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SUMMARY

The relation between initial disease status and subsequent change following treatment has attracted great
interest in clinical research. However, statisticians have repeatedly warned against correlating=regressing
change with baseline due to two methodological concerns known as mathematical coupling and regression
to the mean. Oldham’s method and Blomqvist’s formula are the two most often adopted methods
to rectify these problems. The aims of this article are to review brie�y the proposed solutions in
the statistical and psychological literature, and to clarify the popular misconception that Blomqvist’s
formula is superior to Oldham’s method. We argue that this misconception is due to a failure to recognize
that the heterogeneity of individual responses to treatment is a source of regression to the mean
in the analysis of the relation between change and initial value. Furthermore, we demonstrate how
each method actually answers di�erent research questions, and how confusion arises when this is not
always understood. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The relation between initial disease status and subsequent change following treatment has
attracted long-lasting interest in clinical research. In randomized controlled trials, the main
research question is usually whether or not the observed change in disease status, assessed by
observed change in overall means of the health outcome before and after the treatment, can
be attributed to the treatment. In clinical practice, when treatments are proven to be e�ective,
di�erential baseline e�ects are also of interest to many clinicians because sometimes they seek
to identify subgroups of patients who might bene�t more from one treatment than another.
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For instance, suppose that two treatments—A and B—show similar mean treatment e�ects,
but there is di�erential baseline e�ect in patients given treatment A and not in those given
treatment B. Clinicians might decide to give treatment A to patients who su�er more serious
diseases, especially if complications and=or costs of A and B di�er.
Many clinical studies in fact show that patients with greater disease severity at baseline

respond better to treatment [1, 2]. The relation between baseline disease severity and treatment
e�ect has a generic name in the statistical literature: the relation between change and initial
value [3], because treatment e�ect is evaluated by measuring the change of variables from their
initial (baseline) values. In psychology, it is also well-known as the law of initial value [4].
However, testing the relation between change and initial value using correlation or regression
has long been criticized by many statisticians as problematic. Two methodological concerns
known as mathematical coupling [5–10] and regression to the mean [11–17] have been raised
as the causes of the problem in testing the relation between change and initial value.
Mathematical coupling occurs when one variable directly or indirectly contains the whole

or part of another, and the two variables are then analysed using correlation or regression [5].
As a result, the statistical procedure of testing the null hypothesis—that the coe�cient of cor-
relation or the slope of regression is zero—might no longer be appropriate [6], and the results
need to be interpreted cautiously [5–10]. Regression to the mean occurs with any variable
that �uctuates within an individual or a population (the latter is sometimes overlooked, as
we will point out), either due to measurement error and/or physiological variation [18–22].
For instance, one is likely to obtain di�erent readings of systolic blood pressure for the same
individual when a series of measurements are made over a short time period. This can be
attributed to either the ‘true’ underlining blood pressure �uctuating around a mean value
(i.e. assuming blood pressure can be taken without measurement error), or the device used
to measure blood pressure (or the person who uses the device) is not entirely reliable (this
is treated as measurement error), or both. Campbell and Kenny pointed out that any factor
that makes the correlation between two variables less than perfect can cause regression to the
mean [23].
Several alternative statistical methods have been proposed in the medical and statistical

literature to overcome problems in testing the relation between change and initial value
using correlation or regression. The aim of this article is to clarify a widespread conceptual
confusion around regression to the mean within the statistical literature and to correct a
popular misconception about the ‘correct’ analysis of the relationship between change and
initial value in certain scenarios. We review the proposed solutions to testing the relation
between change and initial value in the statistical and psychological literature and show
that, although the problem has been known for a long time, current recommendations are
inadequate.

2. WHY SHOULD CHANGE NOT BE REGRESSED ON INITIAL VALUE?
A REVIEW OF THE PROBLEM

Although many articles and textbooks of medical statistics warn against correlating or regress-
ing change on initial value, it is far from clear what the problem is with this practice. The
most commonly given reason is that testing the relation between change and initial value using
correlation or regression su�ers regression to the mean. Obviously, this simple explanation
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merits a further query: why does testing the relation between change and initial value using
correlation or regression su�er regression to the mean? The most common answer given in
the literature seems to be that regression to the mean is caused by biological variation and=or
measurement error in the assessment of initial values. An explanation following this line of
reasoning can be found in an article by Healy [24], supposing that the true (unobserved)
initial value is X and the true change is D, so the true follow-up value is Y =X − D. The
observed initial value is then x=X + eX and the observed follow-up value y=Y + eY , so the
observed change d= x− y=D+ eX − eY . Therefore, testing the relation between change and
initial value is to test the relation between x and d. Since eX occurs in both x and d, their
relation is likely to be positive. If change is de�ned as y− x (as in psychology), the relation
between change and initial value will tend to be negative. As this error term occurs in both
change and initial value, testing the relation between change and initial value using correla-
tion or regression is biased. As a result, the problem of regression to the mean in testing the
relation between change and initial value seems to be caused only by measurement error in
the initial value. Thus, the whole problem in testing the relation between change and initial
value seems to be reduced to the problem of measurement error, and it is obvious why any
statistical method that purports to correct the bias caused by measurement error in the initial
value might seem to provide a solution.

3. PROPOSED SOLUTIONS IN THE LITERATURE

3.1. Blomqvist’s formula

Blomqvist in 1977 [3] devised a formula to correct for measurement errors in initial values,
to obtain an unbiased estimate of regression slopes in analysing change and initial value.
Blomqvist’s formula is given as [17]

btrue =
bobserved − k
1− k (1)

where btrue is the true regression slope, bobserved is the observed regression slope, k the ratio of
the measurement error variance for x and the observed variance of x. If btrue is close to zero, it
is then assumed that there is no evidence that the treatment e�ect is dependent upon baseline
disease severity. Blomqvist’s formula corrects for the bias caused by measurement error and=or
biological variation in the initial values. To use this formula requires an independent (external)
estimate of the error variance, which is often obtained by measuring initial values repeatedly
in a short interval before the intervention is administered.

3.2. Oldham’s method: testing change and average

In a seminal paper published in 1962, Oldham [12] warned against testing the relation between
treatment e�ect of anti-hypertensive therapy and patients’ initial blood pressure. One of his
arguments, which has subsequently been used repeatedly by other studies [6, 16], is that for
two series of independent random numbers x and y with the same standard deviation, one
observes a strong correlation (1=

√
2≈ 0:71) between x−y and x. Following previous notation,

let x be the pre-treatment (initial) value and y the post-treatment value. The Pearson correlation
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between change (x − y) and pre-treatment value (x) is [12]

Corr[x − y; x]= rx−y; x= sx − rxysy√
s2x + s2y − 2rxysxsy

(2)

where s2x is the variance of the x, s
2
y is the variance of y, and rxy is the correlation between

x and y.
If s2x and s

2
y are equal, equation (2) reduces to rx−y; x=

√
(1− rxy)=2. This formula shows

that unless rxy is unity, rx−y; x will never be 0. When rxy is less than 1, the correlation
between baseline and change, rx−y; x, will always be positive; a very likely situation when
repeated measurements are made on the same individuals. When rxy is close to zero, i.e. there
is poor correlation between pre- and post-treatment values, the positive association between
baseline and change will be large. As both x and y are measured with error, rxy will be
always less than 1 and rx−y; x will be positive.
The solution proposed by Oldham did not deal with the problem of measurement error in

initial values directly. Oldham suggested that testing the hypothesis that treatment e�ects are
related to baseline values should be carried out by plotting the change against the average of
the pre- and post-test values, and not against the baseline values. For instance, if pre-treatment
blood pressure (BP) is denoted as x and post-treatment BP as y, BP reduction after patients
are given anti-hypertensive medication will be x − y and the average BP will be (x + y)=2.
To address whether or not greater baseline BP is related to greater BP reduction following
treatment, Oldham’s method tests the correlation between x−y and (x+y)=2 instead of testing
the correlation between x − y and x. The Pearson correlation between change and average
is [12]

Corr[x − y; (x + y)=2]= s2x − s2y√
(s2x + s2y)2 − 4r2xys2xs2y

(3)

where s2x is the variance of the x, s
2
y is the variance of y, and rxy is the correlation between

x and y.
The numerator in equation (3) indicates that Oldham’s method is a test of the di�erences in

the variances between two repeated measurements, where the two variances may be correlated
[12]. If there is no di�erence in the variances of pre-treatment BP (x) and post-treatment
BP (y), the correlation using Oldham’s method will be zero, i.e. the treatment e�ect (BP
reduction) does not depend upon baseline BP. The rationale behind Oldham’s method is that
if, on average, greater BP reduction can be obtained for greater baseline BP, the post-treatment
BP values will become ‘closer’ to each other, i.e. the variance of post-treatment BP (s2y) will
shrink and become smaller than that of pre-treatment BP (s2x). In other words, if there is
a di�erential treatment e�ect (i.e. a greater or smaller treatment e�ect can be achieved in
subjects with greater disease severity), this will manifest as a change of variances between
the two measurements. As a result, if there is no di�erence in the variances between baseline
and post-treatment values, there is little evidence for a di�erential treatment e�ect across the
levels of baseline values. Oldham’s strategy has been proposed previously, as early as 1939
by Morgan and Pitman [25, 26] to test the equivalence of two variances, and later in 1985
by Bland and Altman [27] to compare two methods of measurement.
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Whilst not everyone has agreed with Oldham on his solution [28, 29], almost everyone has
agreed that it is problematic to test x − y and x. In later correspondences [28, 29], it is clear
that for some it is hard to understand why we should test the relation between x − y and
x + y if our research question is to know the relation between x − y and x.

3.3. Geometrical presentation of Oldham’s method

First used by Fisher in deriving the statistical distribution of the Pearson correlation coe�-
cient [30], vector geometry is a useful tool to provide insights to the problem of testing the
relation between change and initial value. We represent the original x= {X1; X2; X3; : : : ; Xn}
and y= {Y1; Y2; Y3; : : : ; Yn} as scaled vectors x and y, where each vector element is a transfor-
mation of the original data such that the length of the vectors ‖x‖ and ‖y‖ are the standard
deviations (SDs) based on the original samples. Thus, x̃i=(xi−�x)=

√
n− 1 where x̃i; i=1; : : : ; n,

are the transformed vector elements of x, and similarly for y. Then, the correlation between
variables x and y is the cosine of the angle between the vectors x and y. When x and y
are two independent random variables (i.e. the correlation between x and y is expected to be
zero), the angle between x and y is �=2 radians (or 90◦), and these two vectors are therefore
orthogonal: x⊥y. When the correlation between x and y is positive, the angle between x and
y will be less than �=2; when the correlation is negative, the angle will be greater than �=2.
If x and y have also the same standard deviation, i.e. vectors x and y have the same length
(i.e. ‖x‖= ‖y‖), the length of x − y (i.e. the SD of x + y) will be

√
2‖x‖, and the an-

gle between x − y and x will be �=4 radians. From elementary trigonometry: cos(�=4)=
1=

√
2≈ 0:71.
Applying vector geometry to Oldham’s method, it becomes apparent that x+y and x−y are

orthogonal vectors if and only if x and y have equal lengths. This property holds irrespective
of the correlation between x and y (Figure 1). Therefore, the angle between vectors x+y and
x − y is determined by the length of x and the length of y; that is, the correlation between
variables x + y and x − y is determined by the variances of x and y.

3.4. Variance ratio test

This test is very similar to Oldham’s method in strategy, because it is mainly to test the
equivalence of variances between two correlated variables, such as two repeated measurements.
Based on the same assumptions as those for Oldham’s method, the variance ratio s2x=s

2
y is

proposed as an appropriate test, by assessing the equality of the correlated variances [31],
yielding a statistic that follows the t-distribution with n − 2 degrees of freedom [32], and
which is non-signi�cant if the variances are similar

t=
(s2x − s2y)

√
n− 2

2sxsy
√
1− r2xy

(4)

where s2x , s
2
y, and rxy are as de�ned previously. Let d= x − y, s= x + y and rds be the

correlation between d and s, then equation (4) is exactly equivalent to the one proposed by

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:443–457

lhawk700
Highlight

lhawk700
Highlight

lhawk700
Highlight
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Figure 1. (a) When the two vectors x and y have equal length, the angle between vectors x+ y
and x−y will always be �=2, irrespective of the angle between x and y; (b) when the two vectors
x and y have unequal length, the angle between vectors x+ y and x− y will be no longer �=2,
irrespective of the angle between x and y: when the length of x is greater than that of y, the
angle between vectors x + y and x − y will be less than �=2; and (c) when the length of x is

smaller than that of y, the angle will be greater than �=2.

Maloney and Rastogi [33]

t=
rds

√
n− 2√

1− r2ds
(5)

Like Oldham’s method, this test assumes the error variances in x and y are independent and
equal, and x and y follow a normal distribution. This test has been used as a two-sided test
to assess whether or not there is any baseline e�ect [32]. It has also been used as a one-sided
test when one variance is anticipated to be larger than the other [34].

3.5. Structural regression

Structural regression [35] has been proposed in the psychological literature to test the relation
between the unobserved, true X and Y by correcting for measurement error in the observed
variables x and y. If the regression slope for Y regressed on X is less than 1 (i.e. the regression
slope for X − Y regressed on Y is greater than zero), it indicates that the change (X − Y ) is
dependent upon baseline value (X ). In medical statistics, structural regression is also used for
correction for measurement error [34]. By assuming the variances of measurement errors of
X (eX ) and Y (eY ) are equivalent, the maximum likelihood estimate of the regression slope
for Y on X , �̂, is [36]

�̂=
s2y − s2x +

√
(s2y − s2x)2 + 4s2xy
2sxy

(6)
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where sxy is the covariance of x and y. Denoting M as the covariance matrix of x and y, the
eigenvalues of M, �, are derived by solving M − �I=0 (where I is the identity matrix)

�1 =
s2y + s

2
x +

√
(s2y + s2x)2 − 4(s2xs2y − s2xy)

2
and

�2 =
s2y + s

2
x −

√
(s2y + s2x)2 − 4(s2xs2y − s2xy)

2

It is not di�cult to prove that �̂ is the slope of the �rst principal component of x and y
[35, 36], and can be estimated by (�1 − s2x)=sxy [37]

�1 − s2x
sxy

=

s2y + s
2
x +

√
(s2y + s2x)2 − 4(s2xs2y − s2xy)

2
− s2x

sxy
=
s2y − s2x +

√
(s2y − s2x)2 + 4s2xy
2sxy

From the geometrical perspective, as long as the correlation between x and y (rxy) is not
zero (therefore sxy is not zero), the slope of the �rst principal component will be unity if and
only if the variances of x and y are equivalent. Thus, using structural regression to test the
slope of the �rst principal component (�̂) is again to test the equivalence of the variances of
x and y.

3.6. Testing the correlation between change and initial value against the correct null
hypothesis

Andersen [38] has argued that due to mathematical coupling the null hypothesis for testing
the correlation between x − y and x (rx−y; x) is no longer zero. However, he did not explain
how to derive a correct null hypothesis. In a short note by Bartko and Pettigrew [39], they
showed that the range of rx−y; x is restricted by the correlation between x and y (rxy), and the
range of rx−y; x is generally not between −1 and 1. In a previous study [40], we proposed that
a proper null hypothesis can be derived from equation (2) by assuming sx= sy. Therefore, the
correct null hypothesis for given x and y is

√
(1− rxy)=2. To compare rx−y; x to

√
(1− rxy)=2,

both correlation coe�cients need to be transformed using Fisher’s z transformation [41]. Our
previous study [40] found this test in general to yield comparable results to Oldham’s method.

3.7. Multilevel modelling

Another approach is to use multilevel modelling [42, 43]. By treating the initial and post-
treatment blood pressure (BP) as the lower level and individuals as the upper level, the
correlation between the variance of the intercept and the variance of the slope for the covariate
Time (i.e. initial and post-treatment occasions) in the multilevel model indicates the relation
between baseline disease status (intercept) and treatment e�ect (slope). The 2-level model is
written as

(BP)ij=�0ij + �1j Timeij (7)
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It should be noted that di�erent parameterizations of Time will yield di�erent results [43].
For instance, when Time is coded as 0 (initial) and 1 (post-treatment), testing the correlation
between intercept and slope is equivalent to testing rx−y; x, because the intercept variance is
the variance of x and the slope variance is the variance of x−y; when Time is centred, such
as −0:5 (initial) and 0.5 (post-treatment), testing the correlation between intercept and slope
is equivalent to Oldham’s method because the intercept variance is the variance of (x+ y)=2
and the slope variance is the variance of x − y; when Time is coded as −1 (initial) and 0
(post-treatment), testing the correlation between intercept and slope is equivalent to testing
rx−y;y because the intercept variance is the variance of y and the slope variance is the variance
of x−y. An advantage of multilevel modelling over other approaches is that this method can
be applied to more than two measurement occasions; details can be found in our previous
study [43].

4. COMPARISON BETWEEN OLDHAM’S METHOD AND BLOMQVIST’S FORMULA

In a widely cited article by Hayes [15], Oldham’s method was shown to be biased towards a
negative association (however, in the original article by Hayes, change was de�ned as y− x,
so the bias was positive in Hayes [15]), if: (1) the individuals have been selected on the
basis of high initial values; or (2) the ‘true’ treatment e�ect di�ers across individuals [11, 15].
Therefore, Hayes [15] recommended Blomqvist’s formula as it (allegedly) performs better than
Oldham’s method for these two circumstances. Whilst we agree with Hayes that Oldham’s
method will indeed lead to biased results in scenario (1), we assert that Hayes’ position on
scenario (2) is a misunderstanding, and Oldham’s method in fact gives rise to correct results
(whereas Blomqvist’s formula does not). We consider numerical examples similar to those
used by Hayes to illustrate our assertion and we also perform 10 000 simulations for each
scenario. All hypothetical data generated and statistical analyses undertaken were performed
using R (version 2.1.1. R development Core Team, Vienna, Austria, 2005).

4.1. Simulation

Let X be the unobserved true initial systolic blood pressure (SBP) values with mean
150mmHg and standard deviation (SD) of 15mmHg. We assume a true treatment e�ect
D of exactly 20mmHg across all levels of X , i.e. there is no relation between initial and
change values. Therefore, the unobserved true post-treatment values Y (=X − D), will have
a mean of 130mmHg and the same SD of 15mmHg. The observed initial SBP is x=X +eX ,
and the observed post-treatment SBP (y) is equal to Y+eY , where eX and eY are measurement
errors and=or biological variations for X and Y , respectively, with zero means and equal SD of
10mmHg. The observed treatment e�ect, d, is therefore: x−y=(X+eX )−(Y+eY )=D+ex−ey.
Figure 2 shows a scatter plot for x and d with a sample size of 5000 generated within R.
When d is regressed on x, the regression coe�cient is 0.302, which is biased away from
zero due to eX . Oldham’s method shows that the correlation between x − y and (x + y)=2 is
−0:002 and the regression coe�cient, where x − y is the dependent variable and (x + y)=2
the independent variable, is −0:001, indicating there to be no genuine di�erential treatment
e�ects. Blomqvist’s formula [17], given in equation (1), shows that the corrected regression
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lhawk700
Highlight

lhawk700
Highlight

lhawk700
Highlight

lhawk700
Highlight

lhawk700
Highlight



CHANGE AND INITIAL VALUE 451

Figure 2. Scatter plot of observed systolic blood pressure reduction and observed baseline systolic
blood pressure; sample size =5000. The overall regression slope (solid line) is 0.302. For the
subgroup with greater than 160mmHg baseline systolic blood pressure (sample size =1372) the
regression slope is 0.341 (dashed line). For the subgroup with greater than 165mmHg baseline
systolic blood pressure (sample size =971) the regression slope is 0.360 (dotted line). For the
group with greater than 170mmHg of baseline systolic blood pressure (sample size =640) the

regression slope is 0.376 (dot–dashed line).

slope is −0:009 (as k=102=(152 + 102)=0:308), which is very close to zero, indicating no
genuine relationship between the true treatment e�ect (D) and initial SBP (X ).
When the simulation is repeated 10 000 times, the median regression coe�cient for x is

0.308 (2.5 and 97.5 centiles: 0.288, 0.327), and the corrected sloped is therefore zero. The
median correlation coe�cient between x − y and (x + y)=2 is zero (2.5 and 97.5 centiles:
−0:028, 0.028), and the median regression slope for x−y regressed on (x+y)=2 is also zero
(2.5 and 97.5 centiles: −0:023, 0.024). Thus, both methods give rise to correct analyses.

4.2. Scenario 1: individuals selected on the basis of high initial values

Now we reanalyse the data by selecting: (i) 1372 patients with initial blood pressure greater
than 160mmHg; (ii) 971 patients with initial blood pressure greater than 165mmHg; or
(iii) 640 patients with initial blood pressure greater than 170mmHg. The regression coe�cients
for d regressed on x are 0.341 in (i), 0.360 in (ii), and 0.376 in (iii); Oldham’s method yields
negative correlations of −0:437 in (i), −0:494 in (ii), and −0:526 in (iii); and the regression
slopes associated with Oldham’s method are −0:576 in (i), −0:691 in (ii), and −0:762 in (iii),
respectively. It should be noted that in Blomqvis’s formula, k should in theory be derived from
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external estimation of error variance (see Section 3.1), which is not to be derived from the
sample and is not based on selection of initial values. Hence the value of k=0:308 (calculated
in Section 4.1) shall be applied throughout this study in all scenarios. Blomqvist’s formula
then shows that the corrected regression slopes are 0.048 in (i), 0.075 in (ii), and 0.098 in (iii).
Since there is genuinely no underlying relationship between baseline and change, Oldham’s
and Blomqvist’s approaches are expected to give zero correlations or zero regression slopes.
The departure from zero in Blomqvist’s formula seems to be much smaller than in Oldham’s
method.
Results of 10 000 simulations show that the median regression slopes are 0.307 (2.5 and

97.5 centiles: 0.234, 0.380) in (i), 0.307 (2.5 and 97.5 centiles: 0.213, 0.402) in (ii), and
0.306 (2.5 and 97.5 centiles: 0.179, 0.433) in (iii); and the corrected regression coe�cients
using Blomqvist’s formula are −0:001 in (i), −0:001 in (ii), and −0:003 in (iii). It should
be noted that the reason that the medians of the corrected regression coe�cients are all very
close to zero is because the assumption of normally distributed x and y values is upheld
by the simulation process, and under such ‘ideal’ circumstances the corrected slope for the
truncated data will always be close to that for the full data set. However, slight departures from
the assumption of normality could lead to a very di�erent median corrected value. In other
words, whilst Blomqvist’s formula performs well under ideal circumstances, the correction is
more sensitive to the normality assumptions for the truncated data than for the full data set.
Furthermore, as the range of 2.5 and 97.5 centiles of the corrected slopes increase by selecting
subgroups of higher baseline values, this represents an increase in the random variation due to
smaller samples within subgroups. In contrast, Oldham’s method always gives rise to a biased
negative correlation, and in the simulations the correlation coe�cients were −0:464 (2.5 and
97.5 centiles: −0:507, −0:418) in (i), −0:515 (2.5 and 97.5 centiles: −0:564, −0:462) in
(ii), and −0:562 (2.5 and 97.5 centiles: −0:620, −0:499) in (iii); with corresponding regression
slopes of −0:609 (2.5 and 97.5 centiles: −0:679, −0:539) in (i), −0:706 (2.5 and 97.5 centiles:
−0:794, −0:619) in (ii), and −0:802 (2.5 and 97.5 centiles: −0:912, −0:690) in (iii).
By selecting a sub-group with greater baseline values than the whole sample, variations in

the observed biases in the association between d and x, due to measurement error, became
greater (Figure 2) and Blomqvist’s method will show a positive or negative di�erence from
zero due to under- or over-adjustment. Nevertheless, by selecting a sub-group with greater
baseline values, the variance of the sub-group post-treatment values will be greater than that of
the sub-group baseline values; Oldham’s method therefore shows a spurious inverse association
between treatment e�ect and baseline. In this scenario, Blomqvist’s formula seems to perform
better than Oldham’s method.

4.3. Scenario 2: true treatment e�ects di�er across individuals

Suppose now that the true treatment e�ect varies among patients with the same true baseline
value. Following our previous notation, D is now a random variable with mean 20mmHg
and SD of 10mmHg, and under the assumption that the expected true treatment e�ects
are not related to baseline value, the correlation between X and D is expected to be zero.
Regression analysis shows the estimated slope for change (x−y) regressed on baseline (x) is
0.290. The corrected regression slope using Blomqvist’s formula is −0:026, suggesting that the
extent of blood pressure reduction is not related to unobserved baseline SBP. Given any true
baseline SBP, the expected change in blood pressure is close to zero because the probability

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:443–457

lhawk700
Highlight

lhawk700
Highlight

lhawk700
Highlight

lhawk700
Highlight

lhawk700
Highlight



CHANGE AND INITIAL VALUE 453

of obtaining a positive change or a negative change is almost equal. This is very di�er-
ent from the scenario where the expected change in blood pressure is constant. In contrast,
Oldham’s method yields a moderate negative correlation (r=−0:177 and regression coe�-
cient = − 0:174) between the observed change and average. The reason for a negative cor-
relation obtained using Oldham’s method is that the variance of y is greater than that of x
because, whilst the variance of x is equal to the sum of two variances (namely, that of X
and eX ), the variance of y is the sum of three variances (namely, that of X , eY and D, since
y=X −D+ eY ). If the variances of eX and eY are similar, the variance of y will be greater
than that of x. The results of 10 000 simulations show that the median of regression slope
is 0.308 (2.5 and 97.5 centiles: 0.238, 0.332), and the corrected regression slope is therefore
zero. Both the median correlation coe�cient and regression slope are −0:167 using Oldham’s
method.
Hayes [15] and others [11] have argued (incorrectly) that when true treatment e�ects di�er

across subjects, Oldham’s method would give rise to a misleading association when the true
treatment e�ect is not associated with true baseline values. The expected zero correlation
or regression coe�cient between the unobserved true baseline values X and true treatment
e�ects D, as given by Blomqvist’s approach, is misinterpreted as evidence to show that there
is no di�erential treatment e�ect across the levels of baseline values. As Oldham pointed
out in correspondence with his critics [28, 29], the relationship between D=X − Y and X
is potentially deceiving and should be interpreted cautiously. In our simulations, the zero
correlation between D and X does not prove that there are no di�erential treatment e�ects,
i.e. for greater baseline values, greater treatment e�ects will be achieved. On the contrary,
there is a reverse baseline e�ect (i.e. for greater baseline values, lesser treatment e�ects will
be achieved), because the variance of y is greater than that of x.
As �rst pointed out by Oldham [29], the correct interpretation of the zero correlation

between D and X is that, due to the response of the patients to treatment being so
heterogeneous, the correlation between D and X becomes zero. Moreover, the variation in
treatment e�ects is the same across all levels of baseline value (i.e. given any baseline value
of X , the expected treatment e�ect, D, always has a mean of 20mmHg and SD of 10mm);
which is the reason why the correlation between D and X is close to zero. However, it is the
di�erence in variances between the post-treatment value Y and the baseline value X that is
crucial to the interpretation of the relationship between treatment e�ects and baseline values,
not the correlation or regression slope between treatment e�ect and baseline. The correct inter-
pretation of Scenario 2 is that baseline blood pressure is a poor predictor for blood pressure
reduction after the treatment, but, the increased variance of post-treatment values indicates
that, in general, individuals with lower baseline blood pressure respond better to the treatment
than those with higher blood pressure.
Another way to reveal that the expected zero regression coe�cient given by Blomqvist’s

formula in scenario (2) should not be interpreted as evidence of no di�erential baseline e�ect
on the treatment is to regress change in blood pressure on the post-treatment blood pressure.
Since the true treatment e�ect D is unrelated to the true baseline blood pressure X , there
is also no relation between D and the true post-treatment blood pressure Y . However, the
corrected regression slope (uncorrected slope =−0:464) given by Blomqvist’s formula for d
regressed on y (opposed to x) is −0:225 (opposed to −0:026). Results from 10 000 simulations
show that the median regression slope for d regressed on y is −0:471 (2.5 and 97.5 centiles:
−0:490, −0:451), and the corrected slope by Blomqvist’s formula is −0:236. Any statistical
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method to test di�erential treatment e�ects should yield equivalent results testing the relation
between change and either initial value or �nal value; the corrected regression slope should
be equivalent but in opposite directions.

5. OLDHAM’S METHOD AND BLOMQVIST’S FORMULA
ANSWER TWO DIFFERENT QUESTIONS

The misinterpretation of di�erent results between Oldham’s method and Blomqvist’s formula
in Scenario 2 is due to overlooking the full impact of regression to the mean in testing the
relation between change and initial value. In the models proposed by Healy [24] and Hayes
[15], and the explanation given by others [7, 8, 11], only measurement error (eX ) in the true
initial value X is considered to be the cause of regression to the mean. Therefore, any method
to correct for the bias caused by eX , such as Blomqvist’s formula, is (mistakenly) believed to
be a su�cient solution. Blomqvist’s formula provides an unbiased estimate, within regression
analysis, of the treatment e�ect (e.g. change in blood pressure) conditional on an initial value
(e.g. initial blood pressure). The regression slope is biased due to measurement error and=or
biological variation in the measurement of initial values (i.e. eX ). By estimating the magnitude
of measurement error in baseline values, Blomqvist’s formula gives the correct estimate of
regression slope. However, another cause of regression to the mean is the heterogeneous
response to treatment, which does not bias the estimate of regression slope, and therefore
will not be corrected by Blomqvist’s formula. Blomqvist’s formula is valid only in estimating
the unbiased regression slope; it does not answer the question of whether or not there is a
di�erential baseline e�ect, addressed by Oldham’s method (and other approaches as discussed).
In summary, Blomqvist’s formula gives an unbiased estimate of how much change is

achieved given a baseline value. However, a non-zero regression slope cannot be interpreted
as meaning there is a di�erential baseline e�ect. Therefore, Blomqvist’s formula aims to
correct the biased regression slope due to error in the initial values. Oldham’s method, on the
other hand, gives an unbiased test of correlation for di�erential baseline e�ects, as testing the
correlation between x − y and x is potentially misleading; though Oldham’s method cannot
yield any inference on change conditional on initial value. To help clarity this crucial distinc-
tion, it is useful to brie�y revisit how Galton �rst discovered regression to the mean more
than one century ago.

6. WHAT IS GALTON’S REGRESSION TO THE MEAN?

Galton wanted to study the heritance of human intelligence. However, owing to the lack of a
precise measure of intelligence, he turned to measurable traits, such as body height [44, 45].
He invited families to his laboratory to measure their body heights. As males on average
are taller than females, all female heights were multiplied by 1.08, and then he plotted the
average of both parents’ heights against their o�-spring’s heights [46, 47]. To his surprise, he
found that, although adult children of tall parents were still taller than most people, they were
generally shorter than their parents, i.e. they were closer to the mean height of the population.
On the other hand, adult children of short parents, whilst still short, were on average taller than
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their parents, i.e. they were closer to the mean height of the population. Galton named this
phenomenon regression toward mediocrity, and we know it today as regression to the mean.
It is important to note that regression to the mean in Galton’s study was not the relation

between repeated measurements of heights on the same individuals (where regression to the
mean might occur, though is generally quite small), but the relation between measurements of
body heights across generations (i.e. between parents and their adult children). Consequently,
in Galton’s study, regression to the mean was not only caused by measurement errors of
individuals’ heights, but also caused by the underlying genetic and environmental factors
related to the growth of body height. Suppose that all parents’ and their adult children’s heights
were measured twice, one week apart. This would provide information about the magnitude
of measurement error and/or biological �uctuation in height (though the latter is probably
ignorable). However, this would not eliminate regression to the mean in the analysis of the
relation between body heights across generations. Compared to the variation in body heights
occurring across generations, due to biological and=or environmental factors, the variation
in measurement errors would be small and have modest impact on the correlation between
heights of parents and their adult children.
In Galton’s study, regression to the mean did not only occur at the individual level, but

also at the population level (i.e. across generations). Just like our previous scenarios on the
relationship between change and initial value following treatment, regression to the mean does
not only occur due to measurement error in the initial value, but also due to the heteroge-
neous response of individuals to intervention. In statistical language, the non-unity correlation
between the observed initial value x and observed post-treatment y is caused by both the
measurement errors (and=or biological variation) in x and y, and individuals’ heterogeneous
responses to the treatment; both are regression to the mean.

7. CONCLUDING REMARKS

The misunderstanding of di�erences between Blomqvist’s and Oldham’s approaches not only
impacts upon the testing of the relation between change and initial value. For instance, consider
the debate regarding how to investigate the underlying risk as a source of heterogeneity in
meta-analyses [48–52]. The approach of Oldham’s method has been criticized for yielding
misleading results when there is variation in the treatment e�ects across di�erent clinical
trials [50–52]. However, this criticism seems to be based on the same arguments used by
Hayes to criticize Oldham’s method in testing the relation between change and initial value
in the Scenario 2; and we have shown this criticism to be untenable. If the treatment really
works better in the trials with greater underlying risk of developing diseases, the variance
of log odds in the treatment groups will be smaller than the variance of log odds in the
placebo groups. If these two variances remain similar, the treatment e�ects are not related to
the underlying risk in the placebo groups. Certainly, the problem with meta-analyses is more
complex [51], since sample sizes and protocols are usually di�erent across di�erent trials.
Another conceptual confusion is around the distinction between mathematical coupling and

regression to the mean [39]. Mathematical coupling is more often encountered in clinical
research. For instance, within anaesthesiology and critical care on the oxygen consumption
and oxygen delivery [53], both indices are derived using complex formula with some com-
mon components. When the shared components in both indices are measured with error,
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testing their inter-relationship using correlation or regression yields biased results, just as
measurement errors in baseline values causes biased estimates in the testing of a relation be-
tween change and initial value. However, when both are measured without error, mathematical
coupling still prevails. Whilst approaches to correct for the errors can give rise to an unbiased
estimate of regression slopes [7, 8], for coupled variables, such methods cannot estimate the
‘strength’ of the relation (i.e. whether or not a relation is statistically signi�cant), because the
null hypothesis might no longer be zero. This more general situation is analogous to using
Blomqvist’s formula to correct for the bias in the relation between change and initial value.
Correcting for measurement errors in coupled variables might yield unbiased estimates of
oxygen consumption for a given level of oxygen delivery, but it remains uncertain whether
or not the relation between oxygen consumption and delivery is statistically signi�cant.
In the relation between change and baseline, mathematical coupling and regression to the

mean are almost synonymous, as x and y are two repeated measurements. In a more general
scenario, such as for oxygen delivery and oxygen consumption, the problem of mathematical
coupling between variables is not limited to measurement error, but also the testing of an
inappropriate null hypothesis. This is perhaps why, when considering only repeated measures
as an illustration, there has been a poor distinction between mathematical coupling and regres-
sion to the mean. Consequently, Oldham’s method has been misunderstood for many years,
and Blomqvist’s formula has been recommended, incorrectly, as a solution to a problem that
it is not able to answer. Both Oldham’s method and Blomqvist’s formula are valid when they
are applied to appropriate research questions, and both have their limitations.
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