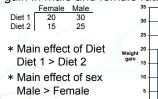
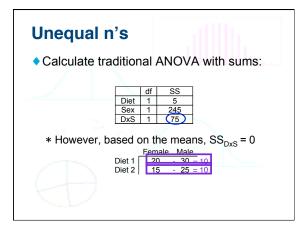
Unbalanced Designs & Quasi F-Ratios ANOVA for unequal n's, pooled variances, & other useful tools

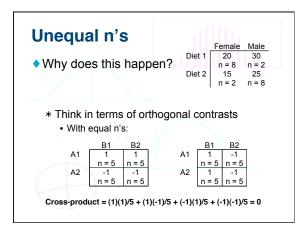

Unequal n's

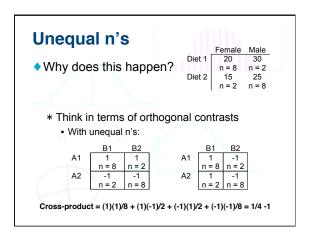
Focus (so far) on Balanced Designs

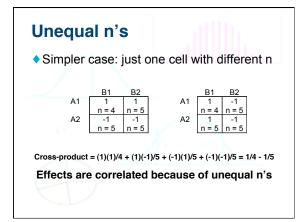
- * Equal n's in groups (CR-p and CRF-pq)
- * Observation in every block (RB-p RBF-pq)
- What happens when cell n's are unequal?
 - * Induce correlations between the factors
 - * SS no longer independent • SS_{total} is not clearly partitioned
 - ANOVA assumptions may not hold

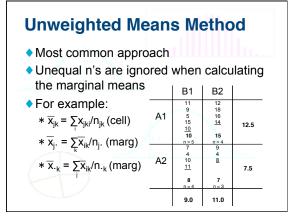
Unequal n's

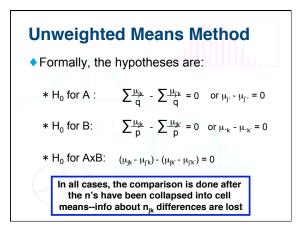

• Example: fake data from a study of the effects of two different diets on weight gain in male and female rats





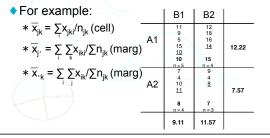




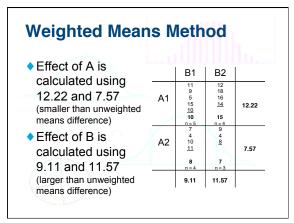


Unweighted Means Method

 In regression terms, the SS for each effect is computed after all other effects have been removed from the model


* Analogous to semi-partial correlation

* Remove induced correlations before calculating the SS for each effect


* Reflect "unique" contributions of each effect

Weighted Means Method

- Second most common approach
- Difference in n use to weight the means

- In regression terms, the SS for each effect is computed *before* all other effects have been removed from the model
 - * Analogous to simple correlation
 - * Induced correlations: variance from other effects are picked up by a given effect SS
 - * No longer seeing the unique contributions

Weighted v Unweighted

- What do the differences in n's reflect?
 - * Differences in reflect relative frequency of the conditions in the population: use weighted means
 - * Differences due to some aspect of the treatment:
 - use weighted means
 - * Otherwise, use unweighted means method • the differences carry no *real* meaning

Weighted v Unweighted

What leads to unequal n's?

- * Patients versus controls
- * Loss of observations due to difficulty of one condition relative to other conditions
- * Loss of observations due to random choice of trial types
- * Loss of observations due to technical difficulties
- * Loss of participants

Weighted v Unweighted

- How do you identify the correct SS for weighted and unweighted models?
 - * Different ways to calculate SS's for a model
 - Type I
 - Type II
 - Type III
 - * Like regression, these methods are dependent on how you want to look at the contributions of each term in the model

Type I SS

Hierarchical Decomposition

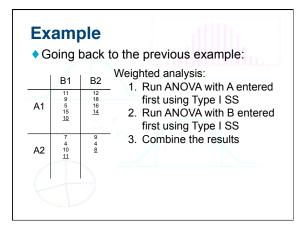
- \ast Each term adjusted only for the terms that
- have already been entered in the model
- Weighted SS for the first term enteredSequential SS for the second term
- Correct SS for the interaction
- * In SPSS: order matters
 - List variables in specific order

NOTE: run multiple times with each effect as the first variable and combine to get weighted means analysis

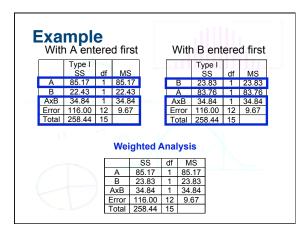
Type II SS

Factor Sequential

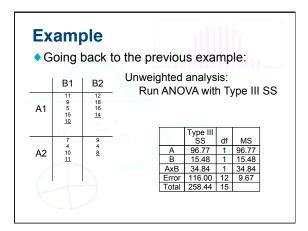
- * Each term is adjusted for other effects that do not include that term in the model
- * In SPSS: the two effects will be resolved without the contribution of each other.
- * This gives you the sequential SS for your effects (as if each was the 2nd term)

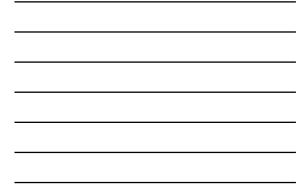

NOTE: this ends up being something in between a weighted and unweighted analysis.

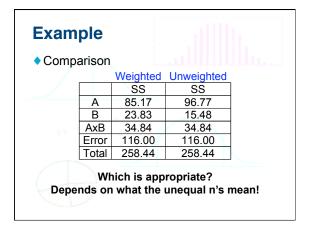
Type III SS

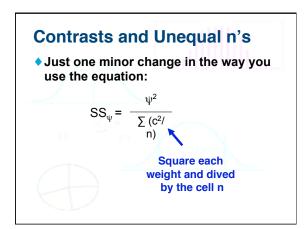

Unweighted Analysis

- * Each term is adjusted for all relevant terms in the model
 - · Reflects unique contribution of each variable
- * Gives you the unweighted SS for each effect and the correct interaction
- * In SPSS: Type III is the default (but be sure to check!)


NOTE: Use this for unweighted analyses







Reporting Stats

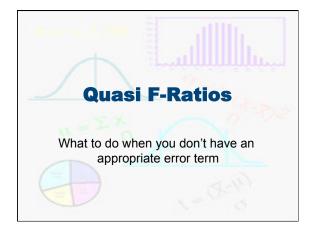
Be consistent:

match descriptive and inferential stats

- Weighted analysis:
 - * Report weighted means
 - * ANOVA values should be from weighted analysis (using Type I SS repeatedly)
- Unweighted analysis:
 - * Report unweighted means
 - * ANOVA values should be from unweighted
 - analysis (Type III SS)

ANOVA assumptions ≠ n's

- Most studies concerned with homogeneity of variance and normality (e.g., Milligan et al., 1987)
- Homogeneity of variance
 - * Simulations paired various sample size patterns with various unequal variances
 - * Result: unbalanced ANOVA is *very* sensitive to inhomogeneity
 - * Type I error rates can be too high or too low depending on the exact mapping of variance to sample size

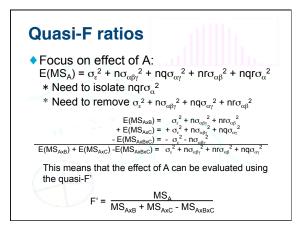

ANOVA assumptions ≠ n's

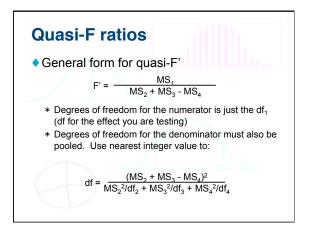
Normality

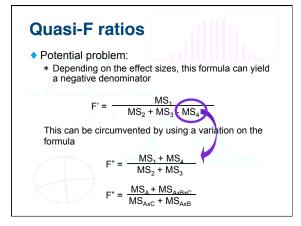
- * News is far more promising
- * Unbalanced ANOVA is almost as robust to normality violations as a balanced ANOVA
- Upshot?
 - * Worry about homogeneity of variance
 - * Do not worry about normality
 - * Better yet, try not to have unequal n's!

Interim summary

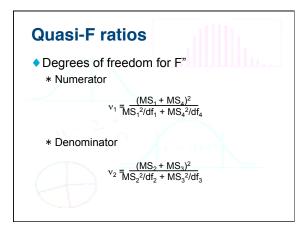
- Unequal n's happen
- To deal with them...
- * Know why the n's are not equal
- * Understand weighted v unweighted analyses
- Be consistent with your stats
- Be clear in your results sections

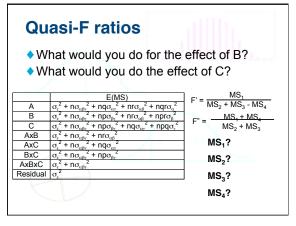

Quasi-F ratios

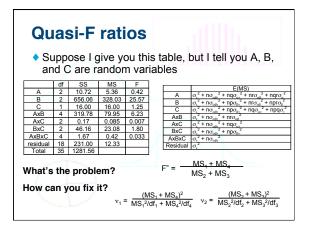

- Sometimes we do not have the error terms we need to assess certain effects in the model (think E[MS])
- We can "create" an F value that will test the effect by pooling the available values
- Pooling produces a "quasi-F" statistic
 * F will have specific degrees of freedom
 - \ast F can be used to assess significance

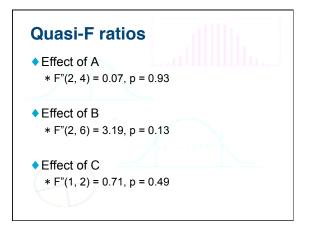

Quasi-F	lauos
Example	
* CRF-par.	A, B, and C as random effects
	E(MS)
A	$\sigma_{\epsilon}^{2} + n\sigma_{\alpha\beta\gamma}^{2} + nq\sigma_{\alpha\gamma}^{2} + nr\sigma_{\alpha\beta}^{2} + nqr\sigma_{\alpha}^{2}$
В	$\sigma_{\epsilon}^{2} + n\sigma_{\alpha\beta\gamma}^{2} + np\sigma_{\beta\gamma}^{2} + nr\sigma_{\alpha\beta}^{2} + npr\sigma_{\beta}^{2}$
С	$\sigma_{\epsilon}^{2} + n\sigma_{\alpha\beta\gamma}^{2} + np\sigma_{\beta\gamma}^{2} + nq\sigma_{\alpha\gamma}^{2} + npq\sigma_{\gamma}^{2}$
AxB	$\sigma_{a}^{2} + n\sigma_{a}^{2} + nr\sigma_{a}^{2}$
AxC	$\sigma_s^2 + n\sigma_{ab}^2 + nq\sigma_{ab}^2$
BxC	$\sigma_{\epsilon}^{2} + n\sigma_{\alpha\beta\gamma}^{2} + np\sigma_{\beta\gamma}^{2}$
AxBxC	$\sigma_{\epsilon}^2 + n\sigma_{\alpha\beta\gamma}^2$
Residual	σ_{ϵ}^2
Which e	ffects can we test?

Q	uasi-F ratios	
E	Focus on effect of A: $f(MS_A) = \sigma_{\epsilon}^2 + n\sigma_{\alpha\beta\gamma}^2 + n$ * Need to isolate $nqr\sigma_{\alpha}^2$ * Need to remove $\sigma_{\epsilon}^2 + n$	
A B C AxB AxC BxC AxBxC Residual	$\begin{array}{c} E(MS) \\ \sigma_{t}^{2} + n\sigma_{ab}^{2} + nq\sigma_{a}^{2} + nr\sigma_{ab}^{2} + nq\sigma_{a}^{2} \\ \sigma_{t}^{2} + n\sigma_{ab}^{2} + np\sigma_{b}^{2} + n\sigma_{ab}^{2} + n\sigma_{ab}^{2} + n\sigma_{ab}^{2} \\ \sigma_{t}^{2} + n\sigma_{ab}^{2} + np\sigma_{b}^{2} + nq\sigma_{a}^{2} + nq\sigma_{a}^{2} \\ \sigma_{t}^{2} + n\sigma_{ab}^{2} + n\sigma_{ab}^{2} \\ \sigma_{t}^{2} + n\sigma_{ab}^{2} + n\sigma_{ab}^{2} \\ \sigma_{t}^{2} + n\sigma_{ab}^{2} + nq\sigma_{b}^{2} \\ \sigma_{c}^{2} + n\sigma_{ab}^{2} \\ \sigma_{c}^{2} + n\sigma_{ab}^{2} \\ \sigma_{c}^{2} \\ \sigma_{c}^{2$	Use combinations of other MS values e.g., E(MS _{AxB}) + E(MS _{AxC}) - E(MS _{AxBxC})









Quasi-F ratios

- Distribution of quasi-F values (F' or F")
 * Not actually a central F
 - * Central F is a good approximation of the distribution
- These principles can be used any time you need to figure out an error term, provided you can figure out E(MS) values


Quasi-F ratios & Contrasts

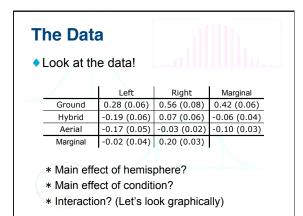
- How do you handle contrasts?
- No single clear approach
 - * If you use the F', then the same denominator and df can be used for the contrasts.
 - * Common approach: separate tests on subsets of data
- Quasi-F's for procedure
 - * Justify ignoring irrelevant factors
 - * Proceed with simpler model

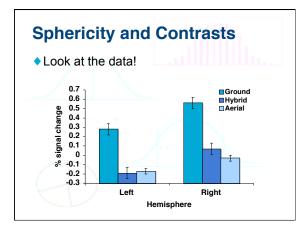
Summary so far

 Weighted and unweighted analyses for unequal n's: know when to use them

- Quasi F ratios:
 * F' or F"
 - * Pay attention to kinds of effects you have!

What are the steps?

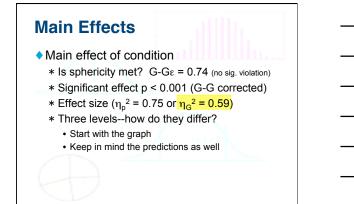

- Example: fMRI and spatial learning
 - * All participants were scanned while learning three different environments
 - One from the ground-level perspective
 - One from the aerial perspective
 - One from a "hybrid" perspective (aerial-with-turns)
 - Want to know the effect of condition and hemisphere in the anterior superior parietal cortex (ROI defined from a previous study)

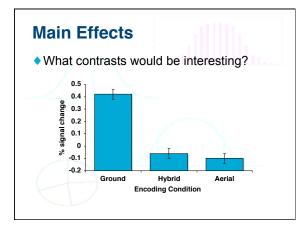

Data & Predictions Data Extract percent signal change (relative to baseline) For each participant (n = 14)

In each condition (p = 3)
In each hemisphere (q = 2)

- * Predictions
 - Ground vs. Aerial (replication)
 - Two alternatives for hybrid condition

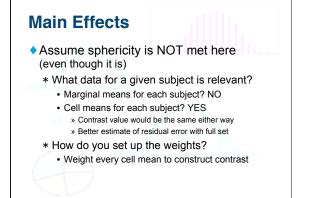
 - » If not, ground > hybrid = aerial

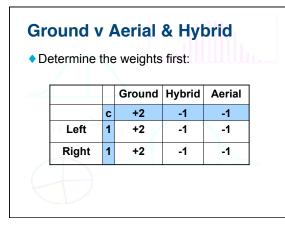



			ontra		
 ANOVA table 					
Source	SS	d f	MS	F	G-G p
BLOCK	.458	13	0.035		
HEMI	1.072	1	1.072	15.36	.002
Error(HEMI)	0.908	13	0.070		
COND	4.658	2	2.329	38.59	<.001
Error(COND)	1.569	26	0.060		
HEMI * COND	0.075	2	0.038	1.215	.313
Error(HEMI*COND)	0.805	26	0.031		

Main Effects

- Step through each one systematically
- Main effect of hemisphere
 - * Is sphericity met? NOT RELEVANT!
 - * Significant effect p = 0.002
 - * Effect size $(\eta_p^2 = 0.54 \text{ or } \eta_G^2 = 0.25)$
 - * Only two levels:
 - Conclude that right superior parietal cortex was more active than left superior parietal cortex

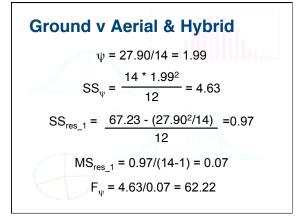



Main Effects

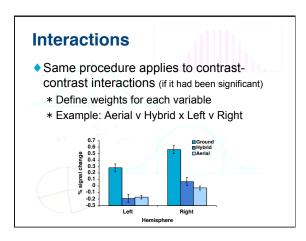
 Assume sphericity is NOT met here (even though it is)

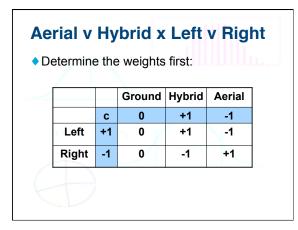
* What data for a given subject is relevant?

sub	L_G	L_H	L_A	R_G	R_H	R_S
1	0.38	-0.62	-0.09	1.21	0.09	0.02
2	0.20	-0.08	-0.26	0.73	0.14	0.11
3	0.36	-0.07	-0.03	0.75	-0.13	0.06
4	0.22	-0.10	-0.02	0.74	-0.01	-0.02
5	0.37	-0.09	-0.23	0.14	0.38	-0.01
6	0.36	-0.06	-0.25	0.28	0.05	-0.16
7	-0.16	-0.76	-0.09	0.82	0.14	0.09
8	0.58	-0.12	-0.03	0.44	0.09	-0.03
9	-0.04	0.04	-0.78	0.35	0.28	0.03
10	0.39	-0.21	-0.09	0.59	0.08	-0.08
11	0.57	-0.16	-0.17	0.72	-0.49	-0.17
12	0.58	-0.07	-0.09	0.72	0.24	-0.10
13	0.14	-0.09	-0.14	0.17	0.04	-0.02
14	-0.03	-0.20	-0.09	0.20	0.06	-0.08



						łyb		
c	2	-1	-1	2	-1	-1		1
sub	L_G	L_H	L_A	R_G	R_H	R_S	ψ	ψ^2
1	0.38	-0.62	-0.09	1.21	0.09	0.02	3.78	14.2
2	0.20	-0.08	-0.26	0.73	0.14	0.11	1.95	3.82
3	0.36	-0.07	-0.03	0.75	-0.13	0.06	2.40	5.78
4	0.22	-0.10	-0.02	0.74	-0.01	-0.02	2.06	4.23
5	0.37	-0.09	-0.23	0.14	0.38	-0.01	0.97	0.93
6	0.36	-0.06	-0.25	0.28	0.05	-0.16	1.71	2.94
7	-0.16	-0.76	-0.09	0.82	0.14	0.09	1.94	3.76
8	0.58	-0.12	-0.03	0.44	0.09	-0.03	2.12	4.51
9	-0.04	0.04	-0.78	0.35	0.28	0.03	1.04	1.09
10	0.39	-0.21	-0.09	0.59	0.08	-0.08	2.25	5.07
11	0.57	-0.16	-0.17	0.72	-0.49	-0.17	3.58	12.8
12	0.58	-0.07	-0.09	0.72	0.24	-0.10	2.63	6.92
13	0.14	-0.09	-0.14	0.17	0.04	-0.02	0.81	0.66
14	-0.03	-0.20	-0.09	0.20	0.06	-0.08	0.65	0.42





Ground v Aerial & Hybrid

All other aspects remain the same

- * How much of the effect is accounted for?
 - % effect = SS_{ψ}/SS_{effect} = 4.63/4.66 = 0.99
 - Ground > Aerial & Hybrid
- * Would we need to do more?• Not really
 - Only other interesting hypothesis from our prediction is Aerial v Hybrid, but there is no variance left for this contrast

							t v Right
с	0	1	-1	0	-1	1	▲ ∑o ² 2
sub	L_G	L_H	L_A	R_G	R_H	R_S	 ∑c²?
1	0.38	-0.62	-0.09	1.21	0.09	0.02	 n for SS_ψ? n for SS_{res_i}?
2	0.20	-0.08	-0.26	0.73	0.14	0.11	• If for OO_{ψ} :
3	0.36	-0.07	-0.03	0.75	-0.13	0.06	n for SS .?
4	0.22	-0.10	-0.02	0.74	-0.01	-0.02	· · · · · · · · · · · · · · · · · · ·
5	0.37	-0.09	-0.23	0.14	0.38	-0.01	
6	0.36	-0.06	-0.25	0.28	0.05	-0.16	
7	-0.16	-0.76	-0.09	0.82	0.14	0.09	
8	0.58	-0.12	-0.03	0.44	0.09	-0.03	
9	-0.04	0.04	-0.78	0.35	0.28	0.03	
10	0.39	-0.21	-0.09	0.59	0.08	-0.08	
11	0.57	-0.16	-0.17	0.72	-0.49	-0.17	
12	0.58	-0.07	-0.09	0.72	0.24	-0.10	
13	0.14	-0.09	-0.14	0.17	0.04	-0.02	
14	-0.03	-0.20	-0.09	0.20	0.06	-0.08	

- Keep the big picture in mind
- Deal with effects separately
- Contrasts & sphericity
 - * Use all of the subject data at the level it was entered into the ANOVA
 - * Be VERY careful about:
 - ∑c²
 - Correct number of observations
 - * All of this is easy in a spreadsheet or Matlab