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For power and sample-size calculations, most
practicing researchers rely on power and
sample-size software programs to design their
studies. There are many factors that affect the
statistical power that, in many situations, go
beyond the coverage of commercial software
programs. Factors commonly known as
design effects influence statistical power by
inflating the variance of the test statistics. The
authors quantify how these factors affect the
variances so that researchers can adjust the
statistical power or sample size accordingly.
The authors review design effects for factorial
design, crossover design, cluster randomiza-
tion, unequal sample-size design, multiarm
design, logistic regression, Cox regression,
and the linear mixed model, as well as missing
data in various designs. To design a study,
researchers can apply these design effects,
also known as variance inflation factors to
adjust the power or sample size calculated
from a two-group parallel design using stan-
dard formulas and software.

Keywords:clinical trials; design effect; power;
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When planning a study, practicing researchers specify an expected
(standardized) effect size and desired Types I and II errors to

calculate the required sample size. The process of power calculation
can be reversed to compute the sample size from estimates of effect
size. In addition to these well-known parameters for power and sample-
size calculations, there are many other factors, such as the types of
design and analytical models and endpoint variables that are crucial to
the calculations. Because it is important for an analytical model to be
consistent with the study design, the sample size should be appropri-
ate to the design and also sufficient for the final analytical model.
However, the calculations of power and sample size can be compli-
cated for various designs and models. To simplify the calculations, we
propose a method of easy adjustments from the basic design.

The basic design for a comparative study is a randomized, bal-
anced, two-group parallel design that has power and sample-size for-
mulas available in many software programs. Once we start shifting
away from the basic design, the statistical power changes. Most of
these changes affect the statistical power through the change of the
variance of test statistics. We call this change a “design effect,” “rela-
tive efficiency,” or “variance inflation factor” (VIF). If we can quan-
tify the VIF, we can adjust power or sample size accordingly. The
following sections describe VIFs for various designs, models, and
endpoints.

SAMPLE-SIZE FORMULAS FOR A BASIC DESIGN

The sample-size formulas for a two-group parallel design are well-
known and are implemented in most sample-size software programs.
For a continuous endpoint using a two-samplet test, a normal approxi-
mation is commonly used in the formula. Assuming equal variances
of the two groups, the formula has the following form:

N = (Z1 –α/2 + Z1 –β)
2/(f (1 – f)µ2/σ2), (1.A)

whereN is the total sample size,f is the fraction of total sample size as-
signed to one treatment group;µ2/σ2 is the squared standardized effect
size, andZ1 – α/2 andZ1 – β are standard normal deviates at the desired
two-sided significance levelα and power 1 –β, respectively. For a bal-
anced design, the fractionf = 0.5, formula 1.A reduces to
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N = 4 (Z1 –α/2 + Z1 –β)
2/(µ2/σ2). (1.B)

Snedecor and Cochran (1989, p. 104) suggested a simple sample-size
adjustment for thet test using normal approximation:

For tests of significance at 5 per cent or 10 per cent levels, increase the
number of pair n by 2 with paired samples and the size n of each sample
by 1 with independent samples. For tests at the 1 per cent level, change
these increases to 3 and 2, respectively.

For a binary outcome using the chi-square test for a 2× 2 table, the
sample-size formula (Lachin, 1981) is

N = (Z1 –α/2 σ ( f –1 + (1 –f )–1)½

+ Z1 –β(σ1 f –1 + σ2 (1 – f )–1)½)2/µ2,

(2.A)

whereP1 andP2 are the proportion of events in the two groups,P= (P1

+P2)/2,σ2 =P(1 –P), σ1
2 =P1 (1 –P1), σ 2

2 =P2 (1 –P2) andµ =P1 –P2.

Because 2σ2 ≥ σ1
2 + σ 2

2 by using the upper bound, whenf = 0.5, for-
mula 2.A simplifies to

N = 4 (Z1 –α/2 + Z1 –β)
2/(µ2/σ2). (2.B)

For a survival endpoint using a logrank test, a similar formula is avail-
able (Schoenfeld, 1983):

D = (Z1 –α/2 + Z1 –β)
2/( f (1 – f ) log2 ∆), (3.A)

whereD is the total number of events and∆ is the hazard ratio of the
two groups. The “hazard” can be described as the instantaneous prob-
ability of an event at timet and the “hazard rate” can be described as
the number of events per interval of time. The required sample size is
then equal to the number of events divided by the overall event rateP,
which can be calculated by combining the event rates of the two
groupsf P1 + (1 – f) P2. For a balanced design,f = 0.5, formula 3.A re-
duces to

D = 4 (Z1 –α/2 + Z1 –β)
2/log2∆. (3.B)

The sample-size ratio of an unbalanced versus a balanced design is 1/
(4 f (1 –f )) obtained from formula 1.A versus formula 1.B or from for-
mula 3.A versus formula 3.B. This quantity is called the VIF for an un-
balanced design. The same VIF can be derived for a binary endpoint,
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from formula 2.A versus formula 2.B, through a normal approxima-
tion using the arcsine transformation. We discuss the details in the
next section.

UNBALANCED DESIGN

In a two-arm study, it is a standard practice that both arms have the
same sample size. It is known that an equal sample-size (balanced)
design provides the most efficient comparison of the two arms and
therefore requires the smallest total sample sizes. An unequal sample-
size design is relatively uncommon. However, in a trial to compare an
experimental treatment against a standard, researchers would rather
put more sample size into an experimental treatment because the out-
come of a standard treatment is often better known. For example, in a
pilot study for the long-term treatment of Tardive Dyskinesia con-
ducted at Department of Veterans Affairs medical centers, patients
were randomized in 3:2 ratio for vitamin E versus control so that more
experience could be obtained for vitamin E treatment (Adler et al.,
1998). If the ratio of the sample sizes between the two arms is control-
lable as in the above example, Pocock (1983, p. 89) suggested that “a
2:1 or 3:2 ratio for new: standard treatment is a realistic proposition.”
However, in many observational studies of the effects of treatments or
other exposures, the sample-size ratio is predetermined by the study
population, especially in a cross-sectional study, a cohort study, or a
case control study of risk factors for a rare disease. If we keep the total
sample size constant, the power decreases when the sample-size ratio
of exposed and unexposed subjects starts moving away from the equal
sample design. To accommodate the loss of power due to the unequal
“allocation” of the sample sizes, researchers have to quantify the
increased sample sizes needed to achieve the same power as in the
equal sample-size design. Let us assume that the sample-size ratio
between the two groups isK (i.e.,K = 1 for a balanced design) with
equal variances and the VIF for an unbalanced design is 1/(4f (1 – f ))
or (K + 1)2/4K (Hsieh, 1987; Lee, 1984). This VIF, as the sample-size
ratio required for an unbalanced design versus a balanced design,
applies to the two-samplet test, chi-square test for binary endpoints,
and logrank test for survival endpoints. For example, whenK = 2 and
VIF = (K + 1)2/4K = 1.125, we will need a total sample size of 675 to
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achieve the same power as an equal sample-size design with a total
sample size of 600. Notice that in logrank test for survival endpoints, a
most efficient design lies between the balance of sample sizes and the
balance of numbers of events (Hsieh, 1992). How to allocate patients
into different treatment groups to produce the desired ratio of events is
a practical issue to be addressed before randomization.

FACTORIAL DESIGN

Although factorial designs are known to be efficient, they have not
been used frequently in clinical trials. A 2× 2 factorial design pro-
poses to study two factors (or treatments) in the same study where
each study participant is simultaneously randomized twice. There-
fore, in the absence of interaction that depends on the assumptions of
the model, researchers can conduct two studies for the price of one.
Notice that a factorial design is different from a randomized block
design with a single treatment factor and a block factor where the
block factor is not of interest for testing. For example, in a recently
published 2×2 factorial study of geriatric evaluation and management
(GEM) conducted at 11 Department of Veterans Affairs medical cen-
ters, inpatients were randomized either to a control group or to a GEM
unit and then, at discharge, randomized either to a control group or to
an outpatient GEM clinic (Cohen et al., 2002). The study evaluated
inpatient GEM units and outpatient GEM clinics in the same trial.
Most factorial trials are designed on the assumption of no interaction.
Therefore, the power and sample size for a 2×2 factorial design can be
calculated using formulas for a two-group parallel study. Suppose for
a 2 ×2 factorial design, the sample size required isn for each of the
four arms, with a total sample size of 4nfor the entire study. If we con-
duct trials separately for each factor, we will need 4n for each parallel
study or a total of 8nfor the two parallel studies (Piantadosi, 1997).
For an unbalanced 2× 2 factorial design, we extend the VIFs from the
above parallel designs to simplify the calculations. Let us assume that
a 2 ×2 factorial design has a randomization ratio ofK:1 for factor A
versus non-A and a ratio ofL:1 for factor B versus non-B with equal
variances. The VIFs extended from two-group parallel designs will be
(K + 1)2/4K for factor A and (L+ 1)2/4L for factor B assuming no inter-
action. If interaction is of interest, a 2× 2 factorial design is the only
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way to study interaction and the VIFs will be (L+ 1)(K + 1)2/4K for
factor A, (K+ 1)(L+ 1)2/4L for factor B, and (K+ 1)2 (L + 1)2/4KL for
testing interaction. WhenK = L = 1 as in a balanced factorial design,
the total sample size needed is 8nfor the main effects and 16nfor the
interaction effect, four times the required sample size if no interaction
is assumed. This implies that only one quarter of sample size contrib-
utes to the analysis of interaction effect as compared with main
effects. The VIF for an unbalanced 2× 2 factorial design with interac-
tion is derived in the appendix.

For example, supposeN= 600 is needed from both main effects in a
balanced 2× 2 factorial design assuming no interaction. If we decide
to randomize 2:1 ratio (K= 2) to factor A versus non-A and 3:2 ratio to
factor B versus non-B (L= 1.5), we will need 675 and 625 participants
for the same power to test factors A and B, respectively. If the interac-
tion effect is assumed in the model, we will need sample sizes of
1,688, 1,875, and 2,813 for testing factors A, B, and interaction,
respectively, with the same effect size. The following table illustrates
the calculations:

Without Interaction With Interaction

Factor A N(K + 1)2/4K = 675 N(L + 1)(K + 1)2/4K = 1,688
Factor B N(L + 1)2/4L = 625 N(K + 1)(L + 1)2/4L = 1,875
Interaction N(K + 1)2(L + 1)2/4KL = 2,813

In a balanced design whereL = K = 1, we needN = 2,400 to have
enough power to test interaction as illustrated in the following table:

Without Interaction With Interaction

Factor A N = 600 N(L + 1)(K + 1)2/4K = 1,200
Factor B N = 600 N(K + 1)(L + 1)2/4L = 1,200
Interaction N(K + 1)2(L + 1)2/4KL = 2,400

Pocock (1983) also provided a discussion of using an unbalanced
factorialdesign tostudy thecombinationofaspirinandanantihypertensive
drug.
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MULTIARM DESIGN

A multiarm design is needed when researchers would like to com-
pare more than two treatment groups. In a cardiovascular study where
a standard treatment is usually available, it is common to compare an
experimental treatment with a standard treatment, a combination
treatment, and/or a placebo. For example, in a published three-arm
vascular-bypass study (VA Cooperative Study #141 Study Group,
1988) conducted at 18 Department of Veterans Affairs medical cen-
ters, the efficacy of vascular bypass materials in two active treatment
groups was compared with a control group. Unlike a 2× 2 factorial
design where an additional treatment factor does not cost additional
sample size, the power in a multiarm design depends on the sample
size per arm. In a multiarm design, power calculation for testing the
overall treatment difference has to involve the noncentrality parame-
ter (NCP) of a test statistic (Lachin, 1997). In addition to the degrees of
freedom, the NCP is a parameter of noncentral chi-square or noncentral
F distribution for the specified alternative hypothesis. A common
sample-size formula for a multiarm design using anF test, chi-square
test for ar × 2 table, or multiarm logrank test for testing the overall
treatment difference is, approximately,

N = NCP/(Σ(µi – µ)2/g σ2),

whereΣ(µi –µ)2/gσ2 is known as the squared standardized effect size,
(µi – µ)2/g is the variance of group means (or proportions),g is the
number of groups,µ is average of means (or proportions), andσ2 is
common variance orµ(1 –µ) for proportions. Notice that this sample
size does not take into account of the pattern of treatment means or any
linear contrast among them.

If the desired effect size remains the same, the ratio of total sample
size required for a multiarm study versus a two-arm study is the ratio
of their noncentrality parameters. Researchers can use these ratios to
expand their sample sizes from a two-arm study to a multiarm study
assuming equal sample size per arm. For a multiarm logrank test, the
NCP ratios refer to the number of events, not the sample sizes (Ahnn &
Anderson, 1995). The NCP for a specific power in testing the null
hypothesis at level alpha can be obtained through an iterative method
using SAS (2001) or S-Plus functions (Mathsoft, 1999). Makuch and
Simon (1982) has a table listed some commonly used NCP values for
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chi-square statistic with alpha = .05. When the sample size approaches
infinity, the NCP ofF statistic decreases and approaches to that of chi-
square statistic. Therefore, if the total sample size is not too small, the
NCP ratio ofF statistics approximate that of chi-square statistics. We
provide the following ratios of two noncentrality parameters of chi-
square statistics, for three- and four-arm studies versus a two-arm
study. For example, for alpha = .05 and power = 0.95, the sample-size
ratio for a four-arm design versus a two-arm design is 17.17/12.995 =
1.321.

Alpha Power (%) 3-Arm Versus 2-Arm (NCP) 4-Arm Versus 2-Arm (NCP)

.05 80 1.228 (9.9635/7.849) 1.389 (10.9025/7.849)

.05 90 1.204 (12.654/10.507) 1.349 (14.1715/10.507)

.05 95 1.188 (15.443/12.995) 1.321 (17.17/12.995)

.01 80 1.189 (13.8807/11.679) 1.324 (15.4577/11.679)

.01 90 1.171 (17.4267/14.8794) 1.294 (19.2474/14.8794)

.01 95 1.159 (20.65/17.8142) 1.273 (22.6743/17.8142)

In addition to testing the overall treatment differences, paired com-
parisons of treatment effects are usually performed in a multiarm
design. Sample size needs to be adjusted for the overallp value
according to the number of paired comparisons.

CROSSOVER DESIGN

Crossover designs are very popular in clinical pharmacology research
because they reduce variation by using each study participant as his
own control. The crossover design is similar to the factorial design
except that one of the factors is the study time period, the calendar
time that a participant receives the other factor, the treatment factor.
For example, in a two-period two-treatment crossover design, study
participants are randomized to Groups 1 or 2. Group 1 receives treat-
ments A and B in Periods 1 and 2, respectively, and Group 2 receives
the treatments in the reverse order, treatments B then A. Most cross-
over designs assume no residual or carryover effect of treatments. If
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the assumption of no residual effect is invalid, a crossover design is
uneconomical. The ratio of variances of a crossover study versus a
parallel design, assuming no baseline adjustment, is 1 –ρ whereρ is
the intrasubject correlation coefficient (ICC), the ratio of variances of
within-subject versus the sum of within- and between-subjects (Brown,
1980; Chassan, 1970). In a two-period two-treatment crossover design,
the ICC is the simple correlation coefficient between pairs of mea-
surements in Periods 1 and 2 taken on randomly selected participants.
The VIF for paired comparisons in a balancedM-periodM-treatment
crossover design is (1 –ρ)/m, wheremis the number of measurements
per participant. For example, if 100 participants are needed for a com-
pletely randomized two-group parallel design withρ = .1, the number
of participants needed for a two-period two-treatment crossover
design will be 100 (1 –ρ)/2 = 45 participants. Here, the parallel design
assumes no baseline measurement. Because each participants takes
two measurements in this crossover design, the total number of mea-
surements needed is 45× 2 = 90 in comparison with the 100 measure-
ments needed in a completely randomized design. In addition, for an
unbalanced crossover design, researchers may use the analogy of an
unbalanced 2× 2 factorial design for sample-size adjustments.

In a published three-period, three-group crossover study conducted
at eight Department of Veterans Affairs medical centers, the efficacy
of three commonly used hearing aid circuits were compared (Larson
et al., 2000). Patients were randomized to 1 of 6 sequences, from two
Latin squares balanced for carryover effects, of the three hearing aid
circuits:

A B C A C B
B C A C B A
C A B B A C

A list of Latin squares for a crossover design balanced for carryover
effects is available in some publications (Fleiss, 1986). If 1,000 partic-
ipants are needed for a completely randomized two-group parallel
design withρ = .1, the number of participants needed for a two-group
comparison will be 300, or 50 participants per sequence.
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PRETEST AND POSTTEST DESIGN

In most studies, measurements of baseline variables are standard
procedure. Adjustment to baseline measurements, as in a pretest and
posttest design, may change the power of treatment comparison. If the
correlation of pre- and posttreatment measurements isρ, the variance
of the change from baseline (i.e., the difference between pre- and
posttreatments) needs to be multiplied by 2 (1 –ρ) assuming equal
variances between pretest and posttest measurements. For example, if
the correlation of pretest and posttest measurements is .65 and the
variance of the measurement for both pretest and posttests is 2.56, the
variance of the change from baseline will reduce to 2.56×0.7 = 1.792.
However, if the correlation is only .35, the variance of the change will
increase to 2.56× 1.3 = 3.328. Therefore, if the total sample size
required for a two-arm design is 100, due to baseline adjustment, the
sample size will need to decrease to 70 or increase to 130, respectively,
for correlation .65 and .35. In sum, if the pretest and posttest correla-
tion is smaller than .5, adjustment for pretest or baseline measure-
ments will reduce the power.

MULTIPLE REGRESSION, LOGISTIC
REGRESSION, AND COX REGRESSION

Multivariate analyses, such as analysis of variance (ANOVA), mul-
tiple linear regression, multiple logistic regression, and Cox regres-
sion (for survival analysis), are known to improve the power from their
univariate counterparts by reducing the residual error. However, the
variance of a parameter that measures an intervention effect is jointly
influenced by the residual error and by other variance components in
the multivariate model, including the covariance of the intervention
variable and the other covariates. Recent studies show that the addi-
tion of covariates may also inflate the variance of the estimated param-
eter and thus reduce the power. The reduction of power occurs espe-
cially in a nonlinear regression model such as logistic regression
(Hsieh, 1989, 1998; Robinson & Jewell, 1991) and Cox regression
(Hsieh & Lavori, 2000). The reduction of residual error in a regression
model is given by
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( )σ σe y yxR2 2 21= −

whereRyx

2
is the squared multiple correlation coefficient indexing the

proportion of variance of endpointY explained by the covariateX.
Therefore, the impact of the regression adjustment for additional
covariatesX2, . . .Xp is the ratio

( ) ( )1 112
2

1
2− −R Ry p y, ... ,/ .

The squared multiple correlation coefficientsRy ,1
2

andRy p, ...12
2

can
be computed from most regression software programs whenY is the
dependent variable in the regression onX1 alone andX1, X2, . . . Xp,
respectively. However, this impact is very unpredictable due to the
changes of variance components with different variables and thus is
rarely applied in power and sample-size calculation. To ensure that we
have enough power or sample size, a conservative approach is to
adjust the variance inflation from collinearity between the interven-
tion variable and the other explanatory variables. The VIF for adjust-
ing the collinearity is given as the reciprocal of1 1 2

2−R p, ... where
R p1 2

2
, ... is the squared multiple correlation coefficient ofX1 with other

covariatesX2, . . . Xp and can be computed from a regression software
program whenX1 is the dependent variable in the regression onX2, . . .
Xp.

It is known that the sample size for a simple logistic regression
model can be calculated from the formulas for two-samplet test and
chi-square test when the dependent variableX is a continuous variable
and binary variable, respectively (Hsieh, Bloch, & Larsen, 1998). For
comparing two treatment groups using a Cox regression model, the
sample size can be obtained from the formula for the logrank test.
After calculating the sample size required for an univariate analysis to
study the effect ofX1 on endpointY, we decide to adjust for some
confounding variables such as baseline variablesX2, . . . Xp in a
multivariate model. We can then inflate the sample size by a factor of

( )VIF R p= −1 1 1 2
2/ , ...
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so that the study has a sufficient power. For example, in a study
(psychophysiological study of chronic post-traumatic stress disorder
[PTSD]) conducted at 15 Department of Veterans Affairs medical
centers, a logistic regression model is fitted to use four psychophysio-
logical measurements in the diagnosis of PTSD (Keane et al., 1998). A
sample size ofN = 580 was calculated from a two-samplet test (com-
paring PTSD with non-PTSD groups) for one primary psychophysio-
logical variable, heart rates. The prevalence rate of PTSD among the
Vietnam veterans was assumed 20% (i.e., a sample-size ratio of 4:1 for
non-PTSD vs. PTSD groups). By adjusting for VIF for unbalanced
design, we obtained a sample size ofN = 580 × 1.5625 = 906. The
squared multiple correlation coefficientR1 2 4

2
, ... of the primary vari-

able versus other three psychophysiological variables was estimated
to be .1. Therefore, the final sample size was 906/(1 – .1) = 1,007 for
fitting a multiple logistic regression model. This VIF has been used in
sample-size calculation for multiple logistic regression (Hsieh, 1989;
Hsieh et al., 1998) and Cox regression (Hsieh & Lavori, 2000) and
implemented in nQuery Advisor software (Elashoff, 2001).

CLUSTER RANDOMIZATION
AND LINEAR MIXED MODELS

Instead of randomizing individuals, researchers may choose to ran-
domize clusters of participants, because clusters or groups of partici-
pants are sensible or natural units for interventions. Although the
authors of many articles have discussed the adjustments for sample
size for cluster-randomized designs (e.g., Murray, 1998), the need for
variance inflation may be independent of whether participants were
randomized in clusters. Instead, it comes from the lack of independ-
ence of outcomes within treatment group. For example, in a recently
published treatments-of-PTSD (TOP) study conducted at 10 Depart-
ment of Veterans Affairs medical centers, each cohort of 12 partici-
pants were randomized individually into either standard treatment or
experimental treatment for group therapy of PTSD (Schnurr, Fried-
man, Lavori, & Hsieh, 2001). Treatment interventions were delivered
to each group of six participants.

In the TOP study and in some other studies, the outcomes of
patients are not independent within treatment group. For example,
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community intervention studies (in which the entire community groups
are randomized) or studies in which a treatment is delivered in a group
setting (such as the TOP study) involve a correlation of measures due
to clustering. It is known that the power is reduced by positive ICC, the
ratio of the within-group variance to the total variance, which is the
sum of the between- and within-group variance. Supposen = mkpar-
ticipants are randomized tok groups,m per group, then the VIF is
known as 1 + (m– 1)ρ, whereρ is the ICC. If the group size is just one
participant,mis 1 and there is no inflation of variance (i.e., VIF = 1). If
the ICC is high, adding participants to groups does not help with vari-
ance as much as adding groups does. When the ICC is greater than .30
and the number of participants per group is greater than 10, the vari-
ance is insensitive to the addition of new participants to groups and
thus the power of the test (Hsieh, 1988). In most community interven-
tion studies where the cluster sizes are large, such as a work site or a
classroom, the addition of the number of participants is insensitive to
the power when the ICC greater than .30. Fortunately, the values of
ICC in most community intervention studies are small, which make
the studies affordable.

Although there are formulas available for a two-samplet test for
cluster randomized data (Hsieh, 1988), researchers have to use statis-
tical software for linear mixed model, such as SAS PROC MIXED
(SAS, 2001), to perform a valid two-samplet test. For example, speci-
fying the treatment variable or intervention variable as the only fixed-
effect and specifying the group variable as the only random effect
gives a valid test, if the variance component model is correct. Beyond
this t test, any additional covariates in the model require additional
power or sample-size adjustments such as the collinearity adjustment
of 1/(1 –R2) discussed in the previous section.

ADJUSTMENTS FOR MISSING DATA

Adjusting for missing data is an important procedure in sample-
size calculation. When data are missing at random (MAR) or missing
completely at random (MCAR) and occur on continuous covariates
(Little & Rubin, 1987), researchers can use multiple imputation soft-
ware to impute missing data and to combine the results from the analy-
ses of imputed data sets. Notice that the assumption of MAR or not is
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not testable in the data, but the assumption of MAR versus MCAR is
testable. Software programs for imputations available from SAS Insti-
tute (SAS, 2001) include SAS PROC MI and PROC MIANALYZE.
The MI procedure produces a “fraction of missing information” (Lit-
tle & Rubin, 1987) on the parameter, which is not the same as the frac-
tion of missing data unless the data are MCAR. Researchers can use
the inverse of this fraction as a VIF if data are MCAR. If the fraction of
missing information isP and the data are MCAR, the sample size
needs to be inflated by a factor of (1 –P)–1 to compensate the loss of
power. If the data are MAR, the correct VIF can be larger or smaller
than (1 –P)–1.

The power of survival data is a function of the number of events.
However, a MAR or MCAR survival data can occur either on an
expected censored data or an event. A compromise solution is to
assume half of the missing data, assuming MCAR, are expected
events that contribute to the power. So if the proportion of MCAR isP,
we will inflate by a factor of (1 –P/2)–1, instead of (1 –P)–1. For exam-
ple, if the number of events needed for a study is 100 and the propor-
tion of MCAR is 20%, we will need to increase the sample size to 100/
.9 = 112.

For a cluster-randomized design, adjustments for missing data
need to be made at each level of the linear mixed model because apply-
ing the same VIF to an individual level may have a very different
impact than applying it to a cluster level. It may be that missing data in
a 2 ×2 factorial design is heavier on one factor than the other, because
the intervention in that factor retains fewer study participants. In this
situation, a balanced 2× 2 factorial design may turn into an unbal-
anced design. Adjustments for missing data should follow the same
VIFs for an unbalanced 2× 2 factorial design and should begin the
study with an unbalanced randomization.

Although a two-period, two-treatment crossover design is more
efficient than a completely randomized two-treatment parallel design
when there is no residual effect, the effect of missing data, especially
from dropouts, in a crossover design can be more severe than a regular
parallel design. Assume the proportion of missing data isP for each
treatment. The VIF for missing data in a completely randomized two-
treatment parallel design versus a two-period, two-treatment cross-
over design is (1 –P)–1 versus (1 –P)–2.
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DISCUSSION AND CONCLUSION

The VIF or design effect provides a simple method to adjust sample
size for various designs or analytical models from a basic two-group
design. The following is a summary table of VIFs applied to either
continuous, binary, or survival endpoints.

Type of Design/Model VIF

Two-group unbalanced (K+ 1)2/4K, whereK or L is sample-size ratio of the two
groups

2 × 2 factorial (K+ 1)2/4K and (L+ 1)2/4L for main effect without
interaction

(L + 1)(K + 1)2/4K and (K+ 1)(L + 1)2/4L for main effect
with interaction

(K + 1)2(L + 1)2/4KL for interaction effect
Multiple arms/ANOVA Ratio of noncentrality parameters
BalancedM × M crossover (1 –ρ)/m, whereρ is the ICC
Pretest and posttest 2(1 –ρ), whereρ is pretest and posttest correlation or ICC

Regressions 1 1 1 2
2/ ,, ... )( − R p

whereR p1 2
2

, ... is the squared multiple
correlation coefficient

Cluster randomization 1 + (m– 1)ρ, wherem is the number of observations within
a randomized unit

Missing data (1 –P)–1, whereP is fraction of missing information if the
data is MCAR

(1 –P/2)–1 for survival data

By using the above VIFs, researchers can design a more efficient
study and simplify sample-size calculation.

APPENDIX

In a 2 ×2 factorial design assuming no interaction, the effect of factors A
and B, in an additive model, are estimated by linear contrasts of treatment
means of the four groups:

θA = (YA – Y0 + YAB – YB)/2

and

θB = (YB – Y0 + YAB – YA)/2.
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The tests of main effects can be viewed as comparisons of two groups, for ex-
ample,YA + YAB versusYB + Y0 for factor A. Therefore, the VIF for an unbal-
anced two-group parallel design can be applied for an unbalanced factorial
design.

If the interaction effect exists in an univariate analysis, the main and inter-
action effects can be estimated byθA = YA –Y0, θB = (YB –Y0), andθAB = (YAB –
YA –YB + Y0)/2. If aandbare fractions of total sample sizeN for factors A and
B, respectively, the loss of information due to interaction are fractions ofb
anda for factors A and B, respectively. Therefore, the VIF due to interaction
are (1 –b)–1 for factor A and (1 –a)–1 for factor B.

In a multivariate analysis, a linear model for a 2× 2 factorial design with
interaction has the following form (Piantadosi, 1997):

E{Y} = θ0 + θAXA + θBXB + θABXAXB,

whereXA andXB are both binary indicators of factors A and B andθA, θB, θAB

are the effects of factors A, B, and interaction, respectively. For example,XA =
1 for factor A and 0 otherwise;XB = 1 for factor B and 0 otherwise. Notice that
the indicatorXAXB provides a comparison of treatment meansYABwith YA + YB

+ Y0 instead ofYAB + Y0 with YA + YB. The unbalance of sample sizes for test-
ing the interaction effect has reduced the power dramatically. Inferences for
both main effectsθA andθB and for the interaction effectθAB can be simulta-
neously performed in this three-parameter model. Under this three-
parameter model, the null hypotheses to be tested for each parameter are

Hypothesis 1:[θA, θB, θAB] = [0, θB, θAB] for testingθA main effect.
Hypothesis 2:[θA, θB, θAB] = [θA, 0,θAB] for testingθB main effect.
Hypothesis 3:[θA, θB, θAB] = [θA, θB, 0] for testingθAB interaction effect.

The design matrix has dimensionN × 4 and is

(1 –a)(1 –b)N a(1 –b)N b(1 –a)N abN

′ =×X N4

1 1 1............... ............... ............... ...............

............... .............

1

0 1 .. ............... ...............

...............

0 1

0 0 1 1

0

............... ............... ...............

............... ............... ............... ...0 0 1 ............



















.

The covariance matrix of parameter estimates is (X′X)–1σ2, whereσ2 is the
variance of each observation and
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′ =



















X X N

a b ab

a a ab ab

b ab b ab

ab ab ab ab

1

,

( )′ =

− −
− −
− −

− −









−
X X

a

b b

a b ab

1

1 1 1 1

1 1 1 1 2

1 1 1 1

1 1 1 1

/ /

/ /

/ / /

( )( )











− −/ N a b1 1 .

The variance of estimates of factors A, B, and interaction areσ2/Na(1 –
a)(1 –b),σ2/Nb(1 –a)(1 –b), andσ2/Nab(1 –a)(1 –b), respectively. There-
fore, the sample-size formulas for a 2×2 factorial design with interaction in a
linear model are

N = (Z1 –α/2 + Z1 –β)
2/(a(1 –a)(1 –b)θΑ

2 /σ2), (A.1)

N = (Z1 –α/2 + Z1 –β)
2/(b(1 –a)(1 –b)θB

2 /σ2), (A.2)

and

N = (Z1 –α/2 + Z1 –β)
2/(a(1 –a)b(1 –b)θAB

2 /σ2) (A.3)

for factors A, B, and interaction, respectively. In comparison, the sample size
for a balanced two-sample parallel design, assuming equal variances, has the
following formula

N = (Z1 –α/2 + Z1 –β)
2/(θ2/σ2), (A.4)

whereθ2/σ2 is the squared standardized effect size.
For a 2× 2 factorial design with survival endpoints, the Cox regression

model assumes that the hazard functionλ(t) for the survival timeT given the
treatment indicatorsXA andXB has the following regression formulation:

log (λ(t|X)/λ0(t)) = θAXA+ θBXB + θABXAXB,

whereλ0(t) is the baseline hazard.
Slud (1994) proposed an adjusted logrank statistic for a factorial survival

design involving interaction effect. The total number of events has the follow-
ing similar forms (Schmoor, Sauerbrei, & Schumacher, 2000; Slud, 1994):

D = (Z1 –α /2 + Z1 –β)
2/(a(1 –a)(1 –b)θΑ

2 ), (A.5)
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D = (Z1 –α/2 + Z1 –β)
2/(b(1 –a)(1 –b)θB

2 ), (A.6)

D = (Z1 –α/2 + Z1 –β)
2/(a(1 –a)b(1 –b)θAB

2 ), (A.7)

for factors A, B, and interaction, respectively. In comparison, the formulas
for a balanced two-sample logrank test is

D = 4 (Z1 –α/2 + Z1 –β)
2/θ2, (A.8)

whereθ is the log hazards ratio of the two groups. By taking the sample-size
ratios of (A.1), (A.2), and (A.3) versus (A.4) or ratios of (A.5), (A.6), and
(A.7) versus (A.8), the VIF for an unbalanced factorial design versus a bal-
anced two-sample parallel design are [4a(1 –a)(1 –b)]–1, [4b(1 –a)(1 –b)]–1,
and [4a(1 –a)b(1 –b)]–1, for factors A, B, and interaction, respectively. By
substituting sample-size ratiosK = a/(1 –a) andL = b/(1 –b), the VIFs for an
unbalanced design have the equivalent forms (L+ 1)(K+ 1)2/4K for factor A,
(K + 1)(L + 1)2/4L for factor B, and (K+ 1)2(L + 1)2/4KL for interaction.
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