/or a task), but the results are assessed using the same
methods we are now familiar with: behavioural responses and/or
neuroimaging techniques.

Brain stimulation has a colourful history, to say the least. Brunoni and
colleagues (2012) note that a physician of the Roman Emperor Claudius,



Scribonius Largus, described how headache could be relieved by delivering
an electrical shock by placing a live stingray on the head – a practice also
recommended by later physicians including Galen and Pliny the Elder;
electric fish were also recommended as a treatment for epilepsy by Muslim
physician Ibn-Sidah. Much later, in the eighteenth century, came Galvani’s
original experiments with frogs suggesting that the nervous system relied on
electrical impulses. Galvani’s nephew Aldini took a more dramatic approach
to investigating this phenomenon, by performing electrical stimulation
experiments on the freshly decapitated corpses of executed convicts at the
turn of the nineteenth century. Aldini reported that electrical stimulation to
various parts of the brain elicited facial grimaces (on the corpses, though
perhaps this triggered similar responses in onlookers as well). While it is
unclear whether his primitive techniques elicited muscle contractions due to
stimulation of the brain, or of the facial muscles directly, Aldini’s work
provided some of the first evidence supporting the contention that the human
brain and nervous system relied on electrical signalling. Approximately 100
years later, several physicians reported on experiments with patients whose
brains were exposed due to disease or injury, providing the opportunity for
direct electrical stimulation and again providing strong evidence for the role
of electricity in neural signalling in humans, this time in vivo – though it
should be noted that similar experiments had already been performed
throughout the nineteenth century in other animals. This work eventually led
to the seminal work of Wilder Penfield, Herbert Jasper, and colleagues in the
early to mid-twentieth century, who developed the method of electrical
stimulation mapping during awake neurosurgery in humans that is still the
gold standard to this day in neurosurgery. Although many early attempts at
stimulating the brain via magnetism were made, it was not until the 1980s
that TMS as we now know it was invented – specifically, the ability to
deliver a brief and focal pulse via electromagnetic induction.

A final introductory note to this chapter is that the sections are laid out
somewhat differently than for previous chapters. This is because the question
‘What are we measuring?’ is a bit different for NTBS techniques than for
neuroimaging methods. NTBS is not a measurement, and so measuring the
effects of NTBS employs the behavioural and/or neuroimaging methods
described previously in this book. In general, however, in using NTBS what
we are measuring is the effect of modulating the activity of a particular brain



region on behaviour and/or brain activity. NTBS can be used to increase
(facilitate) or decrease (inhibit) the activity of a focal brain region (typically a
few square centimetres), and in doing so can provide information as to the
causal role of that brain region in a particular cognitive function. Indeed, this
is perhaps the greatest unique contribution of NTBS: whereas brain imaging
can indicate or suggest that a particular brain area may be involved in a
particular task, NTBS can potentially prove or disprove the role of that area,
and reveal its functional contribution. For example, the mere fact that the
inferior frontal gyrus (IFG, or Broca’s area) ‘lights up’ in fMRI studies of
speech production does not prove that Broca’s area is necessary, or causally
involved, in speech production. Neuropsychological lesion-deficit studies can
provide causal evidence, in that damage to the IFG leads to speech
production difficulties in a majority of patients. However, such evidence is
not optimal because lesions vary in their cause, location, size, and
comorbidities, creating numerous confounds to interpretation. On the other
hand, TMS can induce transient ‘virtual lesions’ by disrupting activity to a
targeted part of the brain. Thus by administering virtual lesion TMS to the
IFG of a group of otherwise healthy people during a speech production task,
we can determine with much greater confidence whether this brain area is
necessary for speech production (which indeed, it is).



How Do We Do It?
TMS involves inducing an electrical current in the brain, using a strong
magnetic field. Faraday’s laws of induction (the right-hand rule) specify that
a current is induced by flux, or change, in a magnetic field. Thus TMS works
using pulses: brief, but strong, fluctuations in electrical current through a
conductive coil. The coil (insulated in plastic) is held directly over the scalp
of the person being stimulated, and the pulse induces a strong, time-varying
magnetic field which in turn induces an electrical current in the brain of the
person stimulated. The coil is connected to the main TMS device, which
includes a capacitor, a device which can store electrical potential. This is
charged to a high voltage, which is then released as a strong current (in the
order of 8000 A) when the operator presses the switch on the TMS coil. A
pulse is very short – it typically has a rise time of 100–200 µs and lasts for
only 1 ms – but induces a magnetic field strength in the order of 1.5–3 T,
which is comparable to an MRI scanner. However, the effects of this field are
very different from the static magnetic field of an MRI, for several reasons.
For one thing, since – according to the right-hand rule – current is induced by
magnetic flux (that is, a changing field), the constant magnetic field of an
MRI will not induce a current the way a 1 ms fluctuation of the same
magnetic field strength does. As well, the strength of an induced magnetic
field drops off exponentially with distance, and the overall size of an induced
magnetic field is proportional to the size of the coil of wire that is inducing it.
Thus an MRI, which has to have a coil large enough for a human body to fit
in, has a very large surrounding magnetic field which requires housing it in a
shielded room with very specific ‘safe’ distances to ensure that ferromagnetic
items are not pulled into the scanner with great speed and force. In contrast,
the field induced by the small TMS coil drops off over distances of a few
centimetres. This is advantageous in two regards. Firstly, a TMS device does
not need a specially shielded room, and electrical and ferromagnetic
equipment can safely be kept quite close to the device. Secondly, this means
that the neural stimulation provided by TMS is very focal. Even with the coil
pushed firmly against the scalp, it is estimated that TMS stimulation only
penetrates 1.5–2 cm below the scalp, meaning it only directly affects the
cerebral cortex (or cerebellum, depending on placement), and possibly not
even the deepest sulci of the cortex. The spread of the stimulation laterally is



also quite focal, estimated at about 12 cm2 at a depth of 2 cm below the scalp,
or a patch about 3.5 x 3.5 cm. The depth and spread of the stimulation vary
with the design of the stimulation coil.

Figure 13.1 Schematic diagram of a TMS coil and the magnetic and electric
fields it induces. The coil shown (grey) is a figure-8 design, which is one of
the most commonly used designs in cognitive neuroscience research. Inside
the plastic housing, conductive wire is wound in a figure-8 design around the
two holes shown, such that current flowing through the wire (shown by green
curved arrows) runs clockwise in one ‘lobe’ of the coil, and counter-
clockwise in the other lobe. By the right-hand rule, these currents induce
magnetic fields (shown as blue dashed lines) flowing in opposite directions in
each lobe of the coil, such that they summate at the centre. The bottom panel
shows the strength of electric field induced under the coil, in the two-
dimensional plane running from one side of the coil to the other

The most common types of TMS coil are the circular and the figure-8 shapes,



as shown in Figure 13.2. Although the circular coil is the simplest design, the
current distribution that it induces in the brain is actually somewhat complex,
as shown in Figure 13.3. This is because of the right-hand rule: if you hold
your right hand with thumb extended and fingers curled, you can imagine that
the current in the coil flows in the direction of your thumb and the magnetic
field wraps around it with the curl of your fingers. While this is relatively
straightforward for a straight conductor, with a small coil such as a circular
TMS coil, the current moves in a small circle and thus induces a magnetic
field whose orientation changes quite quickly over a small amount of space.
Consequently, direction of the current induced in the brain under one side of
the coil will be opposite to the direction of the current induced on the other
side of the coil, and very little current will actually be induced directly under
the centre of the coil – which is somewhat counterintuitive since one might
expect the centre of the loop to be the focus of the stimulation. For this
reason, figure-8 coils (also called ‘figure-of-eight’ coil) are generally
preferred for many TMS applications. These contain two conducing loops
positioned side-by-side, in which current flows in opposite directions (that is,
clockwise in one loop, counterclockwise in the other). Where the two loops
touch, at the centre of the coil (the middle of the ‘8’), the magnetic fields
induced by the two conductors will summate, because the current is flowing
in the same direction in both loops. Slightly farther away, the opposite
windings of the two conductors will cause the induced magnetic fields to
cancel out, helping to make the stimulation more focal under the centre of the
coil. At either end of the coil (the top and bottom of the ‘8’), weaker, electric
fields will be induced, in the opposite direction from the induced field at the
centre of the coil. This is illustrated in Figure 13.1. However, these have a
much weaker impact on the brain, both because they don’t benefit from the
summation of two coils, and because the coil is held such that the centre is
touching the scalp. Due to the curvature of the head, the ends of the coil do
not touch the scalp and are consequently farther away from the brain; since
magnetic field drops off exponentially with distance, this means a much
weaker induced current under these areas (which is treated as negligible in
most studies). In recent years, more complex coil designs have been
developed that combine many different shapes and orientations of windings.
One notable design is the ‘H coil’, which involves several different windings
covering a substantial part of the head, all encased in a helmet-like enclosure.
The H coil can stimulate to a depth of approximately 6 cm below the scalp,



allowing stimulation to be targeted at deep structures such as the cingulate
gyrus and orbitofrontal cortex.

Because TMS delivers such focal stimulation, positioning of the coil is very
important. In the early days of TMS, it was typical to start by estimating the
location of the stimulation target using measurements, such as the
International 10–10 System used for EEG electrode placements. Using this
system, one can estimate the location of a brain area with reference to an
atlas, and anterior–posterior and left–right measurements of the head. This
can be done simply by measuring, or by using an EEG-style cap that has 10-
10 system locations marked on it (but no actual EEG electrodes). Such a
method is necessarily approximate, since individual neuroanatomy is highly
variable. However, this can form a starting point from which the
experimenter stimulates at different locations until obtaining a ‘positive’
response. For example, when the motor cortex area corresponding to a
particular finger is stimulated, the finger muscles will twitch (which is
measurable using electromyography – EMG) and if the stimulation is strong
enough the finger will visibly move. Thus systematically stimulating over a
grid of locations corresponding to the general location of the motor cortex
will allow the experimenter to determine the precise location to target a
particular body part when doing TMS in the motor system. Perhaps
unsurprisingly, the majority of TMS research has been done on the motor
system because it is so easy to know when the right target has been
stimulated. The visual system also provides some clear markers: for example,
when area V5/MT (which processes visual motion) is stimulated, moving
phosphenes (illusory points of light – colloquially called ‘seeing stars’ when
they are induced by a bump to the head) are perceived. When colour-sensitive
V4 is stimulated, coloured phosphenes are seen, and stimulation of
retinotopically organized primary visual cortex can result in phosphenes
located in the corresponding quadrant of the visual field.

Figure 13.2 Examples of TMS coils (left) and stimulator systems (right).
From top to bottom, the coils are a single-ring, figure-8, double cone, and an
air-cooled figure-8 (with a built-in fan to reduce overheating). The bottom
right system shows a figure-8 coil (black) plugged into the front of the
stimulator unit. Images courtesy Magstim Inc. (coils and top right) and Rogue
Research Inc. (bottom right)



Figure 13.3 Effects of coil orientation on induced electrical current field.
With a figure-8 coil (left and top right), the electrical current induced is
largest directly under the centre of the ‘8’ portion of the coil, oriented parallel
to the handle of the coil. With a circular coil (bottom right), the induced
current flows in a circular direction under the coil; note that the current is



strongest under the actual loop of the coil, and not in the centre of the loop

Figure 13.4 Top row shows the strength (colour, ranging from red,
maximum, to blue, minimum) of the electrical currents induced by 70 mm
figure-8 (left) and 50 mm circular (right) coils on the surface of the brain as
viewed from above the coil. The bottom three rows show both the strength
and direction (small arrows) of the electrical currents induced by different
coil designs, estimated using a spherical model of the head. Images in the top
row provided by Dr Matthew Biginton of the Magstim Company and used
with permission. Bottom rows adapted from Deng, Lisanby, & Peterchev,
2013 with permission of Elsevier



Although this approach may sound a bit crude, it is highly effective because
the procedures provide concrete proof that a functionally specific area of the
brain is being stimulated. However, both the precise position and orientation
of the coil determine the location that is stimulated most focally, and so a
hand-held approach is at best approximate, and at worst not replicable. Much
greater anatomical precision can be obtained using neuro-navigation, as
shown in Figure 13.5. This involves a 3D motion tracking system, typically



using an infrared camera that detects markers placed on specific locations on
the subject’s head, and on the TMS coil. The markers on the head are
registered to the corresponding locations on a 3D anatomical MRI of the
subject (or, if their MRI is not available, a standard atlas such as the MNI152
can be used; naturally this reduces anatomical accuracy), and then the neuro-
navigation system shows the location of the TMS coil relative to the subject’s
brain, in real time on a computer screen. This allows the experimenter to
target anatomical areas with essentially millimetre-level precision. Moreover,
if fMRI data is available, this can be co-registered with the neuro-navigation
system and superimposed on the anatomical MRI. In this way, TMS
stimulation can be directed towards areas that fMRI has identified as being
relevant to a particular task.

Figure 13.5 A neuro-navigation system for TMS. The system uses an
infrared (IR) camera to detect markers that reflect IR light. The TMS coil is
held in place with a mechanical arm, and has IR markers on it. The position
of the coil relative to the head is determined by digitizing certain fiducial
markers (reference points on the head, like the bridge of the nose and the
ears). The computer screen shows a structural MR scan of the person
receiving TMS; the fiducial markers are also located on that scan. This allows
the software to show the position of the TMS coil relative to the brain, in real
time, to precisely target a brain area for stimulation. Image used with
permission of Rogue Research Inc.



While neuro-navigation on its own is of great assistance, another useful tool
is a way to hold the TMS coil in a fixed position. The operator can hold the
coil in their hand, however relatively small movements can have relatively
dramatic effects on the location of stimulation. This means that over any
period of stimulation, the operator’s hand may move, and if repeated periods
of stimulation are applied – either within an experiment or across sessions –
replicability may be an issue due to variation in the position of the coil. Thus
one can use an articulated mechanical arm that allows the coil to be
positioned and fixed in place, often combined with an apparatus that holds
the subject’s head in a fixed position so that it doesn’t move relative to the
coil. Such set-ups are essential for reliable, replicable results. Another option
is robotic TMS systems, wherein the mechanical arm is attached to motors
that can move it automatically. Robotic systems can be programmed to move
to a desired stimulation position simply by indicating it in the neuro-
navigation software, and can also adapt ‘on the fly’ to movements of the
subject’s head.



A final technical aspect we will touch on here is the shape of the stimulation
pulse. A pulse involves the time required to reach maximum intensity (rise
time), duration of the pulse, and the time required for intensity to drop to
baseline. As well, pulses can be monophasic, biphasic, or polyphasic, as
shown in Figure 13.6. A monophasic pulse reaches its intensity peak and
then returns to baseline (zero voltage). Although this is the simplest type of
pulse conceptually, it actually requires a more complex electrical circuit to
produce than a biphasic pulse, because the natural effect of passing a current
through the coil is oscillatory: the initial rise and fall would be followed by
an equal and opposite negative voltage. This is in fact the shape of a biphasic
pulse, which forms one complete cycle of a sine wave. A polyphasic pulse is
a more general case of the biphasic pulse, involving one or more full
positive–negative cycles. Although TMS initially relied primarily on
monophasic pulses, biphasic pulses became more widely used when it was
realized that these actually allow ‘recycling’ of the electrical energy in the
circuit, which allows the capacitor (the part of the stimulator that builds up
and stores the large amount of energy needed for each pulse) to recharge
more quickly between pulses, as well as less heating of the coil. Other
advantages of biphasic and polyphasic pulses is that they are less affected by
the direction of the current within the coil (since there are equal and opposite
currents over time), and they tend to produce stronger neural responses than
monophasic pulses.



Stimulation Protocols
The important parameters to set for TMS include the type, duration,
frequency, and strength of the magnetic pulses. Different sets of parameters
can yield dramatically different effects, all using the same TMS machine.
Most fundamentally, depending on the frequency of stimulation, TMS can
have either an excitatory (facilitatory) or inhibitory effect on brain activity
and task performance. The most simple usage is single-pulse TMS which, as
the name suggests, involves applying one isolated pulse (recall that a pulse
lasts about 1 ms). This causes immediate excitation of the stimulated cortex,
followed by a ‘silent’ period when neural activity and excitability are
reduced. Another common protocol is repetitive TMS (rTMS), in which a
series of pulses are administered, typically at a fixed frequency. Here, the
frequency of stimulation determines the effects: stimulation frequencies of 1
Hz or less cause decreased excitability (cortical inhibition), whereas
frequencies higher than 1 Hz (commonly used frequencies include 4-9 Hz, 10
Hz, and 20 Hz) typically cause increased excitability (facilitation). More
complex protocols include theta burst stimulation (TBS), which involves a
series of brief triplets of stimulation (3 pulses at 50 Hz) interspersed with
slightly longer rest periods (which can be milliseconds up to seconds long),
quadripulse stimulation (QPS), which involves bursts of four pulses in
rapid succession separated by longer (for example, 5 s) periods, and paired-
pulse stimulation which involves a pair of single pulses that can either be
delivered to the same location with a fixed interval, or to two different brain
regions to investigate inter-regional connectivity (and requiring two TMS
machines and coils). In what follows we will delve deeper into the uses and
effects of these different protocols.

Figure 13.6 Different pulse shapes used in single-pulse TMS, represented as
the strength of the electrical current that is passed through the TMS coil as a
function of time



Single-Pulse Stimulation
Single-pulse protocols are commonly used in studies of the motor system. In
fact, even studies that use other stimulation protocols almost always start
with a single-pulse motor mapping paradigm to determine the intensity of
stimulation that will be used in the main experiment. This is because
individuals’ thresholds for stimulation with TMS vary quite widely, and for
safety reasons (see later in this chapter) it is important to find the weakest



level of stimulation that will yield the desired effects. The motor system is
ideal for determining stimulation intensity because the threshold required to
obtain a response can easily be measured: one simply attaches EMG
(electromyograph; measurements of neuromuscular activity) electrodes to
the arm or finger, performs systematic stimulation mapping across a gird
placed over the motor cortex to identify the location corresponding to the
muscle target with EMG, and then determines what level of stimulation
intensity is required to obtain a motor evoked potential (MEP – the EMG
response elicited when a muscle contracts) on 50% of trials. This intensity is
defined as the resting motor threshold (rMT) and stimulation intensity in
the main part of the experiment is typically expressed as a percentage of rMT
(for example, 100% or 50%). Because the intensity of stimulation can vary
widely among individuals, the standard in the field is to specify the
stimulation intensity to be used in a study as a percentage of rMT, and use the
rMT determined for each individual participant to determine the intensity for
that individual. This allows for a standardization of stimulation intensity in
terms of ‘functional’ levels tailored to the individual. The motor mapping
procedure is shown in Figure 13.7.

The reliability of rMTs has been shown to be quite high across repeated TMS
sessions on the same person, although an individual’s threshold can vary with
their state, including whether or not they recently exercised, and whether they
are fatigued or well rested. It is also possible to measure the active motor
threshold (aMT), by having the subject contract the target muscle during
stimulation; aMT is typically lower than rMT because of the ‘assistance’
provided by the subject’s voluntarily activating their motor cortex, in addition
to the stimulation provided by TMS. In addition to rMT and aMT, another
measure that is commonly obtained in single-pulse TMS studies is the silent
period (SP): immediately after an MEP is evoked by a TMS pulse to the
motor cortex, noise in EMG recordings from the targeted muscle is
suppressed. This suppression lasts for hundreds of milliseconds, and the
duration of the SP can vary depending on the state of the subject and the
experimental conditions, making SP duration a variable of interest in many
studies. Distinct SPs can be measured from a muscle contralateral (cSP) and
ipsilateral (iSP) to the stimulated motor cortex, and these two SPs are thought
to reflect different pathways. The first 50 ms of the cSP seem to reflect spinal
mechanisms, with the later period reflecting cortical inhibition. In contrast,



the iSP is thought to reflect inhibition across the corpus callosum from the
ipsilateral to contralateral motor cortex.

Single-pulse TMS has a number of experimental applications, in addition to
its use in simply mapping the motor cortex locations of specific muscles, and
determining optimal stimulation levels. For example, imagined movements
have been shown to lower rMT, similar to overtly contracting a muscle as
when determining aMT. Single-pulse TMS has the advantage over the other
protocols discussed below of high temporal precision, since a single pulse is
so brief in duration. This makes it ideal for studying the temporal dynamics
of processing. In a seminal early study, Amassian and colleagues (1989)
examined the effects of TMS on visual perception. Single pulse TMS applied
over the primary visual cortex (V1) caused masking effects – that is, the
subject’s not perceiving a visual stimulus – when the TMS pulse occurred
80–100 ms after visual stimulus onset. However, if the TMS pulse occurred
between 40–60, or 120–140 ms after stimulus onset, no masking occurred
and the stimulus was reported accurately by the participant. In a later study
(Amassian et al., 1993), the researchers used a backward masking procedure
in which a high-contrast stimulus (the visual mask) was displayed 100 ms
after the target stimulus. This mask normally prevented participants from
accurately reporting the target stimulus presented before the mask; however
single-pulse TMS 80–100 ms after the mask ‘unmasked’ the target stimulus,
leading to accurate perception. In this way, the researchers were able to
identify that processing in V1 between 80–100 ms is critical (necessary) for
visual perception. Notably, this time period is also when the P1–N1 ERP
complex occurs.

Figure 13.7 Motor mapping with TMS. The left panel shows a grid of
stimulation sites centred over the central sulcus. Each site would be
stimulated in turn to identify the site that evokes the maximum motor evoked
potential (MEP), shown here in yellow. The bottom right panel shows the
two electromyogram (EMG) electrodes placed on the hand that would be
used to record the MEP from the targeted muscle. The top right panel shows
an example MEP. MEP courtesy of Dr Shaun Boe; photo of EMG electrodes
courtesy of Rogue Research Inc.



Figure 13.8 Paradigm and data from two experiments by Amassian and
colleagues examining the effects of TMS on visual perception. In the first
experiment (letter detection; Amassian, R.Q. Cracco, Maccabee, J.B. Cracco,
Rudell, & Eberle, 1989), participants were asked to report the identity of
three randomly chosen letters that were presented very briefly (17 ms). A
single TMS pulse was delivered some time between the onset of the letters
and the prompt to report them, ranging from 0–200 ms after the stimulus, in
25 ms increments. The blue line in the bottom panel shows that a TMS pulse
delivered 80–100 ms after the target stimulus maximally disrupted people’s
ability to detect the letters. This is in line with the timing of the earliest
cortical visual evoked potentials. In the second experiment (visual masking;
Amassian et al., 1993), the letter detection task was again used, but the three
letters that participants were asked to report were followed 100 ms later by a
visual mask (three different random letters, brighter than the target letters).
Normally, a visual mask at this latency is effective in preventing detection of
the target letters. However, as shown by the orange line in the bottom panel, a
TMS pulse 80–150 ms after the visual mask disrupted the effects of the mask,
making it possible for participants to accurately report the target letters that
had preceded the mask. Adapted with permission of Elsevier from Amassian
and colleagues (1989, 1993)



Single-pulse TMS is also used in clinical research. A common use of single-
pulse protocols is in the study of recovery from stroke, in which the primary
motor cortex is often affected, leading to movement problems (apraxia).
Stroke can reduce MEPs contralateral to the side of the stroke (that is, in the
motor cortex controlling the affected limb), and at the same time increase
ipsilateral MEPs, and so tracking changes in these – as well as in rMT – can
be used to assess whether changes are occurring in the brain, even when these
are small and not necessarily accompanied by observable improvements in
the person’s ability to move the affected limb. Single-pulse TMS can also be
used in the assessment of different neurological conditions. For example,
people with Parkinson’s disease show a reduced-duration cSP, whereas
people with concussions show a prolonged cSP.

Figure 13.9 Examples of the four standard paired-pulse TMS (ppTMS)
protocols, showing the relative timing and magnitude (relative to resting



motor threshold, rMT, dashed line) of the conditioning stimulus (CS, orange)
and test stimulus (TS, blue), and the resulting effects on the size of the
resulting MEP (dark grey) relative to a control, single-pulse condition in
which only the TS is administered (light grey). Note that time is plotted on a
log scale. Refer to Table 13.1 for details of each ppTMS protocol

Paired-Pulse Protocols



Paired-pulse TMS (ppTMS), as the name suggests, involves administering
two TMS pulses in rapid succession. Using a pair of pulses opens up a wide
range of possibilities, because the two pulses can be to the same or different
cortical regions, and – depending on the strength and timing of each pulse –
the effects can be inhibitory or facilitatory. Paired-pulse TMS is more
technically demanding than single-pulse or rTMS (see next section) because
the short intervals between pulses (as little as 1 ms) necessitate two stimulator
hardware units, since the stimulation intensity of the two pulses is rarely the
same, and a stimulator unit requires more time to recharge after each pulse
than the inter-pulse intervals typically used in such studies. The two
stimulator units can be connected to different coils, if two different brain sites
are to be stimulated, or to a single coil if the same site is to be stimulated by
both pulses.

The advantage of ppTMS is that it allows investigation of cortical circuits and
connectivity. This is a very flexible technique because of the different effects
that different parameters can produce. Within a ppTMS protocol, the first
pulse is called the initial conditioning stimulus (CS), and the second pulse is
labelled the subsequent test stimulus (TS). This technique has been studied
most extensively in the motor system, where four primary types of ppTMS
can be defined, based on how and when they affect MEPs. These are
summarized in Table 13.1. Typically in the motor system, the TS is targeted
at the M1 representation of the effector muscle of interest, while the site of
the CS varies depending on the aim of the study. The most common CS site
is the motor cortex ipsilateral to the target effector (that is, the motor
representation in the hemisphere opposite to that receiving the TS).
Stimulating the mirror-image sites in ipsilateral and contralateral M1 allows
the investigation of inter-hemispheric inhibition and facilitation, and this
combination of stimulation sites yields the strongest effects. Other common
sites for the CS are the cerebellum or peripheral nerves (such as the median
nerve running to the hand).

Table 13.1 



The investigation of cortical circuits using ppTMS can be enhanced by
simultaneous EEG recording. ERPs evoked in TMS protocols are generally
called TEPs (TMS-evoked potentials). In the simplest case, the effects of
ppTMS are measured in the motor system simply by examining MEPs (the
output of the motor system). However, it is also possible to use ppTMS on
pairs of regions outside the motor system – but if one wishes to investigate
connectivity between non-motor regions, MEPs are of no use, and so other
markers of activity are needed. EEG provides a direct index of the electrical
activity of other brain regions, and so can be used in this way. While we have
learned that the scalp-recorded maximum of an EEG/ERP potential may be
distant from its source in the brain, in the case of ppTMS the experimenter
knows which two brain areas were stimulated, and so any effects on the EEG
can be associated with the connectivity between these two brain regions,
regardless of where the EEG effects are maximal. It is nonetheless important
to consider that any TMS protocol – including ppTMS – may have more
widespread or ‘downstream’ effects on brain areas other than the area or
areas directly stimulated: the effects measured with EEG may in fact be
generated by other brain areas that are connected to those stimulated. This
does not really undermine the value of ppTMS, however, as any effects
obtained (relative to an appropriate control condition) can be interpreted as



relating to the connectivity of the two brain regions involved. We will
consider this issue in more depth in the section on combining TMS with
neuroimaging later in this chapter.

An initial example of combined ppTMS–EEG was a study by Fitzgerald and
colleagues (2008), who compared the effects of ppTMS where both the CS
and TS were delivered to the same brain location. In three different
experiments, the motor cortex, middle frontal gyrus (dorsolateral prefrontal
cortex, or DLPC), and parietal lobe were targeted. In each experiment, the
researchers compared TEPs time-locked to the onset of a supra-threshold TS
when the TS was either preceded 100 ms earlier by a CS or not, in an LICI
protocol. TEP amplitude was reduced by an average of about 40% when
preceded by a CS, in any of the brain areas studied. This demonstrated that
LICI operates similarly in motor and non-motor brain areas. A more recent
study demonstrated effects of DLPC stimulation on the TEP using both SICI
and ICF protocols, with reduced TEPs for SICI and enhanced TEPs for ICF
(Cash et al., 2016).

These combined ppTMS–EEG studies demonstrate another use of the
technique: in these studies, both pulses were delivered to the same brain area,
so they were not studies of cortical connectivity. However, since previous
studies involving different neurotransmitter agonists and antagonists have
associated the different ppTMS protocols with distinct inhibitory and
excitatory neurotransmitter systems (see Table 13.1), these paradigms allow
the interrogation of the function of different neurotransmitter systems. For
example, schizophrenia is associated with changes in DLPC function, and
ppTMS to the DLPC has shown changes in people with schizophrenia
relative to healthy controls using an LICI paradigm, thus associating changes
in DLPC with GABAB-related inhibition. An extension of this approach
involves combining ppTMS and EEG with administration of different drugs,
in what is called pharmaco–TMS–EEG (Ziemann, 2016).

Repetitive TMS (rTMS)
Repetitive TMS (rTMS) comprises a wide range of TMS stimulation
protocols that can have facilitatory or inhibitory effects, depending on their
parameters. They are distinguished from single-pulse or paired-pulse TMS by



the fact that multiple (more than two) stimulation pulses are delivered at a
pre-determined and specific frequency. The simplest rTMS protocols involve
stimulation at a fixed frequency; rates of 1 Hz (that is, 1 pulse per second) or
less, termed low-frequency rTMS, have inhibitory effects, whereas high-
frequency rTMS, with rates > 1 Hz (typically ranging from 1–50 Hz),
generally have excitatory effects (with some exceptions). In the motor
system, low-frequency rTMS results in reduced MEPs and decreased cortical
activity (as measured, for example, by EEG), whereas high-frequency rTMS
leads to increased MEP amplitude and cortical activation. Like single-pulse
TMS, low-frequency rTMS can be used in ‘virtual lesion’ studies to explore
the effects of disrupting activity in a particular brain region; it is particularly
useful in studies where the task to be performed (and possibly disrupted)
takes place over a relatively extended amount of time. With single-pulse
TMS, the pulse has to be very carefully timed to coincide with the predicted
timing of the neural event under study; with rTMS one has much greater
flexibility. Thus while single-pulse TMS is valuable for chronometric studies
due to its precise timing, rTMS can be useful in situations such as disrupting
speech production or working memory, which take some time to perform.
Another feature of rTMS is that for many stimulation protocols, the effects on
cognition last longer than the duration of stimulation – sometimes up to an
hour or more after a single session, or for weeks or months after a series of
sessions (a protocol of 20 minutes of rTMS every day for ten days is used, for
example, in treating depression).

As well, rTMS can be used in ways similar to ppTMS to investigate cortico-
cortical connectivity between pairs of regions. For example, Romei and
colleagues (Romei, Chiappini, Hibbard, & Avenanti, 2016) investigated
connections between primary visual cortex (V1), and the temporal-occipital
brain region tuned to visual motion (V5). Although visual information
initially travels from V1 to V5, there are also ‘re-entrant’ connections in the
opposite direction, by which V5 modulates V1. Evidence suggests that these
are important for conscious awareness of motion and ‘top-down’ control of
motion perception. The researchers hypothesized that they could enhance the
sensitivity to visual motion in a challenging detection task by using TMS to
strengthen the re-entrant inputs from V5 to V1. To do this, they developed a
paradigm in which participants received low-frequency (0.1 Hz) rTMS to
both V1 and V5 (using two TMS coils, one over each area). This was a



combination of rTMS and ppTMS, in that rTMS was delivered to both areas,
but the relative timing of the pulses to each area was manipulated.
Specifically, V5 could be stimulated either 20 ms before, 20 ms after, or at
the same time as V1 – each delay was used with a different group of
participants, and a fourth group received sham stimulation. The 20 ms delay
was chosen based on prior research suggesting that this was the time required
for V5 input to modulate V1. All subjects performed a challenging motion
discrimination task, and performance was tested before, immediately after,
and then at half-hour intervals after the stimulation. The paradigm and results
are illustrated in Figure 13.10. Only the group that received V5 followed by
V1 stimulation showed significant improvement on the motion discrimination
task, and the enhancement was found to last for at least 60 minutes. The
authors concluded that stimulating V5 followed 20 ms later by stimulating
V1 induced short-term strengthening of the re-entrant connections between
them, via Hebbian mechanisms (‘cells that fire together, wire together’).

Figure 13.10 Illustration of the paradigm and resulting data of the study
Romei and colleagues described in the text. Participants’ task was to view a
field of moving dots, in which some proportion moved in a coherent direction
(either left or right) and the remainder of the dots moved in random
directions, and indicate the direction of coherent motion. Thresholds were
determined prior to TMS by varying the proportion of coherently moving
dots. Behavioural performance on the motion direction discrimination task
are plotted in the bottom panel; note that negative values indicate better
performance relative to the pre-TMS baseline measurements (fewer dots had
to be moving coherently for accurate detection). Adapted with permission of
Elsevierfrom Romei and colleagues (2016)



Protocols using rTMS can be broadly divided into ‘online’ and ‘offline’, as
well as inhibitory or facilitatory. The online/offline distinction refers to the
task performed by the rTMS recipient: online protocols involve a task
performed during rTMS (for example, instructing someone to try to say the
days of the week while stimulating the left prefrontal cortex), whereas offline
protocols involve rTMS followed by task performance, and utilize the fact
that the rTMS effects last for some time after stimulation. Most online
protocols use inhibitory rTMS, following the virtual lesion approach, whereas
offline protocols may be inhibitory or facilitatory. Online inhibitory
protocols typically deliver rTMS in relatively short bursts; for example, in
speech mapping (which involves stimulating different areas of the frontal
lobe to determine where interruption of normal speech occurs, and can be
used clinically for determining language lateralization), a typical protocol
involves ten pulses at 5 Hz (2 s total duration), repeated every 5 s. The timing
of each burst is time-locked to the presentation of a picture that the subject is
asked to name; the 2 s duration ensures that stimulation occurs during the
entire time that the person is viewing and attempting to retrieve and articulate
the name of the picture. Note that although the 5 Hz stimulation is in the



range typically considered ‘facilitatory’, this has been found to be effective at
disrupting speech production; stimulation frequencies in the 5–10 Hz range
are often used in online inhibitory studies.

In contrast, offline protocols typically use longer trains of stimulation, which
seem to be required to have effects that last beyond the period of stimulation.
True low-frequency rTMS (≤ 1 Hz) is the norm in offline inhibitory
protocols, where the stimulation duration may be as long as 15–30 min. A
more recent stimulation protocol for inhibitory rTMS is continuous theta
burst stimulation (cTBS). This protocol involves three pulses at 50 Hz, with
5 Hz spacing (that is, three pulses 20 ms apart, repeated every 200 ms),
typically delivered for 20 or 40 s (resulting in a total of 300 or 600 pulses), at
80% AMT. This is illustrated in Figure 13.11. This protocol was inspired by
work showing both that theta bursts are a common pattern of activity in the
hippocampi of rats during exploratory behaviour, and in vitro work showing
that this pattern of stimulation is effective in inducing neuroplasticity in brain
slices. The resulting suppression in brain activity has been shown to last for
30–40 min or more. The major advantage of this technique over low-
frequency rTMS is that it takes less than 1 minute (as opposed to 15 min or
more with 1 Hz rTMS) to induce long-lasting inhibitory effects. This makes it
much more efficient, and reduces both the discomfort of the recipient
(depending on the site of stimulation – especially near the face – rTMS may
induce unpleasant, strong muscle contractions) and the chance of the person
moving their head and thus changing the location of stimulation during the
protocol.

Figure 13.11 Theta burst stimulation (TBS) protocols. The top two rows
show timelines of the continuous (cTBS) and intermittent (iTBS) variants of
this protocol. In cTBS, triplets of pulses 20 ms apart are delivered every 200
ms; in iTBS, ten such triplets are delivered followed by an 8 s gap before the
next set of ten triplets are delivered. The cTBS protocol typically results in
inhibition of activity in the stimulated area, lasting 30–60 min, whereas the
iTBS protocol typically results in facilitation of activity in the targeted brain
area, lasting upwards of 30 min



Offline facilitatory protocols are quite varied in their parameters. Common
ones include 10 Hz stimulation delivered in five or six pulse trains lasting
approximately 500 ms and spaced 3 s apart; 20–25 Hz stimulation delivered
in trains of 10–100 over 500 ms, spaced 15–20 ms apart; and 4–9 Hz (with
highly variable parameters across studies). Choice of protocol depends on the
brain area to be stimulated and the experimental goals, and should be guided
by prior literature as well as experimentation in the lab. A variant of theta-
burst stimulation has also been developed as an offline facilitatory protocol:
intermittent TBS (iTBS) involves the same pattern of three pulses at 50 Hz
with 5 Hz spacing that is used in cTBS, but rather than delivering this
continuously, 2 s bursts (30 pulses) are delivered separated by 10 s intervals,
over a total duration of approximately 200 s (see Figure 13.11). Like cTBS,
the iTBS protocol has effects that last upwards of 30 minutes (but facilitatory
rather than inhibitory), with a very time-efficient period of stimulation;
however, the effects of iTBS have been reported to be weaker and less
consistent than cTBS (Huang et al., 2009).



What are the Effects on the Brain?
Consideration of how TMS affects brain activity is important to understand
and interpret the results of TMS experiments. We have already learned that a
TMS pulse introduces a strong electrical current in brain tissue directly under
the stimulating coil, which disrupts brain activity during the pulse. However,
this does not explain the lasting (offline) effects of TMS – which can last for
up to an hour after a single session – nor why different stimulation protocols
have radically different effects (for example, inhibition versus facilitation) or
different durations of effects. One approach to understanding this has been to
examine neurotransmitter systems by administering drugs that up- or down-
regulate particular neurotransmitters. This literature has also been informed
by the literature on long-term potentiation and depression in animal and in
vitro electrophysiological studies. Another perspective on this question
comes from a consideration of how the electrical currents induced by TMS
conduct through the brain, and what long-range effects TMS might have.
Although up until now we have focused on the ‘direct’ impacts of TMS on
the small area under the coil that is directly stimulated, the brain is a densely
interconnected network and so it is reasonable to expect that TMS will also
have effects on other brain areas that are connected to the one stimulated.
This may include conduction of the actual TMS-induced current, but also
effects induced in distant brain regions by changes in activity that occur in
the directly stimulated area.

Because the current induced by TMS occurs parallel to the orientation of the
coil, the direct effects of TMS occur primarily on axons that lie in a plane
parallel to the cortical surface. TMS effects are induced primarily in axons,
rather than cell bodies, since the induction of current requires a conductor of
some length. These are largely excitatory (glutamatergic) inputs to the cortex,
and horizontal interneuron connections which are primarily inhibitory
(GABAergic). Pyramidal neurons (which comprise the primary outputs of
cortical regions, and are the primary source of signals in many neuroimaging
techniques including EEG, MEG, and fMRI) are oriented with their axons
running perpendicular to the cortical surface, and so the effects of TMS on
these neurons is thought to be primarily indirect, through connections to the
horizontally running cell types. Of course, this is a relatively simplistic and



schematic view of cortical microanatomy; the reality is that there are many
types of axons with varying orientations and bends, and the cortex itself is
folded and so pyramidal neurons on the bank (side) of a sulcus may be
oriented the same way, relative to the TMS coil, as horizontal neurons on the
top of a gyrus – modelling the exact effects of TMS on any brain region
would be an extremely complex task. Nonetheless, it works as a simple,
tractable model of TMS effects. Studies of the motor system have found that
TMS induces a series of waves through the corticospinal network (CSN). The
initial effect of stimulation is the direct (D-) wave, a large wave thought to
be caused directly by the stimulation pulse. This is followed by a series of
smaller, indirect (I-) waves, which are thought to reflect reverberating
activation within the CSN and other neural circuits connected to it. In other
words, as the initial D-wave travels through the circuit and across synapses, it
induces changes in activation that continue, and feed back into the CSN, as I-
waves. Not all stimulation protocols induce both D- and I-waves; the effects
depend on the intensity of stimulation and the circuit stimulated. Even within
the motor system, only I-waves are seen at lower levels of stimulation in
slower-conducting circuits, whereas D-waves are seen at lower intensities
than I-waves in faster-conducting circuits.

Pharmacological studies have allowed a greater understanding of the
mechanisms by which TMS works (Ziemann et al., 2015). The effects of
different drugs have been examined on a number of different measures. One
common measure is MT, which is taken as a measure of cortical excitability.
MT is raised (that is, inducing an effect with TMS requires a stronger pulse)
by drugs that block voltage-gated sodium channels (for example, anti-
epileptic drugs such as carbamazepine or lamotrigine), while MT is lowered
by ketamine, a drug that facilitates glutamatergic (excitatory)
neurotransmission. This tells us that induction of TMS effects depends on
voltage-gated sodium channels (which are a primary mechanism of action
potentials and their propagation along axons); the role of glutamate is thought
to be that the axons stimulated by TMS terminate at synapses that rely on
glutamatergic neurotransmission. Other classes of drugs – including those
that modulate calcium ion channels, GABA (the primary inhibitory
neurotransmitter in the brain), dopamine, noradrenaline, acetylcholine, and
serotonin – have not been shown to consistently modulate MT. Another
measure investigated is the MEP input–output curve: the relationship



between stimulation intensity and MEP amplitude. This measure reflects
neurotransmission through the corticospinal circuit, including D- and I-
waves, by a supra-threshold pulse. As such, it reflects the propagation of
TMS effects across a series of synapses and reverberating through the
network. This involves both excitatory and inhibitory synapses, and thus it is
not surprising that it is modulated by both GABA and glutamate. In addition,
noradrenaline and serotonin appear to be involved, whereas drugs affecting
other neurotransmitters do not. A third measure is the duration of the cortical
silent period (SP), described above under single-pulse protocols. This
measure reflects postsynaptic inhibition in cortical motor neurons, and may
be related to the ‘transient lesion’ effects of TMS. The CSP is mediated
primarily by GABAergic neurotransmission, with both GABAA and GABAB
receptors playing a role.

The mechanisms underlying the effects of rTMS are not well understood.
Pharmacological intervention studies with humans have indicated that both
GABAA agonists and NMDA antagonists block the long-lasting inhibitory
effects of rTMS, suggesting a role of both inhibitory (GABA) and excitatory
(glutamate) neurotransmitters in modulating these effects. However, other
studies have suggested that only GABA is affected by cTBS, suggesting that
the particular stimulation protocol may affect which neurotransmitter systems
are influenced.



Considerations in Experimental Design
A number of things need to be considered in designing a TMS experiment.
One crucial consideration is experimental control: we can only assess what
effects TMS has by comparing it to a condition where the participant
experiences the same stimuli and performs the same task, without TMS – or
perhaps with TMS to a different brain region. Several problems arise when
considering a no-TMS control condition. Firstly, TMS creates a sensory
experience for the recipient: there is a very loud ‘click’ during each pulse,
and the coil itself can move, creating a tapping sensation on the scalp at the
site of stimulation. Thus at a minimum, TMS and no-TMS conditions would
differ in these experiences. Moreover, depending on the site and strength of
stimulation, TMS can also cause peripheral nerve stimulation, resulting in
anything from minor ‘twitching’ sensations to painful contractions of muscles
in the face or neck. These sensory effects can potentially influence
individuals’ behaviour in two general ways. On the one hand, these sensory
side effects may be distracting, and interfere with task performance. For
example, in a study designed to investigate these effects, ‘sham’ TMS
stimulation – which mimicked the peripheral sensations of TMS without
delivering stimulation to the cortex – to one side of the head cause automatic
shifts of spatial attention to the side of stimulation, resulting in better
detection of visual targets on the corresponding side of visual space (Duecker
& Sack, 2015). On the other hand, the sensory side effects provide cues that
stimulation is occurring, which could lead to placebo effects or demand
characteristics – biases (either conscious or unconscious) on the part of the
recipient that cause them to perform in ways that are consistent with what
they expect from the TMS. Thus the effects of TMS could partially or wholly
reflect placebo effects rather than true effects of brain stimulation. Placebo
effects of TMS are not merely theoretical either: they have been reported in
several clinical treatment studies (Duecker & Sack, 2015). The solution that
most researchers adopt is to use a sham stimulation condition as a control,
rather than a no-stimulation condition. However, this term is used broadly to
describe a number of rather different approaches, each of which has some
disadvantages.



Sham Stimulation
One approach to sham stimulation is to compare TMS delivered to the
desired ‘target’ brain area (verum, or true, stimulation), with TMS delivered
to a different area that is expected not to influence behaviour on the
experimental task. The preferred alternative site is the vertex (top centre) of
the head, on the assumption that directly below this is the central fissure that
divides the two cerebral hemispheres, and thus no area of the brain should
receive stimulation (at least not using a figure-of-eight coil). One issue with
this approach is that if the recipient knows anything about functional
neuroanatomy (and certainly if they know much about TMS), they are likely
to realize that vertex stimulation is the control condition. In this case, the use
of this technique to eliminate potential bias on the part of the recipient is
invalidated. Another issue is that this approach is based on a largely untested
assumption that sham stimulation does not affect brain activity. Jung and
colleagues (Jung, Bungert, Bowtell, & Jackson, 2016) performed an fMRI
study to test this directly, performing resting-state fMRI scans both before
and after vertex stimulation. They found that vertex stimulation did not
increase BOLD signal anywhere in the brain, but did decrease BOLD signal
in several parts of the default mode network. However, vertex stimulation did
not lead to changes in functional connectivity between different brain regions
in the default mode network, leading the authors to conclude that vertex
stimulation is a valid control site for TMS. Since vertex stimulation did
influence BOLD signal across the brain, it nonetheless seems prudent to
consider this effect in combined TMS–fMRI studies.

Another approach to sham stimulation is to hold the stimulating coil so that
its outer edge touches the scalp, rather than the centre, or to reverse the coil,
placing its back against the scalp rather than its front. Because TMS coils are
designed to deliver very focal stimulation, and the induced magnetic field
drops off so sharply with distance, moving the focal point of the stimulator
several centimetres from the head in this fashion reduces or prevents any
stimulation from reaching the brain. At the same time, this provides both the
auditory and at least some of the tactile sensations that accompany verum
stimulation. However, depending on the angle of the coil, some level of
stimulation may reach the brain. As well, the TMS-savvy participant may be



able to tell the difference by feel since the way the coil touches the scalp, and
the ‘tap’ of the pulse itself, will feel different. As well, the peripheral nerve or
muscle stimulation that accompanies TMS over many parts of the scalp
(particularly near the face) is typically not induced by these approaches.

A final approach is to use a sham TMS coil. These are sold by TMS
manufacturers and look just like real coils, and are designed to simulate the
sound and feel of real TMS pulses. Typically sham coils are built much like
real coils, but have magnetic shielding, or reduced amounts of wire in the
coils, to reduce the strength of the magnetic field while producing a weak
magnetic pulse that is strong enough to stimulate peripheral nerves but not
the cortex. Alternatively, they may have electrodes on their surface that
create weak electrical stimulation that simulates the peripheral nerve effects
of TMS. In this way, it is harder to tell the difference between real and sham
stimulation, although people who have more experience with TMS (for
example, people working in a TMS lab) are still frequently able to
discriminate real from sham stimulation. The biggest disadvantage of sham
coils is that they add significantly to the cost of the TMS system. As well,
they need to be switched with real coils, meaning that it may be difficult to
randomly intermix verum and sham stimulation, rather than administering
these in different blocks of trials. On the other hand, they provide a level of
control that may be essential to provide confidence in the results of the study.

Regardless of the approach to sham stimulation that is used, it is advisable
(though unfortunately, rarely done) for researchers to actually assess the
efficacy of their attempts at blinding subjects to when real TMS is actually
being delivered. As well, any well-designed TMS experiment should include
both a sham stimulation condition, and conditions where stimulation is
delivered to brain areas and/or at time points that are not expected to affect
performance on the task. This is critical to demonstrate that any effects
obtained during stimulation of the target region of cortex are truly specific to
that brain area and/or time point, as opposed to being due to either peripheral
stimulation, or simply cortical stimulation in general.



Stimulation Intensity
A separate consideration in experimental design is how the stimulation level
is determined for an individual. As noted, this is typically done as a
percentage of resting or active motor threshold. However, an individual’s
threshold is not constant, and can be changed quite quickly by activity. For
example, recent muscle contractions – ranging from exercising at the gym
prior to a TMS session, to much simpler things such as contracting the hand
muscles just before TMS – can significantly raise rMT, as well as the motor
effects that result from supra-threshold TMS. Thus careful control of the
participant’s behaviour prior to and during the determination of motor
threshold is important, as is inquiring about their level of activity prior to the
session. This is not only an issue in the motor system either: it has been
shown that spatial attention can modulate the threshold for TMS to induce
phosphenes during occipital lobe stimulation (Bestmann, Ruff, Blakemore,
Driver, & Thilo, 2007). Thus researchers should consider how the
manipulations inherent in their experimental design might also influence the
excitability of the cortical regions they plan on stimulating.



TMS Combined with Neuroimaging
TMS allows systematic modulation of neural activity; however, the technique
itself does not provide any means of directly measuring this modulation.
Historically, the conclusions made from TMS studies regarding neural
mechanisms were largely inferential, based on knowledge (or educated
guesses, depending on whether neuro-navigation was used or not) of what
brain area was stimulated, and measurements of the resulting behaviour on
the part of the subject; in the case of the motor system, EMG could be used as
well. Neuroimaging, however, provides an excellent complement to TMS
because it can show us more directly how brain activity is modulated by the
stimulation. This is particularly important because the brain is a network of
interconnected areas, so it would be naïve to think that any and all effects
resulting from TMS were attributable to only the brain area that was directly
stimulated. The modulation of one brain area is virtually guaranteed to have
‘downstream’ effects on other areas that it is connected to, which likely
mediate some of the behavioural effects seen after stimulation. Combining
neuroimaging with TMS can help us to understand the effects of TMS better.
Given the strengths of the different imaging techniques covered in previous
chapters, one can see that they all offer different potential insights into the
mechanisms of TMS. PET can inform us as to the effects of TMS on different
neurotransmitter systems, while EEG can be used to assess the timing and
duration of TMS-induced effects; fMRI can show which regions’ activity is
modulated by stimulation. As with behavioural studies, combined TMS–
neuroimaging studies can be classified as offline or online depending on
whether the stimulation occurs prior to the imaging, or during. Online
protocols create many more technical considerations than offline ones,
because the TMS-evoked electromagnetic fields can cause interference with
the neuroimaging hardware and measurements; on the other hand, online
experiments generally provide stronger data because of the ability to
associate stimulation with changes in activity in real time, rather than many
minutes after the fact. Furthermore, the technical hurdles are tractable
(though often at significant financial and logistical cost), and many groups
have successfully published data from such experiments. In the remainder of
this section we will discuss each of these techniques in turn, considering the
technical issues inherent in combining TMS with each imaging technique, as



well as examples of some of the benefits.



TMS–PET
Combining PET with TMS is relatively easy, because PET measurement does
not rely on electrical potentials or magnetic fields. Because TMS does
generate an electromagnetic field, it is important to consider the placement of
the TMS equipment relative to the PET scanner to prevent interference with
the PET system’s electronics. However, because the TMS-evoked fields drop
off so sharply with distance, this is relatively easy to accomplish – especially
because the slow time course of PET acquisitions largely precludes the use of
online protocols. Thus one could employ an offline approach in which
participants first receive TMS, and then receive a PET scan. A control scan
prior to the TMS might also be considered if there is a need to establish a
baseline; however, the half-life of the PER used in the PET scan needs to be
considered as some require a relatively long wash-out time; in such cases the
control scan could be done on a separate group of participants, or on a
different day.

An example is an early study by Strafella and colleagues (2001), who
performed 10 Hz rTMS over the left dorsolateral prefrontal cortex (DLPC)
for 30 min outside of the PET scanner. Within 5 min of the completion of the
stimulation, [11C]raclopride (which binds to D2 receptors and is sensitive to
extracellular dopamine concentration; see Chapter 11) was injected and the
PET scan began, which lasted for 60 min. The results showed that
[11C]raclopride binding decreased specifically in the left caudate nucleus of
the basal ganglia, reflecting an increase in endogenous dopamine. No
changes in [11C]raclopride binding were observed in other areas of the basal
ganglia, nor were any changes observed after a control condition in which the
occipital cortex, rather than DLPC, was stimulated. These results are
consistent with known anatomical connections between the caudate and
DLPC, and indeed knowledge of anatomical connectivity patterns was
helpful to the authors in interpreting their results: DLPC has direct
connections to the ipsilateral caudate nucleus and indirect connections to
other basal ganglia areas; the fact that dopamine was modulated only in the
left caudate indicates that TMS affected direct projections but did have
wider-ranging effects on dopamine levels.



TMS–fMRI
Offline designs combining TMS with fMRI are relatively straightforward,
because the TMS system can be placed in a location near the MRI scanner –
but far enough away that interference does not occur – and the subject simply
moved from the TMS room to the MRI scanner between phases of the
experiment. However, the strong magnetic field of the MRI scanner makes
online stimulation protocols more challenging, as three types of artifacts may
occur. The first are static artifacts associated with the presence of metal in
and near the MRI scanner. The primary material in TMS coils is copper,
which is not ferromagnetic and so in itself is not a major problem. However,
other components of the coil (such as switches) may have ferromagnetic
components, so re-engineering the coils may be necessary; many companies
now produce TMS coils specifically designed for use in MR environments.
The main TMS unit, however – which houses the capacitor and other
hardware that generate and control the stimulation pulses – cannot be near the
scanner and should really not be in the same room as the MRI. Fortunately,
TMS systems work fine with a relatively long cable running from the main
hardware unit to the coil, and so the hardware can be placed outside the MRI
room and the wire to the coil run through a waveguide (a shielded tube
through the MRI wall shielding). A special consideration of such a set-up is
that the longer cable running to the coil will have greater resistance than the
shorter cables typically used in non-fMRI TMS experiments, which will
reduce the actual level of stimulation delivered at the coil, for a given output
setting on the TMS unit. A second challenge is dynamic artifacts created by
the magnetic pulse of the TMS coil when stimulation occurs. Since MRI
relies on very accurate mapping of the magnetic field inside the bore of the
scanner, a TMS pulse (which, at 1–2 T, is in the order of magnitude as the
field strength of the scanner itself, and far larger than the gradient fields
induced to perform spatial encoding) will inevitably disrupt this and make
imaging impossible during a pulse. Fortunately, TMS pulses are very short
(milliseconds) in duration, and the fields drop off sharply with distance. Thus
it is possible to synchronize MRI acquisition with TMS stimulation (by
linking the devices via a computer) in such a way that the MRI scans are
acquired outside the 70–100 ms time window immediately after TMS, during
which the MRI data would be affected (this can be done by slightly



lengthening the repetition time – TR – of the fMRI pulse sequence). Since the
delay between any stimulus/neural event and the associated MRI-measured
BOLD response is in the order of several seconds, this short delay in data
acquisition does not interfere with accurate fMRI scanning. A final
consideration are sensory artifacts that arise from the fact that a TMS pulse
produces an audible noise as well as a tactile ‘tapping’ sensation on the head,
and possibly muscle contractions as well. This is not unique to fMRI but is a
consideration for any neuroimaging study (and for that matter, behavioural
studies as well, as discussed earlier). It is best addressed through an
experimental design that includes appropriate control conditions.

An important use of combined TMS–fMRI is that it is possible to determine
how TMS modulates the activity both of the area directly stimulated, and
other areas of the brain as well. These interactions can be quite complex,
which is an important consideration in interpreting the results of any TMS
experiment. Indeed, while this does not undermine the use of TMS to create
‘virtual lesions’, it underscores the fact that, just as with real brain lesions, the
effects of virtual lesions cannot simply be attributed to disruption of function
in the targeted brain area, but are wide-ranging effects across the network of
brain regions connected to the lesioned area. As an example, in one online
TMS–fMRI study, Ruff and colleagues (Ruff, Blankenburg, & Bioertomt,
2009) stimulated four different brain areas using bursts of five stimulation
pulses at 9 Hz, alternating with fMRI acquisitions. This was done by using an
interleaved EPI acquisition sequence with a TR of 3 s, of which
approximately 2400 ms was used to acquire fMRI data, and the remaining
‘silent’ period was used to deliver the TMS. On each trial, subjects would
randomly either see a visual stimulus designed to strongly drive peripheral
visual areas (rapidly changing colour and movement, presented to the visual
periphery but not the foveal area around a fixation point), or no stimulus, and
then receive TMS on each of three subsequent TRs (so, three bursts of five
pulses each, over 9 s). The TMS was delivered to one of four brain areas
(frontal eye fields – FEF – or intraparietal sulcus – IPS – in each
hemisphere), at one of four randomly varied intensity levels (between 40–
80% rMT); as a control condition, on 20% of trials no TMS was
administered. This experimental design is shown in Figure 13.12. Analysis of
the fMRI data focused not on the stimulated areas, but on retinotopically
organized areas of the occipital lobe, including areas V1, V2, V3, V4, and



V5. The results demonstrated the wide-ranging effects of TMS, and the
complexity of relationships between site of stimulation and changes in BOLD
activity in remote locations. After FEF stimulation to either hemisphere,
activity in occipital regions representing the central (foveal) visual field
decreased. However, after right frontal stimulation only, activity in occipital
areas representing the peripheral visual field increased. The differences in left
versus right hemisphere stimulation were even more pronounced in the
parietal lobe, where right IPS stimulation modulated V5 (motion-sensitive
cortex) responses to moving stimuli in proportion to the intensity of
stimulation, while left IPS stimulation did not affect V5 BOLD signal levels.
These findings are in accord with the previously known right hemisphere
dominance for visual–spatial processing, and the roles of the FEF and IPS in
spatial cognition.



TMS–EEG
Performing TMS while recording EEG presents some unique challenges. The
high temporal resolution of EEG makes it an attractive complement to TMS,
especially because EEG offers the potential to measure the near-immediate
effects of TMS on electrical activity itself, rather than indirect effects on
BOLD or neurotransmitter activity. On the other hand, because TMS
involves creating a large electromagnetic pulse, a massive artifact will be
recorded in the EEG data, creating several problems. Combining EEG with
TMS in an offline design is much more straightforward, except that if one is
interested in EEG responses soon after TMS, the EEG electrode cap should
be applied prior to TMS. This in turn requires some consideration around the
type of electrodes used in the cap; however, this is an issue with online
studies as well, which is the primary focus of this section.

Figure 13.12 Schematic of the combined TMS–fMRI experiment conducted
by Ruff and colleagues and described in the text. To avoid interference
between TMS pulses and fMRI data collection, an interleaved fMRI pulse
sequence was used, in which MR data acquisition (one brain volume)
occurred for 2430 ms followed by a 570 ms gap prior to the start of the next
MR acquisition. Thus the TR of the fMRI sequence was 3000 ms. During the
MR acquisition gaps, rTMS was delivered in some experimental blocks. The
area targeted by TMS was varied between fMRI runs, as shown in the bottom
panel. During the experimental blocks, a patterned visual stimulus (involving
movement and colour changes) was presented to the peripheral visual fields
of the participant. Experimental blocks alternated with rest blocks in which
no TMS or visual stimulation were delivered; these rest blocks were longer to
allow the effects of TMS to wear off prior to the next experimental block.
Adapted from Ruff and colleagues (2009)



The first set of problems arise from the electrodes and how they are applied
to the scalp. The materials used in the electrodes and wires should be non-
ferromagnetic, so that they do not move during the TMS pulses. This is
typically not a problem, because passive EEG electrodes and wires are
commonly made of non-ferromagnetic materials such as tin, silver, and
copper; however, it is wise to ensure that all materials meet these
specifications, and to test the set-up extensively – even non-ferromagnetic
materials may move or heat up during stimulation. Heating of electrodes is a
significant concern: medical safety guidelines state that materials above 41°C
should not come in contact with human skin due to the risk of burns;
however, a single TMS pulse can cause up to 5°C of heating, and so repeated
pulses could quickly create a problem. The amount of heating depends on the
size, shape, and conductivity of the electrode, however. It has been found that
small, pellet-type electrodes heat far less than more conventional disc-shaped
electrodes, and conductance can be reduced by making electrodes out of
plastic or other non-conductive material, rather than metal, and coating them
with silver–silver chloride. As well, TMS will induce currents in any loops in
a conductive wire, so it is important to ensure that all wires run as straight as
possible; twisted or coaxial wires can also help reduce artifacts. It is also
important to ensure that the TMS coil does not touch any EEG electrode,
because movement of electrodes during each TMS pulse would occur,
creating electrode movement artifacts. Finally, it is recommended that
electrode impedances be kept very low (< 5 kΩ). This is much lower than is
typically required for contemporary EEG systems; however, TMS pulses can
result in polarization (a strong difference in potential) across the electrode–
electrolyte–skin interface and this is minimized by minimizing the impedance



to current flow across this interface. Secondly, the electronics of the EEG
system must be robust enough not to suffer long-term damage from the TMS
pulses, and kept a safe distance away from the stimulating coil. Most modern
EEG systems are robust enough to handle the TMS pulses without damage,
although this is a point that should be confirmed with the amplifier
manufacturer prior to attempting this.

The larger concern, however, is the artifacts that are induced in the EEG data
by TMS, due to the fact that the electrical current induced by the pulse is
several orders of magnitude larger than EEG itself. An example of this
artifact is shown in Figure 13.13. One issue is that the TMS pulse may cause
saturation of the amplifier, which happens when an electrical potential in the
electrodes exceeds the range that the amplifier is able to measure. This results
in blocking, during which time the amplifier measures a flat line, and no
signal can be recovered. While this does not damage the amplifier, it can take
seconds or even tens of seconds for the amplifier to recover to the point
where it can accurately measure EEG again. Thus TMS-compatible EEG
amplifiers either need to have a very large dynamic range (that is, the range
of potentials they are able to measure is greater than the size of the TMS
artifacts), or some sort of gating device that prevents signals from reaching
the amplifier if they exceed a particular threshold. Several amplifier designs
have been used that involve ‘sample-and-attenuate’ or ‘sample-and-hold’
circuits that measure the voltage coming in before the signal reaches the
amplification stage. If the input exceeds a certain voltage, it will be
attenuated, or blocked altogether from reaching the amplifier, for a certain
amount of time. While no usable data is recorded during this period, such an
approach eliminates saturation, meaning that good EEG data can be recorded
again much sooner than if the amplifier had to recover from saturation.
Alternatively, using a wide-dynamic range amplifier that doesn’t saturate
with the TMS pulse, one can simply record the artifacts and remove them
afterward in post-processing. Artifact removal can be performed using
several methods, including independent components analysis (ICA), signal-
space projection (SSP), and regression (Mutanen, Kukkonen, Nieminen,
Stenroos, Sarvas, & Ilmoniemi, 2016). It is recommended to acquire the EEG
data with a much higher sampling rate than would typically be used (1000–
5000 Hz, rather than 200–500 Hz). This allows the recording system to
record the artifacts more accurately and recover more quickly, at the expense



of dramatically increasing the size of the data files.

Figure 13.13 Combined EEG and TMS. The left panel shows a participant
wearing a TMS-compatible EEG cap, while being stimulated with a figure-8
coil. Note that the wires from each EEG electrode are very straight to prevent
TMS inducing any current in the wires. The right panel shows an example of
EEG data with the TMS-induced muscle artifact (red) and after (black)
artifact removal using an algorithm developed by Mutanen and colleagues
(2016). The EEG data were collected using a sample-and-hold EEG amplifier
that removed the electrical artifact created by the TMS pulse itself; however,
the muscle artifact remained and thus required post-processing for removal.
Left panel image courtesy of Brain Products GmbH; right panel reprinted
from Mutanen and colleagues (2016) with permission of Elsevier

A number of artifacts are likely to be recorded in the EEG during TMS. The
pulse itself will create an artifact; this is unavoidable and the period during
the pulse should be considered unusable for EEG. Following the pulse,
continued artifact is likely to be present. Firstly, if the amplifier saturates
there will be a period of blocking, but either way there will be ‘ringing’
artifacts caused by the dropoff (gradient) of the induced magnetic field. As
well, TMS often induces contractions of scalp muscles, typically in a period
about 10 ms after stimulation, and blinks may be induced as well; both of
these create EEG artifacts. Finally, there is commonly a decay artifact which
is thought to have a number of causes, including current induction, electrode–
skin polarization, and electrode movement. In addition, the recharging circuit



in the TMS system will induce an artifact in the EEG recordings as the
stimulator gets ready for the next pulse. Many TMS systems now have the
ability to control the timing of this recharging, so that the user can ensure that
it occurs after the time window during which EEG will be analysed (for
example, 500–1000 ms after the TMS pulse). In post-processing, segments of
the data containing pulse, saturation, and ringing artifacts are normally
identified (either manually or by an automated algorithm) and excluded from
the data. Decay and muscle artifacts are comparatively smaller, and can be
removed from the data using an approach such as independent components
analysis (ICA; discussed in the EEG chapter), allowing analysis of the EEG
during the time periods that these artifacts occurred in.

As discussed earlier, combined TMS–EEG can be useful in studying the
effects of TMS both on the stimulated site, and on more distant brain regions
– and thus cortical connectivity. TMS induces unique patterns of EEG
activity, called TMS-evoked potentials (TEPs), as shown in Figure 13.14,
and so it is important to characterize and understand these. The TEPs induced
are highly dependent on the site of stimulation, the orientation of the coil, and
the stimulation protocol and – like TMS in general – on the cognitive state of
the person being stimulated. Thus it is important to characterize the baseline
TEPs for a particular stimulation protocol in addition to investigating the
effects of any experimental manipulation or investigating a special (for
example, clinical) population. For example, TMS to the primary motor cortex
induces a series of TEP components, including the N15, P30, N45, P55,
N100, and P180. The earlier components are thought to reflect the direct
effects of stimulation, while later occurring ones likely reflect activity
conducted from stimulated areas to other regions, and/or reverberant or re-
entrant activity back to the stimulated area from other areas. TMS also affects
the frequency spectrum of EEG data, and so frequency-domain analyses can
also be of interest.

Figure 13.14 An example of a TMS-evoked potential (TEP). This was
evoked by single-pulse TMS delivered to primary motor cortex (arrow; time
0). The component peaks labelled in the figure are all characteristic of TMS
stimulation rather than being evoked by endogenous (self-generated)
movements. Reprinted from Ilmoniemi and Kičić (2009) under CC BY-NC
3.0





Safety
Safety is an important consideration with TMS, since we are inducing
electrical currents in the brain. Although the technique has an excellent
overall safety record, in the early days of TMS experimentation there were a
number of reports of cases in which people had seizures following TMS. This
sparked careful and systematic investigation of the causes of these incidents,
examining both the stimulation protocols and the selection of participants.
This resulted in the publication of safety guidelines by a consensus group in
1998 (Wassermann, 1998), which were subsequently updated based on new
information (Rossi, Hallett, Rossini, & Pascual-Leone, 2009). These
guidelines are detailed and extensive, and we will only touch on the more
significant points here; anyone considering using TMS should seek out the
most current safety guidelines and read them in detail.

Perhaps the most alarming risk of TMS is an epileptic seizure. Rossi and
colleagues (2009) surveyed the literature and found 16 reported cases of
seizure associated with rTMS (none associated with single-pulse TMS),
seven of which occurred prior to the publication of the original safety
guidelines (and thus whose causes were considered addressed by those safety
guidelines). Of the new cases, four were deemed to have happened in studies
that used rTMS outside of the published safety guidelines. Furthermore, of
the four seizures reported to have occurred in studies operating within safety
guidelines, three cases involved people who were taking epileptogenic
medications (that is, known to increase the risk of seizure), and in two cases
careful examination called into question whether the reported events were
truly seizures caused by the TMS, as opposed to other clinical events and/or
occurring many hours post-TMS. Even among those studies operating outside
the published safety guidelines, the majority of seizures occurred in people
taking epileptogenic medications. One additional case of seizure was
reported, this one being the only case associated with cTBS. The cause in this
case was not clear, but the authors reviewing the case emphasized the need
for further investigation into dose-response relationships specifically for
cTBS. Given the fact that thousands of people have received rTMS in studies
and clinical settings over more than 20 years, and that reporting of adverse
events such as seizures is mandatory, the low number of cases of seizure



should be taken to reflect a very good safety profile for TMS – particularly
when safety guidelines are followed. Notably, many TMS studies are
performed on people with epilepsy, and the risk of TMS-induced seizure in
people who are already prone to seizures is only 1.4% (Rossi et al., 2009).

While seizures are the most dramatic possible side effect of TMS, there are a
number of other safety concerns that should be understood. Firstly, heating
and burns are a possibility. As noted earlier, electrodes such as those used in
EEG can heat up, and so those designed specifically for TMS should be used
and the guidelines for their use followed. Implanted metal in the head can
also heat up; this includes implanted stimulation electrodes (for example,
deep brain stimulators), aneurysm clips, and metal plates. Heating above
43°C can cause irreversible brain damage. Thus proper and thorough
screening for implants is necessary. Although titanium, which is a primary
metal used in medical implants, has low conductivity and may have design
features (for example, notches) that minimize heating, movement is another
concern for implanted metals, including plates and clips. The amount of
movement in many cases might be so minimal as to not cause concern, but
the onus is on the TMS operator to carefully consider the risk–benefit ratio in
such situations. Any metal that can be removed (especially externally, such as
jewellery, glasses, etc.) should be done prior to TMS.

TMS can also induce currents in implanted electrodes. Such electrodes might
be in the brain, in devices such as deep brain stimulators, vagal nerve
stimulators, or cochlear implants, as well as elsewhere in the body such as
cardiac pacemakers. Several studies have investigated the safety of TMS with
such devices, both ex vivo (in simulated bodies) and in vivo. Although TMS
may induce current in these systems, the currents are generally small and
within the range of those normally generated by the devices. However, the ex
vivo studies did indicate that stimulating too close to the internal pulse
generator of the stimulator (the part of the device that generates pulses) could
damage the device, and several other limitations of the studies leave open the
possibility of dangerous currents being generated that were not detectable
given the methodology of the studies. At the same time, several in vivo
studies have been performed on people with implanted devices with no
negative effects. In general, caution is recommended and TMS should only
be performed on people with implanted stimulators where it is medically



warranted and the safety concerns have been fully considered. TMS should
never be performed near the pulse generator of any such device, nor in people
with cochlear implants; the design of cochlear implants poses significant
safety risks for TMS.

While long-term effects of strong magnetic fields have received some
attention in the media, there is no evidence that these fields pose a risk in
TMS, either to the recipient or the TMS operator. A more immediate concern
is hearing damage due to the loud noise produced with each pulse, which
may exceed 140 dB (comparable to a gunshot, or jet engine at a distance of
30 m) and is well in excess of hearing safety guidelines. Thus it is important
that both the TMS operator and recipient, as well as anyone else in the
vicinity, wear proper hearing protection during stimulation. TMS can also
cause physical discomfort due to muscle contractions, which can both be
painful during stimulation, and result in a lasting headache. It is estimated
that nearly 40% of TMS recipients experience pain and 30% have lasting
headache (Rossi et al., 2009). The amount of muscle contraction varies
significantly depending on where stimulation is targeted (near the face – such
as over the frontal lobes – being particularly unpleasant). Participants should
be warned of possible discomfort; bite guards (such as are used in contact
sports) may be advisable if stimulation causes jaw contractions, and over-the-
counter analgesics may be used if a headache results.

Another category of TMS effects to be considered are on brain activity and
cognition. On the one hand, these are often the expected and even desired
consequences of TMS, given that the goal of applying stimulation is to
modulate brain activity and cognition. On the other hand, these effects need
to be considered as possible side effects as well, particularly if they are of
long duration or have a negative impact on the recipient. However, by and
large these effects are of relatively small magnitude and short duration, rarely
lasting longer than the experimental session. Participants should be
monitored by the experimenter though, and if they appear dizzy or otherwise
compromised, it is advisable to ensure that the participant remains in the lab
and under observation until the side effects pass. Longer-term changes have
been reported after repeated rTMS sessions; again, this is typically a desired
effect of administering multiple sessions. For instance, rTMS is used in the
treatment of depression, obsessive-compulsive disorder, and other psychiatric



conditions. There have been no reports of negative consequences of such
treatments, however. On the other hand, in psychiatric populations TMS has
occasionally been reported to induce psychiatric symptoms, including mania,
psychosis, agitation, anxiety, and suicidal ideation. These have not, however,
been reported in otherwise healthy people without a prior psychiatric
diagnosis, and it is often unclear whether the reported symptoms are
attributable to the TMS, since they are symptoms of pre-existing conditions.

Summary

TMS is a form of NIBS that stimulates the brain by passing a strong electrical current
through a conductor, held near the head. The current induces a magnetic field via the right-
hand rule, which in turn induces a brief electrical current in the brain of the person
stimulated. TMS is quite focal, though the distribution of current in the brain depends on the
shape and size of the stimulating coil. The optimal way to determine how to position the
TMS coil to target a specific brain region is using neuro-navigation, which combines real-
time tracking of the head and coil position with a structural MR image of the person’s head
and brain. In the absence of this, scalp landmarks or measurements (like the International
10–10 System) can be used; however, these will increase the variance in brain locations
stimulated relative to using an individual’s own anatomy. An alternative approach is to
systematically apply TMS stimulation to a number of locations on a grid over the general
targeted area, and choose the stimulation location as that which yields the strongest
response (for example, a muscle twitch, or visual phosphenes).

A number of different stimulation protocols are commonly used in TMS research,
depending on the aims of the experiment. These vary in the type and duration of the effects.
Single-pulse TMS involves delivering isolated pulses, which causes immediate excitation
followed by a period of reduced activity in the area stimulated. Single-pulse motor mapping
is also commonly used as part of many different TMS protocols, in order to define an
individual’s resting motor threshold, which is then used to set the level of stimulation in the
experimental protocol. Paired-pulse protocols use a pair of pulses with specific relative
timing and strength, to the same or different areas; these are useful in characterizing
relationships between activity in different brain regions. An alternative to delivering
individual or paired pulses is delivering a long series of pulses at fixed intervals, known as
repetitive TMS (rTMS). Low-frequency rTMS (1 Hz or less) tends to have inhibitory effects
on the targeted brain area, while high-frequency rTMS (> 1 Hz) tends to have excitatory
effects. Low-frequency TMS is often used to induce ‘transient lesions’ in a brain area;
during inhibitory stimulation impaired performance on a task suggests that the stimulated
brain region plays a critical role in task performance. A variant of rTMS is theta burst
stimulation (TBS), which involves bursts of three pulses separated by longer silent periods.
This can be applied continuously or intermittently, resulting in inhibition or facilitation,
respectively.

TMS exerts effects both through the current induced in the target cortex (direct effects) and
through propagation of either the stimulation current, or induced changes in neural activity,
to more distant brain regions. Pharmacologically, the immediate effects of single-pulse
TMS are most strongly modulated by affecting the activity of sodium ion channels or



glutamate; however, inhibitory and longer-lasting effects are also modulated by GABA and
neuromodulators such as noradrenaline and serotonin. Overall, relatively little is understood
about the precise mechanisms mediating the effects of TMS, but they are likely quite
complex and widespread.

Because TMS is a form of stimulation and not a measurement, experiments using TMS rely
on behavioural and/or neuroimaging measures to quantify the effects of stimulation. A
critical consideration in behavioural measurements particularly is distinguishing true effects
of brain stimulation from placebo or ‘demand’ effects caused (consciously or
unconsciously) by participants’ awareness that they are being stimulated. To control for
this, TMS to the targeted brain area should be compared with some form of sham
stimulation. Several approaches to sham stimulation are available, each with some
limitations.

Neuroimaging can be combined with TMS to assess the effects of stimulation on brain
activity as well as behaviour. MR-compatible TMS systems can be used in an MRI scanner;
although large artifacts will occur during stimulation, the delayed timing of the BOLD HRF
means that the effects of TMS on BOLD signal will occur after the period of artifacts. TMS
can induce large currents in the EEG electrodes which not only create artifacts that
overwhelm the EEG signal, but also damage the EEG hardware. TMS compatible EEG
systems either block currents that exceed a certain level (in which case EEG data is lost for
the artifact period), or have an exceptionally large dynamic range so as to be able to record
the TMS-induced currents (and later remove them using signal processing techniques). As
well, conductive coils such as loops of wire or circular electrodes can heat significantly
during TMS, creating risks to the participant; electrodes that protrude from the scalp may
also prevent the TMS coil from being held close enough to the scalp. Special electrode
designs can avoid these issues.

When used according to published safety guidelines, TMS is generally safe. However, there
are a number of important considerations to ensure the safety and comfort of participants.
Firstly, people should be screened for risk factors such as epilepsy, if the risk factor is not
the focus of the study, and for implanted metal or devices in the head that could heat, move,
or malfunction as a result of stimulation. Because TMS is very loud, hearing protection
should always be used by operator and participant. Some people report headache after TMS
(and TMS can cause unpleasant muscle contractions depending on the site of stimulation),
which can be treated with over-the-counter analgesics. Participants should also be
monitored for dizziness, disorientation, or other symptoms, but these generally dissipate
with time.

Things You Should Know

TMS uses the principle of the right-hand rule to induce a transient electrical current
in the brain via a magnetic field created by passing a strong electrical current through
a conductive coil.
TMS is quite focal (approximately 12 cm2) and so precise targeting of the intended
brain region is important. This is ideally done using a neuro-navigation system with
the individual’s anatomical MRI scan, but can also be achieved using scalp-based
landmarks or functional mapping.
TMS can be delivered as individual, paired, or longer trains of regularly spaced



pluses. Single pulses can be used in mapping and in studying the timing of brain
activity. Paired pulses can be used to examine interactions between brain areas or
timing within a brain area. Repetitive TMS can have inhibitory or facilitative effects
depending on whether stimulation is low or high frequency, respectively, and its
effects can be assessed online as a person is performing a task, or offline after
stimulation has ended. A variant of rTMS is theta burst stimulation, which can have
longer-lasting effects following a shorter period of stimulation.
The effects of TMS are mediated by sodium ion channels, glutamate, GABA, and
several neuromodulators. The effects depend on the stimulation protocol and are
overall not well understood.
Because TMS makes a loud noise and a ‘tapping’ sensation on the head, it is possible
that observed effects of stimulation could be attributable to placebo or demand
characteristics on the part of the participant (either consciously or unconsciously),
rather than the brain stimulation itself. To control this, ‘true’ stimulation should be
compared with one or more control conditions. Sham stimulation can be delivered in
several ways, including by tipping the coil so it does not stimulate the brain,
stimulating an area not expected to influence the task, or using a special sham coil.
Each has limitations and these should be considered in designing and interpreting
TMS experiments.
Neuroimaging can be used to assess the effects of TMS on brain activity.
While TMS is generally safe when used according to published safety guidelines,
there are a number of risks that should be considered. Unless a specific patient group
is the focus of the study, people with neurological conditions (especially seizure
disorders) should not participate in TMS studies as there is a risk of seizure. As well,
due to the electromagnetic fields involved, people with implanted metal or devices
should not normally receive TMS. Due to the acoustic noise, hearing protection
should always be used. Participants may experience headaches, pain, unpleasant
muscle contractions, dizziness, or other symptoms, although these are typically of
short duration.
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14 Transcranial Electrical Stimulation (tES:
tDCS, tACS, tRNS)



Learning Objectives
After reading this chapter, you should be able to:

Describe how tES is administered, including types of hardware and current levels.
Describe the advantages of high-definition tES.
Compare and contrast the three primary tES stimulation protocols.
Describe the known pharmacology of tES action.
Describe different models of how tES affects brain activity.
Discuss important considerations of participant selection for tES.
Explain how tES studies can be blinded to control for placebo and demand effects.
Discuss safety considerations in administering tES.



Introduction
Transcranial electrical stimulation (tES) refers to a broad class of NTBS
techniques that involve passing relatively weak currents through the skull for
the purpose of stimulating the brain. Although both TMS and tES are non-
invasive stimulation techniques, they are quite distinct in both how they
affect the brain, and how the stimulation is delivered. The head is highly
transparent to magnetic fields, meaning that TMS pulses reach the brain with
approximately the same strength that they are generated. In contrast, the
tissues of the head – most notably the skull, but also the scalp and to a weaker
degree, CSF – are electrically insulating. This means that in tES, the
electrical current that reaches the brain is much weaker than the current that
was applied to the outside of the head. At the same time, applying strong
electrical currents to the skin can create discomfort and even burning of the
tissue, which means that there is an upper limit to the amount of electrical
stimulation that can be delivered non-invasively and safely. This limit means
that the strength of the effects of tES are far less than those of TMS: rather
than overwhelming and driving action potentials in the stimulated cortex as
TMS does, tES merely ‘nudges’ neuronal cell membrane potentials towards
greater or lesser polarization, making the neurons more or less likely to fire in
response to other stimulation (which could be provided by other neurons, or
by TMS in the case of combined tES–TMS studies that we discuss later). As
such, the effects of tES are generally described as neuromodulation. It
should be noted that, contrary to the convention in TMS, in electrical
stimulation the ‘t’ for ‘transcranial’ is typically written in lower case, as in
tES. In fact, ‘TES’ with a capital ‘T’ refers specifically to a distinct
technique, involving the use of stronger but much more transient electrical
currents, that elicits responses more like TMS.

While we touched on some of the earliest recorded uses of brain stimulation
in the introduction to the previous chapter, some additional highlights are
notable in the history of electrical stimulation. The systematic use of non-
invasive electrical brain stimulation began early in the twentieth century, with
attempts to induce general anaesthesia (at that time, nitrous oxide and ether
were the only real alternatives, and were fraught with risks and limitations)
(Guleyupoglu, Schestatsky, Edwards, Fregni, & Bikson, 2013). Electrosleep



was developed, initially in Russia, by delivering current through electrodes
placed over the eyes. Later research determined that the electrical stimulation
did not induce sleep directly, but rather created a very relaxed state that led to
sleep, prompting a change in terminology to cranial electrotherapy
stimulation (CES). CES has been fairly widely used since the 1960s and
1970s, and has seen a resurgence in the twenty-first century as a non-
pharmacological treatment that is approved by the US Food and Drug
Administration (FDA) for conditions such as insomnia, anxiety, and
depression. Another, more widely known form of electrical stimulation is
electroshock or electroconvulsive therapy (ECT). This involves application of
repeated, high-intensity pulses to deliberately induce generalized seizures.
ECT was first used in 1938 and was quite widely used in the treatment of
serious psychiatric disorders (such as psychosis and major depression).
Serious side effects of ECT, including severe memory loss (to the point that
some patients had to re-learn to walk and perform basic bodily functions),
combined with the development of pharmacological treatments for
psychiatric conditions in the 1950s and 1960s, led to a decline in the use of
ECT. However, in recent decades it has seen a resurgence and is currently an
accepted treatment in many countries; in the US it is estimated that
approximately 100,000 people per year receive ECT (Hermann, Dorwart,
Hoover, & Brody, 1995), primarily in cases that are not responsive to drugs
and/or when a rapid response is required (for example, when the near-term
likelihood of suicide is high). It is important to recognize that the currents
used in tES are far weaker than those used in ECT, and carry none of the
risks or side effects of ECT.

The use of tES in cognitive neuroscience has a much shorter history, with the
first contemporary studies published at the turn of the twenty-first century
(Nitsche & Paulus, 2000; Priori, Berardelli, Rona, Accornero, & Manfredi,
1998). These studies were founded on prior work in animals that had shown
modulation of neuronal membrane potentials via electrical stimulation of the
scalp, as well as a few behavioural studies with humans in the 1970s and
1980s suggesting modulation of reaction times. The reason the 1998 and
2000 studies are considered the origins of modern tES, in spite of earlier
work, is that they systematically demonstrated relationships between
electrical stimulation and both behaviour and physiological responses, thus
elucidating possible mechanisms of action and motivating further research.



Both studies investigated the motor system, which is – as we learned in the
TMS chapter – an ideal system for studying neurostimulation because it
produces easily quantifiable muscle responses (MEPs). As well, both studies
used TMS in combination with tES. In this way, they were able to show that
administering tES prior to TMS altered the size of the TMS-evoked MEP.
Specifically, if the anode (sending current) was placed over the motor cortex,
MEP amplitudes were increased, suggesting that the input current made the
stimulated neurons more likely to fire. Conversely, if the cathode (electrode
where current flows out of the head, back to the device) was placed over
motor cortex, MEP amplitude decreased, suggesting that cathodal stimulation
made neurons less likely to fire. Since then, the technique has been used in
many different ways to investigate many different neurocognitive systems
(totalling well over 1000 published journal articles; Bikson et al., 2016),
though the motor cortex continues to be the most widely studied of these. The
applications that have received the most attention, however, are those that
have found evidence that tES might affect neuroplasticity and thus facilitate
learning, memory, and neurorehabilitation.

There are a number of tES approaches that differ in how the stimulation is
delivered over time, as shown in Figure 14.1. The most common is
transcranial direct current stimulation (tDCS), in which a current of a
fixed magnitude is passed from one electrode to another, through the head,
for some amount of time (ranging from a few to tens of minutes). Another
option is to vary the strength of the current sinusoidally at a particular
frequency (typically ranging from a few Hz to over 100 Hz); there are two
variants of this, one called transcranial alternating current stimulation
(tACS) and the other called oscillatory tDCS (o-tDCS). Finally, there is
transcranial random noise stimulation (tRNS, sometimes called tRCS with
the ‘C’ standing for ‘current’), in which the intensity is varied randomly over
time rather than being constant or varying at a set frequency. We will explore
all of these in the following sections.



How Do We Do It?
The minimal equipment necessary for tES (at least tDCS) is quite simple:
some devices are little more than a 9 V battery connected to two electrodes.
However, to perform systematic investigations some additional technology is
required, because at a minimum we would like to be able to quantify and
control the electrical current flowing into the head. Thus devices typically
have a voltmeter built in to measure current flow, and a knob to adjust the
current level. Research-grade instruments typically also measure the
impedance and adjust the electrical potential accordingly. This is because
what is ultimately important is the current flowing through the head, and (as
discussed in Chapter 3), by Ohm’s law, for a given voltage current decreases
as impedance increases. Two electrodes are placed on the head (or elsewhere
on the body), and the electrical current flows from one to the other through
the body. In tDCS, the ‘sending’ electrode is called the anode, and the
‘receiving’ electrode is called the cathode (in other tES variants, the labelling
is more complicated, as discussed later). In most applications, these
electrodes are much larger than those used in EEG; typically they are made
from conductive rubber held inside large (for example, 5 × 7 cm) sponges
that are soaked in saline (an electrically conductive solution, that is,
electrolyte). The reason for using large electrodes is that the current that is
used creates tingling or itching sensations, and these are reduced by
increasing the surface area of the electrode. As well, just as with EEG the
impedance of the scalp provides an impediment to current flow, so it is
important to clean the skin where the electrodes will be placed, and measure
impedance regularly during the experiment. Since the sponges can dry out –
which will increase impedance, possibly causing burning or discomfort –
regular checking and re-wetting of the electrodes may be necessary. Higher-
end tES devices intended for research may have other features as well, such
as the ability to deliver sham stimulation (discussed later in the context of
experimental design), and to ‘blind’ the operator as to whether real or sham
stimulation is being delivered on a given trial to prevent any possible bias
(the device would record what stimulation was actually delivered to the
participant for later analysis, of course). An example TES system is shown in
Figure 14.2.



Figure 14.1 Schematic diagram of the different types of stimulation protocols
commonly used in tES, plotted as variation in current over time. Typical
stimulation protocols last approximately 5–13 min; however, for illustration
purposes, time is not to scale in this figure (although current is on the same
scale for all plots). The left column shows the current at the anode, or ‘send’
electrode (since in tACS and tRNS, the terms anode and cathode are not
appropriate), while the right column shows current at the cathode/’return’
electrode. In tDCS, the current is ramped up at the start, and down at the end
of the stimulation period, typically for 10–45 s. In tACS and o-tDCS,
sinusoidal variation of the current is used, typically in the range of human
EEG (that is, 3–30 Hz). The difference between tACS and o-tDCS is that
with tACS the current is centred on zero, so that each electrode acts as anode
half the time and cathode half the time; in o-tDCS, the current is centred on
half the maximum value, so that one electrode is always the anode (with
current varying between zero and the maximum desired intensity) and the
other electrode is always the cathode (ranging from zero to the negative of
the maximum intensity). In tRNS, current is random at each time point. Note
that the variation in current magnitude in all three stimulation protocols
shown is effectively equivalent: in tDCS, the current has a continuous
positive value for the duration of the stimulation at the anode, and a
continuous negative value at the cathode (of equal magnitude to the anode).
Similarly, in o-tDCS, the current ranges from 0 to 2 at the anode and 0 to −2
at the cathode. In the tACS and tRNS examples, the current range (between
maximum and minimum values) at each electrode is equivalent to the range
in the tDCS example (2 mA), but ranges from +1 to −1 rather than from 0 to
+2 at the tDCS anode, and 0 to −2 at the cathode



Figure 14.2 An example of a transcranial electrical stimulation (tES) system.
On the model head are two sponge electrodes, each measuring 6 x 9 cm. The
positions of these electrodes are similar to some studies that targeted the left
dorsolateral prefrontal cortex (DLPC), with the anode over the left DPC and
the cathode over the right supraorbital region. The stimulator unit is shown
on the right. It is battery-powered and has controls to adjust stimulus current
strength and duration, as well as the ability to deliver sham stimulation and a
brief ‘tickle’ stimulus that helps familiarize the person being stimulated to the
sensation of current onset and offset. Courtesy of Soterix Medical Inc.



The current delivered to the scalp is measured in milliamperes (mA), and is
typically in the range of 1–2 mA (less than 0.5 mA is generally considered
insufficient to generate neural effects, but may be used for sham stimulation).
This is within the same range as the current that would pass through your
tongue if you touched it to the terminals of a 9 V battery – enough to create a
tingling sensation, but not dangerous. By comparison, a current in the 5–10
mA range is perceived as painful, so the currents used in tES are well below
that threshold (and the instruments sold for research in this area restrict the
current flow to ensure safety). However, the sudden onset of even a 0.5 mA
current induces a tingling sensation that can feel unpleasant, especially to
people who are not used to it and/or anxious, and so it is common for tDCS
protocols to involve a short ramp-up time for the current at the start of
stimulation and ramp-down at the end.

An advance over the traditional, large pad electrodes is ‘high definition’ or
HD-tES. This uses smaller electrodes (typically EEG electrodes), with the
anode and cathode placed much closer together (2–4 cm) than with larger
sponge electrodes. One of the first, and widely used, approaches to this is
known as the ‘4 × 1 ring’ configuration (Datta, Bansal, Diaz, Patel, Reato, &
Bikson, 2009), in which the anode is surrounded by four cathodes, each 3 cm
from the central anode. The goal of HD-tES is to stimulate a much more focal
area of the brain. The issues of participant comfort that led to the use of larger



pads in the first place is addressed by using different electrode designs and
conductive materials (such as electrolyte gel, as in EEG studies), and even in
some cases topical anaesthetic; in general the 4 × 1 approach seems to be
well tolerated by participants (Richardson, Fillmore, Datta, Truong, Bikson,
& Fridriksson, 2014; Villamar, Volz, Bikson, Datta, DaSilva, & Fregni,
2013). More recent developments in HD-tES include the addition of more
electrodes, and the design of complex stimulation montages (electrode
positions) using modelling software that aim to optimize current delivery to a
targeted brain area. An example of this is shown in Figure 14.3.



Transcranial Direct Current Stimulation (tDCS)
The mostly common form of tES is tDCS, which uses a constant current
flowing from the anode, through the brain to the cathode over the entire
stimulation period, as shown in Figure 14.4. In general, the brain area under
the anode is depolarized (neurons become more sensitive to input and more
likely to fire) while under the cathode it is hyperpolarized (less sensitive to
input/less likely to fire). In most cases, the focus of the study is on delivering
anodal stimulation to a particular brain area, and so anode placement is
driven by the research question. The cathode may be placed elsewhere on the
head, but is often placed somewhere away from the brain, such as near the
eye, on the chin, or even on the clavicle (collarbone) or arm. This can help
isolate the locus of effects because if the cathode is placed over a brain area,
it may be hard to distinguish whether any observed effects are due to the
anodal excitation or cathodal inhibition effects. However, as we will see later
in this chapter, the location of the cathode can significantly affect the current
path and, consequently, the brain area(s) that are actually stimulated.

Figure 14.3 HD-tES system. This figure shows an HD-tES stimulator unit
(bottom left) that allows the design and control of complex stimulation
protocols, with the ability to control the current at each electrode
independently. The return or ground electrode automatically adjusts to
balance the current out of the head with the combination of all input
electrodes. Top left shows the anatomical targeting software that allows
researchers to design current distribution across the electrodes to optimally
focus stimulation on a desired brain area. On the right is a model head with a
complex array of electrodes. Courtesy of Soterix Medical Inc.



Figure 14.4 Diagram of tDCS, showing the anode and cathode (in this case
placed on either side of the head), and the direction of current flow. Note that
the grey arrow indicating current flow through the head is approximate – as
discussed later in the chapter, current flow is dependent on head shape,
neuroanatomy, and other factors; as well, much current is shunted along the
scalp rather than entering the head

The protocols used in tDCS studies vary widely, depending on the goals of
the experiment. The main parameters to set in tDCS are the current strength,
the duration of stimulation, and where the anode and cathode are located.
Current strength and duration of stimulation are not independent, either;
together they determine the total amount of current passed through the brain.



However, total current alone is not sufficient to predict the effects of tDCS,
and in fact the effects of time and intensity, as well as their interaction, are
non-linear. For example, studies have shown that with anodal stimulation,
cortical excitability increases as duration of stimulation increases from 5–13
min (with a fixed current intensity), but longer durations (for example, 26
min) may end up causing a reversed effect (that is, suppression). Thus
duration and intensity need to be chosen based on a solid understanding of
the relevant literature. We discuss these and related concerns (such as
electrode location) in greater detail in the section on experimental design.
Another important parameter is whether stimulation is delivered ‘online’ or
‘offline’; these terms have similar usage with tES as with rTMS. Online tES
refers to designs in which stimulation is delivered during a task of interest,
such as when performing a task that the participant is supposed to learn, or
simply performing a task on which performance (for example, RT, accuracy)
is the primary outcome variable. Offline tES involves applying stimulation
for a period of time (typically 10–20 min) prior to learning or other task
performance, then measuring the longer-term effects of the stimulation.
After-effects of tES depend on the intensity, duration, location, and type
(tDCS, tACS, etc.) of stimulation but may last for an hour or more after a
single session, or much longer with repeated sessions.

Since tES is a stimulation technique, it does not yield any measurements
directly – similarly to the case with TMS. Instead, research using tES
examines its effects on behaviour, cognition, emotion, and/or brain activity
using additional methods such as MEPs, reaction times, and neuroimaging.
As noted earlier, the first demonstrations of the efficacy of tDCS were based
on MEP recordings; however, it was recognized that in modulating neuronal
membrane potentials, tDCS could potentially modulate neuroplasticity. Since
at the neuronal level learning is largely dependent on long-term potentiation
(LTP) and depression (LTD) – and these are in turn based on increasing
(LTP) or decreasing (LTD) the likelihood of one neuron firing when one of
its inputs does – depolarizing neurons using anodal tDCS should increase the
likelihood of LTP whereas cathodal stimulation should increase the
likelihood of LTD. Nitsche and colleagues (2003) found initial, partial
support for this in that anodal tDCS over motor cortex improved RTs during
a motor learning task. Subsequent studies have also shown improvements in
learning with tDCS applied either before or during learning, during REM



sleep after learning (when memories are consolidated), and also when it is
applied across a series of learning trials on multiple days.

In addition to the motor cortex, the application of tDCS to other brain
regions, and in non-motor tasks, has been studied. Because this is a relatively
new field, there are a wide range of stimulation protocols being used, as well
as a range of brain areas and cognitive functions. As such, it is valuable to
look to meta-analyses of the literature to get a better sense of the overall
trends. One brain area that has been heavily investigated is the dorsolateral
prefrontal cortex (DLPC), the area around the middle frontal gyrus. The
DLPC plays important roles in numerous cognitive functions, including
working memory, executive control, and emotional regulation. A meta-
analysis of 61 tDCS studies of DLPC (Dedoncker, Brunoni, Baeken, &
Vanderhasselt, 2016) found that anodal stimulation led to significant
performance increases (faster RT and greater accuracy) across a range of
cognitive tasks, while cathodal tDCS had no consistent effects. Two other
meta-analyses looked specifically at memory (Hill, Fitzgerald, & Hoy, 2016;
Mancuso, Ilieva, Hamilton, & Farah, 2016); together these suggest that
offline tDCS, especially to left DLPC, may improve memory accuracy, with
the effects being more prominent in studies that combined tDCS with
cognitive training aimed at improving working memory (compared to
cognitive training plus sham tDCS). There is also evidence that repeated,
offline tDCS sessions can be beneficial as treatment for psychiatric
conditions including major depression, schizophrenia, and substance abuse
(Kekic, Boysen, Campbell, & Schmidt, 2016).



Transcranial Alternating Current Stimulation
(tACS)
Whereas tDCS uses a current of constant amplitude and polarity for the entire
duration of stimulation (aside from the ramping at the start and end of
stimulation), tACS uses sinusoidally varying amplitude and polarity. This
was illustrated in Figure 14.1. The goal of tACS is to influence intrinsic
oscillatory (frequency-domain) neural activity; recall from the EEG chapters
that there are characteristic frequency bands of neural activity (listed in Table
3.1) associated with different brain areas, types of activity, cognitive activity,
and levels of consciousness. Thus in tACS, the choice of stimulation
frequency is based on the frequency of naturally occurring neural oscillations.
For example, if one wanted to influence alpha power, one would use a
frequency in the EEG alpha band (8–14 Hz). The desired effect of applying
tACS is typically entrainment (that is, synchronization) of neural
oscillations, which is technically two effects. One is inducing oscillations in
the brain at the stimulation frequency (or boosting the amplitude of
oscillations that are already occurring). The other effect is phase locking, in
which the phase of neural oscillations synchronizes with that of the
stimulation (recall from the MRI chapter that phase locking is when the peaks
and troughs of two sine waves line up with each other; see Figure 6.7).
Because neural oscillations are detectable with EEG, it is typical in tACS
experiments to record EEG before and after stimulation to quantify the
effects on brain activity (because the stimulation is electrical, and at the same
frequency as the expected EEG activity, it is impossible to isolate the neural
EEG signal during stimulation itself). Some studies have simply measured
behavioural responses before and after, however. The effects of tACS-
induced entrainment can last for at least 30 min, following 10 min of
stimulation (Antal & Herrmann, 2016).

Neural oscillations in particular frequency bands have been associated with
numerous functions – especially in communication between different brain
areas, including cortico-cortical interactions (typically in the gamma band,
30–100 Hz) and thalamo-cortical interactions (alpha band, 8–14 Hz). As well,
changes in alpha band power are associated with attention (for example,



alpha oscillations generated in the occipital lobe increase when the eyes are
closed, or when people are tired or bored), and with movement (generated in
the motor cortex). Using tACS can inform us as to the causal role of these
oscillations in cognition: while observing changes in power in a particular
frequency band (using EEG) associated with state or task performance can be
suggestive, our inference of causality is stronger if we can also show that
directly manipulating the amplitude and phase of oscillations affects
behaviour. Indeed, this has been shown in numerous studies, with effects
such as boosting memory performance and enhancing motor learning, and
inducing or altering sensory perceptions (Feurra, Paulus, Walsh, & Kanai,
2011; Paulus, 2011; Thut, Schyns, & Gross, 2011). These effects are
frequency-specific, in that they are induced by certain frequencies (usually
those associated with the same tasks based on EEG measurements). As well,
studies have shown that the effects are maximal if the stimulation frequency
is tuned to the individual’s brain rhythms. For example, while the alpha band
is typically defined as 8–14 Hz, a given individual’s EEG will typically show
maximal alpha power at one specific frequency within that range (for
example, 10 Hz), and using this empirically measured frequency for tACS
will have stronger effects than using a different frequency within the alpha
band (Thut et al., 2011). In addition to frequencies in the sub-100 Hz range
that typically characterizes human EEG, some tACS studies have used higher
frequencies, in the range of 100–250 Hz. This is known as the ripple
frequency range, based on short bursts recorded in this range in the
hippocampus in animal studies, and associated with memory encoding. In an
initial study, Moliadze and colleagues (Moliadze, Antal, & Paulus, 2010a)
found that 10 min of stimulation at 140 Hz (but not 80 Hz, and more weakly
at 250 Hz) increased excitability of primary motor cortex (as measured by
TMS) for up to an hour after stimulation.

An important point of note about tACS is that the labels ‘anode’ and cathode’
for the two electrodes lose their meaning. This is because the alternation of
the current is between the maximum positive and maximum negative value of
the stimulating current, so each electrode switches between being the anode
and the cathode at the frequency of stimulation. As a result, the net change in
the polarization of the neuronal cell membranes as a direct consequence of
the stimulation should be zero. This also means that tACS will modulate the
brain areas under both electrodes similarly, at the frequency of stimulation



(although the phases at the two electrodes are always opposite – so a peak at
one electrode corresponds to the trough at the other; see Figure 14.1). This
means that the location of each electrode can have effects, which is an
important consideration in designing the experiment. In some cases, the
stimulation frequency may have no effects at one electrode location, if that
brain area does not operate at, and is not sensitive to, that frequency. In other
cases however, a focus on the location of one electrode over a target brain
region, without considering the possible effects of the location of the other
electrode, could complicate interpretation of the results.

The opposite phases at the two electrodes in tACS can be undesirable, for
example if researchers wish to examine what happens when oscillations are
synchronized between two brain areas. If phase-locked stimulation at two
different scalp locations is desired, an additional electrode can be used, and
stimulation would be delivered in-phase to two of the electrodes, with the
third acting as the return path for the current. In a first demonstration of this
approach, Polanía and colleagues (Polanía, Nitsche, Korman, Batsikadze, &
Paulus, 2012) studied verbal working memory. They first conducted an EEG
study demonstrating (as had prior research) that electrodes over left frontal
(DLPC) and parietal cortices show a significant increase in phase
synchronization in the theta band (4–8 Hz) while people perform a verbal
working memory task. These findings suggest that synchronized activity
between these two brain areas is important in maintaining items in working
memory. Polanía and colleagues delivered theta band (6 Hz) alternating
current through two ‘target’ electrodes (one over DLPC, one over parietal
cortex), with one return electrode to balance the current, placed over the
vertex of the head (presumed to be a neutral location for the task and
stimulation frequency). The researchers were able to control the frequency
and phase of the tACS signal at each stimulating electrode, and compared
performance on the working memory task when the theta stimulation was
phase-synchronized over frontal and parietal regions, and when it was
perfectly out of phase (so a peak at the frontal electrode corresponded to a
trough at the parietal electrode). This is illustrated in Figure 14.5. In-phase
tACS during the task increased memory performance, while out-of-phase
stimulation actually led to significantly worse memory performance than
sham stimulation. As an additional control, the researchers performed the
same manipulations using 35 Hz tACS and found that neither synchronized



or desynchronized stimulation at this frequency affected performance on the
memory task relative to sham stimulation.

In an elaboration of Polanía and colleagues’ study, Alekseichuk and
colleagues (Alekseichuk, Turi, de Lara, Antal, & Paulus, 2016) examined
cross-frequency coupling. This is a phenomenon observed in hippocampus
and cortico-cortical connectivity, in which bursts of a high frequency (gamma
band, 30–100 Hz) synchronously occur on the peaks of a lower, ‘carrier’
frequency (theta band). Cross-frequency coupling has been associated with
memory and attention, and in this study the researchers again used a working
memory task. Since the focus of this study was on cross-frequency coupling
(rather than interactions between brain regions, as in the previous study) they
stimulated at only one cortical site (left DLPC), using a 4 × 1 configuration as
described earlier. They compared simple theta-band tACS with theta tACS in
which 50 ms bursts of gamma occurred either synchronized with the peaks or
troughs of the theta stimulation waves, as well as a condition in which bursts
of gamma were delivered without concurrent theta modulation. This is
illustrated in Figure 14.6. Note that the theta peaks can be thought of as brief
periods of anodal tDCS stimulation (when neuronal membrane excitability is
particularly high), whereas the troughs are when that electrode is acting as the
cathode (decreasing membrane excitability). The results showed that memory
performance (measured with both speed and accuracy) was highest when 80–
100 Hz gamma bursts co-occurred with the peaks of theta stimulation, while
gamma bursts co-occurring with the theta troughs actually led to worse
memory performance than theta stimulation alone. These two studies
demonstrate both how tACS can be used to modulate brain activity in very
sophisticated ways, and also how TES can be used to go beyond the
correlations between brain rhythms and behaviour that can be shown with
recording techniques like EEG, and actually test for causality – that is,
whether manipulating brain rhythms manipulates behaviour.

Figure 14.5 The three-electrode tACS experiment performed by Polanía and
colleagues (2012). (A) shows the ‘desynchronized’ condition in which 6 Hz
stimulation was delivered to electrodes over F3 and P3 (according to the
International 10–10 System) perfectly out of phase; that is, when the current
strength was at its peak positive value at one site, it was at its peak negative
value at the other. Formally, this is known as a 180° phase difference.



Stimulation was delivered in this manner continuously for the entire ~15 min
that participants performed the working memory task. (B) shows the sham
condition in which no current was delivered. (C) shows the ‘synchronized’
condition, in which tACS was delivered at 6 Hz as in the desynchronized
condition, but in-phase (0° phase difference) between the frontal and parietal
stimulating electrodes. (D) shows reaction times in the memory task for the
three conditions, demonstrating slowed reaction times relative to sham in the
desynchronized condition but speeded reactions in the in-phase condition. (E)
shows the reaction time results from a control experiment using 35 Hz tACS
with the same three conditions, demonstrating that the effects of
(de)synchronization were specific to theta-band stimulation. Reprinted from
Polanía and colleagues (2012) with permission of Elsevier

Figure 14.6 Schematic description of the methods and findings from
Alekseichuk and colleagues’ (2016) study of cross-frequency coupling using
tACS. Participants performed a spatial working memory task while tACS was
applied over the left frontal cortex (top row). In different sessions,
participants received either theta stimulation, gamma-burst stimulation, or a
combination of the two (second row from top). The combination involved



either gamma bursts coinciding with the peaks of the theta stimulation
(orange), or the troughs (pink). The third row shows that working memory
performance was better in the theta-only condition than gamma-only or
gamma bursts in the theta troughs, but performance was best when gamma
bursts coincided with theta peaks. Resting-state EEG was also recorded
before and after tACS; the bottom row of the figure shows that the measure
of EEG connectivity used (phase-locking in the theta band) was increased
proportionately to the changes in working memory performance. Reprinted
from Alekseichuk and colleagues (2016), with permission of Elsevier

Oscillatory tDCS (o-tDCS)
There is also a variant of tACS known as oscillatory tDCS, or o-tDCS. This
is conceptually similar to tACS in that the current is modulated at a specific



frequency. The difference is that whereas in tACS the current alternates
between the maximum positive and negative current strengths at each
electrode, in o-tDCS the current alternates around a constant positive (at the
anode) or negative (at the cathode) baseline level of current. This is
illustrated in Figure 14.1. For example, with tACS if we use 1 mA as the
stimulation strength, the current at each electrode will vary from +1 to -1 mA.
However, using o-tDCS the baseline (average over time) current at the anode
might be +1 mA but vary between +0.5 and +1.5 mA, while the current at the
cathode would vary from -0.5 to -1.5 mA. Little direct comparison has been
done between the effects of tACS and o-tDCS and so the differences between
them – and relative merits of each – are not well understood.



Random Noise Stimulation (tRNS)
A final type of tES protocol involves stimulating the brain with current
whose strength varies randomly from one time point to the next (typically
with approximately 1000 time points delivered per second). This is done by
choosing the amplitude values at random from a normal distribution, centred
on zero and with maximum positive and negative values being half the total
maximum current to be used (in other words, if the stimulation current is set
to 1 mA, the random values will vary between -0.5 and +0.5 mA).
Stimulation typically lasts for around 10 min, meaning that the stimulation
contains well over half a million random values. An example time course of
tRNS is shown in Figure 14.1. When a tRNS time series is viewed in the
frequency domain, the normal distribution of values produces an essentially
flat frequency distribution in the range of zero to half of the stimulation rate.
So for example, tES devices often deliver 1280 pulses per second; because of
the Nyquist theorem the maximum possible alternating current that can be
produced is 640 Hz (half of 1280). Therefore, when delivering tRNS the
frequencies between 0.1–640 Hz will be equally present, which is effectively
white noise. However, in some cases researchers have used ‘coloured noise’,
meaning that the tRNS frequency spectrum is limited to a narrower range,
such as 0.1–100 or 100–640 Hz.

The first report of tRNS was by Terney and colleagues (Terney, Chaieb,
Moliadze, Antal, & Paulus, 2008). As is typical of pioneering tES work, they
started by using tRNS in conjunction with TMS delivered to primary motor
cortex, and measured TMS-evoked MEPs. MEP amplitude increased by 20–
50% after 10 min of tRNS (0–640 Hz, −0.5–0.5 mA), indicating that tRNS
has significantly increased motor cortex excitability. These effects lasted for
more than 60 min after tRNS ended, but had returned to baseline by 90 min.
Terney and colleagues also investigated the effects of tRNS on implicit
learning in a serial reaction time study. Here they found that tRNS over
motor cortex during the learning blocks led to significantly better learning
(faster reaction times) than sham stimulation. Interestingly, when Terney and
colleagues compared low-frequency tRNS (lf-tRNS; 0.1–100 Hz) and high-
frequency tRNS (hf-tRNS; 101–640 Hz), they found that only high-frequency
tRNS was effective in increasing MEP amplitude; MEPs after low-frequency



tRNS were no different than in a sham stimulation condition. Since most
relevant human EEG frequencies are below 100 Hz, this suggests that tRNS
operates on the brain in a different way than tACS. In other words, tRNS
does not work simply as ‘broad-band tACS’ because the signal happens to
contain modulation at particular frequencies that are effective in tACS (for
example, theta, alpha, or gamma bands). Instead, the higher frequencies have
been hypothesized to act via different mechanisms. We will discuss this in
more detail in the next section.

Other studies have extended Terney and colleagues’ findings to other
domains, and compared tRNS with other forms of tES. In one study,
Fertorani and colleagues (Fertonani, Pirulli, & Miniussi, 2011) compared hf-
tRNS, lf-tRNS, anodal tDCS, cathodal tDCS, and sham stimulation over the
primary visual cortex (Oz in the International 10–10 System) while people
performed a challenging learning task in which they had to discriminate
between the orientation of two lines that differed only minimally from each
other. Both tRNS conditions were associated with significantly better
learning than either tDCS condition, with hf-tRNS yielding the best learning
performance. Another study demonstrated longer-term effects of tRNS:
Snowball and colleagues (2013) applied hf-tRNS bilaterally over DLPC for
20 min periods on five consecutive days, while people performed two
arithmetic learning tasks (rote memorization of facts, and calculations). Not
only were the people who received hf-tRNS faster and more accurate after
five days of practice, but when asked to come back to the lab six months
later, they still showed significantly faster RTs, demonstrating that the tRNS-
facilitated learning was maintained over a long period of time.

Although tRNS is a very promising technique, the number of published
studies using it is still much lower than either tDCS or tACS – in spite of the
fact that the first published studies using tRNS and tACS appeared in the
same year. It seems likely that, if the effects of tRNS are found to be reliable
through replication and additional studies, it will gain greater prevalence in
the field – and possibly surpass tDCS. Firstly, tRNS seems to induce stronger
effects than tDCS, which is clearly advantageous. As well, most participants
do not report any tactile sensation during tRNS, whereas tDCS induces a
distinct tingling sensation. Beyond the fact that some people find the tDCS
sensation unpleasant, it makes blinding participants to whether they are in the



stimulation or sham conditions difficult, which may in turn lead to biased
results due to demand characteristics or placebo effects. While sham
stimulation typically involves briefly ramping up the current and then
bringing it back to zero (over the course of 30 s – not long enough to induce
effects on brain activity but enough to induce tingling), experienced
participants in particular may still be able to tell the difference between tDCS
and sham simply by feel (Richardson et al., 2014). Thus tRNS may provide
both stronger effects, and better experimental control.



What are the Effects on the Brain?
As already noted, tES does not directly induce action potentials. Rather, its
mechanism of action is thought to be modulation of neural membrane
potentials. At rest, neurons are polarized; that is, the electrical potential inside
the neuron is negative relative to the surrounding extracellular fluid. Since
tES was first used, it has been speculated that anodal tDCS depolarizes
neurons (that is, makes the electrical potential inside the cell closer to zero) –
increasing their likelihood to fire – while cathodal stimulation hyperpolarizes
them. As such, tDCS can make neurons more or less sensitive to input from
other brain areas (or from other external stimulation, such as TMS). This
suggests a fairly obvious mechanism by which tDCS can affect learning: at
the cellular level, learning can be defined as a change in the strength of
synaptic connections, and is supported by two primary mechanisms. Long-
term potentiation (LTP) is a process whereby a neuron becomes more likely
to fire in response to input from another neuron; long-term depression
(LTD) is the reverse, with the neuron becoming less likely to fire in response
to a specific input. By depolarizing neurons in a brain area – thus making
them more likely to fire in response to input – anodal tDCS can induce LTP.
Conversely, cathodal tDCS can induce LTD since it decreases the likelihood
that the stimulated neurons will fire in response to input. This model is
known as the anodal excitation–cathodal inhibition (AECI) model. Since
LTP is a critical mechanism for learning, the widespread findings that tDCS
enhances learning are easily interpreted in the context of the AECI model.
However, while this description provides a straightforward explanatory
mechanism, the effects are actually somewhat more nuanced. For example, as
we have already noted, anodal stimulation can result in
hyperpolarization/inhibition if it is sustained for too long. As well, while the
AECI model explains the effects of tDCS, it is not appropriate for tACS or
tRNS – since in both cases ‘anode’ and ‘cathode’ lose their meaning, and the
net offset voltage over the course of stimulation is zero (as opposed to net
depolarization or hyperpolarization for tDCS). We therefore need to dig a bit
deeper to better understand how tES works more broadly.



Pharmacology
The pharmacology of tDCS has been studied in humans by administering a
variety of receptor agonists and antagonists, as well as through inference
from the results of paired-pulse TMS protocols known to rely on specific
neurotransmitters (for example, ICF and SICI; see the chapter on TMS).
However, this knowledge is at present quite limited due to the small number
of studies, the narrow range of drugs used, and the fact that any drug may
have effects either directly on the neurons receiving tES, or more
systemically via network effects (such as modulation of neural activity either
upstream or downstream from the stimulated area). The concentrations of
positively charged calcium and sodium ions across neuronal membranes are
critical to maintaining (and changing) electrical potentials, and so several
studies have investigated the effects of drugs that block these ion channels
(Stagg & Nitsche, 2011). Blocking calcium channels causes a reduction in the
effects of anodal tDCS during stimulation, and blocking sodium channels
eliminates the effects altogether. This suggests that the depolarizing effects of
anodal stimulation are caused by increased positively charged ions entering
neurons. Both calcium and sodium channel blockers also eliminated the after-
effects of anodal tDCS, indicating that ion flux is critical to both the online
and offline effects of tDCS. Calcium ions seem particularly important, and
one predominant calcium ion channel is controlled by NMDA receptors,
which are activated by the excitatory neurotransmitter glutamate.
Interestingly, blocking NMDA receptors does not affect the online effects of
anodal tDCS, but does reduce the (offline) after-effects. Relatedly, an NMDA
agonist increases the duration of anodal tDCS after-effects. This suggests that
the offline effects of tDCS are dependent on changes in glutamate activity
induced by the stimulation, but that glutamate is not directly relevant in
modulating effects during stimulation. Activity of the inhibitory
neurotransmitter GABA is also modulated by anodal tDCS. As with
glutamate, GABA-modulating drugs do not influence the effects of online
tES, but rather the after-effects. Specifically, GABA agonists (which
stimulate GABA receptors) decrease the offline effects of anodal tDCS for
approximately the first 10 min after stimulation; however, subsequently
neural excitability is actually higher with a GABA agonist. Neuromodulators,
including acetylcholine, dopamine, and serotonin, have also been shown to



modulate the effects of tDCS, although these have been less extensively
studied.

Effects at the cathode during tDCS seem to be modulated by slightly different
mechanisms. Specifically, calcium and sodium channel blockers do not
modulate the effects at the cathode during stimulation, even though they do at
the anode. This may be because, when membranes are hyperpolarized, these
ion channels become deactivated – so blocking them pharmacologically has
no additional effect. The offline effects of cathodal tDCS are abolished by an
NMDA antagonist, but are not affected by GABA-modulating drugs.
However, other evidence (using SICI with paired-pulse TMS, which is
GABA-dependent) suggests that GABA levels are decreased under the
cathode after tDCS. Offline effects of cathodal tDCS appear to again relate to
activity of NMDA, GABA, glutamate, dopamine, serotonin, and
acetylcholine receptors.

The effects of tDCS on neurotransmission are also affected by the strength
and duration of stimulation, as noted earlier. This has been attributed to
differences in calcium flux. Specifically, low influx of calcium into neurons
is known to cause LTD, while moderate influx has no effects, and larger
influx causes LTP. However, very dramatic calcium influx will actually
reduce LTP, because at some point the high intracellular levels of calcium
trigger homeostatic mechanisms to balance the ion levels and membrane
potential. This complex relationship between calcium levels and synaptic
modulation has been used to explain the effects noted earlier whereby the
normally enhancing effects of anodal tDCS on motor learning are reversed
when stimulation is extended from 13 to 26 minutes – it is speculated that the
longer duration leads to high calcium levels that trigger homeostatic
regulation. Such homeostatic regulation – that is, the body’s ability to keep
the operation of physiological processes within an acceptable range for
normal function – is an important consideration in tES. Generally speaking,
tDCS works by pushing neuronal membrane potentials away from the levels
that they are normally regulated at. The body’s natural response will tend to
be to attempt to compensate for any tDCS-induced changes – for example,
through changes in neurotransmitter levels, receptor and/or ion channel
activation – and so the longer stimulation is sustained for, the more these
compensatory mechanisms can be expected to complicate the predicted



effects of tES.

The pharmacological mechanisms of tACS and tRNS have been far less
studied than tDCS. In general, tACS is thought to operate primarily through
entrainment of intrinsic neural oscillations (that is, enhancing naturally
occurring processes that control these oscillations). Also, since the current is
constantly fluctuating between positive (anodal) and negative (cathodal)
values, it is not expected that there will be any net effect of tACS on ion
levels. The case of tRNS is interesting because, although it has similar
(though apparently stronger) effects on learning than tDCS, its after-effects
are not affected by NMDA-modulating drugs the way offline tDCS effects
are. However, the after-effects of tRNS are reduced by both a sodium channel
blocker and a GABA agonist. This suggests that while both tDCS and tRNS
reduce inhibitory GABA levels (which in turn facilitate learning), tRNS is not
dependent on NMDA receptors but is dependent on modulation of sodium
channel activity. These differing pharmacological effects may help explain
why tRNS has more powerful effects on learning than tRNS. It has also been
suggested that tRNS disrupts the normal homeostatic regulation systems
mentioned above, which tend to counteract the effects of tDCS (Fertonani et
al., 2011). The constant changes in membrane potential induced by tRNS, in
contrast to the sustained de- or hyper-polarization caused by tDCS, may
‘confuse’ homeostatic mechanisms, which may in part explain the stronger
effects of tRNS.



Activity Dependence
Earlier the AECI (anodal excitation–cathodal inhibition) model was
introduced as a basic explanation of how tDCS works. This model provides a
straightforward framework for understanding many of the basic findings in
the tES (especially tDCS) literature. However, it is very likely overly
simplistic, especially when we consider stimulation of areas other than
primary motor cortex, and modes of stimulation other than tDCS. Two
important refinements to the AECI model consider activity levels within the
stimulated region, and within the larger network of connected brain areas
(Fertonani & Miniussi, 2017). The activity-dependent model builds on the
AECI by integrating the observation that the effects of tES are dependent on
the state, or activity level, of the brain area immediately prior to stimulation.
If neurons within a brain area are already generally depolarized – for example
due to high levels of input from another brain area – then anodal tDCS is
likely to have stronger effects than if the brain area is generally more
hyperpolarized. Consider as an example the motor or premotor cortex: if
someone is already planning a motor movement, tDCS may have stronger
effects than if a movement was not planned, because planning a movement
increases activity within these brain areas. Conversely, if a brain area is
particularly hyperpolarized (for example, due to high levels of inhibition)
then anodal tDCS is likely to have weaker effects. Activity-dependent effects
have been demonstrated in many studies. For example, Tseng and colleagues
(2012) found that anodal tDCS to the right parietal cortex improved visual
working memory performance, but only in people whose working memory
span was low to begin with – people with high spans did not show any effects
of stimulation. Similarly, Bortoletto and colleagues (Bortoletto, Pellicciari,
Rodella, & Minussi, 2015) found that during a motor task that normally
shows practice effects (involving fast movements), anodal tDCS actually
impaired learning, whereas the same stimulation during a task that normally
does not show practice effects (involving slow movements) led to
improvements in performance. The authors interpreted this as indicating that
there is an optimal level of excitability in motor cortex to facilitate learning –
one which is normally achieved during the ‘fast’ task but not the ‘slow’ one.
By using tDCS, the combined excitation level in the ‘fast’ condition
exceeded this optimum, whereas tDCS combined with the ‘slow’ task



achieved this optimum level.

Thinking a bit more deeply about the activity-dependent model, we know that
any brain area comprises a large number of different types of neurons, and
often different populations of neurons. For example, within primary motor
cortex different cells are tuned to movements in different directions. Thus if a
movement is planned in a particular direction, the activity-dependent model
would predict that tDCS would affect the neurons tuned to that movement
direction differently from neurons tuned to other directions, because the
neurons tuned to the relevant direction would have higher activation levels
than those tuned to directions of movements that were not being executed.
This principle was demonstrated by Antal and colleagues (Antal, Nitsche,
Kruse, Kincses, Hoffman, & Paulus, 2004) in area V5 of the visual cortex
(within which neurons are tuned to specific directions of motion), across two
tasks. In one task, participants saw an array of moving dots on a screen, and
had to identify the direction that the majority of dots were moving in. The
researchers first determined the minimum number of dots that had to be
moving in the same direction for each individual to accurately perform this
detection (their psychophysical threshold), then applied anodal or cathodal
tDCS. Cathodal tDCS actually improved performance on the task (reduced
the threshold for detection), which Antal and colleagues attributed to reduced
competition between the neurons tuned to the primary direction of motion,
and neurons tuned to other directions. That is, cathodal tDCS reduced the
likelihood of V5 neurons firing, but since more dots were moving in the
target direction than any other direction, the neurons tuned to the target
direction retained a level of activity that facilitated behavioural detection. In
contrast, the activity of neurons stimulated by the ‘noise’ dots (moving in
random directions) was suppressed. In other words, cathodal tDCS improved
the signal-to-noise ratio in V5, facilitating detection. In another task,
however, anodal tDCS improved performance while cathodal tDCS reduced
it. The difference was that, in this second task, all of the dots were moving in
the same direction (participants just had to say if they were moving upward
or downward). Since there was no competing noise from other movement
directions, cathodal stimulation merely reduced activity levels overall (rather
than reducing noise levels), whereas anodal tDCS increased the likelihood
that neurons tuned to the direction of motion would fire, creating a stronger
neural signal on which to base the decision.



The network activity-dependent model extends this line of thinking even
further. First of all, it recognizes that tES to a particular brain region is likely
to affect not only that area, but other (remote) areas that are connected to the
stimulated area. ‘Downstream’ regions (those receiving input from the
stimulated area) will obviously see changes in input if the stimulated area’s
activity changes; ‘upstream’ areas (providing input to the stimulated area)
may also be modulated by the increased sensitivity of the stimulated area to
input, if there is any sort of feedback from the stimulated area to the input
area. Moreover, it is well known that some brain areas participate in multiple
neural networks, in task-dependent ways, especially in higher-order
‘association’ cortices. Thus the same brain area may be active in a number
of distinct tasks, but between tasks the other areas that are co-activated with
this one area will differ. The network activity-dependent model would predict
that the effects of stimulation to such a ‘multi-purpose’ brain area would
depend on the task being performed before/during stimulation, such that if
other tasks were tested after stimulation, only the task performed
before/during stimulation would be affected. An extension of this line of
thinking is that if tES is performed when people are at rest (rather than
performing a task, that is, ‘offline’ tES), then the network(s) most affected by
this stimulation will be those functionally connected with the stimulated area
during rest (such as observed in resting-state functional connectivity studies).



Stochastic Resonance
Building on the network activity-dependent model, one principle that has
been proposed to explain the effects of tES is stochastic resonance. This
concept comes from physics, and applies to many complex, non-linear
systems such as lasers, chemical reactions, semiconductors, and biology
(Gammaitoni, Hänggi, Jung, & Marchesoni, 1998). We are already familiar
with the concept of resonance, in which an input signal whose frequency
matches the resonant frequency (or frequency of ongoing activation) of a
system allows transfer of energy to the system or, thought of another way,
amplification of the system’s activity. Indeed, this is the mechanism thought
to underlie the effects of tACS. Stochastic resonance can be thought of as a
non-specific form of resonance, in which noise is input to the system (in this
case, the brain) rather than any one specific frequency. If the system itself is
noisy – for example, a brain region whose neurons have different baseline
levels of activity, and different sensitivities to the task or stimuli at hand – the
input noise can nudge the overall activity levels of the system upward.
Assuming that some neurons are closer to their firing threshold to begin with
(because they are sensitive to the task/stimuli), then the right amount of input
noise should boost the activity of the ‘target’ (task-relevant) neurons above
threshold, while the activity of irrelevant neurons will also increase, but stay
below threshold. This was seen in the results of the first experiment by Antal
and colleagues (2004).

The notion of stochastic resonance is in line with other evidence about how
neurobiological and neurocognitive systems function. Specifically, many
phenomena – including the probability of a neuron firing given an input, and
psychophysical thresholds for detecting stimuli – are governed by non-linear
sigmoidal (s-shaped) functions, as shown in Figure 14.7. The hallmark of a
sigmoidal function is that at the low end of input intensity, there is little
response, but in the ‘optimal range’ for the function, small changes in input
strength produce disproportionately larger changes in the response. Then at
some point, the response saturates and increased input strength produces little
change in response. For example, if we consider a simple psychophysical task
in which a person needs to detect a flash of light, we would start with no
flash, and gradually increase the intensity of the flash. At first, the stimulus



will be so dim that the person can never detect it, and so slight increases in
brightness would not result in an increased probability of detection. However,
at some point the stimulus becomes barely bright enough to detect, so the
probability of detecting it starts to increase (that is, on some trials the person
would detect it, on others they would miss). The detection probability will
continue to increase as the stimulus gets brighter, but at some point the
stimulus will be so bright that it is reliably detectable on every trial – this is
the top, flat portion of the sigmoid. Returning to tES, the idea of stochastic
resonance is that increasing the overall activity level of the system (that is,
using tES to make neurons more likely to fire) can ‘shift’ the sigmoid
function leftward, such that less external input is needed for the brain system
to reach its threshold level of firing in the case of weak signals – but stronger
signals may be less affected, if they were already eliciting responses close to
the upper ‘saturation’ region of the sigmoid.

The left column shows a condition in which approximately equal proportions
of dots are moving in each of eight directions. Neural firing rates are
generally sufficient for each direction of motion to influence the behavioural
response, which results in an inability to identify a coherent direction of
motion. Because neurons tuned to all motion directions are already excited
above threshold, tES has a non-specific effect of increasing neural
responsiveness, but does not affect detection.

In the middle column, a small majority of dots are moving in one direction
(partial coherence), but there is still sufficient competition from ‘noise’ dots
moving in other directions that the participant is unable to detect the coherent
motion (that is, activation of the neurons tuned to the majority direction is
below threshold). In this case, tES increases the responsiveness of all
subpopulations of neurons, but raises activity above threshold only for those
tuned to the direction of coherent motion.

In the right column, a larger proportion of dots are moving in the target
direction, and as a result neurons tuned to this direction fire strongly and the
participant is able to detect the coherent direction without tES. Here, a
stronger dose of tES is applied (for example, 2 mA rather than 1 mA).
Because the neurons tuned to the primary direction of motion are already
close to their maximal firing rates (that is, near the plateau of the sigmoid



function), tES has relatively little effect on this subpopulation. However, the
stronger dose of tES increases the responsiveness neurons tuned to other
directions sufficiently that after tES, their firing rates increase above the
detection threshold. As a result, in this case tES actually makes the detection
task more difficult, because it increases the ‘noise’ from neurons tuned to
other directions. These results demonstrate the complex relationship between
tES intensity, pre-stimulus activity, and the response properties of neurons.

Figure 14.7 An illustration of the concept of stochastic resonance in tES,
using a visual psychophysics paradigm in which participants must detect the
direction of coherently moving dots. Of interest is the activity in visual
motion-sensitive area V5 of the cortex, which has subpopulations of neurons
tuned to different directions of motion. In each column, the top panel
illustrates the proportion of dots moving in different directions; the coloured
arrows represent directions of motion and typically many more dots would be
presented than shown here. The middle panels (bar plots) show neural firing
rates induced by the stimulus, for the subpopulations of neurons tuned to each
direction (indicated by arrows under each plot). The lighter shaded area of
each bar indicates the increase in firing rate after tES is applied, and the
dashed line represents the minimum activity threshold for each subpopulation
of neurons to influence the person’s judgement of motion direction. The
bottom panels show the sigmoid response functions of two of these neural
populations: those tuned to upward motion (green) and those tuned to
downward motion (pink). The sigmoid plots demonstrate the nonlinear
response typical of neurons, described in the text. The solid sigmoids
represent the response properties of the neurons prior to tES, and the dashed
sigmoid shows how tES shifts the response curve leftward. The effect of tES
is to make neurons more prone to fire given a weaker input. Adapted from
Minuissi, Harris, & Ruzzoli, 2013





Conduction through the Brain
In this section we consider two factors. The first is how, and how much,
electricity actually reaches the brain during tES. The second, related question
is where the current flows, and how precise we can be about which brain
areas are stimulated. As discussed throughout this book, every person’s brain
is different in many ways, including its size, shape, and cortical folding
patterns. This is a limitation in interpreting scalp-based recordings like EEG
and MEG, and why it is so valuable to have anatomical MRI scans from
individual participants when performing source localization, averaging across
people in an fMRI study, or using neuro-navigation with TMS. The case with
tES is no different. In most published tES studies to date, electrode placement
has been based on very generalized assumptions about the location of brain
areas under the skull, often based on the International 10–10 System. For
example, studies targeting primary motor cortex might centre an electrode
over C3 or C4, because these are the 10–10 System positions that generally
lie over the central sulcus, where the primary motor cortex is located.
Likewise, studies targeting the DLPC typically place electrodes over F3 or
F4. Individual differences in the underlying neuroanatomy can, to some
degree, be considered negligible because the size of the pads in traditional
tES (typically in the order of 35 cm2) are so large that they are rather non-
specific in the brain areas they target. On the other hand, modelling studies
have shown that current distribution over large electrode pads in tES is not
uniform; instead, current is actually concentrated at the edges of the pads.
Questions of precision also become more important as HD-tES becomes
more common. Another consideration is that the folding of the cortex means
that different neurons and cortical areas will experience different polarities of
stimulation from the same electrode, simply based on where the electrode is
placed and how that part of the cortex is oriented relative to the scalp. Given
the different folding patterns among individuals, and the fact that the same
functional or mesostructural (cytoarchitectonic, myeloarchitectonic, etc.) area
may be on the gyrus of one individual, but the bank or depth of a sulcus in
another, it seems reasonable to expect that a stimulating electrode placed at a
given 10–10 System location might well affect different individuals
differently. Indeed, this may be one of the important reasons why several



meta-analyses of the tES literature have to this point produced results ranging
from weak to discouraging (Antal, Keeser, Priori, Padberg, & Nitsche, 2015;
Hill et al., 2016; Horvath, Forte, & Carter, 2015; Kekic et al., 2016;
Summers, Kang, & Cauraugh, 2015).

To address these concerns, a number of studies have been conducted to, on
the one hand, empirically measure the intra-cerebral currents induced by tES
and, on the other hand, to create individualized computational models of
current flow using approaches closely related to those used in M/EEG source
localization. One important question is how much current delivered by tES
actually reaches the brain. Given that the skull is a poor conductor of
electricity, and much poorer than the scalp, it is expected that a significant
amount of the tES current is shunted along the scalp surface, rather than
reaching the brain. Of the current that does pass through the skull, a
significant additional amount is shunted by the highly conducting CSF. These
factors affect both the amount of current reaching the brain, and also their
focality, because the high conductivity of the scalp and CSF, combined with
the low conductivity of the skull, will tend to smear the current out over a
larger space than the surface of the electrode – just as was described for EEG,
but in reverse.

To determine how much current actually reaches the brain, Opitz and
colleagues (2016) measured intracranial electrical potentials in two people
with epilepsy, who had strips of electrodes surgically implanted on the
surface of their brain. This is a common procedure in neurology to help
localize the source of seizures, and the electrodes are typically left in the head
for many days to allow for continuous monitoring. This provides interesting
opportunities for research, although the placement of electrodes is driven
solely by clinical considerations and so is not always optimal for a particular
research question, and provides limited coverage of the cortex in any given
individual. Opitz and colleagues applied tACS at a low frequency (1 Hz) and
a range of current strengths up to 1 mA (a value commonly used in tES
studies), with one electrode over the forehead and one at the base of the skull
or, in other conditions, with the electrodes over the left and right temples.
These electrode configurations allowed for measurements across the brain,
with the maximum possible separation of stimulating electrodes on the head.
They found that intracranial electrical potentials were largest directly under



the two stimulating electrodes, and tapered off with distance from the
electrodes. This was unsurprising, since all current flows in through the
anode and out through the cathode (so must be concentrated at those
locations) whereas, in between, the current can be broadly distributed
throughout the scalp and brain. In a study published around the same time,
Huang and colleagues (2017) used a similar procedure in ten people with
epilepsy. Both studies observed that intracortical potentials varied across
individuals, and that the measured intracortical potentials were on the low
end of what has been found to be effective in inducing physiological effects
(such as entrainment of cortical rhythms) in vitro, in animal studies. Thus
while numerous studies have reported significant effects using 1 mA currents,
it is possible that some of the variability in results across the literature are due
to the use of currents that are barely strong enough to induce measurable
effects. When this consideration is combined with individual variability in
brain shape and conduction properties, it may be that some studies show
weak, or null, effects due to low current combined with bad luck in selection
of participants.

Other studies have used advanced computational modelling, called finite
element modelling (FEM), to estimate current strengths and distributions in
individual brains, as well as the effects of different electrode sizes and
positions. Recall that in the MEG chapter, when discussing source
localization we introduced boundary element models (BEMs), which model
each relevant tissue type as a tessellated layer with a specific electrical
conductivity (or magnetic permeability) value. FEMs are essentially a three-
dimensional extension of BEMs: rather than treating each tissue type as a 2D
layer, each is modelled as a 3D structure. In other words, FEMs consider the
conductivity of each tissue layer as a function of its thickness, rather than
assuming a uniform conductivity value for a given tissue type (FEMs are also
used in fNIRI source localization, as mentioned in Chapter 12, because light
transmission is affected by skull thickness). This makes them more precise,
because for example the skull varies in thickness between individuals and
even across the head within individuals, and conductivity is proportional to
thickness. The primary disadvantage of FEMs is that they are significantly
more computationally intensive both to produce (since there is an added
dimension), and especially to use in modelling electrical fields in the head,
since rather than a single conductivity value across the surface of a particular



tissue, the conductivity now varies at each point on the surface. In general
such FEMs rely on specialized supercomputing facilities.

Using FEM, Datta and colleagues (2009) modelled the distribution of
electrical potentials in a single human subject, based on a high-resolution
structural MRI scan. They compared current strength and distribution in a
simulated tDCS study, between 7 × 5 cm electrode pads, and a 4 × 1 ring
configuration (HD-tES), with the anode in both cases positioned over motor
cortex (C3) and the cathode for the pad configuration over the contralateral
forehead (as is common in motor cortex tES studies). The current strength
was adjusted for the electrode type, using 1 mA for the pads and 2 mA for the
4 × 1 array, as required by the smaller electrode sizes. For both electrode
configurations, the peak intracortical potentials from the model were
comparable to those obtained empirically in the intracortical recording
studies mentioned above. Critically, however, the distribution of current in
the models differed quite drastically between the two electrode
configurations, as shown in Figure 14.8. For the large pad electrodes, the
current was maximal not under either electrode, but in the frontal lobe
contralateral to the anode, closer to the cathode. Indeed, current was generally
stronger over the frontal lobes than over the motor cortex, in spite of the fact
that tES studies using this electrode configuration typically assume that they
are stimulating the motor cortex. Moreover, the distribution of current was
not uniform across the cortex between the electrodes, but varied with the
folding pattern of the cortex and the thickness of the skull; the authors noted
that fields were largest on the tops of certain gyri and that the distribution of
CSF likely played a role in this – with the greater volume of CSF in the sulci
surrounding the gyri acting as current sinks that funnelled the current to the
tops of the gyri, where CSF is thinner. By comparison, the 4 × 1 ring
configuration produced much more focal electrical potentials in primary
motor cortex directly under the anode, although they still varied with the
folding pattern of the cortex. These results suggest significant caution is
necessary in basing inferences about what brain areas are stimulated, simply
on electrode position with traditional tES. They also emphasize the
advantages of HD-tES, while underscoring the fact that even with this more
focal stimulation method, individual differences in cortical folding patterns
relative to electrode position will influence the results. The authors also
observed that studies in children and older adults should consider the



significant anatomical differences in these groups from younger adults:
young children have thinner skulls, and infants have fontanelles where the
skull has yet to fuse and which thus provide low-resistance paths for current
to travel. In contrast, the cortex atrophies with age, meaning that older adults
will in general have greater volume of CSF – and some clinical populations
such as people with dementia may respond differently from healthy adults
due to greater cortical atrophy.

Figure 14.8 Models of current flow through an individual human brain,
based on a finite element model (FEM) derived from the individual’s
structural MRI scan, for conventional large, rectangular sponge electrodes
(A) and a 4 × 1 HD-tES ring configuration (B). In both A and B, (1) shows
the anode (red) and cathode (blue) positions; (2), (3), and (5) show estimated
electric field magnitude on the surface of the brain from three different views;
(4) shows a zoomed-in view of the area bordered by dashed lines in (2). (6)
shows electric fields in two slices in the coronal plane, corresponding to the
T1-weighted MR images directly above them. These results demonstrate that
conventional tES electrodes create very broadly distributed, and uneven,
voltage distributions in the brain, whereas HD-tES induces much more focal
effects which nonetheless vary with sulcal/gyral anatomy. Reprinted from
Datta et al. (2009) with permission of Elsevier



Other work has considered the relative positions of the anode and cathode in
‘traditional’ tES studies using large sponge pad electrodes (Bikson, Datta,
Rahman, & Scaturro, 2010; Moliadze, Antal, & Paulus, 2010b). These have
shown that the location of the cathode plays a significant role in determining
current path, and thus where stimulation is focused. While this should not



seem entirely surprising, given that current flows between the two electrodes,
it is an important consideration because, although many tDCS studies of
motor cortex have used the ‘standard’ cathode placement on the contralateral
forehead, many other studies (especially outside the motor system) have
placed the cathode elsewhere on the body (such as the arm or clavicle) to
ensure that any observed effects are due to the placement of the anode, and
not the cathode. However, these studies have generally assumed that cathode
placement did not affect the intensity or distribution of current at the anode
location. Modelling and empirical data indicate that when placing the cathode
on these ‘extracephalic’ (non-head) locations, first of all the intensity of the
current must be increased to result in the same level of intracerebral potential
(because the farther the current has to travel, the weaker it becomes), and
secondly modelling should be performed to understand how the current will
be distributed in the brain.

Together these studies both confirm that tES does indeed result in increased
electrical potentials in the cerebral cortex, and suggest that in the future the
field needs to become much more sophisticated in its approach to choosing
stimulation parameters, including current strength, electrode configuration,
and electrode positioning. The practice of using a single current strength for
all participants, and consistent electrode placement based on 10–10 System
locations or other assumptions about the underlying anatomy, appear to
create the appearance of standardization of procedures that actually results in
widely varying intensity and distribution of currents inside the head across
individuals. Indeed, Bestmann and Ward (2017) likened current practice in
the field to ‘posting a letter without a stamp or address, and hoping it will
arrive at its destination’ (p. 865). Ideally, FEM would be used to optimally
target the desired brain region, and to equate actual intracerebral current
delivered to that area on a per-individual basis. However, significant
technical development remains to be done in this area due to the complexity
and computational demands of FEM.



Considerations in Experimental Design
We have already touched on several considerations in tES experiment design
in this chapter, including the different stimulation protocols available (that is,
tDCS, tACS, tRNS), and parameters such as current strength, duration,
electrode size, and electrode placement. These, along with the other factors
we consider in this section – participant selection and the role of individual
differences; and experimental control – are essential to understand for anyone
wishing to work in this field, or even interpret data from tES studies.
Although tES has been used as a research technique for almost two decades
now, there is still a high degree of heterogeneity in the parameters used, and
the quality of the studies. As noted earlier, meta-analyses have often reported
no or weak effects of tES, even though many individual studies produce
compelling results. One issue in the field is that tES equipment is relatively
inexpensive to purchase, compared to TMS or virtually any of the
neuroimaging techniques covered in this book. The relatively simple
technology and low cost involved may mean that it is easier to obtain and
start using such a device, than it is to gain the background knowledge to use
it correctly. As well, it has naturally taken time for enough experimentation to
be conducted, and reported in the peer-reviewed literature, for real consensus
to develop around what appropriate parameters might be – and this is still an
evolving area of research. Only recently have evidence-based guidelines for
tES been published (Bikson et al., 2016; Lefaucheur et al., 2016; Woods et
al., 2016); with this information available it seems likely that increasing
numbers of high-quality studies will be published, with further systematic
exploration of the effects of different parameters and detailed reporting of the
relevant parameters. In addition, greater understanding of the important
effects of electrode size and placement should also help to reduce the
variance within and between studies.



Participant Selection
One important finding in the literature is that there is significant variability
between individuals in their response to tES. For example, López-Alonso and
colleagues (López-Alonso, Cheeran, Río-Rodríguez, & Fernández-del-Olmo,
2014) investigated the effect of 13 min of 1 mA nodal stimulation to the
motor cortex of 56 young adults (aged 19–24 years). They found that only
45% of participants showed the predicted increase in MEP amplitude,
whereas the other 55% of participants showed decreased MEP amplitude.
When the data from all participants were pooled, no significant effect of
stimulation was obtained, but when separated into a ‘responder’ and ‘non-
responder’ groups, the responders showed statistically significant increases in
MEPs at every 5 min interval for the hour after stimulation, while the non-
responders showed significant decreases at some, but not all, time points.
Several variables, such as age, were examined but none predicted who would
be a tES responder. In a similar study, again using motor cortex tDCS with
MEPs as the outcome measure but also comparing three levels of stimulation
intensity (0, 1, and 2 mA) found that, out of 12 young adults, 52% showed a
significant response to 2 mA stimulation but only 33% showed a response at
1 mA (Ammann, Lindquist, & Celnik, 2017).

There are many reasons why individuals may vary in their response to tES.
Firstly, individual differences in anatomy, including skull thickness and
cortical folding patterns, likely influence how much current reaches the
intended area of the brain. As noted earlier, using individualized FEMs based
on high-resolution anatomical MRI scans may help to improve consistency
by suggesting optimal positioning of electrodes to target a region in an
individual. Related to this, such modelling can also be used to adjust the
current delivered to ensure consistent electrical potential at the targeted brain
region, rather than a consistent input current level, which will lead to widely
varying intra-cerebral potentials. Secondly, since the effects of tES seem to
depend on GABA and glutamate levels – or more generally on the
excitation–inhibition balance in a given brain region – individual differences
in neurotransmitter levels will likely influence tES effects. While it is
standard practice in tES studies (as in all cognitive neuroscience) to exclude
people with known neurological or psychiatric conditions, as well as those



taking psychoactive or neuromodulatory medications, excitation–inhibition
balance may still vary widely between, and even within, individuals. For
example, recent use of recreational drugs such as nicotine, alcohol, and
cannabis may influence excitation–inhibition balance. Another intra-
individual variable is fatigue: excitability, at least in the motor cortex,
increases with time awake and especially with sleep deprivation. For this
reason it is good practice to conduct tES studies at a consistent time of day
and certainly, if repeated sessions are performed, to conduct all sessions for
an individual at the same time of day. Assessing individuals’ recent sleep
history may also be worthwhile. Cortical excitability can also vary with age,
as can the specific neural networks engaged by a particular task. For this
reason, tES studies should be conducted on relatively narrow age ranges,
and/or age should be considered as a variable in the analysis.

There is also evidence that, in women, GABA levels vary over the menstrual
cycle, being highest when progesterone levels peak (which occurs in the
luteal phase, approximately one week after ovulation). Other neurotransmitter
levels are also influenced by hormone levels, further suggesting that
excitation–inhibition balance may vary systematically across the menstrual
cycle. For this reason, some tES studies have excluded women, while others
have ensured that women participated only during the follicular phase of their
cycle on the assumption that cortical inhibition would be lower. However,
there is little empirical evidence to support these practices; a few studies have
reported that TMS-evoked MEP amplitudes varied with menstrual phase
(Smith, Adams, Schmidt, Rubinow, & Wassermann, 2002; Smith et al.,
1999), but no tES studies have directly examined this question – nor have any
studies investigated the relative influence of menstrual cycle relative to other
sources of inter-individual variability in response to stimulation.
Nevertheless, there seems to be some justification for at least noting the stage
of menstrual cycle for female participants, and considering it as a factor in
data analysis.



Blinding and Sham Stimulation
As with any intervention study, and as we discussed in the chapter on TMS, it
is important to include a sham stimulation (placebo) condition in tES studies
to ensure that any observed effects are attributable to the electrical
stimulation and not demand characteristics (conscious or unconscious
changes in behaviour driven simply by the belief on the part of the participant
that ‘something’ should change due to the intervention). Sham stimulation is
somewhat easier in tES than in TMS, because tES does not create acoustic
noise or physical movement of the stimulator. However, the onset and offset
of tDCS currents in particular can induce sensations including a tingling or
itching (which in some individuals can be unpleasant or even painful); the
sustained period of stimulation does not result in any sensation at the 1–2 mA
current levels typically employed. For this reason, rather than the control or
sham condition being a complete lack of stimulation, it is common to ramp
the current up to the same intensity as used in the verum (real stimulation)
condition, then ramp it down again over the course of a few seconds
(typically 10–45 s). Stimulation of this duration is insufficient to induce
changes in cortical excitability, but induces sensations similar to real
stimulation. Another approach that has been used, either alone or in
combination with sham stimulation, is the use of a topical anaesthetic cream
to minimize the sensations induced by stimulation.

Although the ramping and topical anaesthetic approaches have been widely
used, some data suggests they may not be sufficient. Richardson and
colleagues (2014) compared several different sham protocols with verum 2
mA stimulation, including a 45 s ramp down from 2 mA to either 1 or 0 mA
using a 4 × 1 ring configuration, and a novel 1 x 1 configuration in which the
anode and cathode were placed immediately next to each other (as opposed to
the 2.5 cm spacing used in the 4 × 1 array), but 2 mA current was still used.
This 1 x 1 configuration was thought to shunt most of the current across the
scalp, rather than into the brain. Topical anaesthetic was used in all cases.
Participants were asked to rate ‘overall sensation’ on an analogue scale at 1
min intervals during 5 min of stimulation in each condition. None of the
sham conditions were found to be entirely statistically equivalent to the
verum stimulation in sensation ratings – even with topical anaesthetic



applied. However, the 1 x 1 configuration with 2 mA of current was most
similar to the verum. This suggests that further development should be done
in the area of sham protocols. In particular, the investigators only obtained
sensation ratings, but took no measures of the effects of the different
conditions on cortical excitability or behaviour, so it is not guaranteed that
the 1 x 1, 2 mA ‘sham’ condition had no effect on the brain.

Another effect of tES is skin erythema, or reddening of the skin under the
electrode due to dilation of surface blood vessels. Since participants cannot
see their own heads during stimulation, this is less of an issue for participants,
although if an extracephalic location such as the arm is chosen for the
cathode in tDCS studies, this may be visible. As well, erythema can provide
an indication to the experimenter as to what condition is being delivered,
which invalidates any blinding procedures that may be in place. A solution to
this problem is to use an anti-inflammatory drug such as aspirin, or topical
ketoprofen.

The issue of experimenter blinding is an important one, especially in clinical
trials. Research-grade tES systems often include a feature to allow for
blinding, in which the device is programmed in advance with the
experimentally randomized settings for a particular participant and session.
Thus the operator of the device has only to enter the participant ID and
session number, and the intended stimulation will be delivered without
cueing the operator as to the settings.



Safety
Any technique that involves delivering electrical stimulation to the brain must
necessarily consider safety. There are several possible risks to consider here:
discomfort, skin damage, brain damage, and seizure induction. A recent
review of the literature by Bikson and colleagues, covering 488 peer-
reviewed publications, over 33,000 sessions, and over 1,000 participants
(including some individuals who have each received over 100 tDCS sessions)
concluded that, ‘there is no evidence for irreversible injury produced by
conventional tDCS protocols within a wide range of stimulation parameters’
(Bikson et al., 2016: 657). Moreover, tES devices are generally unregulated,
which implies a lack of concern about their safety by the federal and other
agencies that typically regulate medical devices.

The levels of current delivered in tES studies are rarely above 2 mA, though a
few studies have gone as far as 4 mA. Recall from the start of the chapter that
5 mA is at the lower end of what the average person reports as painful. The
large numbers of tES studies that have been reported without serious adverse
events suggest that current in this range is safe for humans, and this is backed
up by empirical and modelling data. Animal studies have been conducted in
which relatively strong currents were used (and systematically varied across
animals) to stimulate the brain transcranially, and then the animals were
sacrificed to assess tissue damage. The results were then translated to human
equivalents by first building FEMs of the animals (rats) to compute the peak
electrical fields created by the applied stimulation levels, and then
determining what level of tES current would be required in humans to create
the same intracranial electrical field. These studies suggest that current in the
range of 60–170 mA would be required to cause brain damage in humans
using tES (Bikson et al., 2016), meaning that the levels used in human studies
are ten or more times smaller than those considered dangerous. It is important
to consider that these are estimates based on a number of assumptions about
how the currents are conducted in rats versus humans – and so should not be
taken as definitive guidelines – but they are reassuring in suggesting that the
levels used in human studies are far below those that might be dangerous.

As discussed in the previous section, tES and especially tDCS induces



sensations under the electrodes that range from tingling to painful, and
increase in intensity with current strength. Some individuals, especially those
who may be anxious about the procedure or otherwise sensitized, may react
more negatively to these sensations, and so it is important during the
informed consent process to clearly explain to potential participants what
they may experience. It can also be helpful to apply the electrodes and then,
prior to the start of the experiment proper, to deliver short duration (10–30 s)
periods of ‘tickle’ stimulation, starting at low intensities and increasing to the
maximum level planned for the experiment. This serves to familiarize people
with the sensations they can expect. Topical anaesthetic can also help reduce,
if not eliminate, these sensations. Skin burns are also a risk with tES. These
result from high impedance between the electrode and the skin, and can be
avoided by properly lowering impedance. In practice this means that lab
protocols should ensure that the skin is properly prepared (for example,
cleaned) and that sufficient conductive material is used between the electrode
and the skin. For sponge electrodes, the sponges should be well saturated
with electrolyte solution, monitored for drying during the study, and re-
wetted as necessary. For HD-tES and other protocols using small electrodes,
electrode holders (as used in EEG) should be used to keep the electrode a
fixed distance from the scalp, with conductive gel or paste bridging the scalp-
electrode gap. Some cases of skin burns have been reported in the literature,
but were always associated with failure to follow these safety protocols.

Naturally, people with a history of neurological disorders should be excluded
from tES studies targeting healthy individuals, and there have been no
reported cases of seizures triggered by tES. Careful screening is essential
since increasing cortical excitability could increase seizure risk in
predisposed individuals. At the same time, a number of studies have
investigated the use of tDCS in people with epilepsy. In particular, interest
has focused on whether cathodal stimulation – since it reduces neural
excitability – can reduce symptoms of epilepsy. Several studies have indeed
reported a reduction in both EEG discharges symptomatic of epilepsy and
incidence of seizures after cathodal stimulation (Bikson et al., 2016). Various
forms of tES have been used in clinical trials with dozens of other conditions,
including stroke, tinnitus, depression, chronic pain, and schizophrenia, again
without any cases of serious adverse events. Children and older adults are
generally considered especially vulnerable populations, and there is reason to



proceed with particular caution when using tES because electrical conduction
may be different. In particular, children’s smaller head sizes and thinner
skulls mean that more current will reach the brain at a given stimulation level.
Nevertheless, in their review Bikson and colleagues found that tES had been
used in over 2800 sessions across nearly 500 children without incident.
Likewise, although healthy aging and especially dementia are associated with
increased CSF volume (and thus greater conductivity), dozens of studies
comprising hundreds of older adults have been conducted without any serious
adverse events. Another possible concern is with implanted electrical devices,
such as pacemakers and deep brain stimulators. People with such devices are
generally excluded from tES studies on principle, both for the protection of
the person and the implanted device. However, modelling studies suggest that
there are very large impedances between these implanted devices and the
body, which would prevent any appreciable tES from reaching the device and
causing ill effects.

A final safety note concerns the fact that a number of tES devices are
available for sale to the general public, often at very low prices that make
them highly accessible (at the time of writing, systems were available from
online marketplaces and vendor websites in the US$75–300 range, compared
with thousands of dollars for a research-grade system). This has raised a
number of concerns in the scientific and medical community (Hogenboom,
2014; Wurzman, Hamilton, Pascual-Leone, & Fox, 2016) around safety, for a
few reasons. First of all, the consumer-grade devices are generally
unregulated and so the levels of current delivery may be unknown, and/or
higher than the levels generally used in human research studies. Secondly, at-
home users may have little or no knowledge of the tES research literature,
and so have little guidance concerning appropriate use or safety. This can
create risks such as skin burns caused by not knowing how to properly lower
and maintain impedance between the electrode and skin, or over-stimulation
if a user thought ‘more is better’ and decided to attach a larger battery. There
are other, more theoretical risks as well; for example, although the available
data suggest that even hundreds of tES sessions are safe, there is little data
concerning multiple sessions per day, or sessions lasting more than 30–40
min. Moreover, in research settings all experimental parameters are recorded,
procedures are reviewed by ethics boards, and any serious adverse events
must be reported. Thus any situations that do cause concern will rapidly reach



the scientific community, whereas these standards do not apply to at-home
users. A further concern is that without a proper understanding of functional
neuroanatomy, the role of the anode versus cathode, and other technical
considerations, at-home users could inadvertently cause effects other than (or
even opposite to) those desired, for example by reversing the cathode and
anode, or delivering anodal stimulation for a period long enough for its
effects to reverse. The available tES literature, while constantly growing, is
still quite narrow in terms of the combinations of electrode placement, current
level, and tasks performed during stimulation that have been studied. Other
combinations of these and other parameters may have rather different effects
– and as noted earlier, sometimes the effects of changing a parameter have
non-linear or even reversed effects. For these reasons, people attempting at-
home brain stimulation may well end up with null effects, or even very
different effects from what they hoped for.

Summary

Transcranial electrical stimulation (tES) is a neuromodulation technique comprising a
variety of different stimulation protocols that can variously make cortex more or less
excitable, or entrain cortical oscillations at specific frequencies. The levels of current
delivered to the brain are much lower than with TMS, and the effects are less dramatic.
While conventional tES uses large sponge electrodes with relatively large anode–cathode
separation, HD-tES aims for more focal stimulation through the use of smaller electrons and
reduced anode–cathode separation. The accuracy of tES in targeting a specific brain region
can be quite variable using conventional approaches, but can be significantly improved with
HD-tES combined with software that models the distribution of current based on individual
anatomy.

Different stimulation protocols can be used to achieve different effects. With tDCS, a
constant level of current is delivered for several minutes, typically leading to increased
cortical excitability at the anode and reduced excitability at the cathode, although the anodal
effect may reverse if stimulation extends beyond 15–20 min. The effects of tDCS can
include faster response times and improved learning and memory, although these vary with
stimulation level and task. Random noise stimulation (tRNS) involves delivering current
levels that vary randomly at each time point, and has effects that are similar to tDCS, but
may be stronger and/or longer lasting. In contrast to tDCS and tRNS, tACS delivers current
that alternates sinusoidally between positive and negative at each electrode. The focus of
tACS studies is usually on entraining intrinsic cortical rhythms, such as alpha, theta, or
gamma. This can be used to demonstrate causal links between power changes in specific
frequency bands, and cognitive or behavioural effects.

The effects of tES seem to be modulated by sodium and calcium ion channels, glutamate
and GABA, and neuromodulators. A number of models of how tES affects neural activity
have been proposed. A common theme within these is that by increasing cortical
excitability, neuronal activity at or just below threshold may be pushed above threshold. In



studies of learning, this may facilitate strengthening of synaptic connections via long-term
potentiation (LTP) if neurons are made more likely to generate action potentials in response
to input. In experiments where behaviour depends on differences in activity between
different populations of neurons within a cortical area (such as determining the direction of
a coherent population of moving dots from ‘noise’ dots moving in random directions), this
can improve performance by raising the activity of ‘relevant’ neurons above threshold while
that of ‘non-relevant’ neurons remains below threshold. However, in cases where only one
population of neurons is active to begin with (such as when only dots moving in one
direction are presented), tES can decrease performance by raising the level of noise (activity
of task-irrelevant neurons).

Although a large number of positive findings have been reported in the literature, both
meta-analyses and studies of individual differences have suggested that the effects of tES
can be quite variable. One reason for this is differences in experimental protocols, such as
levels and duration of stimulation, as well as the locations of anode and cathode. As well,
individual differences can significantly affect outcomes. Individual differences in cortical
anatomy can drastically affect the current reaching the brain, even with consistent
placement of electrodes relative to scalp-based landmarks. Electrode placement using
individual MRI-based anatomy and finite element modelling can significantly improve the
accuracy of the brain area stimulated, and the level of stimulation delivered. As well,
response to tES can be affected by individual differences in age, fatigue, time of day, drug
usage, and, in women, stage of menstrual cycle. It is important to consider, track, and
standardize these variables to achieve reproducible results. Another factor to consider in tES
studies is proper blinding to ensure the participant, and ideally the experimenter, do not
know at a given time whether a person is receiving real or sham stimulation. This is
challenging because tES can cause itching or tingling sensations as well as erythema (scalp
reddening). These may be mitigated, but not always eliminated, by topical medicines.
Development of optimal sham stimulation conditions is an active area of research; current
approaches include turning on stimulation only transiently (in the case of tDCS), delivering
low levels of stimulation, or placing anode and cathode next to each other (with small HD-
tES electrodes) to prevent current from reaching the brain.

Overall, tES is a promising technique both for cognitive neuroscience research and
applications in cognitive enhancement and treatment of neurological and psychiatric
conditions. Although it is generally safe, there are minor risks of discomfort or burning that
can be mitigated by following safety guidelines; however, the relative simplicity of the
technology – combined with its potential benefits to users – has led to the availability of
unregulated, consumer-grade systems to the general public. This has raised concerns about
the safety and advisability of such unregulated use, as individual users may not have the
expertise to achieve the desired effects (especially since the research community has yet to
converge on how to do this), and the consumer systems may not provide the same levels of
control and safety used in experimental settings.

Things You Should Know

tES is the delivery of low levels of electrical current to the brain to modulate brain
activity. At least two electrodes are required: one anode, at which current enters the
body, and one cathode, where it exits. Research-grade tES devices involve a device
that generates the current at a specified level, and measures impedance continuously



to ensure that current flow is kept at the desired level. Current levels rating from 1 to
2 mA are typical in tES, although higher levels may be used in some cases.
While in conventional tES, the anode and cathode are positioned relatively far apart,
in HD-tES they are placed more closely together to provide more focal stimulation.
As well, a larger number of electrodes are used, such as four cathodes surrounding a
single anode. HD-tES may be performed in conjunction with finite element
modelling, which allows prediction of current flow through the head and enables
more accurate targeting of particular brain regions for stimulation.
The three most common stimulation protocols for tES are tDCS, tACS, and tRNS.
tDCS involves administering current of a fixed level for the entire duration of
stimulation. This tends to make cortex under the anode more excitable, but less
excitable under the cathode. tACS involves current alternating at a fixed, sinusoidal
frequency; usually the frequency is chosen to entrain a particular frequency
emanating from the brain, as measured by EEG. tACS has similar effects at both
electrodes, because current constantly alternates between positive and negative, but
in some cases effects may be different depending on whether the current is phase-
locked or out of phase at two electrode locations. tRNS involves current that
randomly changes in strength from moment to moment (approximately every
millisecond), and causes increases in cortical excitability that are similar, but in some
cases stronger, than tDCS.
The online (during stimulation) effects of anodal tES depend on sodium and calcium
ion channel activity, while offline (lasting) effects seem to also rely on glutamate,
GABA, and neuromodulators. The online effects of cathodal stimulation are less
affected by pharmacological manipulations; however, the offline effects depend on
glutamate and possibly GABA, as well as neuromodulators.
The anodal excitation–cathodal inhibition (AECI) model proposes that anodal
stimulation increases cortical excitability (making neurons more likely to fire in
response to a given level of input), while cathodal stimulation reduces it. The
activity-dependent model extends the AECI model by suggesting that tES’ effects are
modulated by the current state of activity in the brain, and thus may vary between
and even within individuals, depending on factors like the task being performed,
fatigue, and any drugs consumed. The network activity model further recognizes the
fact that a brain area targeted by tES is wired to other brain areas, whose activity
might influence the effects of tES (as well as being modulated by tES). Finally, the
stochastic resonance model suggests that tES increases the level of noise (nonspecific
neural excitation) in stimulated areas, which can result in either improved or
decreased task performance depending on the relative activation levels of task-
relevant and task-irrelevant neurons within the region.
Both meta-analyses of published literature and empirical studies of individual
differences suggest that tES can have quite varied effects across individuals and
studies. In some cases, only approximately half of participants receiving tES showed
the expected effects. Factors that can significantly influence the effects of tES
include cortical anatomy, age, pharmacology, disease states, time of day, and, in
women, menstrual cycle. At a minimum, care should be taken with participant
selection and consistency should be applied in the timing and other conditions of an
experiment. As well, HD-tES systems used in conjunction with current modelling
software and FEMs based on each individual’s cortical anatomy will likely provide
much more consistent targeting of desired brain regions, and levels of current
delivered to those areas.
Side effects of tES include tingling sensations under the electrodes and reddening of



the skin (erythema). Since the effects of tES should be validated relative to no-
stimulation conditions in, ideally, a double-blind fashion, this creates challenges for
experimental design. Topical treatments such as anaesthetic and anti-inflammatory
medications can help mitigate these effects, though they may not be fully effective in
all cases. Sham stimulation can be applied by either ramping current up and then
immediately down again at the start and end of the sham stimulation period,
administering low levels of current that are not expected to modulate brain activity,
or placing the anode and cathode right next to each other. However, each method has
shortcomings and further work is needed to develop ideal sham conditions.
tES is generally very safe at the range of stimulation levels that can be administered
by research-grade systems, as long as safety guidelines are followed (such as
ensuring low impedance between scalp and electrodes). Skin burns can result if these
guidelines are not followed. Even following guidelines, unpleasant tingling or itching
sensations may occur, though these can be reduced by topical anaesthetic.
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Glossary

3D deformation fields
A matrix representation of size and shape changes that occur when a
brain image is spatially normalized. Each location in the image contains
three vector elements representing the shape change (size and direction)
in three dimensions. Used in deformation-based morphometry and
tensor-based morphometry.

A priori
Latin for ‘from what is before’. This term is typically used to refer to
experimental predictions (hypotheses) that are made in advance of
running the experiment, or statistical tests planned in advance to test
these hypotheses.

Abductive reasoning
Inferring the most likely cause of an event, based on an informed
understanding of possible causes of the event. Forms the basis for
reverse inference.

Absorption coefficient
A constant, specific to a substance that relates its concentration to the
amount of light it absorbs. A key term in the Beer–Lambert law.

Accuracy
In behavioural research, accuracy refers to whether an individual makes
a correct response on a given experimental trial or, more generally, to
the proportion of correct responses made in each experimental
condition.

Action potential
The transmission of electrical potential from the soma of a neuron, down
its axon, triggering release of neurotransmitters at the neuron’s synapses.
Also known as ‘firing’ of a neuron.

Active electrode



In EEG, the active electrode is the electrode located over the scalp
region of interest. Typically EEG recording involves multiple active
electrodes distributed across the scalp.

Active electromagnetic shielding
An alternative approach from passive shielding to reduce
electromagnetic interference in a room, such as one containing an MEG
scanner. Typically involves some passive shielding, combined with
sensors that measure the impinging external magnetic fields. The
recordings from these sensors are then used to cancel out the external
noise from the recorded signal. Active shielding reduces the weight of
the shielding required for an MEG system, which can make siting
requirements more feasible.

Active motor threshold (aMT)
The intensity of a TMS pulse that elicits an MEP on 50% of trials, when
the muscle is contracting.

Activity-dependent model
A model of the mechanism by which tDCS affects brain activity, which
builds on the AECI by integrating the observation that the effects of tES
are dependent on the state, or activity level, of the brain area
immediately prior to stimulation. This model suggests that anodal tDCS
is likely to have stronger effects when neurons in a brain area are
already relatively depolarized due to activity, than if the brain area is
generally more hyperpolarized.

Adaptation
See ‘neural adaptation’.

Adaptive mean amplitude
The average electrical potential over a specified time period, centred
around the maximum positive or negative potential value in a time
window. Often used as a dependent measure in ERP research rather than
peak amplitude, because it is less sensitive to noise.

ADC
See ‘apparent diffusion coefficient’.



Additive factors design
A generalized form of the subtraction method, involving several
experimental conditions in which a variable of interest is systematically
manipulated.

Adenosine triphosphate (ATP)
A molecule that is the primary source of energy for cells in the body,
including the source of energy supporting neural activity.

AECI
See ‘anodal excitation–cathodal inhibition model’.

Aerobic metabolism
A sequence of biochemical reactions that transform glucose into
adenosine triphosphate (ATP) through the consumption of oxygen.
Compared to anaerobic metabolism, aerobic metabolism is more
efficient, but requires oxygen.

Affine linear registration
An algorithm used in spatial normalization and motion correction to
adjust the position and/or size and shape of the brain, using
mathematically linear transformations.

Agonist
A chemical that binds to, and stimulates, a specific type of neuronal
receptor.

Aliasing
An artifact that can be caused when the frequencies contained in a signal
are more than a half to a third of the sampling rate. Because the
sampling rate is insufficient to capture the timepoint-to-timepoint
fluctuation in the signal, the aliased signal is recorded as a low-
frequency artifact. See also ‘Nyquist frequency’.

Ampère’s circuital law
A mathematical description of the relationship between electrical current
flow and associated magnetic fields. When a current flows through a
conductor, a magnetic field is generated around the conductor. Often



called the ‘right-hand rule’ because if one visualizes the current as
flowing in the direction of the thumb of the right hand, the magnetic
field flows in the direction of the curled fingers of the right hand.

Amplifier (EEG)
An essential part of any EEG system’s hardware, which serves to
increase the amplitude of the measured signals prior to recording.
Amplification is necessary due to the small size of the electrical
potentials recorded from the scalp.

aMT
See ‘active motor threshold’.

Anaerobic metabolism
A sequence of biochemical reactions that transform glucose into
adenosine triphosphate (ATP) without the use of oxygen. Compared to
aerobic metabolism, anaerobic metabolism is less efficient, and
generates lactate as a by-product, but does not require oxygen.

Analogue scale
A scale, such as a rating scale, in which a response is made along a
continuous dimension. Contrasts with ordinal scales.

Anatomically defined ROI
See ‘region of interest’.

Angular momentum
A fundamental characteristic of a spinning object (such as a proton),
proportional to its inertia and speed.

Anisotropic
Not equal in all directions or dimensions. In diffusion tensor imaging,
refers to preferential diffusion of water in one direction, which is used to
infer the presence and orientation of white-matter tracts.

Annihilation
In subatomic physics, the result of a collision between a positron and an
electron, causing the release of a pair of photons.



Anodal excitation–cathodal inhibition (AECI) model
A model of the mechanism by which tDCS affects brain activity,
suggesting that by depolarizing neurons in a brain area – thus making
them more likely to fire in response to input – anodal tDCS can induce
LTP. Conversely, cathodal tDCS can induce LTD since it decreases the
likelihood that the stimulated neurons will fire in response to input.

Anode
An electrode that injects current into a substance.

Antagonist
A chemical that binds to a specific type of neuronal receptor and blocks
the action of that receptor. The function of antagonists is thus opposite
to that of agonists.

APD
See ‘avalanche photodiode’.

Apparent diffusion coefficient (ADC)
A type of image produced in diffusion tensor imaging analysis, by
subtracting the b = 0 (unweighted) image from each direction-weighted
image. ADC maps are combined to compute the diffusion tensor.

Artifact
In neuroimaging data, an artifact is any feature caused by non-neural
sources that impairs the ability to view or interpret the data. Artifacts
can come from physiological sources such as blinks or muscle
contractions, or from non-physiological sources such as electromagnetic
interference from nearby devices.

Artifact correction
Mathematical removal of an artifact from EEG or other neuroimaging
data, while preserving the data in the same time period originating from
the brain.

Association cortex
A general term for areas of the cerebral cortex that receive and integrate
inputs from multiple other cortical regions. Generally thought to support



multi-sensory integration and higher-level cognition.

Astrocyte
A type of glial cell with a star-shaped configuration in the brain and
spinal cord. Astrocytes take glutamate up from the synaptic cleft after it
has served in excitatory neurotransmission. Among other functions,
astrocytes are involved in regulating local blood flow through processes
that wrap around capillaries and influence vasodilation. Glutamate levels
influence astrocytes’ control of vasodilation, and so astrocytes appear to
serve as a critical component in how the BOLD response is related to
neural activity.

Astrocyte-neuron lactate shuttle hypothesis
A theory of how the BOLD response is related to neural activity, via the
use of anaerobic metabolism in astrocytes to recycle glutamate,
producing lactate as a by-product.

ATP
See ‘adenosine triphosphate’.

Attenuation correction
A step in PET image reconstruction that compensates for the fact that
different tissues absorb PERs differently (especially bone).

Avalanche photodiode (APD)
A type of photodiode that produces output that is greater than its input.
APDs thus amplify their input, resulting in better signal-to-noise ratio
than conventional photodiodes.

Axial gradiometer
A gradiometer constructed from two conducting loops wound in
opposite directions. In MEG, one loop is close to the head while the
other is farther away. Both coils thus sample environmental magnetic
fields, while only one samples fields from the head. As a result, the
opposite windings cancel out environmental noise while preserving
neural signals. Sensitive to the perpendicular component of the MEG
signal.



Axial plane
In neuroimaging, the axial plane is defined by the anterior–posterior and
left–right dimensions, and is perpendicular to the inferior–superior
dimension.

Axon
The process extending from a neuron that carries its electrical output to
synaptic terminals.

b-factor
A parameter in diffusion weighted imaging (DWI) that reflects both the
strength of the gradient along the diffusion direction, and the duration
that it is on for. Increasing either of these factors increases sensitivity to
diffusion, and so b is a convenient way to summarize these two related
parameters.

Back-projection
An approach to image reconstruction, used in PET imaging. Allows
localization of concentrations of PERs in the imaged volume by
summing the coincidence detections from all lines of response that pass
through a particular location in the volume.

Band-pass filter
A combination of low- and high-pass filters, resulting in attenuating
both high and low frequencies while passing a band of frequencies
between these. Opposite to a notch filter.

Bandwidth
A continuous range of frequencies (or wavelengths) measured as the
difference between high and low frequency cutoffs, in Hertz (Hz).

Baseline condition
In a neuroimaging experiment, a baseline condition is a theoretically
‘neutral’ condition that is not expected to elicit any specific neural
activity related to stimulus processing, task performance, or externally
driven cognitive activity. This serves as a reference against which to
compare brain activation measurements in experimental conditions. See
also ‘resting state’.



Beamformer
A spatial filter used in source localization. A set of weights (multipliers)
are applied to the data from each sensor, such that the signal from every
location in the brain volume other than the region of interest is
suppressed.

Beer–Lambert law
A mathematical formula relating the concentration of a substance to the
amount of light it absorbs. A modified form of the Beer–Lambert law is
used in fNIRI; see ‘Modified Beer–Lambert law’.

Between-subjects design
An experimental design in which results are compared between different
groups of participants. This includes designs in which the groups are
inherently different (for example, patients versus healthy controls), and
designs in which people are sampled from a single population and
randomly assigned to different groups to receive different levels of one
or more independent variables.

Biphasic pulse
A shape of TMS pulse in which an initial rise and fall in intensity is
followed by an equal and opposite negative voltage before returning to
baseline.

Block detector
A grid of scintillation detector crystals, used in PET imaging, connected
to a smaller number of photodetectors. The input from each crystal (that
is, unique sensor location) is directed to all photodetectors in a uniquely
weighted fashion, such that the location of the individual crystal that
was excited can be recovered in post-processing. This serves to increase
the spatial resolution of the PET scanner relative to the number of
individual photodetectors.

Blocked design
A type of experimental design in which multiple trials of a particular
condition occur together (in a ‘block’), not interspersed with trials of
other conditions. Contrast with randomized or event-related designs.
Commonly used in fMRI, PET, and fNIRI to increase SNR.



Blocking
An effect in EEG amplifiers (and associated, recorded data) that results
in recording of a ‘flat line’ rather than time-varying signal. Caused by
saturation of the amplifier.

Blood oxygenation level dependent (BOLD)
The name of the physiological response to brain activation that forms
the basis of the fMRI signal. Increased glutamate levels associated with
increased neural activity trigger vasodilation, leading to a net increase in
oxygenated haemoglobin around the active neurons.

BOLD
See ‘blood oxygenation level dependent’.

Bootstrapping
A technique in nonparametric statistics to estimate the true distribution
of values in a population, from a sample of the population. Data are
randomly sampled with replacement, meaning that the same data point
(subject or trial, depending on the level of the analysis) could be
represented multiple times whereas other data points could not be
present at all in a particular sample.

Boundary element model (BEM)
In neuroimaging, a model of the different tissues of the head that is used
in source localization. Each tissue type is represented as a surface (thin
layer) with specific properties relevant to the technique, such as
electrical conductivity for EEG. Contrast with finite element models.

Boxcar design
A simple type of blocked design, alternating between experimental and
control conditions.

Brain extraction
A preprocessing step applied to MRI data in which the brain is isolated
from the skull and other surrounding, non-brain tissues.

Brownian motion
The random motion of molecules caused by heat energy. Forms the



basis of the DWI signal.

Brute force approach
In tractography, an approach that involves tracking from (or through)
multiple adjacent seed/ROI voxels rather than picking a single seed
voxel or a start/end pair of voxels. Reduces the dependency of the
solution on the particular choice of seed voxel and makes it more robust
to noise.

Calibrated BOLD fMRI
Methods in which both physiological and neural activation factors are
systematically manipulated, to yield quantitative measurements of the
rate of oxygen metabolism in the brain (CMRO2).

Cardiac gating
A technique used in MR imaging to synchronize image acquisition with
the cardiac cycle (heartbeat) of the person being scanned. Can reduce
artifacts in MR images such as EPI and DWI.

Categorical variable
A variable that has discrete levels, rather than values that vary along a
continuum. Distinct categories or groups are common examples of
categorical variable levels. In some cases, particular levels of a
continuous variable may be used as levels of a categorical variable. Also
called a ‘factor’.

Cathode
An electrode through which current flows out of a substance.

Central sulcus
The deep sulcus (fissure) separating the frontal and parietal lobes of the
cerebral cortex.

Cerebral cortex
The outer surface of the brain, composed largely of cell bodies as well
as local and long-range connections between cells. Most areas of human
cerebral cortex have six distinctive layers, sometimes with sub-layers.
Supports most cognitive activity in humans and other mammals. From



the Latin word for ‘bark’.

Cerebrospinal fluid (CSF)
A clear liquid that the brain and spine are suspended in. CSF serves to
physically and chemically protect and buffer the brain.

Cerebrovascular reserve (CVR)
A measure of the amount of change in BOLD signal that different brain
areas undergo as a function of carbon dioxide levels.

Channel
In neuroimaging techniques such as EEG and fNIRI, a channel typically
refers to a single source of data. In EEG, the active electrodes are the
channels. In fNIRI, each valid emitter–detector pair is a channel,
meaning that typically the number of channels is a multiple of the
number of emitters and detectors.

Chromophore
A light-absorbing compound. In the context of fNIRI, oxyhaemoglobin
and deoxyhaemoglobin are chromophores of interest, whereas other
compounds such as melanin and fat are chromophores that can
contribute noise to the signal.

Closed field
A theoretical construct used to describe generators of EEG signal. A
closed field is any configuration of neurons that cannot generate a
measurable EEG signal at a distance. This may be due to the
arrangement of the neurons, and/or a lack of synchronous electrical
potential oscillations.

Code multiplexing
An approach to multiplexing in which each source (such as an emitter in
fNIRI) is switched on and off rapidly according to different sequences or
‘codes’.

Cognitive conjunction
See ‘conjunction analysis’.



Cognitive neuroscience
The field of study aimed at understanding how the brain produces
thoughts, emotions, and behaviour.

Coherence
See ‘phase synchronization’.

Coincidence detector
A device that detects when two events occur simultaneously. Used in
PET imaging to detect photon pairs produced by positron annihilation.

Component
In ERP, a peak or trough in the waveform that is defined by
characteristic timing, scalp distribution, polarity, and eliciting
conditions. In general, the term ‘component’ is used to refer to peaks or
troughs in measurements at scalp electrodes, and may reflect the activity
of multiple, distinct brain regions overlapping in time. See also ‘latent
component’

Compton scattering
Deflection of a photon by an electron. Creates noise in PET images
because it causes a pair of photons to travel in directions that are not
180° opposed to each other.

Computational neuroanatomy
Morphometric approaches that use automated algorithms to derive a
variety of measures from structural MRI in a less subjective, and more
efficient way than traditional morphometric methods.

Computerized tomography (CT)
An imaging modality based on X-rays. While conventional X-ray
images produce only a single two-dimensional image taken from a
single perspective, CT scanners incorporate an X-ray device that rotates
around the person being scanned, acquiring many images from different
angles and then using computer algorithms to create higher-resolution,
2D or 3D images from these.

Condition-rich design



An experimental design that employs relatively large numbers of
experimental conditions – often treating individual stimuli as conditions,
rather than grouping these into categories (for example, for face stimuli,
each individual is treated as a separate condition, rather than averaging
across all faces). Used in neuroimaging studies for which multivariate
analysis is planned.

Conditioning stimulus (CS)
In paired-pulse TMS, the first stimulation pulse.

Conjunction analysis
A type of analysis, sometimes performed on fMRI data, in which the
overlap between two (or more) different activation maps (derived from
different experimental contrasts) is visualized and interpreted.
Sometimes called ‘cognitive conjunction’ because the goal is usually to
identify brain regions that are commonly activated across different tasks
or conditions that share an underlying cognitive operation.

Connectivity
In the context of brain organization, connectivity refers to how different
brain areas communicate and work together.

Connectome
A complete description of the structural connections between neurons in
the brain. In practice, the term may be used to refer to the complete set
of connections that are resolvable at a certain level of resolution, or by a
particular technique. See also ‘projectome’.

Connectomics
The study of the connectome, or more generally of brain connectivity.

Continuous theta burst stimulation (cTBS)
A type of repetitive TMS protocol in which triplets of pulses are
delivered at 50 Hz, with 5 Hz spacing (that is, three pulses 20 ms apart,
repeated every 200 ms), typically delivered for 20 or 40 s (resulting in a
total of 300 or 600 pulses). Typically has long-lasting (up to one hour)
inhibitory effects.



Continuous variable
A variable whose possible values vary along a continuum, rather than
discrete levels. For example, brightness and loudness are continuous
variables.

Continuous wave (CW)
An approach to fNIRI in which light of a particular wavelength(s) is
emitted continuously, with constant intensity, and the intensity of light
at detectors is quantified.

Contrast
The difference in intensity values in an image. In MRI, contrast refers to
the ability to resolve different tissue types (such as grey versus white
matter) by intensity (brightness) values in the image.

Contrast weighting
In MRI, the relative intensities of different tissue types, determined by
the parameters of the pulse sequence.

Control group
In a between-subjects experimental design, a control group is a group of
participants whose data serve as a reference for comparison to the
‘experimental group’. For example, if a study examines a group of
people with a specific disease, the control group might be people
without the disease. Or, the experimental group might receive a
treatment or intervention, while the control group does not.

Convolution
A mathematical operation commonly used in signal processing, whose
result describes how one shape is modified by another. For example, in
fMRI data analysis, the predicted signal produced by the brain for an
experiment can be derived by convolving the time course of events in
the experiment with a model of the HRF.

Coronal plane
In neuroimaging, the axial plane is defined by the inferior–superior and
left–right dimensions, and is perpendicular to the anterior–posterior
dimension.



Correlation-based signal improvement
A motion correction technique for fNIRI, based on the assumption that
true oxy-Hb and deoxy-Hb signals are, in general, strongly negatively
correlated. Since head motion affects the optode – and thus
measurements of both oxy-Hb and deoxy-Hb – similarly during head
motion the two chromophores’ signals will be strongly positively
correlated. The algorithm thus simply corrects for motion by removing
the correlated component of the signal.

Cortical columns
Clusters of neurons typically tens of microns in size, with distinct
patterns of local connectivity running through the layers of the cerebral
cortex, perpendicular to the outer surface of the brain. Columns have
particular, repeating arrangements in a cortical area, which act as
functional units.

Counter-balancing
An approach in experimental design in which each possible permutation
of levels is tested. For example, in an experiment with two conditions (1
and 2) counter-balancing stimuli may involve grouping stimuli into two
sets (A and B), and ensuring that half of the participants experience
stimulus set A in condition 1, and the other half of participants
experience stimulus set A in condition 2, and vice-versa.

Cross-frequency coupling
Synchronization of changes in the amplitude of oscillations at different
frequencies. For example, bursts of gamma-band EEG have been
observed to occur time-locked to the peaks of theta oscillations when
items are held in working memory.

Cross-sectional design
An experimental design in which data are compared between different
groups. Critically, the groups are assumed to be samples from the same
larger population, but at the time of testing represent different temporal
stages of development or disease progression. Contrasted with
longitudinal designs, cross-sectional designs are typically used in an
attempt to characterize changes that occur over time, by using a
between-subjects rather than a within-subjects (longitudinal) design.



CS
See ‘conditioning stimulus’.

CT
See ‘computerized tomography’.

cTBS
See ‘continuous theta burst stimulation’.

Current (electrical)
Movement of electrical charge from one location to another, through a
conductor.

CVR
See ‘cerebrovascular reserve’.

CW
See ‘continuous wave’.

Cyclotron
A facility for creating radioactive substances, such as positron-emitting
radioligands used in PET imaging.

Cytoarchitecture
A description of the structure of the cerebral cortex (typically consistent
within a region of the cortex) based on the types of cells present, and
their densities across different layers of the cortex.

D-wave
See ‘direct wave’.

DBM
See ‘deformation-based morphometry’.

DCM
See ‘dynamic causal modelling’.

Decay artifact
An relatively long-duration EEG artifact caused by TMS, thought to



have a number of causes, including current induction, electrode–skin
polarization, and electrode movement.

Decay time
A property of crystals used in scintillation detectors that sets the
temporal resolution of coincidence detectors. Influences the signal-to-
noise ratio of a PET scanner.

Deformation-based morphometry (DBM)
A computational neuroanatomy method aimed at quantifying the
changes in the relative positions of a brain, or brain structure, that occur
when a brain image is spatially normalized, after accounting for global
changes in brain volume, shape, and position.

Demand characteristics
Biases (either conscious or unconscious) on the part of the recipient that
cause them to perform in ways that are consistent with what they expect
from a treatment.

Dendrite
Processes on neurons that receive input from other neurons, via
synapses.

Dependent variable
A variable that is measured in an experiment, whose value is expected to
vary depending on the level(s) of independent variables manipulated in
the experiment. Dependent variables may be called ‘outcome measures’
and are measured, rather than directly manipulated, in an experiment.

Dephasing gradient
In DWI, a magnetic field gradient that applies a phase roll to water
molecules along a particular direction. Used early in the pulse sequence
to ‘tag’ water molecules as to their position along the gradient direction.

Depolarization
The elimination of electrical polarization, resulting in a balance of
electrical charge between two locations.



Detector
In fNIRI, a device that detects light used to obtain the imaging signal.

Detector ring
In PET imaging, a ring of scintillation coincidence detectors used to
count photons emitted from the body.

Diffeomorphic mapping
A morphometric approach that can be applied to ‘closed’ brain
structures (those having defined borders in three dimensions), which
involves tessellating the outer surface of the structure, and measuring the
distance of each point on the structure to that of a reference structure.

Difference waveform
An ERP waveform derived by subtracting the waveform in one
experimental condition from another. Typically used in subtraction
methodology to isolate the effects of an experimental manipulation from
irrelevant factors.

Differential amplifier
The type of amplifier typically used in EEG data collection, which
measures the difference in electrical potential between active and
reference electrodes, each relative to the ground electrode.

Differential path length (DPL) factor
A constant in the modified Beer–Lambert law that accounts for the
scattering of light that occurs in biological tissue but not in test tubes.
This factor varies considerably between individuals – by as much as
15% – and so using an incorrect value can yield a significant degree of
error in measurement. Can be measured using FD or TD fNIRI, but not
with CW imaging – leading to greater inaccuracy when using CW in
particular.

Diffusion tensor
A mathematical object representing diffusion along its primary
direction, and the two directions orthogonal to that.

Diffusion tensor imaging



A technique used to infer properties of the white matter of the brain,
such as integrity and orientation of fibre tracts, using diffusion weighted
MR imaging.

Diffusion weighted imaging (DWI)
An approach to MRI scanning that measures the amount of diffusion
(movement) of water. Commonly used as the basis for studies
investigating brain connectivity, because water within axons tends to
diffuse parallel to their direction of orientation.

Dipole
An object that has two ends (poles) with opposite values or charges. An
electrical dipole has positive and negative charges at its two poles.
Formally, a dipole is a point source of infinitely small size.

Direct wave (D-wave)
The initial effect of TMS, measured (using EEG) as electrical activity
and thought to be directly caused by the TMS pulse.

Discrete scale
See ‘ordinal scale’.

Discrete wavelet filtering
A signal processing technique in which a wavelet is fit to a time series
by shifting, stretching, and/or scaling it to best represent features in the
data. Used for motion correction of fNIRI data.

Disjunction analysis
The reverse of a conjunction analysis, to determine which areas of
activation do not overlap between two (or more) experimental contrasts.

Distribution of time-of-flight (DTOF)
The distribution of the times that individual photons were received by a
photodetector in time-domain fNIRI. Because the time it takes a photon
to travel from the emitter to detector is proportional to the distance it
travels, the early portion of the DTOF represents photons that travelled
shorter paths (more peripheral, non-brain paths), whereas the later
portion of the DTOF represents farther-travelling photons – those that



most likely passed through the cortex.

DPL
See ‘differential path length factor’.

DTOF
See ‘distribution of time-of-flight’.

Dynamic artifacts
When performing TMS in or near an MRI scanner, artifacts in the MR
image associated with the transient magnetic field pulse(s) created by
the TMS pulse(s).

Dynamic causal modelling (DCM)
An approach to effective connectivity analysis that uses an explicit
model of the relationship between how neural activity is modulated by
external input (the experimental manipulation), combined with a second
model of how that neural activity relates to the observable BOLD signal.
Also involves comparison between different possible models of
information flow between brain regions.

Dynamic statistical parametric mapping (dSPM)
An approach to source localization that uses noise normalization.

Echo planar imaging (EPI)
An MRI pulse sequence commonly used in fMRI and diffusion
weighted imaging (DWI). A defining feature of EPI is that k space is
completely filled with every excitation, in contrast to conventional pulse
sequences that require many excitation steps with different phase
encoding gradient weightings to fill k space. This is achieved by
traversing k space in a ‘zig-zag’ fashion. EPI enables the very fast
imaging required for fMRI.

Echo time (TE)
The time between excitation and signal readout (the echo) in an MRI
pulse sequence.

Eddy current



Electrical current induced by changing magnetic fields in a conductor. A
common type of artifact in DWI caused by rapidly switching magnetic
field gradients.

Effective connectivity
An approach to data analysis applied to time-resolved neuroimaging
data aimed at characterizing interactions between different brain regions.
Whereas functional connectivity involves computing correlations but
cannot determine the directionality of such relationships (that is, which
area influences the activity of another), effective connectivity provides
such ‘directional’ information.

Effective dose
A measurement of the amount of radioactivity absorbed by the body,
computed by summing the equivalent doses for all organs in the body.

Efficiency (experimental)
A measure of the optimality of different experimental designs, in terms
of the number, timing, and experimental conditions of each experimental
trial or event, that is a function of the variance in the predicted
neuroimaging time series.

Eigenvalue
In diffusion tensor imaging, eigenvalues reflect the strength of diffusion
in the principal direction and in the two directions orthogonal to that.

Eigenvector
In diffusion tensor imaging, eigenvectors reflect the principal direction
of water diffusion (first eigenvector) and in the two directions
orthogonal to that.

Electrical current
See ‘Current (electrical)’.

Electrical ground
See ‘Ground (electrical)’.

Electrical potential



See ‘Potential (electrical)’.

Electroencephalography (EEG)
A technique that measures the summed electrical potentials of neurons
in the brain, through electrodes placed on the outside of the head
(invasive EEG can also be performed using implanted electrodes).

Electromyography (EMG)
Measurements of neuromuscular activity, typically by electrodes placed
over specific muscles.

Electrooculogram (EOG)
A measurement of the electrical potential across one or both eyes,
typically by electrodes placed above and below the eyes (vertical EOG),
or lateral to either eye (horizontal EOG).

EMG
See ‘electromyography’.

Emitter
In fNIRI, a device that emits light used to obtain the imaging signal.

Endogenous component
An ERP component elicited by cognitive or other psychological
(endogenous) factors.

Endophenotype
Where phenotypes are directly observable manifestations of an
individual’s genetic makeup (genotype), endophenotypes are phenotypes
that are not directly observable, but must be determined through
biological test or imaging technique. This can include things such as
enzyme activity, personality type, or activation patterns in a particular
neuroimaging paradigm.

Energy resolution
A property of crystals used in scintillation detectors that refers to how
sensitive the crystal is to the energy level of the photons detected.
Photons from sources other than positron annihilation, as well as



Compton-scattered photons, have distinct energy levels from
unscattered, annihilation-generated photons. Better energy resolution
yields better signal-to-noise ratio of a PET scanner by recording a
greater proportion of true coincidence events.

Entrainment
A phenomenon in which oscillations in one system become
synchronized, with enhanced amplitude, by oscillations of the same
frequency in another system. For example, tACS uses electrical
stimulation at a specific frequency to increase the amplitude of EEG
rhythms in the individual at that frequency.

EPI
See ‘echo planar imaging’.

Epoching
In EEG, the process of breaking continuous EEG data into short
segments time-locked to the onset of events of experimental interest.
Typically used to derive ERPs from EEG data. Also called
‘segmentation’.

Equivalent current dipole (ECD)
A term used in EEG and related fields to refer to a simplification
whereby an area of some size (such as a patch of neurons) and
containing many electrical dipoles is treated as a single dipole.

Equivalent dose
A measurement of the amount of radioactivity absorbed by the body,
that is specific to the organ in question. Accounts for the fact that
different organs have different levels of sensitivity to radiation.

EROS
See ‘event-related optical signal’.

Erythema
Reddening of the skin. One cause is stimulation with tES.

Event-related desynchronization (ERD)



A term used in reference to oscillatory brain activity measurements such
as EEG or MEG, to describe an decrease in power within some
frequency band time-locked to an event of experimental interest.

Event-related optical signal (EROS)
A name used for the technique of using fNIRI to measure the fast optical
signal.

Event-related potentials (ERP)
EEG measurements time-locked to the onset of events of experimental
interest, and generally averaged over many trials of a particular
experimental condition to improve signal-to-noise ratio.

Event-related synchronization (ERS)
A term used in reference to oscillatory brain activity measurements such
as EEG or MEG, to describe an increase in power within some
frequency band time-locked to an event of experimental interest.

Evoked potentials (EPs)
See ‘event-related potentials’.

Excitation
In MRI, the process of tipping the net magnetization vector out of the
longitudinal plane, towards the transverse plane. Opposite to relaxation.

Exogenous component
An ERP component elicited by external, sensory factors.

Eye tracking
A technique in which the position of the eyes is monitored and recorded.
Generally this is used to detect where a person’s gaze is directed.

FA
See ‘fractional anisotropy’.

Factor
See ‘categorical variable’.



Factorial design
An experimental design involving the systematic manipulation of two or
more experimental factors. Typically factorial designs are fully crossed,
meaning each possible combination of variables is tested.

False discovery rate (FDR)
An approach to multiple comparison correction that works by
controlling the proportion of discoveries (p values that exceed the
desired threshold) that are false positives, based on a ranking of the p
values. This approach is adaptive depending on characteristics of the
data, in particular the total number of discoveries but also the total
number of tests and the desired level of significance.

Faraday cage
An enclosure made of conductive material, that attenuates external
electromagnetic fields. Commonly used to insulate neuroimaging
equipment from noise caused by other electronic devices and/or
magnetic fields.

Fast optical signal (FOS)
In fNIRI, a signal that shows rapid changes related to stimulation or task
performance, thought to be caused by changes in cell swelling that occur
with changes in neural activity. See also ‘event-related optical signal
(EROS)’.

fcMRI
Functional connectivity analysis of fMRI data.

FD
See ‘frequency domain fNIRI’.

FDR
See ‘false discovery rate’.

FEM
See ‘finite element model’.

Figure-8 coil



The most common shape of stimulation coil used in TMS, involving
copper wire wound in a figure-8 shape. This design yields the most
concentrated stimulation strength directly under the centre of the coil.

Figure-of-eight coil
See ‘figure-8 coil’.

Filter response
A description of the effects of a filter. Often visualized as a plot of
frequency versus amplitude, to show which frequency range(s) a filter
attenuates.

Filtered back-projection
The process of spatially filtering PET data prior to back-projection, to
minimize artifacts caused by the back-projection process.

Filtering
The mathematical process of attenuating the power of a signal in a
specific frequency range.

Finite element model (FEM)
In neuroimaging, a model of the different tissues of the head that is used
in source localization. Each tissue type is represented as a 3D surface
with varying thickness and associated variations across the surface in
specific properties relevant to the technique, such as electrical
conductivity for EEG. Contrast with boundary element models, which
model surfaces as having constant properties across the surface.

Flip angle
The angle of the net magnetization vector relative to the longitudinal
plane. Proportional to the amount of RF energy used in excitation.

Flux transformer
In MEG, a superconducting device that transmits magnetic flux from
near the head, where it occurs, to the SQUID. The shape of the flux
transformer determines its sensitivity properties.

fMRI-a



See ‘fMRI adaptation’.

fMRI adaptation (fMRI-a)
A type of experimental design designed to characterize different
populations of neurons within a specific brain region, that respond to
different stimulus characteristics or other properties. Stimuli that are
identical, or share particular features, are presented repeatedly, leading
to a reduced fMRI response due to neural adaptation in the brain region
of interest. Then, stimuli predicted to have distinct features are
presented, which will elicit an increased fMRI response if different
(non-adapted) neurons within the brain region are sensitive to the
changed stimulus features.

Forward solution
The mathematical process of determining – given the number, location,
orientation, and strength of the generators of a signal – how the signal
would appear at sensors recording it from a distance. The opposite of the
inverse problem, but mathematically well-posed because there is a
single solution to any forward problem. Forward solutions are used as
the basis for attempts to solve the inverse problem.

Fourier series
A combination of waveforms of different frequencies, that are combined
to form a complex waveform, or derived from a complex waveform by a
Fourier transform.

Fourier transform
A mathematical operation by which a complex time-varying waveform
is decomposed into power (amplitude) over a continuous range of
frequencies. This is based on the principle that any complex time-
varying waveform can be represented as a weighted set of sinusoidal
waveforms of different frequencies. Applying a Fourier transform to
time-domain data results in frequency-domain representation.

Fractional anisotropy (FA)
A measure derived from diffusion tensor imaging data, computed as the
fraction of the difference in the size of each of the three principal
eigenvectors, relative to their summed length. Often interpreted as a



measure of ‘white matter integrity’.

Fractional area latency
In ERP research, a dependent measure calculated by first calculating the
mean amplitude of the waveform in a specified time window, and then
determining the time from the start of the window at which the mean
amplitude reaches a specified percentage of the total. For example, 50%
fractional area latency is the time required to reach 50% of the total
mean amplitude within the window.

Frequency
In physics and mathematics, frequency refers to the number of cycles
per unit time of a sinusoidally oscillating wave. Typically measured in
units of Hertz (Hz), or cycles per second.

Frequency bands (EEG)
In EEG measurements, oscillatory signals are commonly seen in
different ranges, associated with different states of consciousness and
brain activity. These ranges are referred to as bands, and include delta,
theta, alpha, beta, gamma, and mu.

Frequency domain
Representation and/or analysis of data as it varies over frequency. If the
data vary over time (for example EEG data), the frequency-domain
representation necessarily collapses over time (or periods of time), and
are visualized with frequency on the x axis (abscissa) and amplitude of
the measured brain activity signal on the y axis (ordinal). If data vary
over space (for example, MRI data), the frequency-domain
representation collapses across space and are represented in k space.

Frequency encoding gradient
In MRI, the gradient applied along one of two spatial dimensions within
a slice, perpendicular to the slice and phase encoding gradient
directions. Determines the readout along the x axis in k space.

Frequency multiplexing
An approach to multiplexing in which each source (such as an emitter in
fNIRI) is modulated at a different frequency. Allows simultaneous



transmission of multiple signals.

Frequency-domain (FD) fNIRI
An approach to fNIRI in which light of a particular wavelength(s) is
emitted continuously, with intensity that varies sinusoidally. Both the
intensity and timing (phase) of the light arriving at the detector are
quantified.

Full-width at half-maximum (FWHM)
A measure commonly used to describe the amount of spatial smoothing
(filtering) applied to an image such as an fMRI scan. Given a shape (or
kernel) such as a Gaussian function, the FWHM reflects the width of
this shape at half of its maximum amplitude. See also ‘spatial
smoothing’.

Fully crossed design
A factorial experimental design in which each possible combination of
variables is tested.

Functional connectivity
An approach to data analysis used with fMRI, MEG, and other forms of
time-resolved neuroimaging data. The time course of activity is
correlated between different voxels or brain regions to identify areas
whose activity is significantly correlated. This can be applied even to
data that do not have multiple experimental conditions, such as resting
state data. Compared to effective connectivity, functional connectivity
does not provide information about the directionality of influence.

Functional integration
An approach to understanding brain organization that combines
segregation and connectivity to provide a more complete understanding
of brain function.

Functional MRI (fMRI)
A technique that provides an indirect measure of neuronal activity via
localized changes in the ratio of oxygenated and deoxygenated blood.

Functional near-infrared optical imaging (fNIRI)



A technique that uses near-infrared light to provide a measure of brain
activity. FNIRI can be used to measure both a ‘slow’ signal that is
sensitive to the concentrations of oxyhaemoglobin and
deoxyhaemoglobin, and a ‘fast’ signal related to cell swelling.

Functionally defined ROI
See ‘region of interest’.

FWHM
See ‘full-width at half-maximum’.

GABA
Gamma-aminobutyric acid, the primary inhibitory neurotransmitter in
the brain. Its primary action is to adjust the permeability of neuronal
membranes to increase polarization, making the neuron less likely to
generate an action potential.

Gaussian random field theory (GRFT)
A branch of mathematics describing noise that has a Gaussian
(multivariate normal) distribution in multiple dimensions. Used in fMRI
analysis as one approach to multiple comparison correction, in which the
noise in fMRI data is assumed to have a Gaussian distribution. GRFT is
used to predict the probability of observing a cluster of voxels above the
statistical threshold, given the spatial extent of the cluster and its
magnitude of activation.

GCA
See ‘Granger causality analysis’.

General linear model (GLM)
A parametric statistical model that relates independent variables to
dependent variables using linear terms. Commonly used in statistics,
GLMs for the basis of ANOVA, regression, and other common types of
analysis.

GLI
See ‘grey level index’.



Glia
Cells of the nervous system that do not conduct electrical signals, but
perform functions such as recycling neurotransmitters, modulating
neural activity, controlling development and neural plasticity, and
modulating local blood flow.

GLM
See ‘general linear model’.

Glutamate
The primary excitatory neurotransmitter in the brain. Once released from
neurons, glutamate is largely taken up and recycled by glia.

Gradient (magnetic field)
A continuous variation in magnetic field strength over space. Used in
MRI for spatial encoding.

Gradiometer
A magnetic field sensor that measures differences in magnetic field
strength over space (gradients).

Grand average
In ERP, the average of measurements across trials and participants.

Granger causality analysis (GCA)
An approach to effective connectivity analysis in which two time series
are correlated at multiple time lags relative to each other. Part of a larger
class of models known as cross-correlation, or more generally
multivariate autoregressive models.

Graph theory
A branch of mathematics devoted to the study of graphs. Applied to
neuroimaging data, graph theory provides a set of tools for representing
and analysing the activity of networks of brain regions in terms of how
they are physically connected, and/or how they functionally interact.

Gray (Gy)
A unit for quantifying radioactivity absorbed by the body, where 1 Gy =



1 Joule absorbed per kilogram of body weight.

Grey level index (GLI)
A measure of cell density across cortical layers, used in characterizing
the cytoarchitecture of brain regions.

Grey matter
Generally refers to the cerebral cortex, but more generally to any region
of the brain with a high concentration of cell bodies, relative to axons.
So called because when stained with formalin, or viewed in a T1-
weighted MR image, this tissue appears grey in colour.

Grey-matter concentration
In voxel-based morphometry of grey matter, a dependent measure that
reflects a combination of the original intensity of a voxel, and the
amount of size change it underwent during spatial normalization.

GRFT
See ‘Gaussian random field theory’.

Ground (electrical)
A reference point that electrical potential is measured relative to. The
term can also refer to a return path for electrical current. While the Earth
is commonly used as ground in electrical systems, this is unsafe in
contexts such as EEG. For this reason, a virtual ground is typically
created within the EEG amplifier circuitry.

Ground electrode
In EEG, the ground electrode serves as the reference for measuring
electrical potential at both the active and reference electrodes.

Gy
See ‘Gray’.

Gyro-magnetic ratio
A fixed property of any MR-active nucleus, relating its magnetic
moment to its angular momentum.



Gyrus
A ‘bump’ or convex fold on the surface of the cerebral cortex. See also
‘sulcus’.

Haemodynamic response function (HRF)
The shape of the BOLD fMRI response over time. Has a generally
characteristic shape involving onset 2–3 s after stimulus onset, peaking
at 6–8 s, and a return to baseline between 10–12 s. May have a
subsequent period of ‘undershoot’ up to 18–20 s. All times are
approximate, and the shape and timing of the HRF shows considerable
variation both within individuals, between brain areas, and between
individuals.

Haemoglobin (Hb)
The molecule in the blood that transports oxygen from the lungs to other
tissues, including the brain. Contains iron (heme). Changes in
haemoglobin’s molecular structure, depending on the amount of oxygen
bound to it, is the basis of the BOLD signal measured by fMRI and
fNIRI.

Hb
See ‘haemoglobin’.

HCP
See ‘Human Connectome Project’.

HD-tES
See ‘high definition tES’.

Head position indicators (HPIs)
In MEG, sensors placed at landmark positions on the head that generate
high-frequency electrical signals. These are detected by the MEG system
and used to track the position of the head, and may be used to later
correct the data for head movement.

High definition tES (HD-tES)
An approach to tES that aims to improve the spatial resolution and
specificity with which tES is delivered to a target brain region. Rather



than using two large electrodes as in conventional tES, a larger number
of smaller electrodes are used, typically placed close together over the
target brain region. One common configuration is the 4 × 1 ring
montage, which consists of one anode surrounded by four cathodes,
each 3 cm from the anode.

High-frequency rTMS
Repetitive TMS with stimulation rates of greater than 1 Hz, which
typically has excitatory (facilitatory) effects on brain activity and
behaviour.

High-pass filter
A filter that attenuates low frequencies, while passing high frequencies
without attenuation.

Hillyard Principle
An approach to experimental design in cognitive neuroscience, in which
the physical stimuli are held constant across experimental conditions,
and only the psychological conditions are manipulated. The motivation
for the Hillyard Principle is to avoid confounds in neuroimaging
measures that can be caused by unintended differences in brain
responses caused by physical characteristics of the stimuli that are not of
experimental interest. Originally coined by Steven Luck (2005/2014).

Hodology
A term historically used for connectomics.

HRF
See ‘haemodynamic response function’.

Hub
In graph theory, a node that shows a disproportionate number of
connections with other nodes.

Human Brain Project
A large-scale, multi-site European neuroimaging initiative that aims to
develop computational tools for neuroimaging.



Human Connectome Project (HCP)
A large-scale, multi-site USA-based neuroimaging initiative that aims to
characterize brain structure, organization, and function, using MRI,
behavioural, and genetic methods, across 1000 individuals.

Hypercapnia
Elevated blood carbon dioxide levels.

Hyperoxia
Elevated blood oxygen levels.

Hypothesis
A prediction as to the outcome of an experiment, or more generally
about the nature of reality. In experimentation, hypotheses should be
generated prior to running the study and the statistics employed should
be planned to test the hypothesis.

I-wave
See ‘indirect wave’.

Impedance
The amount of opposition to current flow. Also known as ‘resistance’ in
some (alternating current) electrical systems. In EEG, impedance
between the scalp and each electrode usually represents the greatest
opposition to current flow, and so lowering scalp impedance is critical to
obtaining good quality EEG data.

Incidental finding
An unexpected finding in an experiment, not intended as part of the
study. Typically used in MRI to refer to identifying neuropathology that
was not expected (and usually previously unknown by the participant).

Independent components analysis (ICA)
A form of mathematical blind source separation, that breaks a signal into
a number of components that are statistically independent of each other.
Can be used for artifact correction and for identifying distinct signals
from within the brain.



Independent variable
A variable that is explicitly and intentionally manipulated by a
researcher in an experiment. Typically independent variables are
manipulated to determine their influence on the dependent variable.

Indirect wave (I-wave)
Effects of TMS that follow the D-wave, measured (using EEG) as
electrical activity and thought to reflect reverberating activation within
the CSN and other neural circuits connected to it.

Informed consent
The practice of informing people prior to the start of an experiment that
they will participate in, as to the procedures, risks, and options for
terminating participation in the study. Informed consent is a key pillar of
research ethics.

Inion
A scalp landmark point located at the base of the skull, along the
midline of the head from left to right.

Inter-stimulus interval (ISI)
The time between the end of one stimulus, and the onset of the next
stimulus. See also ‘stimulus onset asynchrony’.

Interaction
In experimental design and statistics, the influence of one independent
variable on the effects of another independent variable.

Interleaved MRI acquisition
A technique used in fMRI in which image acquisition is alternated with
periods in which no data are acquired. Contrasts with conventional MRI
scanning in which data are acquired continuously. Interleaved protocols
are typically used to avoid effects that can occur during MRI
acquisition, such as acoustic noise (which could interfere with
perception of auditory stimuli), or artifacts from TMS pulses.

Intermittent TBS (iTBS)
A type of repetitive TMS protocol in which triplets of pulses are



delivered at 50 Hz, with 5 Hz spacing (that is, 3 pulses 20 ms apart,
repeated every 200 ms), typically delivered separated by 10 s intervals,
over a total duration of approximately 200 s. Generally has facilitative
effects that last for approximately 30 min.

International 10–10 System
An internationally standardized system for placing EEG electrodes on
the human head. Electrode positions are determined as 10% increments
of measurements made between scalp landmarks along the anterior–
posterior and left–right dimensions of the head, allowing the positions to
scale according to the size and shape of an individual’s head.

Inverse problem
The mathematical process of determining the number, location,
orientation, and strength of the generators of a signal recorded from a
distance. In neuroimaging, this is typically the problem of determining
the origin in the brain of signals recorded from the scalp, such as with
EEG or fNIRI data – known as source localization. The inverse problem
is mathematically ill-posed, in that there are a virtually infinite number
of possible solutions given a particular pattern of scalp-recorded data.

Inverse solution
See ‘inverse problem’.

Isotropic
Equal in all directions or dimensions. In diffusion tensor imaging, refers
to equal diffusion of water in all directions. Can also be used to refer to
voxels that have the same size in all three dimensions; thus a 3 mm
isotropic voxel would measure 3 × 3 × 3 mm.

iTBS
See ‘intermittent TBS’.

Jacobian determinant
A measure derived from the Jacobian matrix that specifically captures
the volume changes, used in tensor-based morphometry.

Josephson junction



Two superconductors connected by a weak link, used to measure
magnetic field flux.

k space
The frequency-domain representation of a 2D image, obtained by a 2D
Fourier transform. Typically shown with zero frequency in the centre.

Kalman filter
An algorithm particularly suited for making predictions concerning the
future values of some measurement, based on past values, in the
presence of noise. Commonly used in predicting flight trajectories of
missiles and other objects, but can be used to correct for motion artifacts
in fNIRI data.

Kernel
The shape of a function used for smoothing or filtering.

Larmor equation
An equation relating precessional speed to magnetic field strength.

Larmor frequency
The speed of precession of an MR-active nucleus.

Laser diode (LD)
A type of light source, used in fNIRI emitters. Advantages are that they
have narrow bandwidths (yielding high accuracy) and have excellent
temporal properties. Disadvantages are that they are relatively
expensive, bulky, and are available only in certain wavelengths.

Latency
The time between two points. Used as a dependent measure in ERP
research, latency refers to the time between the event of interest and a
feature of the ERP waveform, such as a peak.

Latent component
A construct used in ERP research to describe the underlying generators
of scalp-recorded components. In ERP research ‘component’ typically
refers to scalp-recorded component; however, these can have multiple



underlying sources in the brain that have different locations and time
courses. Latent components are the time courses of these underlying
components. Typically these are not visible, except possibly through
source localization. See also ‘component’.

Lateralized readiness potential (LRP)
An ERP waveform derived from the subtraction of data from equivalent
electrode locations over the motor cortex in each cerebral hemisphere, in
the period preceding an overt motor response. Reflects brain activity
related to the planning of motor movements.

Lead field
The sensitivity patterns of magnetometers and gradiometers.

Least squares estimation
A mathematical technique, commonly used in statistics and image
processing, to minimize the differences between two values. Different
guesses as to an ideal value are tested iteratively, and the one that yields
the smallest squared difference is chosen.

Lesion-deficit method
A method of understanding the function of particular brain areas by
studying the effects of damage to that area. This method has commonly
been used clinically and experimentally in neuropsychology. See also
voxel-based lesion-symptom mapping (VLSM).

Light-emitting diode (LED)
A type of light source, used in fNIRI emitters. Advantages are that they
are low cost and it is easy to adjust light intensity. Disadvantages are
that they have relatively wide bandwidth, which can result in lower
accuracy of measurements.

Light output
A property of crystals used in scintillation detectors that determines the
strength of the output signal. Influences the spatial and energy resolution
of a PET scanner.

Line of response



In PET imaging, the lines between detector pairs which pass through the
imaging space. Valid lines of response are those that pass through the
object being imaged (such as the head).

Local minimum
In least squares estimation and other iterative mathematical processes, a
local minimum is the smallest value in a restricted (local) range of
values, but not the smallest value in the entire range.

Long-term depression (LTD)
Weakening of a synaptic connection, making a receiving neuron less
likely to generate an action potential in response to input from the
sending neuron. Opposite of LTP.

Long-term potentiation (LTP)
The strengthening of a synaptic connection between two neurons,
resulting in the receiving neuron being more likely to fire in response to
input from the sending neuron. LTP occurs when the output of the
sending neuron is followed within a short period of time by an action
potential in the receiving neuron. LTP is often described by the phrase
‘neurons that fire together, wire together’.

Longitudinal design
A type of within-subjects experimental design in which the same
individuals are tested at multiple points in time, typically using the same
assessments at each time point.

Longitudinal plane
In MRI, the plane defined by the strong magnetic field of an MRI
scanner.

Low-frequency rTMS
Repetitive TMS with stimulation rates of 1 Hz or less, which typically
has inhibitory effects on brain activity and behaviour.

Low-pass filter
A filter that attenuates high frequencies, while passing low frequencies
without attenuation.



Luminescence
Light emission by a substance, not caused by heating.

Magnetic field map
A MRI image acquired through a specialized pulse sequence, to map
how the magnetic field of the MRI scanner is altered by the presence of
a particular object, such as a head. Can be used to correct for distortions
in EPI images.

Magnetic flux
Change in magnetic field strength.

Magnetic moment
A quantity representing the strength and orientation of a magnet or
magnetic field, or a magnetic dipole.

Magnetic resonance imaging (MRI)
A technique for imaging the structure or function of a part of the body
through the use of a strong magnetic field, additional magnetic field
gradients, and radio frequency (RF) energy.

Magnetic susceptibility
A measure of a material’s magnetic properties, which is positive if the
material is paramagnetic. Because paramagnetic materials create
magnetic fields, magnetic susceptibility is the basis of the T2* contrast
in fMRI BOLD imaging. As well, magnetic susceptibility artifacts can
be created in some types of imaging, such as EPI, if a voxel contains a
mixture of materials with very different magnetic susceptibility, such as
occurs between the sagittal sinuses and the orbitofrontal part of the
brain, and between the ear canals and the inferior temporal lobes.

Magnetically permeable
A property of a material that allows magnetic fields to flow through it.
Magnetically permeable metals are used in passive shielding of MEG
systems, to deflect external magnetic fields around, rather than into, the
room.

Magnetoencephalography (MEG)



A technique that measures the flux (change) in magnetic fields generated
by the flow of electrical current in the brain.

Magnetometer
A device used to measure magnetic field flux.

Main effect
The effect of manipulating a single independent variable, independent of
the effects of manipulating any other variable.

Masking (fMRI analysis)
An operation in which a portion of an image, such as an fMRI activation
map, is included in, or excluded from, further analysis. For example, a
mask defined by the shape of the brain can be used to exclude voxels
outside the brain from further analysis.

Mass univariate analysis
An approach to statistical analysis typically used with neuroimaging
data, such as EEG or fMRI, that involve large numbers of measurements
at each time point, from multiple locations. The data from each location
are analysed in the same way, but independently of each other. Contrast
with multivariate analyses, in which data from multiple locations are
analysed simultaneously in a single model, or ROI analyses in which
data are collapsed over spatially defined regions.

Matched filter theorem
A theorem in signal processing stating that the signal-to-noise ratio of
data can be improved by processing the data with a filter that matches
the signal in the data. In other words, correlating the data with the shape
of the expected signal will help isolate that signal. Informs the choice of
a kernel size for spatial smoothing in fMRI preprocessing.

MBLL
See ‘modified Beer–Lambert law’.

Mean amplitude
The average electrical potential over a specified time period. A common
dependent measure in ERP research.



Mental chronometry
The practice of measuring reaction times (RTs) to understand cognition.

MEP
See ‘motor evoked potential’.

MEP input–output curve
A plot of the relationship between stimulation intensity and MEP
amplitude.

Meso-maps
Maps of the brain at the ‘meso’ scale, typically on the order of
centimetres, based around distinct brain regions that may be defined
functionally, anatomically based on cytoarchitecture or
myeloarchitecture, or some combination of these sources of information.

Minimum norm estimation (MNE)
A distributed source solution for the inverse problem in source
localization, which assumes that the correct solution is the one that
minimizes the overall difference between the data and the model, while
keeping the average amplitudes of the entire set of dipoles to a
minimum. Modern implementations of MNE thus employ an additional
regularization, a parameter which ‘penalizes’ shallow sources in favour
of deeper ones.

Mixed designs
Experimental designs that contain both between- and within-subjects
manipulations.

Model-based tract segmentation
An approach to tractography in which pre-defined models of white
matter tracts are used as a starting point to estimate the true shape and
centre of an individual’s tract.

Modified Beer–Lambert law (MBLL)
A modification to the Beer–Lambert law required for its application to
fNIRI. The MBLL takes into account the scattering of light in biological
tissue, and uses the absorption coefficients of oxy-Hb and deoxy-Hb,



allowing measurement of the concentrations of oxyhaemoglobin and
deoxyhaemoglobin.

Modularity (graph theory)
In graph theory, a property whereby groups of brain areas that show
high correlations with each other are largely separated from other such
densely interconnected networks.

Molecular lattice
The molecular environment surrounding an atom or molecule. In MRI,
affects T1 recovery and T2 decay times.

Monophasic pulse
A shape of TMS pulse that quickly reaches its intensity peak and then
returns to baseline (zero voltage).

Morphometry
The study of the size and shape of brain regions.

Motion correction
A preprocessing step that can be applied to various forms of
neuroimaging data that may contain artifacts caused by head motion,
with the aim of reducing these artifacts.

Motor evoked potential (MEP)
The EMG response elicited when a muscle contracts.

MR-active nucleus
Any atom that has a magnetic moment and angular momentum, and
could therefore be detected using MRI.

Mu metal
A special blend of metals specifically designed to deflect magnetic
fields, composed primarily of nickel and iron, with copper and
chromium or molybdenum. Used as a form of passive shielding for
MEG systems.

Multimodal



The use of more than one neuroimaging and/or neurostimulation
technique (modality) to address a particular experimental question.
Multimodal studies may use the techniques simultaneously (for
example, recording EEG in an MRI scanner, while fMRI data is also
acquired), or asynchronously (for example, having the same participants
perform the same task in two separate sessions, one while EEG is
recorded and another while fMRI is performed).

Multiple comparison correction
Any statistical approach aimed at controlling for Type I error (false
positives) that might occur due to performing a large number of
statistical tests, as in mass univariate analysis.

Multiplexing
A technique in signal transmission that allows decoding of multiple,
independent signals from a single data stream. See also, ‘time
multiplexing’, ‘frequency multiplexing’, and ‘code multiplexing’.

Multivariate analysis
A statistical analysis that models the effect of independent variables on
multiple dependent variables simultaneously. In fMRI analysis,
multivariate approaches are often contrasted with mass univariate
approaches to analysis, in that multivariate analyses simultaneously
consider the activation levels at all voxels within an ROI (or the whole
brain) rather than analysing the time course of each voxel individually.

Myelin
A sheath surrounding the axons of neurons that is high in fat content,
and serves to electrically insulate the axons. This speeds electrical
conduction along the axon and increases the distance that a signal can be
carried. In the central nervous system, myelin is formed by
oligodendrocytes, a type of glial cell. In the peripheral nervous system it
is formed by Schwann cells.

Myeloarchitecture
An description of the structure of the cerebral cortex (typically
consistent within a region of the cortex) based on the type, density, and
distribution across cortical layers of local and long-range connections



between neurons.

Nasion
A scalp landmark point located at the bridge of the nose (where the top
of the nose meets the forehead).

Net magnetization vector (NMV)
The net magnitude and orientation of all the protons in a particular
sample.

Network activity-dependent model
An extension of the activity-dependent model of tDCS, suggesting that
the effects of tDCS to a brain area may be influenced by activity in other
brain areas, and may also influence activity levels in distant brain areas.

Network-based correlation
An approach to functional connectivity analysis where the time course
from each voxel (or more commonly, each ROI) in the image is
correlated with the time course from every other voxel or ROI. Often
subsequently analysed with graph-theoretical approaches. Contrast with
‘seed-based correlation’.

Network discovery
Any analytical approach aimed at identifying and characterizing
networks without explicit prior knowledge or hypotheses regarding
which areas are connected.

Neural adaptation
The phenomenon that neurons tend to show reduced firing rates upon
repeated presentation of stimuli that they are sensitive to. See also,
‘fMRI adaptation’.

Neuroethics
The study and application of ethical principles in neuroscience. This
includes research ethics pertaining to neuroscience studies, as well as the
ethical implications of neuroscience research and its applications.

Neurohormone



A type of hormone that has effects on the nervous system.
Neurohormones are generally produced by neuroendocrine cells at some
distance from the cells that they influence, and are transmitted to their
targets through the blood.

Neuromodulator
A type of chemical that serves a signalling function in the nervous
system. Neuromodulators work similarly to neurotransmitters in that
they bind to specific receptors to modulate cellular membrane potential
or other functions. However, the action of neuromodulators is generally
slower and longer lasting than neurotransmitters, and may have less
localized effects.

Neuro-navigation
In NIBS, the technique of targeting stimulation to a particular brain area
based on relating an anatomical image of the brain to the position of the
stimulation device.

Neurons
The cells of the nervous system that receive electro-chemical input,
conduct electrical signals, and generate action potentials as output.

Neuroprivacy
The branch of neuroethics concerned with safeguards and limitations of
privacy related to an individual’s brain activity and other neuroscientific
measures.

Neuropsychology
The study of brain–behaviour relationships. As commonly used,
neuropsychology refers specifically to work with people who have
suffered brain damage (through injury or disease), and the process of
relating patterns of damage to behavioural and cognitive deficits. The
term may also refer to clinical practice in which people with brain
damage are assessed and/or treated for functional deficits.

Neurostimulation
A technique that stimulates neural activity. Non-invasive forms include
transcranial magnetic stimulation (TMS) and transcranial electrical



stimulation (tES).

Neurotransmitter
A chemical that is used by neurons to communicate with other neurons.
Neurotransmitters are released from synaptic vesicles on ‘sending’
neurons, typically in response to an action potential, and form temporary
bonds with receptors located on ‘receiving’ neurons (typically on the
dendrites).

NIBS
See ‘non-invasive brain stimulation’.

NMV
See ‘net magnetization vector’.

Node
In graph-theoretical analysis of neuroimaging data, a node corresponds
to a brain region, which is assumed to have a distinct functional role.

Noise
A generic term used to refer to any features of recorded data that are not
of experimental interest, or are otherwise undesirable.

Noise normalization
A regularization used in source localization which recognizes that noise
levels may not be the same at every dipole across the surface of the
brain, and converts the data to z statistics by dividing the estimated
strength by the variance of that estimate, at each dipole individually.

Non-invasive brain stimulation (NIBS)
Techniques for stimulating the brain non-invasively, including
transcranial magnetic stimulation and transcranial electrical stimulation.

Non-linear registration
Algorithms used in spatial normalization that involve mathematically
nonlinear functions, such as 2D sine wave gratings. Generally result in a
better fit than linear methods, and thus less inter-individual variability in
the residual difference between shapes of the individual and reference



(template) brains.

Nonparametric statistics
A general approach to statistics in which, rather than assuming a specific
distribution of data values a priori, the distribution is estimated from the
data themselves. See also ‘bootstrapping’ and ‘randomization’.

Notch filter
A filter that attenuates a narrow range of frequencies, while passing
lower and higher frequencies without attenuation. The opposite of a
band-pass filter.

Nyquist frequency
The maximum frequency that can be recorded without aliasing, given
the sampling rate. Formally the Nyquist frequency is half the sampling
rate, but in practice it is advisable to filter out frequencies higher than
one-third of the sampling rate.

Ocular artifacts
Artifacts in neuroimaging data (such as EEG or MEG) caused by the
eyes. These include eye movements and blinks.

Offline inhibitory protocol
A type of repetitive TMS protocol in which inhibitory rTMS is delivered
for a period of time, typically while the participant is not performing a
task, and then the effects of TMS on task performance are assessed some
period of time after stimulation.

Offline
In the context of neuroimaging, ‘offline’ typically refers to tasks or
measurements performed after something else has happened. For
example, in NIBS, offline protocols involve delivering stimulation while
the participant is not performing any task, and then later measuring task
performance after stimulation has ended.

Offline facilitatory protocol
A type of repetitive TMS protocol in which facilitative rTMS (such as
high-frequency rTMS, or iTBS) is delivered for a period of time,



typically while the participant is not performing a task, and then the
effects of TMS on task performance are assessed some period of time
after stimulation.

Online
In the context of neuroimaging, ‘online’ typically refers to tasks or
measurements performed while something else is happening. For
example, in NIBS, online protocols involve stimulation while the
participant is performing a task.

Online inhibitory protocol
A type of repetitive TMS protocol in which inhibitory rTMS is delivered
in short bursts while the receiver is performing some task, to assess the
immediate effects of TMS on task performance.

Open field
A theoretical construct used to describe generators of EEG signal. An
open field comprises many neurons aligned in parallel, whose cellular
membrane potentials are fluctuating synchronously. Open field
configurations of neurons are necessary to generate a measurable EEG
signal at a distance.

Operational definition
A definition of a term for a particular purpose.

Optical tomography
Source localization approaches to fNIRI. See ‘tomographic imaging’.

Optically pumped magnetometers (OPMs)
An alternative to SQUIDs for measuring magnetic fields. OPMs use a
laser beam to polarize ions, which are depolarized by magnetic fields.
Have been used in prototype MEG systems and have the advantage of
not requiring supercooling, resulting in a wearable MEG device.

Optodes
In fNIRI, the sensors placed on the head, including both emitters and
detectors.



Ordinal scale
A scale, such as a rating scale, in which a fixed and pre-determined set
of response options, which vary along a single dimension, are available.

Oscillatory tDCS (o-tDCS)
A form of tES in which a sinusoidally oscillating current is used. In
contrast to tACS, where the current oscillates between positive and
negative intensities at both electrodes, in o-tDCS the current oscillates
between zero and its maximum positive value at the anode, and between
zero and its maximum negative value at the cathode.

Outcome measure
See ‘dependent variable’.

Oxygen extraction fraction
The proportion of oxygen extracted from blood when the brain is in a
resting state.

Pair production
Conversion of a photon to a pair of electrons. In PET imaging, results in
reduced signal as the photon is not detected by the scanner.

Paired-pulse TMS (ppTMS)
A TMS protocol involving a pair of single pulses that can either be
delivered to the same location with a fixed interval, or to two different
brain regions to investigate inter-regional connectivity.

Parallel component (of magnetic field)
In MEG, the component of the magnetic field emanating from the head
that is oriented parallel to the scalp.

Parallel imaging
A form of MRI acquisition in which multiple RF receiving coils are
used simultaneously to acquire the data. Can decrease the required time
for a scan, and/or increase image quality.

Paramagnetic
Material having magnetic properties, in that it is weakly attracted to an



external magnetic field, and forms its own weak, local magnetic field
aligned with the external field. This causes small changes in the local
magnetic field strength. The fact that deoxyhaemoglobin is
paramagnetic, while oxyhaemoglobin is not, leads to the BOLD effect
that is the basis of the fMRI signal.

Parametric design
An experimental design that investigates how the dependent variable is
influenced by changes across a range of levels of some independent
variable. The independent variable in such designs is typically
continuous, rather than factorial.

Partial volume effects
In brain imaging, artifacts or errors that can occur when a voxel contains
more than one type of tissue or other material, such as grey and white
matter, or grey matter and CSF.

Passive electromagnetic shielding
A form of electromagnetic shielding, such as a Faraday cage, that works
solely due to its shape and material composition. Contrast with ‘active
shielding’.

Peak amplitude
The maximum amplitude of a signal within a specified time window. A
common dependent measure in ERP research.

Peak latency
In ERP research, the time between the onset of an event, and the peak
positive or negative value in a particular time range. The time range is
typically specified to capture a particular component, such as the P1.

Peak-to-peak amplitude
The difference between the maximum positive and negative electrical
potentials within a specified time range, typically two temporally
adjacent peaks in an ERP waveform. Sometimes used as a dependent
measure in ERP research.

PER



See ‘positron-emitting radioligand’.

Peri-auricular points
Comparable scalp landmark points on the left and right sides of the
head, in or around the ears. Commonly used in measurements for the
International 10–10 System.

Permutation distribution
In nonparametric statistics, bootstrapping and/or randomization are used
repeatedly to generate hundreds or thousands of samples (permutations)
of the data. The permutation distribution is the resulting distribution of
values from all of these permutations, and is used to determine the
threshold values for statistical significance.

Perpendicular component (of magnetic field)
In MEG, the component of the magnetic field emanating from the head
that is oriented perpendicular to the scalp. Also called the radial
component.

Phase
The position in time of a particular point within an oscillating
waveform. For example, the location of the positive peaks in a
waveform. Often used to describe the relative offset of peaks of waves
of the same frequency.

Phase delay
In frequency-domain fNIRI, the time delay between the phase of the
light received at a detector after passing through the head, and the phase
of a reference beam of light that was transmitted from the emitter
through a vacuum tube with known light transmission properties, to a
detector.

Phase encoding gradient
In MRI, the gradient applied along one of two spatial dimensions within
a slice, perpendicular to the slice and frequency encoding gradient
directions. Determines the location of the readout along the y axis in k
space.



Phase locking
See ‘phase synchronization’.

Phase roll
In MRI, the effect of applying a magnetic field gradient on the
precessional phase of protons, resulting in a sinusoidal variation in phase
over space along the gradient direction.

Phase synchronization
Alignment of the phase of different waveforms or other oscillation
patterns, such as the precession of protons.

Phosphene
A form of visual hallucination in which one experiences the visual
perception of light, without that light entering the eye. Often takes the
form of small, bright spots that may move. Colloquially referred to as
‘seeing stars’. Can be induced by TMS delivered to parts of the visual
cortex.

Photocathode
A material that absorbs photons of specific energy, and produces
photoelectrons as a result.

Photodetector
A device used for measuring light, typically by turning light into
electrical current.

Photodiode
A type of photodetector based on semiconductor diodes.

Photoelectron
An electron produced when light shines on a material.

Photomultiplier tube (PMT)
A type of photodetector that amplifies the amount of light it receives via
a series of photocathodes.

Photon



A particle of light. Pairs of photons produced by annihilation of a
positron are what is detected to form the PET imaging signal.

Physiological measures
In cognitive science and related fields, physiological measurements refer
to measurements of non-neural physiological parameters that are
influenced by psychological states. These include heart rate, respiration,
and skin conductance, and generally reflect the level of arousal of the
individual.

Placebo effect
An effect caused by a treatment that is due to the individual’s perception
that they received the treatment, rather than being caused by the
chemical or physical effects of the treatment itself.

Planar gradiometer
A gradiometer constructed from two conducting loops wound in
opposite directions and equidistant from the scalp. In MEG, planar
gradiometers measure magnetic flux laterally across the scalp (the
parallel component).

PMT
See ‘photomultiplier tube’.

Polarization
A state in which the amount of electrical charge differs between two
locations, such as between the inside and outside of a neuron, or
between the body and axon of a neuron.

Polyphasic pulse
A shape of TMS pulse that has multiple peaks (phases).

Positron
A subatomic particle with a positive charge, created when a proton
converts to a neutron.

Positron emission tomography (PET)
A technique that measures the concentration of radioactive substances



(positron-emitting radioligands, or PERs) in the brain. PERs can be
made for a variety of markers, including blood oxygenation, glucose
metabolism, or neurotransmitter distribution.

Positron-emitting radioligand (PER)
A radioactive tracer used in positron emission tomography, composed of
a molecule that binds to a desired target receptor or is consumed in a
target physiological process, combined with a radioisotope that has a
short half-life and is otherwise safe to use.

Post hoc
Latin for ‘after the fact’. In experimentation, the term is typically used to
refer to procedures done after the data have been collected and partially
analysed, and which may therefore be biased by the researcher’s
observations or interpretations of the data. Often contrasted with the
term ‘a priori’.

Post hoc test
In statistics, a test that is performed ‘after the fact’ or as a follow-up to
further investigate or break down a significant main effect or interaction.

Potential (electrical)
The amount of electrical charge that could flow from one location to
another.

Power (signal processing)
In frequency-domain representations, power is the amplitude of the
signal at a given frequency.

Power (statistical)
See ‘statistical power’.

PPI
See ‘psychophysiological interactions’.

ppTMS
See ‘paired-pulse TMS’.



Precession
The changing orientation of the axis of a spinning object, such as a
proton. The ‘wobble’ of a spinning top is an example of precession.

Preprocessing
Steps performed on data to improve the signal-to-noise ratio and thus
make it more likely to detect any significant effect of interest that is in
the data.

Primary auditory cortex (A1)
The area of the superior temporal gyrus that receives primary auditory
input. Cells primarily respond to basic auditory features such as
frequency. Has a tonotopic organization, with cells tuned to similar
frequencies being located close to each other.

Primary motor cortex (M1)
The area of the cerebral cortex, located on the post-central gyrus, that
serves as the primary site for controlling voluntary motor output.

Primary visual cortex (V1)
The area of the occipital lobe of the cerebral cortex that receives visual
input from the retina, via the thalamus. Contains cells that respond to
largely simple features such as line orientation and brightness. Has a
retinotopic organization. The organization of V1 is ‘crossed’, such that
the right hemisphere receives input from the left visual field, and vice-
versa.

Principal components analysis
A mathematical technique used to decompose data into components that
are maximally uncorrelated from each other.

Probabilistic atlas
In brain imaging, an atlas or definition of discrete brain regions in which
each voxel of the brain is not assigned a single label, but rather is
associated with a number of probability values defining the likelihood,
across individuals, that the voxel is part of a particular brain region.
Developed to account for inter-individual variability in relationships
between cytoarchitecture and gross sulcal/gyral anatomy.



Probabilistic tractography
An approach to tractography that involves running streamlining multiple
times using different pseudo-random variants of the direction of the
principal eigenvector, in an attempt to compensate for noise in
estimating the true principal direction of diffusion in that voxel.

Projectome
Similar to the connectome, the projectome is a complete description of
the structural connections between neurons in the brain. The projectome
is distinguished from the connectome by describing not only the
endpoints of each connection, but also the direction that information
flows along the connection. In practice, the term may be used to refer to
the complete set of projections that are resolvable at a certain level of
resolution, or by a particular technique.

Prospective design
See ‘longitudinal design’.

Psychophysics
A special class of behavioural research dealing with sensation and
perception, focused on measuring people’s sensitivities to variations
along stimulus dimensions (such as brightness or loudness). A common
approach in psychophysics is to determine an individual’s threshold for
detection of some stimulus or property.

Psychophysiological interactions (PPI)
An approach to effective connectivity analysis that involves determining
whether the correlation in BOLD activity between two regions (or more
generally, between one region and the rest of the brain) changes with an
experimental manipulation.

Psychophysiological measures
See ‘physiological measures’.

Publication bias
The observation that experiments resulting in statistically significant
results are more likely to be accepted for publication in peer-reviewed
journals than non-significant ones. The result of publication bias is that



valid experimental results that do not yield statistically significant
results are less likely to be published, resulting in an uneven reporting of
data in the literature. This is one factor proposed to have resulted in the
replicability crisis, because even if the result of an experimental
manipulation does not yield statistically significant results in the
majority of experiments, only the significant results may be reported.

Pulse sequence
In MRI, the sequence of events used to generate and record a signal.
This typically includes the timing and amplitude of the RF pulse,
gradients, and echo (readout).

Pupillometry
A technique in which the diameter of the pupil (the centre of the eye that
lets light into the retina) is measured. Pupil diameter is influenced by
arousal, and so pupillometry may be considered a type of
psychophysiological measure.

Pure insertion
The assumption that variables do not interact, and thus if one variable is
manipulated, any effect of the manipulation can be attributed to that
variable.

Pyramidal cell
A highly abundant type of neuron in the cerebral cortex that supports
advanced cognitive functions. Pyramidal cells are considered a
predominant source of signal measured by many non-invasive
neuroimaging techniques, including EEG and fMRI.

Quadripulse stimulation
A TMS protocol that involves bursts of four pulses in rapid succession
separated by longer (for example, 5 s) periods.

Radio frequency
The frequency of waves in the radio range (20 KHz–30 GHz).

Randomization (statistics)
A technique in nonparametric statistics to estimate the true distribution



of values in a population, from a sample of the population. Unlike
bootstrapping, all the data are used, but are randomly reassigned to
different conditions to estimate the distribution of values if there was no
true effect of experimental condition.

Rating scale
A type of behavioural measure in which an individual selects one
response from a range of options that scale along a particular dimension.
Can be analogue or ordinal.

Reaction time (RT)
A measure of the amount of time it takes a human (or other animal) to
generate an overt motor response to some stimulus. Also called response
time. The practice of measuring RTs to understand cognition is often
called mental chronometry.

Receptor
A chemical structure on a cell membrane that causes a change in cellular
function when a neurotransmitter binds to it. Receptors are specific to
particular neurotransmitters.

Reference electrode
In EEG, the reference electrode serves as the basis for determining the
electrical potential at the active electrode, by determining the potential
difference between the active and reference electrodes. Thus the location
of the reference electrode in part determines the magnitude of the
potential recorded at the active electrode. After data collection, EEG
data can be re-referenced to a different electrode from that used as the
reference during recording.

Refresh rate
The frequency with which information is updated. Commonly used with
reference to computer displays (monitors) to describe how rapidly the
screen image can be changed. The refresh rate of the monitor determines
the shortest possible duration of a visual stimulus in an experiment.

Region of interest (ROI)
A defined area of space, commonly used to group or simplify



measurements in neuroimaging data. This is often useful in reducing the
total number of statistical tests performed. For example, an EEG
montage of 64 electrodes covering the scalp might be clustered into nine
ROIs along anterior–posterior and left–right dimensions. In fMRI, ROIs
may be defined based on anatomical structures, or functionally based on
activation in a ‘functional localizer’ task.

Regularization
In mathematics, the application of constraints to help solve an ill-posed
problem (such as the inverse problem) or to prevent over-fitting.

Relaxation
In MRI, the process by which the net magnetization vector returns to
alignment with the longitudinal plane, and precessional phase
desynchronizes. Occurs following excitation.

Repetition time (TR)
The time between subsequent RF pulses in an MRI scan.

Repetitive TMS (rTMS)
A TMS protocol in which a series of pulses are delivered in rapid
succession, at a pre-determined frequency. The effects of the series of
pulses, rather than of any individual pulse, are of experimental interest.

Rephasing gradient
In DWI, a magnetic field gradient that is applied some time after a
dephasing gradient, with equal slope but opposite direction to the
dephasing gradient. If water molecules have not diffused, this should
result in perfect cancellation of the phase roll caused by the dephasing
gradient. When water molecules diffuse, however, a reduction in the
DWI signal results.

Replicability crisis
A term used to refer to the observation that many research findings
published in peer-reviewed scientific journals cannot be replicated by
other researchers (or even the same researchers) using the methods
described in the publication. See also ‘publication bias’.



Replicable
Repeatable. In experimentation, careful and accurate documentation and
reporting of all procedures is necessary to ensure that results can be
replicated.

Representational similarity analysis (RSA)
A form of multivariate analysis often applied to fMRI or other types of
neuroimaging data. Uses condition-rich or time-continuous designs
combined with explicit models of how information in the stimuli or
tasks might be represented by the brain, and examines the degree of
similarity in multivariate activation patterns across stimuli as a function
of stimulus or model properties.

Resonance
The transfer of energy from one material to another when they oscillate
at the same frequency, resulting in greater amplitude of oscillation of the
receiving material.

Response contingency
A situation, such as in behavioural research, where individuals are
required to make different responses to different stimuli.

Resting motor threshold (rMT)
The intensity of a TMS pulse that elicits an MEP on 50% of trials, when
the muscle is not contracting. Often used to determine stimulation levels
for TMS delivered to other brain areas.

Resting state
A state often used as a baseline condition in neuroimaging studies, or
which is studied in its own right to understand physiological processes
that occur when people lie still without performing any specific task, or
experiencing stimuli other than that provided by the ambient
environment of the neuroimaging device.

Resting state fMRI (rs-fMRI)
A type of fMRI design in which no experimental tasks or stimuli are
used, but rather participants are simply instructed to lie still, either with
their eyes open or closed. See also ‘resting state’.



Retinotopic
An organizational property of numerous cortical regions, by which
spatial locations in the cortical region map to locations on the retina (and
thus in the visual world) in a spatially consistent way. Thus nearby
locations in the retina would map to nearby locations in the cortical
region.

Reverse inference
In neuroimaging, the practice of interpreting the activation of a
particular brain area as reflecting the operation of a particular cognitive
process, based on prior literature describing the cognitive processes
associated with activation of that brain region. Reverse inference can be
useful, but may be problematic if the past literature is not systematically
surveyed, or if the brain region in question is associated with a wide
variety of cognitive operations.

RF
See ‘radio frequency’.

Right-hand rule
See ‘Ampère’s circuital law’.

Ripple frequency
Frequencies in the range of 100–250 Hz which have been recorded from
hippocampus associated with memory encoding.

rMT
See ‘resting motor threshold’.

Rolloff
See ‘transition band’.

rs-fcMRI
See ‘Resting state fMRI’.

rs-fMRI
See ‘Resting state fMRI’.



RSA
See ‘representational similarity analysis’.

rTMS
See ‘repetitive TMS’.

Sagittal plane
In neuroimaging, the sagittal plane is defined by the anterior–posterior
and inferior–superior dimensions, and is perpendicular to the left–right
dimension.

Sampling rate
In data acquisition, the frequency with which the data are read by the
data acquisition device and stored. Typically reported in samples per
second (Hertz).

Saturation
In EEG, a situation where the signal entering the amplifier is greater
than the range of electrical potentials it can handle. This may occur due
to artifacts such as from TMS pulses, and results in blocking.

SBCT
See ‘surface-based cortical thickness’.

Scintillation detector
A specialized type of light detector used in PET imaging. Made of
crystals whose properties determine factors such as sensitivity and
temporal resolution.

Seed-based correlation
An approach to functional connectivity analysis where the time course
from each voxel in the image is correlated with the time course from a
single ‘seed’ voxel or ROI. Contrast with ‘network-based correlation’.

Segregation
In brain mapping, segregation is the delineation of distinct areas of the
brain on the basis of their structure and/or function.



Sensory artifacts
When performing TMS in or near an MRI scanner, artifacts in the MR
image associated with the individual’s sensory perceptions of the TMS
pulse, including the sound and ‘tapping’ sensation, as well as possible
involuntary muscle contractions.

Sham stimulation
In NIBS, an activity designed to make the receiver (and possibly
experimenter) think that stimulation is being delivered, when in fact it is
not. Used to control for placebo and demand characteristic effects.

Shimming
The process of adjusting the magnetic field around an object, such as the
head, to make the magnetic field homogenous at the start of an MRI
scan. Can be used to correct for magnetic susceptibility artifacts.

Sievert (Sv)
A unit for quantifying radioactivity absorbed by the body that includes a
weighting factor that accounts for differences in biological risk between
different types of radiation (such as X-rays versus gamma rays). The
sievert is commonly used in safety guidelines for radioactive exposure.

Sigmoid
A s-shaped function that describes various phenomena, such as the
probability of a neuron firing given an input, and psychophysical
thresholds for detecting stimuli. The hallmark of a sigmoidal function is
that at the low end of input intensity, there is little response, but in the
‘optimal range’ for the function, small changes in input strength produce
disproportionately larger changes in the response. Then at some point,
the response saturates and increased input strength produces little
change in response.

Signal-to-noise ratio (SNR)
The relative amounts of signal and noise in a measurement. In general,
‘signal’ refers to the quantity whose measurement is desired (such as
brain activity related to an experimental manipulation) and ‘noise’ refers
to any other source of variance in the measurements (including, in
neuroimaging, both brain activity not relevant to the experimental



manipulation, and other sources).

Silent period (SP)
The period immediately after an MEP is evoked by a TMS pulse to the
motor cortex, when noise in EMG recordings from the targeted muscle
is suppressed. This suppression lasts for hundreds of milliseconds, and
the duration of the SP can vary depending on the state of the subject and
the experimental conditions, making SP duration a variable of interest in
many studies.

Silicon photomultiplier
A relatively recent innovation in photodetector technology, combining
advantages of avalanche photodiodes with the single-photon counting
abilities of photomultiplier tubes.

Sine wave grating
A 2D version of a sine wave, which appears as greyscale stripes.

Single-pulse TMS
A TMS protocol in which a single isolated pulse is delivered, typically
separated by many seconds, or longer, from any subsequent pulse, and
in which the effects of each single pulse are of experimental interest.

Skeletonization
A technique used in tractography that reduces the normalized data to a
white matter ‘skeleton’ derived from the averaged, normalized FA maps
of all of the participants in a particular analysis.

Skin potential
A slowly changing electrical potential caused by changes in the
conductivity of the skin. Commonly observed in EEG data when scalp
impedance is not sufficiently low, or when electrical conductivity along
the skin increases, for example due to sweat.

Slice (MRI)
A 2D matrix of voxels representing MRI data in a specific plane through
the body.



Slice selection
A step in an MRI pulse sequence in which a gradient is applied to vary
the Larmor frequencies of protons along the slice direction of the
intended image.

Slice selection gradient
In MRI, the gradient along the plane defining the slices of the image.
Typically turned on during excitation.

Slow optical signal
In fNIRI, a signal that shows relatively slow changes related to
stimulation or task performance, and reflects the BOLD response.

Small-world properties
In graph theory, a type of organizational structure that consists of a
number of densely interconnected modules (sub-networks) which are
connected globally through a set of short paths (that is, any given node
is linked to any other one through a relatively low number of intervening
nodes).

Soma
The body of a neuron.

SP
See ‘silent period’.

Spatial derivative
A mathematical computation that represents the slope, or rate of change,
over space. Also called a spatial gradient.

Spatial frequency
Frequency in two dimensions, such as of a sine wave grating.

Spatial normalization
The process of changing the shape of an individual brain to match the
shape of another. Commonly applied to MRI scans, and other spatially
defined neuroimaging data, to adjust the shapes and sizes of all the
individual brains in a dataset to match a standard template brain’s shape,



allowing averaging of the data across individuals.

Spatial resolution
In the context of brain imaging or behavioural techniques, spatial
resolution refers to the sensitivity of the technique to differences across
space. Higher spatial resolution means that information can be obtained
from smaller units of space.

Spatial smoothing
Applying a spatial filter to an image. Typically performed as an fMRI
preprocessing step, using a Gaussian kernel, to improve the signal-to-
noise ratio of the data. See also ‘matched filter theorem’.

Spectrophotometry
A technique for determining measuring the amount of light reflected by,
or transmitted through, a material. Used in biochemistry to determine
the concentration of a substance.

Spherical surface-based normalization
An algorithm used in spatial normalization in which the cerebral cortex
is represented mathematically as a continuous 2D surface, inflated into a
spherical shape, and then aligned with a reference (template) brain by
matching the size, location, and orientation of major sulci and other
gross anatomical features.

Spiral imaging
An MRI pulse sequence sometimes used in fMRI, in which k space is
completely sampled with every excitation. This is done by traversing a
spiral path through k space. Compared to EPI, spiral imaging is less
physically demanding on magnetic gradient hardware because the
orientation of the gradients change slowly and continuously in a
sinusoidal fashion, compared with the rapid switching of directions of
the phase encoding gradient in EPI.

Staircase method
A method in psychophysics in which some stimulus property is
systematically varied in order to determine the person’s psychophysical
threshold. In the staircase method, intensity is initially set below the



expected threshold (making it undetectable), and then raised on
subsequent trials until the participant can reliably detect it. Then, the
staircase direction is reversed and the stimulus intensity is systematically
lowered again until the participant can no longer detect it. This reversal
process is repeated several times, and the threshold value is typically set
to be the intensity level at which the person is able to accurately make
the detection/discrimination 50% of the time.

Standardized low-resolution brain electromagnetic tomography
(sLORETA)

An approach to source localization that uses noise normalization.

Static artifacts
When performing TMS in or near an MRI scanner, artifacts in the MR
image associated with the presence of metal in and near the MRI
scanner.

Statistical power
The likelihood of detecting a statistically significant difference, given a
particular experimental effect size, variance, and sample size, if the
difference actually exists.

Stimulus onset asynchrony (SOA)
The time between the onset of one stimulus, and the onset of the next
stimulus. See also ‘inter-stimulus interval’.

Stochastic resonance
A phenomenon used to describe the effects of tES. It is a non-specific
form of resonance, in which noise is input to the system resulting in
increases in activity within the system that are proportionate to pre-
stimulation levels of activity. Thus in a case where some neural
populations are firing relatively strongly compared to other populations
(such as when many dots are moving coherently in one direction, while
others move randomly), neurons that were near threshold may be
‘nudged’ above threshold, whereas the activity of competing neurons
will remain below threshold. However, in a situation where only one
population of neurons is active (such as when dots are all moving in one
direction), stochastic resonance can increase the level of activity of task-



irrelevant neurons.

Stopping power
A property of crystals used in scintillation detectors that describes what
proportion of photons trigger a response. Influences the signal-to-noise
ratio of a PET scanner.

Streamlining
A process used in tractography that involves starting from a particular
voxel and identifying which surrounding voxel’s principal eigenvector is
best aligned with the principal eigenvector (the strongest direction of
diffusion) of this voxel. This is repeated at the next voxel, effectively
‘connecting the dots’ to determine the most likely path of a fibre tract
given the data.

Subtraction method
An experimental approach based on the premise that if all possible
variables are held constant, except for one which is manipulated, then
the difference in the dependent measure represents the effect of the
experimental manipulation. Depends on the assumption of pure
insertion.

Sulcus
A fissure or concave fold on the surface of the cerebral cortex. See also
‘gyrus’.

Superconducting quantum interference device (SQUID)
A very sensitive magnetometer, made superconducting through cooling
to a very low temperature, and involving Josephson junctions.

Surface-based cortical thickness (SBCT)
A morphometric method aimed at characterizing cortical thickness.
Analysis is performed using data in surface-based format, where the
thickness of the grey matter is derived as the distance from the outer
surface of the white matter to the CSF. Contrast with voxel-based
cortical thickness.

Sv



See ‘sievert’.

Sylvian fissure
The deep fissure separating the temporal lobe from the frontal and
parietal lobes.

Synapse
The junction between two neurons, where communication can occur
between the neurons via chemical messengers, including
neurotransmitters and neuromodulators.

T1 recovery
In MRI, the component of relaxation describing the return of the net
magnetization vector to the longitudinal plane.

T1 relaxation time
In MRI, a property of a material, given a particular magnetic field
strength, describing the time it takes for 63% of the longitudinal
relaxation to recover following excitation.

T2 decay
In MRI, the component of relaxation describing the loss of phase
coherence.

T2 relaxation time
In MRI, a property of a material, given a particular magnetic field
strength, describing the time it takes for a 63% reduction of the NMV in
the transverse plane following excitation.

T2* decay
Rapid dephasing following MR excitation, caused by small, local
inhomogeneities in the magnetic field, which can be caused by magnetic
properties of some molecules as well as by the fact that magnetic field
inhomogeneities are caused near the boundaries of different tissue type.
Deoxyhaemoglobin causes T2* decay, which forms the basis for the
BOLD fMRI signal.

TBM



See ‘tensor-based morphometry’.

TBS
See ‘theta burst stimulation’.

TD fNIRI
See ‘time-domain (TD) fNIRI’.

TE
See ‘echo time’.

Temporal resolution
In the context of brain imaging or behavioural techniques, temporal
resolution refers to the sensitivity of a technique to variations in the
measured signal over time. Higher temporal resolution means that more
information is obtained per unit time, or that there is greater sensitivity
to changes over shorter periods of time.

Tensor-based morphometry (TBM)
A computational neuroanatomy method that measures changes in the
volume of brain structures and which can be extended to other aspects of
shape change as well. Based on measures derived from the deformation
fields, known as the Jacobian matrix. This matrix captures local
information from the normalization for each voxel, including volume
changes, rotation, and shearing.

Tensor line approach
A strategy for improving the accuracy of streamlining in tractography,
which carries the ‘momentum’ of the streamline from high-FA voxels
through those with lower FA.

TEPs
See ‘TMS-evoked potentials’

Tessellation
The process of representing a surface mathematically as a set of
triangles.



Test stimulus (TS)
In paired-pulse TMS, the second stimulation pulse.

Theta burst stimulation (TBS)
An rTMS protocol in which short triplets of stimulation are delivered at
regular intervals.

Threshold limit value (TLV)
The safety limit for radioactive exposure, as defined by a governing
body.

Time-continuous design
A variant of condition-rich experimental designs, using stimuli that vary
continuously over time, such as movies. Each time point in the data is
treated as a separate experimental condition.

Time-correlated single photon counting
A technique used in time-domain fNIRI, that works on the principle that
in the narrow time windows used for detection (a few thousand ps), the
odds of detecting even a single photon are quite low. Thus to determine
the DTOF a relatively large number of sampling cycles are required to
detect enough photons to reliably estimate the DTOF.

Time domain
Representation and/or analysis of data as it varies over time. In
visualization of neuroimaging data in the time domain, typically time is
plotted on the x axis (abscissa) and amplitude of the measured brain
activity signal on the y axis (ordinate).

Time-domain (TD) fNIRI
An approach to fNIRI in which light of a particular wavelength(s) is
emitted in brief pulses, rather than continuously. This allows
quantification of the time of arrival of photons at the detector.

Time-frequency analysis
A frequency-domain analysis of time-varying signals (such as EEG or
MEG) in which the power over a range of frequencies is analysed as a
function of time. This involves obtaining frequency-domain



representations for short, sequential periods of time (often with each
time window overlapping partially with those before and after it).

Time multiplexing
An approach to multiplexing in which each source (such as an emitter in
fNIRI) is on at a given time; sources alternate sending signals in rapid
succession. Temporal resolution thus decreases with the number of
signals being multiplexed.

Time of flight imaging
A form of PET imaging in which the relative timing of arrival of a pair
of photons from a coincidence event is measured.

Tissue segmentation
A preprocessing step applied to MRI data in which different tissue types
(typically grey matter, white matter, and CSF) are separated into
separate images so that each can be analysed separately.

TLV
See ‘threshold limit value’.

TMS-evoked potentials (TEPs)
Unique patterns of EEG activity elicited by TMS. Note that these are not
TMS artifacts, but signals of neural origin that are triggered by TMS.

Tomographic imaging
Imaging by sections (such as slices or voxels) using some form of
penetrating wave. MRI, fNIRI, and CT scans are all examples of
tomography. In fNIRI, the term is used to refer to source-localized,
rather than channel-based, approaches to data analysis and visualization.

TR
See ‘repetition time’.

Tractography
The process of mapping white matter tracts that connect different brain
regions.



Transcranial alternating current stimulation (tACS)
A tES method that involves passing an alternating current between
electrodes. At each electrode, the current alternates sinusoidally between
the maximum positive and negative amplitude values. Typically used to
entrain cortical oscillations at a frequency of intrinsic cortical
oscillations, as measured by EEG.

Transcranial direct current stimulation (tDCS)
A tES method that involves passing a current of a fixed amplitude
between electrodes for a set duration of time, typically 5–15 minutes.

Transcranial electrical stimulation (tES)
A neurostimulation technique that involves passing a relatively weak
electrical current between two or more electrodes placed on the scalp.
Can make stimulated neurons more or less excitable. Often referred to as
‘neuromodulation’ rather than ‘neurostimulation’ to reflect the relatively
weaker effects of tES relative to TMS.

Transcranial magnetic stimulation (TMS)
A neurostimulation technique that creates a large and very brief
electrical current in the brain via electromagnetic induction.

Transcranial random noise stimulation (tRNS)
A tES method that involves passing a current whose amplitude varies
randomly from time point to time point, typically 1000 or more times
per second, for a period of several minutes. Effects are generally similar
to tCDS, but may be stronger and/or longer-lasting.

Transition band
In describing a filter response, the transition band is the range of
frequencies that are partially attenuated, in between frequencies that are
not attenuated, and those that are maximally attenuated. Also called
‘roll-off’.

Transverse component
In MRI, the size of the NMV in the transverse plane. Because the
readout coil of an MRI system is in the transverse plane, the transverse
component determines the magnitude of the recorded MRI signal.



Transverse plane
In MRI, the plane perpendicular to the longitudinal plane.

TS
See ‘test stimulus’.

Tuft
A dense area of dendrites on a neuron

Variable
In experimentation, a specific, well-defined dimension or property that
can have different values.

Variance
Difference, or variability. Typically used to refer to the fact that
measurements of a dependent variable are not all the same.
Experimental variance generally refers to variance that is attributable to
experimental manipulations (such as different levels of an independent
variable). ‘Random’ variance usually refers to variance that can be
attributed to random selection of samples from a population.
‘Unexplained’ variance refers to variance that is not explained by
experimental manipulations or other known causes.

Vasoconstriction
A decrease in the diameter of blood vessels, resulting in reduced blood
flow.

Vasodilation
An increase in the diameter of blood vessels, increasing blood flow.
Opposite to vasoconstriction.

VBCT
See ‘voxel-based cortical thickness’.

VBM
See ‘voxel-based morphometry’.

Verbal response



A response, such as in behavioural research, consisting of one or more
words.

Vertex (graph theory)
See ‘node’.

Vertex (of head)
The point at the top of the head that is half-way between the nasion and
inion along the anterior–posterior dimension, and between the peri-
auricular points along the left–right dimension. In the International 10–
10 System, this is electrode location Cz.

Vertex (tessellation)
A tessellated surface is represented as a set of triangles, whose corners
(meeting points of edges) are called vertices.

Verum
A term used in NIBS to refer to real, or ‘true’ stimulation, as contrasted
with sham (fake) stimulation.

Virtual electrode
A theoretical construct used to describe the data derived for a specific
spatial location in the brain, from source localization such as
beamforming.

Voxel
Volume element – the three-dimensional equivalent to pixels. Voxels
are the units of data in volumetric neuroimaging data such as MRI, and
source-localized EEG and MEG.

Voxel-based cortical thickness (VBCT)
A morphometric method aimed at characterizing cortical thickness.
Analysis is performed using data in 3D volumetric (voxel-based) format.
Contrast with surface-based cortical thickness.

Voxel-based lesion-symptom mapping (VLSM)
A technique for relating patterns of brain damage to cognitive or
behavioural deficits. Structural MRI scans are used to delineate the



extent of a lesion (brain damage) in each of a sample of patients, and the
areas where lesions most consistently correlate with scores on a
particular cognitive or behavioural test are identified.

Voxel-based morphometry (VBM)
A computational neuroanatomy approach aimed at detecting differences
in the intensity of structural MR images on a voxel-by-voxel basis. Most
commonly applied to grey matter, where it is referred to as a measure of
‘grey-matter concentration’.

Waveguide
A metal tube whose diameter-to-length ratio is designed to prevent
electromagnetic fields from passing through it. Commonly used as a
way of passing cables and the beam from a video projector into a
magnetically shielded room.

Wavelet
A short-duration oscillating waveform with a specific frequency, and an
amplitude that varies over time, starting and ending with zero amplitude.
Often used in time-frequency analysis.

White matter
Areas of the brain composed primarily of myelinated axons. The term is
often applied specifically to the part of the brain between the cerebral
cortex and midbrain structures, which contains fibres connecting
different cortical areas as well as fibres connecting the cortex to other
brain regions such as the thalamus and basal ganglia. However, white
matter exists in other brain structures such as the cerebellum. So called
because when stained with formalin, or viewed in a T1-weighted MR
image, this tissue appears white in colour.

Within-subjects design
An experimental design in which results are compared between different
experimental conditions, within the same individuals. Put another way,
each individual in the study experiences each level of a variable that is
manipulated within-subjects.
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annihilation, 373–376, 383, 400–401, 523, 526, 531, 547
anodal excitation, 489, 499, 501, 519, 522–523
anodal excitation–cathodal inhibition (AECI) model, 499, 501, 519,
521–523
anode, 486–491, 493, 497, 499–500, 507–510, 513, 516–519, 523, 537,
545
ANOVA, see analysis of variance
antagonist, 6, 460, 466, 499–500, 523
Antal, Andrea, 492–494, 497, 502–503, 506, 510
antenna, artifact in MEG, 151
anxiety, imaging with PET, 387

treatment with electrical stimulation, 485
treatment with TMS, 479

APD, see avalanche photodiode
aphasia, 23, 333
apparent diffusion coefficient (ADC), 349, 522–523
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methods for correcting or removing, in EEG, 111–114
methods for reducing, in EEG, 87–92
muscle, 151, 475–476
ocular, 89, 112–114, 544
physiological, in fMRI, 237, 294
susceptibility, 233–240, 251–253, 541, 552

ASL, see American Sign Language
aspirin, 514
association cortex, 523
association fibres, 339
associationist school, 338
astrocyte, 221–223, 251, 253, 523
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Bandettini, Peter, 178, 217–218, 228, 278
barium fluoride (BaF2), 380
barrier, to water diffusion, 310, 342, 385, 388
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base rate, of brain activation, 53
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Basser, Peter, 339
Bates, Elizabeth, 23–24
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Bavelier, Daphne, 259, 272
beamformer, 156, 162, 164–166, 168–170, 524
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ethical issues in studying, 54–56
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influences on, 49
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Berger, Hans, 62
Bestmann, Sven, 510
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weight, 280
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Binder, Jeffrey, 270
biochemistry, 554
biology, 369, 503
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biophysical model, 225
biphasic pulse, 453, 524
bismuth germinate (BGO; Bi4Ge3O12), 380
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129–130, 135, 146, 151, 162, 174–175, 348, 373, 406, 437, 441,
444–445, 470, 472, 481, 521, 523, 533, 546, 554, 557–558 artifacts,
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combined with TMS, 472–478
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electrode materials, 473
epoching, 118–120
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filtering, 104–101
frequency–domain analysis, 124–126
impedance, in TMS, 473
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physiological basis, 63–67
practical considerations, 91–92
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re–referencing, 114–118
recording with MEG, 148–149
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electron, 82, 180, 217, 219, 373–374, 376, 379, 382, 399–400, 416, 516,
523, 526, 545, 547
electron transport chain, 219
electrooculogram (EOG), 102, 113–114, 151, 531
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electrosleep, 485
ellipsoid, 349–351, 355–356
embryo, 342
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emitter, 408, 413–420, 422–425, 427, 430–431, 433, 438–440, 526,
530–531, 534, 539–540, 545–546, 556
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429–431, 433, 436, 439–431
encoding, frequency, see frequency encoding

gradient, 204–207, 211, 213, 231–232, 236, 251, 253, 530, 534,
547, 554
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spatial, 194–209
step, 198, 205–207, 211–212, 231–233, 251

end feet, 223
endogenous component, 71, 531
endophenotype, 291, 531
energy, heat, 342–343, 368, 525

metabolism, in brain, 219–211, 223, 385, 522
of positron or photon, 373, 375, 382, see also specific energy
resolution, 379–380, 382, 531, 540
RF, see radio frequency
specific, 373, 375, 377–379, 547

energy transfer, 190
English language, 259
enhancement, 58, 462, 518
entrainment, 492, 501, 507, 532
EOG, see electrooculogram
EP, see evoked potential



EPI, see echo planar imaging
epilepsy, 22, 339, 373, 387, 399, 444–445, 477, 480, 507, 515
epileptogenic, 477
epoch, 72, 104, 118, 120, 123–124, 167, 532
EPSP, see excitatory postsynaptic potential
equation, Beer–Lambert law, 420

Larmor, 183, 194, 539 330–331, 356, 433, 539
equilibrium, 186
equipotentiality, 13

of cerebral cortex, 13
equivalent current dipole (ECD), 64, 532
equivalent dose, 389, 531–532
ERN, see error–related negativity
EROS, see event–related optical signal
ERP, see event–related potential
error, false positive, see Type 1 error

in behavioural performance, 44
in fNIRI measurement, 421, 424, 433, 529
in source localization, 165, 319,
in spatial normalization, 158
propagation, in tractography, 354–356

error–related negativity (ERN), 71
erythema, 513, 517, 519, 532
estrogen, see oestrogen
ether, 485
ethics, 36, 54, 57, 516, 538, 543
event–related desynchronization (ERD), 79, 130, 532
event–related fMRI, advantages, 261, 264

fast design, 262–264
slow design, 262–264 256, 258, 266, 273, 302

event–related optical signal (EROS), 30, 406, 411–413, 532–533, see
also functional near–infrared imaging (fNIRI)
event–related potential (ERP), analysis, 99, 108, 124, 126, 436

component, 62, 67, 69–71, 77, 93–94, 98, 101, 103, 116, 122, 130,
148, 390, 531–532
condition, 72
data, 98, 103–104, 108, 118, 120, 127–128, 130–131, 148, 152, 169



effect, 68, 76, 101, 115–116, 118
epoch, 72
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experiment, 94, 98, 104, 110, 119, 130
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literature, 71, 75, 122
research, 69, 98–99, 120, 522, 534, 539, 541, 546
researcher, 48
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study, 108, 113, 116, 123, 260
waveform, 70–74, 121–122, 126–127, 529, 539, 546

event–related synchronization (ERS), 77, 79, 98, 130, 532
evoked potential (EP), 29, 62, 75, 80, 374, 455–457, 476, 532, 541–542,
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excitability, 453–454, 466, 469, 491, 493–494, 497, 500, 502, 512–513,
515, 517–519
excitation, –inhibition balance, 512

in MRI acquisition, 178, 184–186, 188–189, 193–194, 196–197,
210–212, 230–232, 235–236, 238, 251, 253, 343, 368, 453, 479,
530, 532–533, 550, 553–555

excitation
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exercise, 219, 225, 291
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effects on brain structure, 9, 308–309
human, 308
learning, 44
mental, 71
of researcher, 27, 68, 209, 236, 334, 468
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pain, 478
perceptual, 21
sensory, 467
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experimental control, 467, 498, 511
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between–subjects, 36, 45, 49, 57–58, 524
blocked, 257–262, 266, 284, 298, 302–303, 525
cross–sectional, 320, 324, 528
ERP, 90–91, 98, 102–103, 114, 118, 123, 129
factorial, 41–43, 57, 273, 275, 391, 532
fMRI, 216–217, 237, 256–257, 259–261, 266–267, 269, 273,
275–276, 278, 280, 283, 298, 302–303
fMRI–adaptation, 276–279
fully–crossed, 41–42, 273, 532, 535
general, 3, 18, 35–39, 528
Hillyard principle, 48, 57–58, 98–99, 537
longitudinal, 320–321, 324, 327–328, 528, 540, 549
MEG, 134, 167–169
parametric, 36, 44–46, 57, 276, 546
PET, 372, 385, 390–392
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subtractive, 38–40
tES, 488, 491, 511, 519
TMS, 467–469
TMS, 467, 469, 471–472
within–subjects, 48–49, 58, 72, 559
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eye, blink, 28, 68, 70, 89, 91–94, 112–114, 129–130, 151, 172, 174, 475,
523, 544
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channel, 112, see also electrooculogram
in radiation safety, 389
movement, 25–26, 89, 91, 112–113, 129, 151, 172, 544, see also
eye tracking
naked, 76, 239, 248, 347, 409
tracking, 24–26, 113, 532
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FA, see fractional anisotropy
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image, 99
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mask, 147
muscle, 28, 102
non–, 260, 279, 286
perception, 39, 259
processing, 115–116, 119, 260
stimulus, 116, 278, 286, 527
upright, 69–70, 99, 115–119

factorial design, 41–43, 57, 273, 275, 391, 532
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false alarm, 19, 380, 382
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false discovery rate (FDR), 170–171, 282, 436, 532–533
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fat, 28, 180, 188–193, 203, 210, 212, 233, 310, 340–341, 396, 398, 410,
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FEM, see finite element model 432, 507–512, 514, 519, 533
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bundle, 339, 342, 350, 353
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laser, 425
optic, 151, 440
orientation, 349, 351–353
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projection, 338
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tract, 350–351, 353, 361, 364–365, 367–368, 530, 555

field, closed, see closed field
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map, magnetic, 143, 235, 245, 348, 540
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199, 285–286, 430, 540
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notch, 105, 108, 130, 524, 544
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response, 104–106, 533, 557
rolloff, 105–106, 108, 130, 196, 551, 557
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fixation cross, 269–271, 302, 304
flip angle, 184–185, 188, 193, 533
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fly–through, 297, 300
fMRI, see functional magnetic resonance imaging
fMRI adaptation (fMRI–a), 276–279, 533, 543
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domain, 76–78, 94, 105–106, 108, 124, 129, 167, 169, 415, 422,
440, 497, 533–534
Larmor, 183–186, 190, 194–197, 206, 210–212, 233, 539, 553
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multiplexing, 419–420, 534, 542
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spatial, 178, 198–207, 211, 213, 242, 553
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429, 438–441, 529, 533–534

encoding, 178, 198, 204–207, 211–213, 231–233, 236, 251, 253,
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conjunction, 273–276
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event–related design, 260–269
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random field theory (GRFT), 281–282, 395, 436, 535–536, 554

Gazzaniga, Michael, 2–3, 34, 339
GCA, see Granger causality analysis
general linear model (GLM), 103, 169, 434, 535
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echo, 217, 346
hardware, 235–236, 251, 554
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547
grammar, 15, 259, see also syntax
grand average, 68, 115–116, 120, 130, 536
grand mean scaling, 395
Granger causality analysis (GCA), 295–297, 299, 535–536
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half–life, 372, 375, 385, 388–389, 391–392, 401, 470, 548
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heat energy, 342–343, 368, 525
heating, in fNIRI, 414

in MRI, 207–209, 207–209, 213, 347
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high–pass filter, 105, 107–110, 130, 150, 199, 237, 430, 524, 537
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Kwong, Kenneth, 178, 217–218

lactic acid, 219
lamotrigine, 466
LAN, see left anterior negativity
language, 11, 15, 22–24, 33, 45, 53, 72, 75, 100, 122, 259, 283,
338–339, 391, 444, 463
Laplace equation, 330–331
Laplacian, see Laplace equation
Largus, Scribonius, 445
Larmor equation, 183, 194, 539
Larmor frequency, 183–186, 190, 194–197, 206, 210–212, 233, 539,
553
laser, 144, 147, 422, 425, 439, 503, 545
laser diode (LD), 414, 539
Lashley, Karl, 13
late commitment, 280
latency, 69, 71, 73, 120–122, 129–130, 457, 476, 534, 539, 546
latent component, 72–74, 128, 148, 526, 539
lateral occipital cortex (LOC), 272, 277–279
lateralized readiness potential (LRP), 76, 539
Latin, 338, 521, 526, 548
LD, see laser diode
lead field, 142, 159, 539
learning, effects of tACS, 494–496

effects of tDCS, 491–492
effects of tRNS, 497–498



experience, 44
in structural MRI studies, 321
motor, in tES, 500
process, 44
see also long–term potentiation 308–309

least squares estimation, 159, 539–530
Leborgne, M, 13, see also Broca, Paul
LED, see light–emitting diode
left anterior negativity (LAN; ERP component), 71, 104
lesion, –deficit method, 22–23, 308–309, 446, 539

–symptom mapping, see voxel–based lesion–symptom mapping
(VLSM)
location, 22, 24
virtual, 446, 461, 463, 466, 472
voxel–based, see voxel–based lesion symptom mapping (VLSM)
see also brain injury

letter, 39, 69, 71, 75, 82–83, 103, 143, 260–261, 457, 510
LFP, see local field potential
LICI, see long–interval intracortical inhibition
light, absorption, in fNIRI, 409–410, 414–415, 420–421, 424, 433, 438,
440–441, 521, 542

as form of radiation, 373
as stimulus, 17–18, 21, 144
energy, 373, 409–410, 440
in neuroimaging, see functional near–infrared imaging (fNIRI)
infrared (IR), 24, 30, 404, 407–411, 438, 535, see also functional
near–infrared imaging (fNIRI)
output, 379–380, 540
particle, 373, 375, see also photon
scattering, 405, 408
sensor, 375, 278–280
source, in fNIRI, see emitter
spectrum, 410
speed, 381, 400
wavelengths used in fNIRI, 409–410, 413–414

light–emitting diode (LED), 9, 11, 16, 22, 47, 55, 58, 75, 81, 179, 216,
218–219, 225, 250, 262, 315, 319, 339, 404–405, 414, 439, 445, 485,



489, 492, 494, 497, 502, 518, 540
Likert scale, 19
Limb, Charles J., 20
line of response, 381, 383, 400–401, 540
linear mixed effects, 280, 302–303, 359, see also general linear model
linear regression, 280, 303, 430–431, see also general linear model
lobe, frontal, 10–11, 73, 233, 300, 339, 360–361, 417, 438, 463, 478,
508

occipital, 10–11, 41, 52, 79, 128, 145, 166, 218–219, 277, 435, 469,
472, 493, 548
parietal, 10, 15, 45, 47, 262, 283, 300, 438, 460, 472, 526, 555
temporal, 10, 23, 69, 73, 163, 166, 168, 233, 277, 284–285,
360–361, 391, 541, 555

lobotomy, 339
LOC, see lateral occipital cortex
local field potential (LFP), 228
local minimum, 159, 540
localization, of EEG, ERP, or MEG sources, see source localization
Localization in the Cerebral Cortex (book), 11
localizer, 251, 253, 283, 550
Logothetis, Nikos, 227–228
long–interval intracortical inhibition (LICI), 458–451
long–range connections, 340, 526, 543
long–term depression (LTD), 9, 491, 499–500, 523 540
long–term potentiation (LTP), 9, 465, 491, 499–500, 517, 523, 540
longitudinal design, 320–321, 324, 327–328, 528, 540, 549
longitudinal fasciculus, 363
longitudinal plane, 184–186, 188–189, 193, 210, 212, 532–533, 540,
550, 555, 557
López–Alonso, Virginia, 511–512
loudness, 21, 37–38, 47–48, 58, 70, 72, 128, 527, 549
low–frequency noise, 105, 431
low–frequency rTMS, 461, 463, 479, 540
low–pass filter, 88, 105, 107–108, 110–111, 120, 129–130, 150, 156,
199, 285–286, 430, 540
LRP (ERP component), see lateralized readiness potential
LSO, see lutetium oxyorthosilicate



LTD, see long–term depression
LTP, see long–term potentiation
Luck, Steven, 48, 52, 95, 98, 108, 131, 537
luminance, 44, 72, 288
luminescence, 378–379, 540
lungs, 216, 389, 536
lutetium oxyorthosilicate (LSO; LuSiO5:Ce), 380

M1, see motor cortex, primary
machine learning, 15, 285–288, 315
macro–scale (organization of cerebral cortex), 10, 15, 33, 340
Magistretti, P.J., 221, 223
magnetic field, gradient, 142, 178, 194–195, 197, 201–202, 205,
207–208, 211–212, 232–233, 238, 240, 252, 343, 367–368, 529, 531,
540, 547, 550

in MEG, 138–149
induction, 29, see also Ampère’s circuital law
map, 143, 235, 245, 540
of Earth, 181
of fridge magnet, 181
strength of MRI scanner, 181

magnetic flux, 138, 140, 174, 446, 533, 540, 547
magnetic moment, 180–181, 183, 190, 210, 212, 217, 536, 540, 542
magnetic resonance imaging (MRI), 177–179, 181, 183, 185, 187, 189,
191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 254, 540

2D reconstruction, 197–201
combined with PET, 393–394, 397–399
contrast, 191–193
diffusion tensor (DTI), see diffusion tensor imaging (DTI)
diffusion–weighted, see also diffusion tensor imaging (DTI)
functional, see functional magnetic resonance imaging (fMRI)
gradient, 194–197, 202–207
k space, 199–207
measurement, 186–207
physical basis, 180–186
precession, 182–183
pulse sequence, 188, 196–198, 204–207



resonance, 183–186
safety, 207–209
spatial encoding, 194–197
structural, see structural magnetic resonance imaging

magnetic susceptibility, 233–234, 251, 253, 540–541, 552
magnetically permeable, 150, 541
magnetoencephalography (MEG), beamforming, 162–166

combined with EEG, 148–149
data acquisition, 138–149
data analysis, 169–172
dipole modelling, 158–160
distributed source modelling, 160–162
experimental design, 167–169
gradiometer, 140–144
head position, 146–148
instrumentation, 398
physiological basis, 135–138
physiological noise, 151–152
recording with EEG, 148–149
sensors, 138–136
shielding, 149–151
signal and noise, 149–153
signal processing, 152–153
source localization, 153–167
wearable, 144–147

magnetometer, 134–135, 140–142, 144, 147, 152, 172, 174, 539, 541,
545, 555
Magstim Inc., 449, 451
main effect, 42–43, 116, 541, 548
make–up, 152
Malonek, Dov, 221
MANCOVA, see multivariate analysis of covariance
manganese (Mn), 365
MANOVA, see multivariate analysis of variance
Mansfield, Sir Peter, 230–231
MAO, see monoamine oxidase
map, magnetic field, see magnetic field map



mask, for wearable MEG, 144, 147
in DTI analysis, 356, 358
in fMRI data analysis, 271–272, 541
to reduce head motion in MRI, 240
visual, TMS study of, 456–457

mass action, 13
mass univariate analysis, 123, 169, 282, 284, 303–304, 359, 541–542
mastoid, 69–70, 83, 85, 112, 115–119
matched filter theorem, 240, 242, 252, 323, 348, 541, 554
matching, brain shape, 23, 246, 248, 250, 314, 357, 554

stimuli, 42, 98
matrix, cortical connectivity, 340–341

dissimilarity, 286–288
Jacobian, 328–329
similarity, 286

maze, 296–297, 300
MBLL, see modified Beer–Lambert law
McCarthy, Gregory, 254, 261–262, 266
Mcintyre, Michael, 3
MD, see mean diffusivity
mean amplitude, 104, 121–124, 129–130, 152, 169, 279, 522, 534, 541
mean diffusivity (MD), 352, 358
medication, 253, 291, 477, 512, 519, see also drug
MEG, see magnetoencephalography
memory, 168–169

effects of tACS, 494–496
effects of tDCS, 491–492
effects of tRNS, 497–498
encoding, 262, 493, 551
episodic, 270
loss, after electroshock therapy, 485
short–term, 269

menstrual cycle, 512–513, 517, 519
mental chronometry, 17, 75, 541, 550
mental experience, 71
mental illness, see psychiatric illness
MEP, see motor evoked potential



meso–maps, 310, 541
meso–scale (organization of cerebral cortex), 11, 13–15, 33, 310, 312,
314, 334–335, 340
meta–analysis, 360–361, 491–492, 506, 511, 517, 519
meta–data, 347
metal, artifact in MEG, 151–152

grinding, 208
in tattoo, 208

Meynert, Theodor, 338–339
micro–scale (organization of cerebral cortex), 11, 15, 340, 362
microscopic, structure of brain, 308–314
middle frontal gyrus, 460, 492
mild cognitive impairment, 387
Millikan, Glen, 404
mini–blocks, 264
minimum norm estimation
minimum norm estimation (MNE), 161, 541
mislocalization, of BOLD signal, 224

of EEG/ERP signal
of MEG signal
of PET signal, 374–376, 380–382

mismatch negativity (MMN), 261
missing data, 321
mixed designs, 49, 58, 542
MMN (ERP component), see mismatch negativity
MNE, see minimum norm estimation
MNE–Python (software), 146, 163–164
MNI, see Montreal Neurological Institute
MNI152 atlas, 245, 250–252, 312, 452, 323, 357–358, 394, 452,
mock scanner, 240
model–based tract segmentation, 357, 542
modified Beer–Lambert law (MBLL), 421, 424, 426–427, 433, 524,
529, 541–542
modularity, 292, 542
molecular lattice, 188, 542
Moliadze, Vera, 493, 497, 510
monitor, video (in stimulus presentation), 25, 64, 86–89, 91, 100–101,



550
monitoring, of data during collection, 88, 92, 100, 113, 129–130, 148,
151

of disease state or treatment, 291, 444, 507
of participants in TMS studies, 479–480
semantic, 40

monkey, 71, 228, 262, 339, 365
monoamine oxidase (MAO), 386
monophasic pulse
Montreal Neurological Institute (MNI), 250, 281–
morphometry, defined, 179, 309, 215–216, 542

deformation–based, see deformation–based morphometry (DBM)
manual approach, 315, 318
semi–automated, 318–319
tensor–based, see tensor–based morphometry (TBM)
voxel–based, see voxel–based morphometry (VBM)

motion, –sensitive cortex, see V5 (brain region)
visual, 52, 273, 450, 461, 505

motion artifact, 239–240, 367, 428–429, 539, see also head motion
motion capture, 20
motion correction, defined, 542

in DWI data processing, 348
in fMRI, 216, 238, 245, 252–253, 522
in structural MRI, 325
of fNIRI data, 428–429, 431, 528, 530,
of MEG data, 144, 148
of PET data, 398

motion–sensitive cortex, see V5
motor cortex, effects of tACS, 493

in tES, 501–502
in tRNS, 497–498
mapping with MEG, 137
primary (M1), 218, 229, 242, 460, 476, 493, 497, 501–502, 506,
508, 548
stimulation with TMS, 455–456, 460

motor evoked potential (MEP), 455–456, 458–461, 466, 485–486, 491,
497–498, 511–512, 521, 541–542, 551–552



motor mapping, 455–456, 479
motor threshold, 455, 458, 469, 479, 521–522, 551

active, see active motor threshold (aMT)
resting, see resting motor threshold (rMT)

movement, see motion
movement planning, ERP component related to, see lateralized readiness
potential
MR–active nucleus, 180, 183, 536, 539, 542
MRI, see magnetic resonance imaging
MS, see multiple sclerosis
MT, 317, 341, 450, 466
MT (brain region), see V5
mu, frequency band in EEG, 77, 94, 150, 534, 542

metal, 542
MUA, see multi–unit activity
multi–centre research, 312, 314, 340
multi–start approach, in dipole modelling, 160
multi–unit activity (MUA), 228
multi–voxel pattern analysis (MVPA), 284–288, 303
multidimensional scaling, 288
multimodal imaging, 27, 314, 316–317, 362, 542

EEG and MEG, 148–149
fNIRI with other methods, 437
involving fNIRI, 436–438
involving PET, 372, 393–399, 400

multiple comparison correction, defined, 542
in DTI, 359
in ERP, 103–104, 123, 129
in fMRI, 256, 281–282, 303–304
in fNIRI, 434–436
in MEG, 170–172
methods, 532, 535

multiple comparison problem, 169–170, 282–283, 303
multiple sclerosis (MS), 209, 340, 363
multiplexing, 419–420, 440, 526, 534, 542, 556
multivariate analysis, 153, 283–285, 303, 327, 527, 541–542, 551, see
also multi–voxel pattern analysis



multivariate analysis of covariance (MANCOVA), 327
multivariate analysis of variance (MANOVA), 327
muscle, artifact in EEG, 68, 89, 91–94, 102, 106, 114, 129–120

artifact in EEG–TMS, 475–476
artifact in MEG, 151
contraction, 55, 106, 130, 445, 463, 469, 471, 478, 480–481, 523,
542, 552
in DTI, 363

muscle artifact, 151, 475–476
music, 20, 92
MVPA, see multi–voxel pattern analysis
myelin, 5–6, 26, 28, 65, 191, 310, 314–316, 325, 340, 342, 367–368,
543
myeloarchitecture, 13–14, 308, 310, 312, 335, 541, 543

N–methyl–D–aspartate (NMDA), 6, 459, 466, 500–501
N1 (ERP component), 69–71, 74, 120, 128, 456
N170 (ERP component), 69–71, 100, 116–118
N2 (ERP component), 71, 74
N250 (ERP component), 116–117
N400 (ERP component), 71–72, 75, 103, 109, 122, 125–126
Na, 6, 220, 288
Na, see sodium
Na–K pump, see ion pump
naked eye, 76, 239, 248, 347, 409
nasion, 82–83, 115–117, 119, 147, 543, 558
National Research Council of Canada (NRC), 3
naturalistic, 280
naturalistic stimuli, 280
navigation, 296–297, 299–300, 452–453, 469, 479, 481, 506, 543
near–infrared neuroimaging (NIN), 406, see also functional near–
infrared imaging (fNIRI)
near–infrared tomography (NIT), 406, see also functional near–infrared
imaging (fNIRI)
Neisser, Ulrich, 10
neo–phrenology, 15, 256, 289, see also phrenology
net magnetization vector (NMV), 178, 182, 184–186, 188–193, 197,



210, 212, 343, 346, 5323, 543–544, 550, 555, 557
network, –based correlation, 292–293, 543, 552

activity–dependent model, 503, 543
connectivity, 16
default mode, see default mode network
discovery, 300–301, 543
in functional connectivity, 289–294
view of brain, 256, 289

neural, adaptation, 263, 390, 522, 533, 543
connection, see synapse
network, 285, 293, 299–300, 393, 503, 512

neuro–navigation, 452–453, 469, 479, 481, 506, 543
neuroanatomist, 8, 11, 309–312, 314–315
neurocognitive, 76, 93, 104, 153, 270, 290, 339, 437, 486, 504
neurodegeneration, 318
neuroethics, 55, 57–59, 543
neurofibrillary tangles, 386
neurohormone, 7, 543
neuromodulator, 7, 31, 33, 372, 385–387, 391, 393, 399–402, 480–481,
500, 517, 519, 543, 555
neuron, 4–7, 9, 16, 31, 33–34, 62–67, 65, 79, 135–137, 154, 158,
172–173, 218–213, 226, 228, 230, 264, 276–277, 286, 302, 304,
339–340, 368, 386, 390, 407, 411, 465–466, 484, 486, 489, 491,
499–506, 517, 519, 521, 523–529, 535, 540, 547, 549, 552–555, 557

firing, see action potential
number in brain, 4, 9
pyramidal, 4, 158, 411, 549

neuroplasticity, 463, 486, 491
neuroprivacy, 55–56, 58, 543
neuropsychology, 11, 22, 540, 544
neurostimulation, 17, 28, 31–34, 49, 56, 58, 436, 441, 485, 542, 544,
557, see also transcranial magnetic stimulation (TMS) and transcranial
electrical stimulation (tES)
neurosurgery, 2, 22, 63, 243, 252, 339, 347, 444–445
Neurosynth database, 53
neurotransmitter, 6–7, 11, 14, 31, 33, 65, 219–221, 223, 228, 460–461,
465–466, 470, 472, 499–501, 512, 521, 535, 543–544, 548, 550, 555



excitatory, see glutamate
inhibitory, see GABA
recycling, 220

neutron, 180, 373–375, 385, 400, 547
Neville, Helen, 3, 48, 71
Newman, Aaron, 21, 71–72, 74, 116, 259, 272, 275
NIBS, see noninvasive brain stimulation
nicotine, 251, 512
NIRS, see functional near–infrared imaging (fNIRI)
NIRx Medical Technologies LLC, 417
NIT, see near–infrared tomography
nitrous oxide, 485
Nitsche, Michael, 485, 491, 494, 499, 502, 506, 520
NMDA, see n–methyl d–aspartate
NMV, see net magnetization vector
Nobel prize, 7, 139, 230
node, 65, 292–294, 300–301, 537, 544, 553, 558
noise, effects on tractography, 353–354, 365–366

high–frequency, 88, 105–106, 108, 122, 156
in DTI, 348, 354–356, 359
in EEG, 86–90
in EEG, 67–68, 73, 76–78, 80–81, 84–94, 98, 101–102, 104–106,
108, 114, 120, 122, 126, 128–120
in fMRI, 237, 240–242, 252, 277–278, 281–282, 294
in fNIRI, 404, 410–411, 413, 426, 428, 430–431, 434, 436, 438,
440–441
in MEG, 134–135, 141–142, 147, 149–152, 154–156, 162–163,
168, 172–175
in MRI, 186
normalization, 162–163, 530, 544, 554
in PET, 379–380, 400, 402
in structural MRI, 323
in tES, 486, 497, 502–504, 506, 513, 517, 519
in TMS, 455, 471, 478, 481
low–frequency, 105, 431
random, stimulation in tES, see transcranial random noise
stimulation (tRNS)



ratio, see signal–to–noise ratio and contrast–
to–noise ratio

non–invasive brain stimulation (NIBS), 444, 479, 520, 543–545, 552,
558, see also transcranial magnetic stimulation (TMS) and transcranial
electrical stimulation (tES)
nonlinear registration, 246–247, 254, 323, 357, 544
nonparametric statistics, 171, 525, 544, 546, 549
noradrenaline, 466, 480, see also norepinephrine
norepinephrine, 7, see also noradrenaline
normalization, global (in PET), 395

linear affine, 323
noise, 162–163, 530, 544, 554
nonlinear, 323
nonlinear, in DTI, 357
of PET data, 395
spatial, in DTI, 356–358
spatial, in human connectome project, 314–315
spatial, in structural MRI, 320, 322–329, 332–334
spherical, 248–250, 332–334
surface–based, 248–250, 332–334

notch filter, 105, 108, 130, 524, 544
noun, 37, 41–43, 72
NRC, see National Research Council of Canada
nucleus, 180, 183, 373–375, 385, 470, 536, 539, 542
null event, 266, 273
Nyquist frequency, 110, 522, 544

O, see oxygen
o–tDCS, see oscillatory tDCS
obsessive–compulsive disorder (OCD), 479
occipital cortex, lateral, 12, 39, 69, 77, 90, 154, 227, 272, 279, 313, 470
see lateral occipital cortex
occipital lobe, 10–11, 41, 52, 79, 128, 145, 166, 218–219, 277, 435, 469,
472, 493, 548
OCD, see obsessive–compulsive disorder
ocular artifacts, 102, 113–114, 544, see also blink
oddball, 260–262, 266, 390–391, see also P3, mismatch negativity



oestrogen, 7
offline, defined in neuroimaging, 545

effects of TMS, 465
filtering, 110
inhibitory protocol, 463, 544
processing of DTI data, 345
removal of artifacts, 174
tES protocols, 491–492, 500–501, 503, 519
TMS protocols, 463–464, 470–472, 481

offline, facilitatory protocol, 464, 545
Ogawa, Seji, 178, 217–219, 257
Ohm’s law, 486–487
ongoing experience, 270
online, 53, 207, 313, 463, 470–473, 481, 491, 500, 516, 519, 545

defined in neuroimaging, 545
MRI safety video, 207
purchase of tES system, 516
tES protocols, 491, 500, 519
TMS protocols, 463, 470–473, 481, 545

online, inhibitory protocol, 463, 545
open field, 65–67, 94, 135–137, 172, 174, 230, 545
operational definition, 56, 545
opioid, 386
Opitz, Alexander, 507
OPM, see optically pumped magnetometer
optic chiasm, 363
optical imaging, see functional near–infrared imaging (fNIRI)
optical path, 408, 415, 418, 438
optical signal, 30, 404–406, 410–412, 422, 424, 426, 432–433, 436,
438–439, 532–533, 553, see also functional near–infrared imaging
optical tomography, 406, 431–432, 439, 545
optically pumped magnetometer (OPM), 144, 147, 545
optode, separation in fNIRI, see emitter–detector separation 30, 408,
410–411, 413–414, 416–419, 422, 425, 427–430, 432–433, 436,
438–441, 528, 545
orbitofrontal cortex, 233, 448
ordinal scale, 522, 530, 545



orientation, of current relative to MEG sensor, 142–144, 149
of dipoles, 67, 69, 89, 127–128, 131, 158–159, 163–164, 173–175,
534, 538
of magnetic field in TMS, 450–451, 465, 476
of proton, 181–182, 184, 212, 540, 543, 548
tuning, in representational similarity analysis, 286
tuning, of neurons, 276–277

orientation, of white matter tracts, 340–341, 343, 350–358, 367, 523,
530
orthogonality, in DTI, 349–342
oscillation, 79, 126, 186, 492–493, 501, 516, 526, 528, 532, 547, 551,
557
oscillatory tDCS (o–tDCS), 486–487, 497, 545
outcome measure, 23, 512, 529, 545
outdoor scene, 168, 280
ovaries, 389
oxidative phosphorylation, 219
oxygen (O), concentration, 218, 224–225

extraction fraction, 225, 545
in blood vessels, 27, 30, 216–219, 223–224, see also blood oxygen
level dependent (BOLD)
in PET, 31, 39, 372–374, 385, 394, 401
measurement with spectrophotometry, 404
metabolism, 221–222, 224, 385, 401, 522, 525
saturation, 218, 406, 424, 434
tank, danger in MRI, 207
transporter, see haemoglobin

oxygenated blood, 30–31, 222, 226, 228, 269
oxygenated haemoglobin (oxy–Hb), 217–219, 221–222, 224–226, 251,
253, 406–407, 409–410, 413–414, 421, 424, 427, 429–430, 434–435,
437–440, 528, 542
oxyhaemoglobin, 217–219, 221–222, 224–226, 251, 253, 406–407,
409–410, 413–414, 421, 424, 427, 429–430, 434–435, 437–440, 528,
542
oxytocin, 7

p value, 50–51, 169–171, 281–282, 532–533



P1 (ERP component), 69–71, 74, 83, 112, 116–117, 120, 128, 441, 456,
546
P1–N1–P2 complex, 69, 71, 128
P2 (ERP component), 69–71, 74, 83, 109, 112, 128
P3 (ERP component), 71–72, 75, 83, 107, 260–261, 390, 495
P300 (ERP component), see P3
P600 (ERP component), 71, 104, 109, 125
pacemaker, 152, 478, 515
pain, side effect of TMS, 478, 481

studied with tES, 515
pair production, 374, 545
paired–pulse transcranial magnetic stimulation (ppTMS), 454, 458–462,
545, 548
pancake, shape of DTI ellipsoid, 350, 355
parallel component, 141–142, 545, 547
parallel imaging, 234, 546
paramagnetic, 217, 365, 540, 546
parametric design, 36, 44–46, 57, 276, 546
parcellation, 14, 315, 317, 335, 362, 369
parietal cortex, 290, 292, 300, 494, 502
parietal lobe, 10, 15, 45, 47, 262, 283, 300, 438, 460, 472, 526, 555
Parkinson’s disease, 22, 209, 386, 459
Parkkonen, Lauri, 168
partial volume effects, 330, 334, 349, 352, 357–358, 546
passive electromagnetic shielding, 546
Passow, Susanne, 393–394
path length, differential, see differential path length
Paulus, Walter, 485, 493–494, 497, 502, 510
PCA, see principal components analysis
peak, –to–peak amplitude, 120–121, 546

60 Hz, 106, 108
activation, 261, 279
amplitude, 120–122, 130, 152, 169, 522, 546
difference (ERP), 75
latency, 71, 121–122, 130, 539, 546
of activation, in source localization, 166
of ERP, 67, 69, 71–72, 74, 100, 116–118, 120—3, 126, 127, 129



of HRF, see haemodynamic response function
Pellerin, Luc, 221, 223
Penfield, Wilder, 445
Pepsi, 56
PER, see positron–emitting radioligand
perceptual experience, 21
peri–auricular points, 82, 546, 558
peri–Sylvian, see Sylvian fissure
permeability, 342, 507, 535
permutation distribution, 171, 546
perpendicular component, 142–143, 146, 524, 546
personality trait, 308, 393
PET, see positron emission tomography
Petersen, Steven, 2, 39, 41, 48, 257, 260
pharmaceutical, 399
pharmaco–TMS–EEG, 461
phase, angle, 203

delay, 412, 415, 422, 427, 546
difference, 201, 495
encoding, 178, 198, 204–206, 211, 213, 231–233, 235–236, 238,
251, 253, 343, 348, 530, 534, 547, 554
encoding gradient, 204–206, 211, 213, 231–232, 236, 253, 530,
534, 547, 554
locking, 187, 207, 210, 492, 547
of menstruation, 512
of proton, 186–189, 192, 196, 202
of sine wave grating, 201
of waveform, 126–127, 167
roll, 202–206, 211–212, 343–344, 347, 529, 547, 550
shift, 126, 187, 346, 427
synchronization, 186, 494, 526, 547

phenotype, 531, see also endophenotype
phoneme, 101, 260, 285, see also endophenotype
phosphenes, 450, 469, 479, 547, see also endophenotype
photocathode, 378–379, 547, see also endophenotype
photodetector, 378–380, 413, 437, 524–525, 530, 547, 553, see also
endophenotype



photodiode, 100, 378–379, 416, 425, 439–440, 523, 547, 553, see also
endophenotype
photoelectron, 378–379, 547, see also endophenotype
photomultiplier tube (PMT), 378–380, 416, 425, 547, 553, see also
endophenotype
photon, counting, in fNIRI, see time–correlated single photon counting

defined, 547
in fNIRI, 408, 415–419, 422–427, 429, 431, 433, 441
measurement, in PET, 373–382, 530, 553, 576
production, in PET, 373–375, 545
scattering, in PET, 374, 376, 526

phrenology, 13, 15, 256, 289, see also neo–phrenology
physics, of EEG, 63

of fNIRI, 441
of MEG, 135, 153–154, 173
of MRI, 180, 240
of PET, 375, 388, 399
of tES, 503
subatomic, 180, 372–373, 523, 547

physiological measures, 26, 547, 549
piano, 20, 184
PIB, see Pittsburgh compound B
piercing, 151, 208
Pittsburgh Compound B (PIB), 386–387, 398, 401
placebo effect, 467, 498, 547
planar gradiometer, 141–146, 152–153, 159, 170, 172, 174, 547
Pliny the Elder, 445
PMT, see photomultiplier tube
point–to–point tracking, 353, 356, 359
pointillistic noise, 240
Polanía, Rafael, 494–495, 520
polarization, 66, 173, 474–475, 484, 493, 501, 529, 535, 547
Poldrack, Russel, 52–53, 282, 305
polyphasic pulse, 453, 547
positron, 2, 31, 371–375, 377–385, 387, 389, 391, 393, 395, 397,
399–402, 523, 526, 528, 531, 546–548

annihilation, 373–376, 383, 400–401, 523, 526, 531, 547



defined, 547
positron emission tomography (PET), 2–3, 31, 371–402, 416, 431, 470,
523–526, 528–529, 531, 533, 540, 545, 547, 552, 554, 556

acquisition, 380–384
chemicals, see positron–emitting radioligands (PERs)
combined with MRI, 393–394, 397–399
combined with TMS, 470–471
data analysis, 394–395
experimental design, 390–393
instrumentation, 375–380, 395–399
physical basis, 373–374
reading study, 39–41
safety, 388–390
scanner, 397
temporal resolution, 393–394
temporal resolution, 390–394

positron–emitting radioligand (PER), 372–373, 375, 377, 380, 382,
385–392, 395–402, 528, 546–548
Posner, Michael, 2, 39, 257
post hoc, confirmation of hypothesis, 283

test, 43, 103, 548
postmortem, 14, 309–310, 312–314, 334–335, 339, 361, 363–366, 369
postsynaptic potential, 65, 79, 93–94, 127, 135, 223, 228, 230, 253, 340
potassium (K), 5, 219–220, 342
potential, electrical, 5, 29, 33, 65, 67, 69, 72, 77, 82–85, 93–94, 115,
120, 126–127, 129, 131, 134–137, 140, 149, 158, 173–174, 219–220,
343, 412, 446, 470, 474, 486, 499, 507–508, 510, 512, 521–522, 526,
529, 531, 536, 541, 546, 550, 552–553
power, electrical, 102

nuclear, 389
of light source in fNIRI, 409, 425,
spectral (2D), 199
spectral (frequency domain), 77–80, 94, 105–108, 110, 124–126,
129–130, 167–169, 492–493, 517, 532, 534, 548, 556
statistical, 36, 49, 51–52, 57–58, 231, 236, 282, 298, 321, 548, 554
stopping, 379, 554

power spectrum, 78, 106, 108



EEG, 107
PPI, see psychophysiological interaction
ppTMS, see paired–pulse transcranial magnetic stimulation
pre–existing condition, 55, 479
precession, 178, 182–188, 195–196, 202, 204, 206, 210, 212, 343–344,
539, 547–548
prefrontal cortex, 262, 296, 299–300, 365, 460, 463, 470, 488, 492
preparation, of EEG participants, 91–92, 94
preprocessing, defined, 548

Diffusion MRI data, 338, 347, 359–360, 366–367
EEG data, 5, 98, 104, 120, 129–120
fMRI data, 216, 237–238, 252–253, 256, 281, 525, 541–542, 554,
fNIRI data, 404, 426–431, 441
MEG data, 134, 152, 156, 172, 174
PET data, 395
structural MRI data, 314, 320, 556

Price, Cathy, 46, 179, 273, 391, 516
Prichard, James, 221
primary motor cortex, 218, 229, 242, 476, 493, 497, 501–502, 506, 508,
548
primate brain, 220
principal components analysis (PCA), 114, 429, 548
probabilistic atlas, 312, 548
probabilistic tractography, 356, 361, 549
production effect, 274–275
projectile, 208
projection, axonal, 340

fibres, 338
in PET coincidence detection, 383–384, see also back–projection

projectome, 340, 366, 527, 549
projector, 151, 558
proton, effects of magnetic field, 180–182

in diffusion MRI, 344–345, 400
in PET, 373–374, 547
source of MRI signal, 180–191, 194–197, 202, 204, 206–207,
210–212, 217, 252–253, 522, 548
see also hydrogen



psychiatric conditions, 32, 56, 338, 479, 485, 492, 512, 518
psychological conditions, 36, 48, 98–99, 129, 537
psychology, 3–4, 21, 34, 36, 38, 47, 50, 59, 276
psychophysics, 20–22, 44, 505, 549, 554
psychophysiological interaction (PPI), 296–300, 548–549
psychophysiological measures, 549
psychosis, 339, 479, 485, see also psychiatric conditions
publication bias, 51, 549–540
pulse, transcranial magnetic stimulation (TMS), 453–
pulse sequence, defined, 549

for diffusion MRI, 338, 341, 343–348, 363, 365, 368, 529–530
for fMRI, 216–217, 230–233, 235–238, 251, 253, 530, 554
for MRI, general, 178, 188, 191, 194–196, 198, 204–205, 213, 527,
540, 553
for structural MRI, 321
in TMS–fMRI, 471, 473
spiral, 230, 235–236, 238, 251–252, 554

pump, insulin, 152
ion, 219–220, 226

pupillometry, 26, 549
pure insertion, 39, 259–260, 549, 555
pyramidal cell, 4, 158, 411, 549
Python (programming language), 100, 146, 163–164

quadripulse stimulation, 454, 549

RA, see relative anisotropy
raclopride ([11C]RAC), 391–392, 470
radiation, dose, quantifying, 389

ionizing, 373
safety, 388–390
types, 373 391, 396, 399, 401, 414, 532, 552

radio frequency (RF), coil, 194
defined, 549
energy, 184–186, 188, 190, 207–208, 210, 212, 347, 400, 533
excitation, 196, 230–231, 343, 368
pulse, 184–186, 188–189, 191–194, 196–198, 210–213, 232, 236,



238, 240, 251, 346–347, 549–540
receiver, 234
transmission, 184, 188
transmitter, 186
wave, 30, 184, 207–208, 211, 216, 401

radon, 288, 389
random, coincidence detection in PET, 382

diffusion of water, 342–343, 345, 366–367, 525
events, in PET, 380, 382
field, see Gaussian random field theory
noise stimulation, see transcranial random noise stimulation (tRNS)
noise, in DTI, 348, 355
noise, in EEG, 68, 73,
noise, in fMRI, 242, 281,
orientation of protons, 181–182, 210, 212
variance, 46, 557

rat, 13, 217, 463, 514
rating scale, 19, 522, 545, 550
ratio, CBF to CMRO2, 224

contrast–to–noise, see contrast–to–noise ratio
grey to white matter, 318
gyro–magnetic, 183, 536
in light absorbance, 420
oxy– to deoxy–Hb, 30, 217–218, 225, 406, 438, 535
risk–benefit, 478
signal–to–noise, see signal–to–noise ratio
T1 to T2 weighting in MRI, 314
volume, in DTI (VR), 352

Rb, see rubidium
rCBF, see blood, cerebral flow rate
re–referencing, 114–118, 129–130, 174
re–wiring, of brain, 23, see also neuroplasticity
reaction time (RT), 17–18, 32, 34, 38, 45–47, 56 126, 269, 321, 485,
491–492, 495, 497–498, 541, 550
reading, eyetracking studies of, 25

mind, 55
neuroimaging studies of, 39–42, 79, 274–275, 297



out, MRI signal, see readout signal
sentence, 68, 125,

readout signal, 187–188, 193, 204, 206, 211, 344,
REB, see research ethics board
receiver coil, 184–186, 188, 192–193, 197, 210, 234
receptor, acetylcholine, 500

benzodiazepine, 386
cannabinoid, 386
defined, 6, 550
dopamine, 386, 391–392, 470, 500
GABA, 6–7, 466, 500
glutamate, 6, 223, 500
mapping, 310, 312, 372, 385–387, 391,
neurotransmitter (general), 14
nicotine, 386
NMDA, 6, 500–501
opioid, 386
serotonin, 386, 500

recovery, from brain injury, 32
from neural refractoriness, 101
from stroke, 226, 456
of HRF, 264
system for helium, 138
T1, see T1 recovery

red blood cell, 225
reference, brain, 155, 158, 243–244, 250, 252, 311, 336, 544, 554, see
also spatial normalization and template

condition, see baseline condition
for fMRI motion correction, 238
in EEG, 83–86, 92–94, 114–119, 128, 529, 536, 550
phase, in fNIRI, 422, 427, 546
point, in TMS neuronavigation, 452
time series, in functional connectivity, 289, 296
voxel, 296

reference voxel, see voxel, seed
refocusing gradient, 346
refocusing pulse, 345–346



refresh rate, 100, 550
region of interest (ROI), 162, 170, 282, 284, 297–298, 303, 439,
521–522, 524, 533, 535, 550
registration, based on myelin density, 314–315

in computational neuroanatomy, 323, 325–326,
linear, 245–246, 250, 252, 254, 522
MEG sensors, 164
nonlinear, 246–252, 254, 522
of fNIRI and MRI data, 432–433
spatial, in DTI, 348–349, 356–358, 368
spatial, in fMRI, 244–252, 254, 320,
spatial, in PET, 394–396, 402
spherical surface–based, 248–252, 254

regularization, 161–162, 165, 355, 433, 541, 544, 550
Reil, Johann, 338
relative anisotropy (RA), 352
relaxation, 188–190, 193, 210–212, 230, 340, 532, 550, 555
repetition time
repetition time (TR), 191–193, 198, 211–212, 230–232, 236–238, 251,
471–473, 550, 557
repetitive TMS (rTMS), 454, 459, 461–463, 466, 470, 473, 477,
479–481, 491, 537, 540, 544–545, 550–551, 556
rephasing gradient, 344, 368, 550
replicability crisis, 50, 549–540
replicable, 37, 123, 175, 283, 298, 304, 451, 453, 551
representational similarity analysis (RSA), 285–288, 551
reproducibility crisis, 282
research ethics board (REB), 54, 516
resolution, energy, in PET

spatial, defined, 27, 553
spatial, diffusion–weighted MRI, 346, 375
spatial, EEG, 63
spatial, fMRI, 9, 15, 30, 224, 231, 240, 244, 277, 290
spatial, fNIRI, 30, 405–406, 408, 417–419, 424–425, 432, 439–430
spatial, MEG, 29–30, 135, 156, 160, 162, 165–166, 173, 175
spatial, MRI, 194
spatial, PET, 379, 382, 384, 391, 395–396, 398, 400, 525



spatial, structural MRI, 310, 323–324, 334, 336
spatial, tES, 489–490, 506–511, 537
spatial, TMS, 447
temporal, defined, 27, 555
temporal, EEG, 28–30, 99, 122, 130, 167
temporal, fMRI, 30, 216, 257,, see also haemodynamic response
function (HRF)
temporal, fNIRI, 30, 406–407, 411–416, 419–420, 422–426, 438,
440, 556
temporal, MEG, 167, 173, 175
temporal, PET, 31, 216, 379, 382, 385, 390, 393, 398–401, 529,
552
temporal, TMS–EEG, 472

resonance, 177–179, 181–187, 189, 191, 193, 195, 197, 199, 201, 203,
205, 207, 209–213, 254, 503–505, 519, 540, 551, 554
resonant frequency, 184–185, 194–195, 343, 503, see also Larmor
frequency
response, auditory brainstem (ABR), 68, 168, 227

behavioural, 16–20, 34, 38–39, 45–46, 50, 102, 118, 444–445, 492,
504, 521–522, 537, 539, 545, 550
BOLD, see blood oxygenation level dependent
contingency, 19, 551
device, 91, 151, 175
filter, 104–106, 533, 557
haemodynamic, see haemodynamic response function (HRF)
line of, 381–384, 390, 400–401, 431, 524, 540
physiological, 24–25
sigmoid, 504–505, 552
time, 16–17, 20, 39, 45–46, 50, 296, 517, 550, see also reaction
time

resting motor threshold (rMT), 455, 458, 479, 551
resting state, 34, 79, 167, 270, 289–290, 295–296, 391, 393–394, 398,
524, 535, 545, 551
resting state functional connectivity magnetic resonance imaging (rs–
fcMRI), 290–291, 294, 551
resting state functional magnetic resonance imaging (rs–fMRI), 290,
292, 294–296, 301, 314–315, 317, 391, 393–394, 551



retinotopic, 137, 154, 166, 548, 551
reverse inference, 36, 52–54, 58, 521, 551
reversed gradient, 206
reward system, 392–393
RF, see radio frequency
Riggs, Lily, 168
right–hand rule, 29, 31, 87, 134, 136, 139, 141–142, 148, 172–174, 184,
186, 208, 348, 444, 446–447, 479, 481, 522, 551, see also Ampère’s
circuital law
ripple frequency, 493, 551
rMT, 455, 458–459, 469, 472, 551, see resting motor threshold
Rogue Research Inc, 449, 452, 456
ROI, see region of interest
rolloff, of filter, 105–106, 108, 130, 196, 551, 557
Romei, Vincenzo, 461–463
root mean square, 152
rotation, 181, 238–239, 245, 252, 326, 328–329, 556
rs–fcMRI, see resting state functional connectivity magnetic resonance
imaging
rs–fMRI, see resting state functional magnetic resonance imaging
RSA, see representational similarity analysis
RT, see reaction time
rTMS, see repetitive transcranial magnetic stimulation
rubidium (Rb), 144, 147
Ruff, Christian C., 469, 472–473, 520
run, fNIRI, 435
run, fMRI, 235–236, 238, 265, 273, 280, 283, 297, 302
running, analogy for phase roll, 204

S1, see somatosensory cortex
saccade, 25
safety, EEG, 84

guidelines, 55
MRI, 207–209, 211, 213, 247, 399
tES, 489, 514–516, 518–519
TMS, 455, 473, 477–478, 480–481
20, 55, 84, 178, 181, 207–208, 211, 213, 347, 375, 388–390,



399–401, 408–409, 414, 444, 455, 473, 477–478, 480–482, 484,
489, 514–516, 518–520, 552, 556

safety, fNIRI, 408–409, 414–415
PET, 375, 388–390, 400–401, 552, 556

sagittal plane, 192
saltatory conduction, 65
sampling rate, defined, 82, 552

EEG, 82, 110–111, 123
EEG with TMS, 474
fMRI, 27, 237
fNIRI, 413, 417, 419–420, 423, 430, 440
MEG, 167
of fNIRI, 413, 416–420, 423, 425, 430, 440
relationship to aliasing
relationship to aliasing, 110–111, 522, 544

SAR, see specific absorption rate
saturation, of EEG amplifier, 474–475, 525, 552

oxygen, 218, 406, 424, 434
sigmoid, 504

SBCT, see surface–based cortical thickness
scaling, in MRI normalization, 245 158, 244–245, 252, 288, 326, 395,
429, 530
scalp–brain distance, 437
scattering, Compton, 374, 376, 384, 526

light, 405, 408, 411, 415, 419, 421, 433, 529, 542
Schaefer, Evelyn, 10
schizophrenia, DTI study of, 360–361

imaging with PET, 387
in TMS study, 461
studied with tES, 515
treatment with tDCS, 492

scintillation detector, 375, 378–382, 399–401, 524, 529, 531, 540, 552,
554
scout scan, 235, 237
seed region, 290–293, 296, 368
seed voxel, 290, 356, 525
seed–based correlation, 291–292, 543, 552



segmentation, of EEG data, see epoch
of fibre tracts, 357–361, 542
of tissue types in MRI, 314, 320, 322, 324–325, 332–333, 335

segregation, 16, 535, 552
seizure, 55, 477, 481, 485, 507, 514–515
semantic, 39–41, 75, 109, 125–126, 270, 285, 333
semiconductor, 378, 416, 503, 547
sensitivity, of behavioural methods, 18–19

of diffusion–weighted imaging, 346–347, 356, 524
of EEG system, 84, 102
of ERPs, 69, 104, 109, 124, 130
of fMRI, 229–231, 252, 266, 270, 276, 282–283, 304
of fNIRI, 408, 414, 416, 418, 422, 424–426, 430, 434, 438–430
of MEG, 138–144, 148, 150, 154, 162, 168, 174, 533, 539
of PET, 382, 384, 532, 552
of PET scanner, 380–384
of VBM, 324
to experimental effects, see statistical power
to noise, 122
to radiation, see equivalent dose
to visual motion, 461–462

sensory artifacts, 471, 552
sensory experience, 467
serotonin, 7, 386, 400, 466, 480, 500
sex, 49, 421
sham, stimulation, in non–invasive brain stimulation, 552, 558
sham, stimulation in tES, 488–489, 492, 494–495, 498, 513–514, 517,
519

stimulation, in TMS, 462, 467–469, 480–481
shape, of brain, see morphometry
shear, 244–245, 252
shielding, electrical, 87–88, 90

from TMS, 437, 468, 471
in fNIRI, 437
in PET, 377
MEG, 135, 149–151, 172, 174–175, 521, 541–542, 546

shimming, 233, 552



short–distance correction, 429–430, 441
short–interval intracortical facilitation (SICF), 458–460, 499–500
short–range connections, 7, 340
shrapnel, 208, 211
SICF, see short–interval intracortical facilitation
SICI, see short–interval intracortical inhibition
Siemens AG, 179, 377, 380, 397
sievert (Sv), 389, 552, 555
sigmoid, 504–505, 552
sign language, 259
signal processing, of EEG/ERP data, 63, 102, 104, 114, 124, 129

of fMRI data, 237–251, 292 104, 527, 530, 541, 548, see also
preprocessing

signal processing, of MEG data, 152–153, 162
signal–to–noise ratio (SNR), 68, 93–94, 104, 114, 130, 156, 158,
165–167, 169, 173, 175, 235, 251–252, 256, 276, 303, 321, 346, 378,
380, 384, 400, 405–406, 409, 411–413, 416, 418, 422, 424–426, 431,
433, 437, 502, 523, 525, 529, 531–532, 541, 552, 554
silent period (SP), 455, 466, 480, 552–553
silicon photomultiplier, 416, 553
sine wave, grating, 198–203, 206, 211, 213, 246, 263–264, 544, 553
76–78, 105, 198–199, 492–497
single–photon counting, see time–correlated single photon counting
single–pulse TMS, 453–456, 458, 461, 476–477, 479–480, 553
sinus, in fMRI susceptibility artifact, 233–234
skeletonization, 358–359, 553
skin potential, 90–91, 105, 110, 129–130, 553
skull, base, see inion

bumps, in phrenology, 13
effects on EEG signal, 13, 27, 29, 63–64, 115, 128, 137
effects on fNIRI signal, 30, 404–405, 408–409, 432, 441
in MEG, 136–137, 140, 155–157
in MRI, 239, 320, 525
in tES, 484, 506–508, 512, 515
modelling, see boundary element model and finite element model
thickness, 115, 128, 432, 441, 508, 512

slice selection, 178, 196–198, 211–212, 231–233, 236, 238, 343, 553



slice selection gradient, 196–197, 232, 553
sLORETA, see standardized low–resolution brain electromagnetic
tomography
slow optical signal, 404, 406–413, 419, 426–427, 430, 433, 438–439,
535, 553
small–world properties, 292, 553
smart watch, 404
smoking, 225
smoothing, kernel, 240–242, 252, 324, 348–349, 395, see also Gaussian
kernel

spatial, in diffusion MRI, 348–349, 355, 360
spatial, in fMRI, 240–242, 246, 252–253, 281–282, 323–324,
534–535, 539, 541, 554
spatial, in PET, 395
temporal, see filter

Snowball, Albert, 498
SNR, see signal–to–noise ratio
SOA, see stimulus onset asynchrony
sodium (Na), 5–6, 219–220, 342, 380, 466, 480–481, 499–501, 517, 519
sodium iodide (NaI(Tl)), 380
sodium ion channels, 480–481
sodium–potassium pump, see ion pump
software, computational neuroanatomy, 322, 326, 334

DTI analysis, 347–348, 352, 357
EEG data analysis, 105, 110, 114
fMRI analysis, 179, 238, 250, 266, 281–282, 318
for analyzing behavioural data, 20
for DTI analysis, 347
for fNIRI, 413, 426–427
for fNIRI analysis, 426
for MRI scanner, 217–218, 230–231, 238, 321
for tES, 489–490, 516, 519
FSLview, 192
MEG analysis, 152, 161, 163–164
MNE–Python, 146, 163–164
morphometry, 318
neuro–navigation, 452–453



PET analysis, 399
SPM, 322
stimulus presentation, 100, 130
Surf Ice, 161

soma, 4–5, 158, 521, 553
somatosensory cortex, primary (S1), 137, 313–314, 331
Soterix Medical Inc, 488, 490
source localization, averaging across people, 158

beamformer, 162–167, 524, 558
comparison of algorithms, 166–167
comparison of EEG and MEG signals, 148–149
dipole model, 158–150
distributed models, 160–162
EEG/ERP, 98, 126–129, 131
in fNIRI, 426, 431–434, 439, 441, 545, 557
in MEG, 134–135, 148, 153–158, 163–170, 172–175, 524–525,
530, 541, 544, 554
in tES, 506–508
limitations, 153–155
of fNIRI data, 426, 431–433, 437–438
validation, 153–155

SP, see silent period
spatial, derivative, 315, 553

distortion, 234–235, 238, 245, 248, 250, 315, 348
encoding, 194, 207, 238, 253, 471, 536
frequency, 178, 198–207, 211, 213, 242, 553
gradient, 203, 238, 316, 348, 553
normalization, 158, 216, 243–245, 248, 252–254, 283, 319–320,
322–324, 326–328, 335–336, 357–358, 395, 522, 536, 544,
553–554
resolution, see resolution, spatial
smoothing, see smoothing, spatial

spatially variant regularization (SVR), 433
speaker, 87, 89, 91, 100–101, 151, 285
speaking, aloud, 41

fMRI study of, 274
in EEG studies, 89, 102



in fNIRI studies, 410
specific absorption rate (SAR), 327
specific energy, 377–378, 547
spectrophotometry, 404–405, 438–439, 554
speech, 13, 15, 17, 20, 23–24, 46–47, 52, 72, 100, 102, 270, 275, 391,
446, 461, 463
Sperry, Roger, 339
spherical surface–based normalization, 248–250, 252, 254, 332–334,
554
spike, 60 Hz, 106

artifact in fMRI, 238–239
electrocardiogram artifact, MEG, 145–146
in model of fMRI stimuli, 264
motion artifact, in fNIRI, 428–429

spiking, of neuron, 228, 340, see also action potential
spinal cord, 363, 523
spiral imaging, 230, 235–236, 238, 251–252, 554
SPM (software), 322
square wave, 112, 264, 436
SQUID, see superconducting quantum interference device
stair climbing, 219
staircase method, 21, 554
standard, atlas, 283

brain, 160, 245, 432
brain template, 28, 155, 247, 252, 254, 323, 347, 357–358, 368,
394, 553
deviation
for electrical line frequency, 87
for electrode locations, see International 10–10 System
gold, 22
safety, see guidelines, safety
stimulus, 99, 261–262, 266, 390–391
unit
unit, 407

standardized low–resolution brain electromagnetic tomography
(sLORETA), 162, 554
static artifacts, 471, 554



statistic, hypothesis testing, 537
interaction, 43, 103, 259, 538
multivariate, in structural MRI, 327, 329
nonparametric, 171, 525, 544, 546, 549
nonparametric, for DTI data, 359
T2, see Hotelling’s T2
univariate, 123, 169, 280, 282, 284, 303–304, 359, 541–542
z, see z test

statistical, analysis of DTI data, 351–352, 360
analysis of EEG/ERP data, 98, 104, 120–121, 129–120
analysis of fMRI data, 237, 252, 256, 258, 280–281, 283, 302–303
analysis of fNIRI data, 431, 433
analysis of MEG data, 169–172
analysis of PET data, 395
analysis of structural MRI data, 326, 331, 335
comparison, 152, 170, 275, 320, 324, 335–336, 352
contrast, 275
independence, see independent components analysis
map, 242, 280, 285
method, 171, 303, 313, 324, 329, 359
model, 427, 535, see also general linear model
power, 36, 49, 51–52, 57–58, 231, 236, 282, 298, 321, 548, 554
sensitivity, 109, 231, 276, 282
significance, 18, 50–51, 104, 109, 124, 169, 262, 268, 271, 275,
281, 324, 333, 511, 546, 549, 554
test, 23, 129, 170–171, 281, 302–304, 324, 434, 521, 542, 550
threshold, 163, 304, 535

statistical parametric mapping, dynamic (dSPM), 162, 530
statistical parametric mapping (SPM), 322
statistics, class, 49, 170, 281
STG, see superior temporal gyrus
stimulation, deep brain, 152, 444, 477–478, 515

electrical, see transcranial electrical stimulation (tES)
electrical, in neurosurgery, 444–445
magnetic, see transcranial magnetic stimulation (TMS)
perceptual
sham, see sham stimulation



stimulus, auditory, 100–101
auditory, in MEG, 151
category, in multivariate fMRI analysis, 284–288
control, 283
duration, 261
features, 98–99, 303–304, 533
intensity, 21, 45, 505, 554
presentation, 68, 100–101, 113, 123, 130, 151, 257, 261, 264, 289
presentation, in event–related fMRI, 261–266
timing, 99–101, 130
visual, 37, 44, 68–69, 80, 100, 153, 225, 229, 456, 472–473, 550

stimulus onset asynchrony (SOA), 101, 168, 261, 263–269, 279, 538,
554
stingray, 445
stochastic resonance, 503–505, 519, 554
stopping power, 379, 554
stopping rule, in tractography, 353–354
Strafella, Antonio, 470–471
streamlining, 353–357, 359, 365–368, 549, 555–556
stroke, 11, 22–24, 226, 396, 456, 458, 515
structural magnetic resonance imaging (sMRI), computational
neuroanatomy, 319–314

contrast weighting, 321–
cortical thickness measurement, 330–334
deformation–based morphometry (DBM), 326–327
experimental design, 320–322
grey matter concentration, 324–325
morphometry, 315–319
scales of cortical organization, 310–315
surface–based cortical thickness (SBCT), 332–334
tensor–based morphometry (TBM), 328–329
voxel–based cortical thickness (VBCT), 330–331
voxel–based morphometry (VBM), 322–325
see also computational neuroanatomy

STS, see superior temporal sulcus
subatomic particle, 180, 373, 547
subjective experience, 21



subjectivity, 294, 312, 318–319
substance abuse, 492
subtraction method, 18, 38–39, 56, 72, 74, 257, 259, 522, 555
suicide, 485
sulcus, central, 10, 15, 248, 250, 314, 456, 506, 526

intraparietal, 283, 472
Sylvian fissure, 10, 15, 248, 283, 314, 555 137, 246–247, 272, 312,
330–331, 334, 465, 472, 536

Supalla, Ted, 259, 272
superconducting quantum interference device (SQUID), 138–140, 144,
172, 174, 533, 545, 555
superficial signal, 427
superior temporal gyrus (STG), 47, 283, 548
superior temporal sulcus (STS), 249, 272
Surf Ice, 161
surface–based, normalization, 248–249, 252, 254, 314, 332, 554

representation of cortex, 334, 336
surface–based cortical representation, limitations, 334
surface–based cortical thickness (SBCT), 319, 331–334, 552, 555, 558
surgeon, 243, 360
Sv, see Sievert
SVR, see spatially variant regularization
swing, 184
Sylvian fissure, 10, 15, 248, 283, 314, 555
synapse, 4–7, 9, 223, 308, 466, 521, 529, 555
synchronization, across neurons, 65

event–related, 77, 79, 98, 130, 532
of BOLD activity, see functional connectivity
of neural oscillations, 492, 494–495, see also entrainment
phase, 186, 526, 547

syntactic processing

t–test, 123, 169, 171, 258, 275, 280, 302–303, 324, 434, 436
T1, contrast, 190–191, 193, 210, 212

recovery, 178, 188–193, 210, 212, 542, 555
relaxation, 189–190, 230, 555

T2, contrast, 178, 188–193, 210–212, 217, 219, 225, 230–231, 251, 253,



314, 322, 327, 363, 397, 541–542, 555
decay, 178, 188–192, 210, 212, 230, 542, 555
Hotelling’s (statistic), 327
relaxation, 190, 210, 555

T2*, contrast, 230, 541
decay, 191, 212, 217, 219, 225, 230, 251, 253, 540, 555

tACS, see transcranial alternating current stimulation (tACS)
Takano, Takahiro, 222–223
Talairach atlas, 243–244, 246, 249–250, 252, 310
Talairach, Jean, 243
Tan (patient of Broca), 11, 13, 41
tattoo, 152, 208
tau protein, 386
taxonomy, of white matter tracts, 338–339
TBM, see tensor–based morphometry
TBS, see theta burst stimulation
TCA cycle, see tricarboxylic acid cycle
TD, see time domain fNIRI
TE, see echo time
template, 28, 192, 244–248, 250, 252, 254, 312, 314, 318–320, 323, 326,
347, 357–358, 368, 394–395, 432, 544, 553–554
temporal lobe, 10, 23, 69, 73, 163, 166, 168, 233, 277, 284–285,
360–361, 391, 541, 555, see also superior temporal sulcus (STS) and
superior temporal gyrus (STG)
temporal resolution, see resolution, temporal
temporal–parietal junction, 391
tensor –based morphometry (TBM), 308, 319, 327–328, 335–336, 521,
539, 555–556

diffusion, see diffusion tensor
line approach, 355–356, 556

TEP, see transcranial magnetic stimulation–evoked potential
Terney, Daniella, 497–498
tES, see transcranial electrical stimulation
TES (transcranial electrical stimulation), 484–485
Tesla (T; unit of measure), 138, 181
tessellation, 319, 332, 556, 558
test stimulus (TS), 458–460, 556–557



testes, 389
testosterone, 7
thalamus, 339, 361–362, 548, 559
tHb, see total blood volume
theory, Gaussian random field, see Gaussian random field theory

graph, see graph theory
hodological, 338

therapy, electroshock, 485
theta, frequency band in EEG, 77–78, 94, 126–127, 169, 454, 463–464,
480–481, 494, 496, 498, 517, 527–528, 534, 555–556
theta burst stimulation (TBS), 454, 463–464, 480–481, 496, 527–528,
555–556

continuous (cTBS), 463–466, 477, 527–
intermittent (iTBS), 464–465, 538–539, 545

thickness, cortical, see cortical thickness
of MRI slice, 194, 196, 231, 233
of scalp, 432
skull, see skull thickness

threshold, statistical, see statistical threshold and p value
threshold limit value (TLV), 389, 556–557
Thulborn, Keith, 217
tickle, 488, 515
Tikhonov regularization, 433
time–continuous design, 278–280, 285, 551, 556

–correlated single photon counting (TCSPC), 425, 556
–frequency analysis, 77, 126, 129, 556, 558
–frequency plot, 125
domain, fNIRI (TD), 414, 416, 421–427, 438–439, 529, 555–556
domain, representation of data, 76–78, 94, 105–108, 124, 126, 169
for DWI scan, 346
locking, 29, 62, 68, 77, 79, 82, 93–94, 118, 124, 129–130, 146,
166–167, 262, 267, 460, 463, 528, 532
multiplexing, 419, 542, 556

period, 25, 94, 113, 118, 289, 400, 423, 456, 476, 522–523,
541

points, 110, 116–117, 122, 130, 167, 170, 231, 239, 258, 266, 280,
297, 320–321, 324, 327, 329, 359, 401, 413, 468, 497, 512



scale, 7, 9, 27, 31, 230, 308, 393, 411, 430, 439
window, in ERP analysis, 104, 110, 120–124, 129–130, 522, 534,
546, 556
window, in fNIRI analysis, 423–425, 427, 436
window, in MEG analysis, 152, 169–160
window, in PET analysis, 373, 381
window, in TMS, 471, 475

time of flight, distribution, in fNIRI, see distribution of time–of–flight
(DTOF)

imaging, in PET, 382, 556
time–resolved, fNIRI, see time–domain fNIRI and frequency–domain
fNIRI
timing, in MRI pulse sequence, 188, 206, 210, 213, 549

in paired–pulse TMS, 457–459
in rTMS, 461–463, 470
of ERP effects, 29, 69–72, 75, 93–94, 98–101, 116, 118, 120,
122–124, 126–128, 130, 526
of haemodynamic response, see haemodynamic response function
(HRF)
of light in fNIRI, 414, 422, 438, 440, 534
of MEG effects, 148, 153
of neural activity, 226, 228, 230, 481
of visual evoked potential, 457
properties of crystals used in PET, 381–382
stimulus, 99–101, 168, 531

tinnitus, 515
tissue segmentation, 320, 325, 333, 556
TLV, see threshold limit value
TMS, see transcranial magnetic stimulation
TMS–evoked potential (TEP), 476, 556–557
tomographic imaging, 426, 545, 557
tomography, computed, see computed tomography

low resolution, see standardized low–resolution brain
electromagnetic tomography (sLORETA)
optical, see optical tomography
positron emission, see positron emission tomography

tongue, 270, 489



tool, as stimulus in fMRI, 285
toolbox, 31
total blood volume, 221, 406, 438
total blood volume (tHb), 221, 223, 226, 406–407, 434, 438
Tournoux, Pierre, 243–244, 246, 250, 252, 310
toxicity, of anatomical tracer, 339, 365
TR, see repetition time
tracer, 31, 339, 361, 363, 365, 372, 385–386, 395, 401, 548
tract, 28, 179, 338–339, 343, 349–369, 523, 530, 542, 555, 557

association, 339
commissural, 339

tractography, 337–341, 343, 345–347, 349, 351, 353, 355–361, 363,
365–369, 525, 542, 549, 553, 555–557
training study, 32, 179, 321
trajectory, 232–233, 235–236, 365, 428–429, 539
transcranial alternating current stimulation (tACS), 32, 486–487,
491–499, 501, 503, 507, 511, 517–518, 532, 545, 557
transcranial direct current stimulation (tDCS), 32, 483, 486–487,
489–492, 494, 497–503, 508, 510–515, 517–518, 520–521, 523, 543,
545, 557
transcranial electrical stimulation (tES), activity dependence, 501–506

blinding, 488, 513–514
conduction through brain, 506–511
consumer grade, 516
current intensity, 487–489, 495, 497, 504, 507–508, 511–516, 518
dangers, 484,
defined, 484
discomfort during, 488–489, 498
effects of age, 508–510, 515
effects on brain, 499–506
electrodes, 489–490, 494, 506, 508
experimental design, 511–514
guidelines, 511
high definition (HD–tES), 489–490, 494
history, 484–486
impedance, 488
individual differences, 511–512



participant selection, 511
pharmacology, 499–501
ramping current, 489, 513–514
safety, 484, 514–516
self–administration, 516
sham stimulation, 488, 513–514
sponges, 488–489, 506, 508, 515
stochastic resonance, 503–506
tACS, see transcranial alternating current stimulation
tDCS, see transcranial direct current stimulation
tRCS, see transcranial random noise stimulation
tRNS, see transcranial random noise stimulation

transcranial magnetic stimulation (TMS), –evoked potential (TEP), 460,
476, 556–557

acoustic noise during, 467
coil, 446–453, 459, 474
combined with EEG, 460–461, 472–478
combined with fMRI, 471–472
combined with PET, 470–471
confounds, 467
distribution of magnetic field, 446–448, 451
effects on brain, 465–466
experimental design, 467–469
history, 445
instrumentation, 446–453
muscle contractions during, 448, 478
navigation, 448–452
neurotransmitters mediating effects, 459
online vs. offline protocols, 463–465
paired–pulse, 454, 458–461
pulse shape, 453–
quadripulse (QPS), 454,
repetitive (rTMS), 454, 459, 461–463, 466, 470, 473, 477,
479–481, 491, 537, 540, 544–545, 550–551, 556
safety, 477–479
sensory stimulation, 444–445
sham stimulation, 467–469



side effects, 477–479
single–pulse, 453, 455–459
spatial resolution, 447
stimulation intensity, 455, 469
strength of magnetic field, 446
theta burst (TBS), 454, 463–464, 480–481, 527–528, 555–556

transcranial random current stimulation (tRCS), 486, see transcranial
random noise stimulation
transcranial random noise stimulation (tRNS), 32, 483, 486–487,
497–499, 501, 511, 517–518, 557
transition band, 105–106, 108, 551, 557
translation, 11, 238–239, 245, 252, 329
transmission scan, 396
transverse component, 192, 557
transverse plane, 184–186, 188–193, 197, 210, 212, 343, 532, 555, 557
Tri–Council Policy Statement: Ethical Conduct for Research Involving
Humans, 54
trial–to–trial variance, 46
triangulation, 159, 318
tricarboxylic acid (TCA) cycle, 219
trigger port, 82
TS, see test stimulus
Tseng, Philip, 502
tube formula, 436
tuft, 4–5, 557
tumour, 22, 209, 360, 396–397
Type I error, 103, 303–304, 542

U–fibres, 353, 355
under–additivity, of haemodynamic response function, 262–264
undiagnosed condition, see incidental finding
unexpected finding, see incidental finding
unfolding, cortical, 248–250
univariate analysis, 123, 169, 280, 282, 284, 303–304, 327, 359,
541–542
upright face, 69–70, 99, 115–119
urine, 389



V1 (brain region), 12, 286, 288, 317, 341, 349, 351, 456, 461–462, 472,
548, see also visual cortex
V2 (brain region), 313, 341, 349, 351, 472
V3 (brain region), 341, 349, 472
V4 (brain region), 341, 450, 472
V5 (brain region), 272–273, 450, 461–462, 472, 502, 505
vacuum, 378, 422–423, 546
variability, between individuals, see individual differences

in brain structure and organization, see individual differences
in er–fMRI stimulus timing, see jitter
in ERP stimulus timing, 100, 130
in fNIRI results, 507, 511–512
in haemodynamic response function, 228–229, see haemodynamic
response function (HRF)
in measurements, 104
in reaction time (RT), 18, 45
in results of structural MRI studies, 322
spatial, 241

variable, categorical, 37–38, 57, 525, 532
continuous, 36–37, 57, 525, 527
dependent, 36, 38, 56–57, 122, 529, 535, 538, 542, 545–546, 557
independent, 37–38, 56–58, 524, 529, 535, 538, 541–542, 546, 557
levels, 36

variance, analysis of, see analysis of variance (ANOVA)
as indicator of artifact, 429
defined, 50
in BOLD response, see blood oxygenation level dependent (BOLD)
in statistics, 50–51, 57–58, 171, 275, 280, 544, 554, 557–558
in timing of ERP components, 101
of fMRI time series, see efficiency
trial–to–trial, 46

vasoconstriction, 225, 558
vasodilation, 222–225, 228, 251, 253, 523, 525, 558
vasopressin, 7
VBCT, see voxel–based cortical thickness
VBM, see voxel–based morphometry
vector field, 326



vein, 218–219, 222, 224, 228, 398, 407
vein versus brain debate, 224
verb, 37, 40–43, 259
verbal response, 20, 91, 558
vertex (graph theory), see node
vertex (of head), 73, 82, 115–119, 558

as EEG reference, 115–119
stimulation in TMS, 467–468, 473
tES electrode location, 494
vertex (tessellation), 433, 558

verum, 467–468, 513, 558
video game, 391–392
virtual electrode, 162, 558
virtual lesion, 446, 461, 463, 472
visual, cortex, primary (V1), 12, 286, 288, 317, 341, 349, 351, 456,
461–462, 472, 548

field, 11, 137, 154, 160, 277, 286, 435, 450, 472–473, 548
perception, 17, 39, 44, 456–457, 547
processing, 127
stimulus, 37, 40, 44, 68–69, 91, 100, 114, 128, 145, 153, 225, 227,
229, 259, 273, 277, 456, 472–473, 550

visual, cortex, 11–12, 15, 17, 41, 52, 137, 145, 154, 221–222, 227–228,
246, 257, 261, 276–277, 286, 412, 435, 450, 456, 461, 498, 502,
547–548, see also occipital lobe

inspection, 112, 123, 258, 352–353, 363, 427–428
motion, 52, 273, 450, 461, 505

VLSM, see voxel–based lesion–symptom mapping
Vogt, C., 13, 315
Vogt, O., 13, 315
volume, blood, 221, 223, 226, 406–407, 434, 438

conduction, 65, 93, 134, 148, 168, 173–174
of brain structure, 318–319, see also tensor–based morphometry
(TBM)
of brain structures, 308, 319, 328–329
partial, see partial volume effect
pixel, see voxel
ratio (VR), 352



whole brain
voluntariness, 54
von Economo, 13, 315
voxel–based cortical thickness (VBCT), 319–320, 330–332, 334, 555,
558

–based lesion–symptom mapping (VLSM), 24, 540, 558
defined, 162
in diffusion MRI, 338, 340–342, 344–346, 348–362, 367–368, 525
in fMRI, 218, 224, 229, 231, 238, 240–241, 243, 246, 248,
251–252, 264, 266, 271, 276–278, 280–285, 290–294, 296–297,
302–304
in fNIRI, 433–436, 438
in MEG source localization, 165–166, 170–171
in MRI, 194, 205–206
in PET, 398, 400
in structural MRI, 308, 314–315, 319, 322–332, 334–336
in TMS
isotropic, 346, 354, 539
seed, in functional connectivity analysis, 290–
seed, in psychophysiological interactions, 296–299

voxel–based morphometry (VBM), limitations, 324–325
normalization, 323
registration, 323
software package, 322
statistical analysis, 324
technical errors, 325 319, 322, 335–336, 536, 558

VR, see volume ratio

Wagner, Anthony, 262
warping, 28, 235, 246, 248, 250, 252, 323, 357–358, 395
wash–out period, 385
Washington University, 2, 257, 372–
water, analogy for electricity, 84

Brownian motion, see Brownian motion
concentration, 28
in diffusion MRI, 338, 340–345, 349, 356, 363, 365, 367–369, 523,
529–531, 539, 550



in MRI
light absorbance, 409–410, 420–421, 440
molecule, 28, 180, 190, 217, 342–345, 363, 367–368, 529, 550
source of contrast in CT imaging, 396
source of contrast in MR imaging, 28, 180, 188–193, 203, 210,
212, 310

watering the garden, 222
Watts, James, 339
wave, continuous, see continuous wave (CW) fNIRI

direct, see direct wave
indirect, see indirect wave
radio, 30, 184, 207–208, 216, 401, see also radio frequency (RF)
sine, 76–78, 105, 198–199, 492–497
square, 112, 264, 436

waveguide, 151, 437, 471, 558
wavelength, 144, 404, 409–410, 413–414, 421, 425, 434, 439–440, 524,
527, 534, 539, 556
wavelet, 124–125, 429, 431, 530, 558
Weber, E.H., 21
Weber’s law, 21
weighting, diffusion

factor, 388–389, 552
factor (radiation safety)
matrix, 162, 165
MRI contrast, 191–193, 199, 245, 397
sine wave gratings, in MRI, 199, 201–203

welding, 208
Wernicke, Carl, 309, 338–339
Wernicke’s area, 47, 391
white matter, bundles, 243, 289

defined, 8, 558–559
in cortical thickness measures, 325, 330–333, 335–336, 555
in PET
in VBM, 324
MRI contrast, 191–193, 203, 210, 237, 320–322, 394–396, 527,
546
segmentation, see tissue segmentation



tract, 338–343, 349–353, 357–358, 360, 363–365, 367–369, 523,
530, 534, 542, 553
see also myelin

whole brain, volume, 173, 248
winding, dephasing gradient, 344

MEG gradiometer, 141–142, 172, 174, 524
phase roll, 206
TMS coil, 32, 448

within–subjects design, 48–49, 58, 72, 559
wobble, 182, 210, 548, see also precession
word, frequency, 42–43, 103
word, reading, see reading

spoken, see speaking
working memory, 52, 75, 257, 461, 492, 494–496, 502, 528
World War II, 404–405
Worsley, Keith, 281

X–ray, 22, 388–389, 395–396, 402, 526–527, 552, see also computed
tomography (CT) scan

z statistic, 162, 544
zero emitter–detector separation, 424–425
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