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 Sample Size Determination for Some Common

 Nonparametric Tests
 GOTTFRIED E. NOETHER*

 The article discusses the problem of determining the number of obser-
 vations required by some common nonparametric tests, so that the tests

 have power at least 1 - fi against alternatives that differ sufficiently
 from the hypothesis being tested. It is shown that the number of obser-
 vations depends on certain simple probabilities. A method is suggested

 for fixing the value of the appropriate probability when determining
 sample size.

 KEY WORDS: Sign test; Wilcoxon one-sample test; Wilcoxon two-

 sample test; Kendall test of independence; Odds ratio.

 1. INTRODUCTION

 The problem of determining an adequate sample size

 for a test of a hypothesis can be formulated as follows.

 We want an a-level test to reject the hypothesis being
 tested with probability at least 1 - /1, whenever the al-
 ternative differs sufficiently from the null hypothesis. For
 parametric tests, it is natural to express the requirement
 "differs sufficiently from the null hypothesis" in terms of
 the parameter being tested. But how should the require-
 ment be interpreted for nonparametric tests? We shall see
 that associated with some common nonparametric tests,
 there exist certain probabilities that can be used to mea-
 sure distance from the null hypothesis for purposes of
 sample size determination.

 Throughout the article, we assume that the distribution
 of a test statistic T is approximately normal with mean
 ,u(T) and standard deviation a(T). In particular, the mean
 and standard deviation of T under the null hypothesis will

 be denoted by yuo(T) and ao(T). For the nonparametric
 tests to be discussed, the assumption of the approximate
 normality of the test statistics is sufficiently accurate for
 most practical purposes, unless the sample sizes involved
 are quite small.

 For simplicity, we discuss sample size determination for
 an upper-tailed test. The result remains valid for a lower-
 tailed test and requires only an obvious modification for
 a two-tailed test. If then Z denotes a standard normal
 variable and za denotes its upper a-level significance point,
 the critical region for the test is given by T > 1uo(T) +
 zaoo(T). The power of the test against the alternative Ha
 is given by

 Power = P(T > uo(T) + ZaUO(T) I Ha)

 = T -p(T) jo(T) - A(T) - zaao(T)) =p _ >_
 >(T) ((T)

 (pao(T) P)

 * Gottfried E. Noether is Professor Emeritus, Department of Statis-
 tics, University of Connecticut, Storrs, CT 06268.

 where p = o(T)/uo(T). The power of this test equals

 1 - fi when the expression on the right of the inequality
 sign equals - zfl or if

 [4(T) - ,uo(T) 12
 Q(T) a L o(T) J

 equals (za + pzf)2. In general, the value of p is unknown.
 But for alternatives that do not differ too much from the
 null hypothesis, it will often be appropriate to assume that
 a(T) is close to ao(T) or, equivalently, that we may set
 p = 1. If we refer to Q(T) as the noncentrality factor for
 the test T, under the stated conditions an approximation
 to the sample size is obtained by setting the noncentrality
 factor equal to (Za + Zp)2 and then solving the resulting
 equation for the number of observations. It is easily seen
 that a lower-tailed test leads to exactly the same solution.

 We illustrate our result with the classical one-sample

 problem. Let X1, . .. ., XN constitute a random sample
 from a population with mean ,u and standard deviation a.

 We want to test the hypothesis that ,u equals Ito by using
 the test statistic T = X. Then #(X) = u, u2(X) = a2IN,
 and Q(X) = N(u - ,o)2/a2. We then have the well-known
 result that the required sample size is given by

 N_- (z + zp)2 N -, uo)/a]2

 2. NONPARAMETRIC ONE-SAMPLE
 LOCATION TESTS

 Let X1, .I . , XN constitute a random sample from a
 population with median q. We want to test the hypothesis
 that q = qo. Without loss of generality, we assume that
 C1o = 0.

 2.1 Sign Test

 As our test statistic, we use the quantity S = #(positive
 observations). Then ,u(S) = Np, where p = P(X > 0).

 In particular, yuo = N12. Further, u2(S) = Np(l - p) and
 ao2(S) = N14. Then Q(S) = 4N(p - j)2 and the required
 sample size N = N(S) is given by

 N(S) = (Za + Zp)2 -1)2'

 which depends on how much the true probability p that
 an observation exceeds the hypothetical median deviates
 from the hypothetical probability 1.

 This result raises a practical problem for the experi-
 menter. What valuep should he choose for the alternative?
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 He may want to rely on past information or use a pilot
 sample to obtain an estimate of p. Alternatively, the ex-
 perimenter may want to fix in his mind some value for the
 odds ratio r = pl(1 - p) = P(positive observation)/
 P(negative observation). The associated value of p is
 rl(1 + r). An experimenter who is willing to tolerate
 accepting a hypothetical median with probability at most
 fi, if in fact the probability that an observation is greater
 than the hypothetical median is at least twice as large as
 the probability that it is smaller than the hypothetical me-
 dian, would use the value p = X when computing the
 required sample size. Settling on an odds ratio to deter-
 mine the required sample size is certainly no more arbi-

 trary than settling on a value for (,u - yuo)/I in the classical
 one-sample problem, when the standard deviation is un-
 known.

 For the sign test, p = a(S)lq0(S) = 2Vp(1 - p). Since,
 under the alternative, p is smaller than 1, the suggested
 sample size N(S) is conservative. The degree of conser-
 vativeness of N(S) is indicated by N(S)IN(p), where N(p)

 = (Za + pzp)2/4(p - ,)2 iS the normal approximation to
 the sample size based on the actual value v(S). When,f
 = a, N(S)IN(p) = 4/[1 + 2Vp(1 - p)]2. For some typ-
 ical value of the odds ratio r, we find

 r p N(S)IN(p)

 1.5 .60 1.02

 2 23 1.06

 3 .75 1.15.

 When > a, the ratio N(S)IN(p) is smaller.
 As an illustration, we tabulate N(S) and N(p) for a =

 fi = .10. The table also gives values of the approximation

 N(a) = [(Za + zp)/arcsin(2p - 1)]2, suggested by a ref-
 eree, and the sample size N(b) of the exact binomial test
 randomized to have a = .10.

 p N(S) N(p) N(a) N(b)

 .60 164.4 161.0 162.1 162

 3 59.2 55.8 56.9 57

 .75 26.3 22.9 24.0 24

 All three approximations would seem to give practically
 useful results, the arcsin approximation being closest to
 the randomized exact test sample size.

 2.2 Wilcoxon One-Sample Test

 The Wilcoxon statistic for testing the hypothesis that a
 symmetric population is centered at zero is usually com-
 puted as W = 2 ranklXl, where the summation extends
 over the positive observations. For our purposes, an equiv-
 alent computational form is preferable:

 W = #[positive(Xi + Xj)], 1 < i j < N.
 We find ,u(W) = Np + 2N(N - l)p', where again p =
 P(X > 0) and p' = P(X + X' > 0), Xand X' being two

 independent observations. Under the null hypothesis, p

 = p' = 2 and u02(W) = N(N + 1)(2N + 1)/24. Then

 Q(W) - [N(p - 5) + N(N - l)(p' - 2
 N(N + 1)(2N + 1)/24

 3N(p' -

 for sufficiently large N. It follows that the required sample

 size N(W) for the Wilcoxon one-sample test is given by

 N(W) = 3(Z +
 - 1)2'

 The comments concerning an appropriate choice of p
 for the sign test apply equally to the choice of p'. In par-
 ticular, for a given value of the odds ratio r' = P(X +

 X' > O)/P(X + X' < 0), we getp' = r'/(1 + r').

 2.3 Comparison of N( W) and N(S)

 From the formulas for N(W) and N(S), we see that the
 Wilcoxon test requires fewer (more) observations than the

 sign test depending on whether Ip' - 'I/lp - 21 is greater
 (smaller) than \/j = 1.15. It is then of some interest to
 investigate the relationship between p' and p in greater
 detail.

 Let X = U + q (q > 0), where the random variable U
 is symmetric about 0 with density f (u) and cdf F(u). Then

 p = P(X > O) = P(U> -> ) =

 Correspondingly we find

 p' = P(X + X' > 0) = P(U + U' > -2q) =F*(2q)g

 where F*(u) is the cdf of the random variable U + U'

 [the convolution of F(u)].
 For a number of distributions, p and p' can be evaluated

 in closed form:

 1. U - uniform on (-i2, 2):

 p = 1 + qg p' = f2(1 - q, 1 < 2

 2. U-N(O, 1):

 p = 4(q), p' = (q2),
 where ?D(u) = standard normal cdf.

 3. U Laplace (0, 1):

 p = 1 - 2e-v, p' = 1 q( )e-2a

 For q near zero, we have the first order approxima-
 tions p = p' = 2(1 + q).

 4. U- Cauchy (0, 1):

 p = 1A7+ /tan-'q =p'.

 These results suggest that for long-tailed distributions
 like the Cauchy and the Laplace distributions, the values
 of p' and p are very nearly equal. For these distributions,
 the value of p used to determine the sample size for the
 sign test can also be used to determine the sample size for

 the Wilcoxon one-sample test. For relatively short-tailed
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 distributions like the normal, p' values are somewhat larger
 than the corresponding p values, as the following table
 shows:

 p r p' r'

 .55 1.22 .57 1.33

 .60 1.50 .64 1.78

 .65 1.86 .71 2.45

 .70 2.33 .77 3.35.

 2.4 Pitman Efficiency of the Sign Test Relative to
 the Wilcoxon Test

 The results of Sections 2.1 and 2.2 immediately convert

 into statements of relative efficiency. Thus the efficiency
 of the sign test relative to the Wilcoxon one-sample test
 is given by the ratio

 _ N(W) 4(p - 1)2

 es,w - N(S) 3(p' _ 1)2

 According to the results in Section 2.3, relative efficiency
 depends not only on the population distribution F(u), but
 also on the specific alternative q. The dependence on q
 disappears as we let q -O 0 (Pitman local efficiency). For

 values near 0, we find

 p = F(q) = 2 + qf(0)

 and

 p' = F*(2q) = 2 + 2qf*(0) = 2 + 2q f f2(u) du.
 Then

 f2(0)

 3 f f2(u) du

 In particular, we have the following results: for the uni-
 form distribution, the relative efficiency is A; for the normal
 distribution, i; for the logistic distribution, i; and for the
 Laplace and Cauchy distributions, I3.

 3. TWO-SAMPLE PROBLEM

 Given two independent random samples X1,.. , Xm
 and Y1, . . . , Yn, we want to test the hypothesis that the

 two samples have come from the same population against
 the alternative that Y-observations tend to be larger than

 X-observations.
 As test statistic, we use the Mann-Whitney statistic U

 for the Wilcoxon two-sample test,

 U= #(Yj>Xi), i= 1,...,m; j= 1,...,n.

 We find,u(U) = mnp", wherep" = P(Y> X). In addition,

 ,uo(U) =mn and 02(U) = mn(N + 1)/12, where N
 m + n. In terms of the probability p", the alternative can
 be stated more precisely as p" > 1.

 Setting m = cN, we find Q( U) = 12c(1 - c)N2(p"
 )I/(N + 1) and, approximately,

 N= (Z + Z)2
 12c(1 - c)(p" - )2

 For a given odds ratio r" = P(Y > X)IP(Y < X), we
 find p" = r"/(1 + r").

 4. KENDALL'S TEST OF INDEPENDENCE

 Given the bivariate random sample (X1, Y1), . , (XN,
 YN), we want to test the hypothesis that the two random
 variables X and Y are independent. As test statistic, we

 use C = #(concordant pairs), where two sample obser-
 vations (X, Y) and (X', Y') are said to be concordant or
 discordant, depending on whether (X - X')(Y - Y') is

 positive or negative. We find,u(C) = WN(N - 1)pcq where
 Pc is the probability of concordance. Under the hypothesis
 of independence, Pc = 2 and uo2(C) = N(N - 1)(2N +
 5)/72. Approximately, then,

 N =(Z + Zf)2
 9(pc - )2

 The practical determination of pc can be based on the
 odds ratio PclPd, where Pd = 1 - Pc is the probability of

 discordance. Alternatively, we have pc = 1(1 + r), where
 z = Pc - Pd iS the Kendall rank correlation coefficient.
 Thus a value of z for which an experimenter prefers re-
 jection of the hypothesis of independence determines a
 corresponding value of Pc.

 [Received February 1986. Revised October 1986.]
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