Unbalanced Designs \&

 Quasi F-RatiosANOVA for unequal n's, pooled variances, \& other useful tools

Unequal n's

- Focus (so far) on Balanced Designs
* Equal n's in groups (CR-p and CRF-pq)
* Observation in every block (RB-p RBF-pq)

What happens when cell n's are unequal?

* Induce correlations between the factors
* SS no longer independent
- $\mathrm{SS}_{\text {total }}$ is not clearly partitioned
- ANOVA assumptions may not hold

Unequal n's

- Example: fake data from a study of the \qquad effects of two different diets on weight gain in male and female rats \qquad
\qquad
\qquad
\qquad
\qquad

Unequal n's

- Calculate traditional ANOVA with sums:

* However, based on the means, $\mathrm{SS}_{\mathrm{DxS}}=0$

Unequal n's

\qquad

* Think in terms of orthogonal contrasts
- With equal n's:

	B 1	B2
A1	1	-1
	$n=5$	$n=5$
	1	-1
$n=5$	$n=5$	

Cross-product $=(1)(1) / 5+(1)(-1) / 5+(-1)(1) / 5+(-1)(-1) / 5=0$

Unequal n's

	Female	Male
Diet 1	20	30
Diet 2	15 $n=2$ $n=2$ $n=8$	

* Think in terms of orthogonal contrasts
- With unequal n's:

\[

\]

Cross-product $=(1)(1) / 8+(1)(-1) / 2+(-1)(1) / 2+(-1)(-1) / 8=1 / 4-1$

Unequal n's

\checkmark Simpler case: just one cell with different n

	B 1	B 2
A1	1	
	$\mathrm{n}=4$	1
$\mathrm{n}=5$		
	-1	-1
$\mathrm{n}=5$	$\mathrm{n}=5$	

	B1	B2
A1	1	-1
	$n=4$	$n=5$
	1	-1
$n=5$	$n=5$	

Cross-product $=(1)(1) / 4+(1)(-1) / 5+(-1)(1) / 5+(-1)(-1) / 5=1 / 4-1 / 5$
Effects are correlated because of unequal n's
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unweighted Means Method

- Most common approach \qquad
- Unequal n's are ignored when calculating
\qquad the marginal means
\rightarrow For example:
$* \bar{x}_{\mathrm{jk}}=\sum \mathrm{x}_{\mathrm{jk}} / \mathrm{n}_{\mathrm{jk}}$ (cell)
$* \overline{\mathrm{x}}_{\mathrm{j}}=\sum_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{ik}} / \mathrm{n}_{\mathrm{j}}$. (marg)
$* \overline{\mathrm{x}}_{\cdot \mathrm{k}}=\sum_{\mathrm{i}} \overline{\mathrm{i}} / \mathrm{n}_{\cdot \mathrm{k}}(\mathrm{marg})$

Unweighted Means Method

- Effect of A is calculated using 12.5 and 7.5

Effect of B is calculated using 9.0 and 11.0

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unweighted Means Method

Formally, the hypotheses are:
$* H_{0}$ for $A: \quad \sum \frac{\mu_{j k}}{q}-\sum \frac{\mu_{j k}}{q}=0 \quad$ or $\mu_{j-}-\mu_{j \cdot}=0$
$* \mathrm{H}_{0}$ for $\mathrm{B}: \quad \sum \frac{\mu_{\mathrm{k}}}{\mathrm{p}}-\sum \frac{\mu_{\mathrm{ik}}}{\mathrm{p}}=0$ or $\mu_{-\mathrm{k}}-\mu_{\cdot \mathrm{k}^{\prime}}=0$
$* \mathrm{H}_{0}$ for AxB: $\quad\left(\mu_{\mathrm{jk}}-\mu_{\mathrm{jk}}\right)-\left(\mu_{\mathrm{jk}_{\mathrm{k}}}-\mu_{\mathrm{jk}}\right)=0$
In all cases, the comparison is done after the n's have been collapsed into cell means--info about \mathbf{n}_{jk} differences are lost

Unweighted Means Method

- In regression terms, the SS for each effect \qquad is computed after all other effects have been removed from the model \qquad
* Analogous to semi-partial correlation
* Remove induced correlations before \qquad calculating the SS for each effect
* Reflect "unique" contributions of each effect \qquad
\qquad
\qquad

Weighted Means Method

\qquad

Second most common approach \qquad
Difference in n use to weight the means

- For example:
$* \overline{\mathrm{x}}_{\mathrm{jk}}=\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{jk}} / \mathrm{n}_{\mathrm{jk}}(\mathrm{cell})$
$* \bar{x}_{\mathrm{j}}=\sum_{\mathrm{i}} \sum_{\mathrm{k}} \mathrm{x}_{\mathrm{ikl}} / \sum \mathrm{n}_{\mathrm{jk}}(\operatorname{marg})$
* $\overline{\mathrm{x}}_{\mathrm{k}}=\sum_{\mathrm{i}} \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{ik}} / \sum_{\mathrm{n} \mathrm{k}}(\mathrm{marg})$

	B1	B2	
	11 9	12 18	
A1	5	16	
	15	14	12.22
	$\frac{10}{10}$	15	
	n=5	$\mathrm{n}=4$	
	4	4	
A2	10 11	$\underline{8}$	
	$\stackrel{8}{n=4}$	7	
	9.11	11.57	

\qquad
\qquad
\qquad
\qquad
\qquad

Weighted Means Method

Effect of A is calculated using 12.22 and 7.57 (smaller than unweighted means difference)
Effect of B is calculated using 9.11 and 11.57 (larger than unweighted means difference)

Weighted Means Method

\qquad

- Formally, the hypotheses are:

$$
\begin{aligned}
& * H_{0} \text { for } A: \quad \sum \frac{n_{j} \mu_{k_{k}}}{n_{j} \cdot}-\sum \frac{n_{j} \mu_{j} \mu_{j k}}{n_{j} .}=0 \\
& * H_{0} \text { for } B: \quad \sum_{n_{k} \mu_{k}}^{n_{k}}-\sum \sum_{n_{-k}}^{n_{j-k} \mu_{k^{\prime}}}=0 \\
& * \mathrm{H}_{0} \text { for AxB: } \quad\left(\mu_{\mathrm{jk}}-\mu_{\mathrm{jk}}\right)-\left(\mu_{\mathrm{jk}}-\mu_{\mathrm{jk}}\right)=0
\end{aligned}
$$

Notice the addition of the cell sample sizes
for effects of A and B
Interaction looks the same

Weighted Means Method

- In regression terms, the SS for each effect is computed before all other effects have been removed from the model
* Analogous to simple correlation
* Induced correlations: variance from other effects are picked up by a given effect SS
* No longer seeing the unique contributions

Weighted v Unweighted

What do the differences in n's reflect?

* Differences in reflect relative frequency of the conditions in the population: use weighted means
* Differences due to some aspect of the treatment: use weighted means
* Otherwise, use unweighted means method - the differences carry no real meaning
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Weighted v Unweighted

What leads to unequal n's? \qquad

* Patients versus controls
* Loss of observations due to difficulty of one condition relative to other conditions
* Loss of observations due to random choice of trial types
* Loss of observations due to technical difficulties
* Loss of participants

Weighted v Unweighted

- How do you identify the correct SS for \qquad weighted and unweighted models?
* Different ways to calculate SS's for a model \qquad
- Type I
- Type II \qquad
- Type III
* Like regression, these methods are dependent on how you want to look at the contributions of each term in the model

Type I SS

-Hierarchical Decomposition

* Each term adjusted only for the terms that have already been entered in the model
- Weighted SS for the first term entered
- Sequential SS for the second term
- Correct SS for the interaction
* In SPSS: order matters
- List variables in specific order

NOTE: run multiple times with each effect as the first variable and combine to get weighted means analysis

Type II SS

Factor Sequential

* Each term is adjusted for other effects that do not include that term in the model
* In SPSS: the two effects will be resolved without the contribution of each other.
* This gives you the sequential SS for your effects (as if each was the 2nd term)

NOTE: this ends up being something in between a

 weighted and unweighted analysis.
Type III SS

-Unweighted Analysis

* Each term is adjusted for all relevant terms in the model
- Reflects unique contribution of each variable
* Gives you the unweighted SS for each effect and the correct interaction
* In SPSS: Type III is the default (but be sure to check!)

NOTE: Use this for unweighted analyses

\qquad

Example

\qquad
\qquad
\qquad
Weighted Analysis

	SS	df	MS
A	85.17	1	85.17
B	23.83	1	23.83
AxB	34.84	1	34.84
Error	116.00	12	9.67
Total	258.44	15	

\qquad
\qquad
\qquad

Example

Going back to the previous example: \qquad

Unweighted analysis:
Run ANOVA with Type III SS \qquad
\qquad

	Type III SS	df	MS
A	96.77	1	96.77
B	15.48	1	15.48
AxB	34.84	1	34.84
Error	116.00	12	9.67
Total	258.44	15	

\qquad
\qquad
\qquad

Example

- Comparison

Weighted		
	Unweighted	
	SS	SS
A	85.17	96.77
B	23.83	15.48
AxB	34.84	34.84
Error	116.00	116.00
Total	258.44	258.44

Which is appropriate?
Depends on what the unequal n's mean!

Reporting Stats

- Be consistent:

match descriptive and inferential stats

- Weighted analysis:
* Report weighted means
* ANOVA values should be from weighted analysis (using Type I SS repeatedly)
- Unweighted analysis:
* Report unweighted means
* ANOVA values should be from unweighted analysis (Type III SS)

Contrasts and Unequal n's

- Just one minor change in the way you use the equation:

n)

Square each weight and dived by the cell n
\qquad

ANOVA assumptions \neq n's

- Most studies concerned with homogeneity of variance and normality (e.g., Milligan et al., 1987)
- Homogeneity of variance
* Simulations paired various sample size patterns with various unequal variances
* Result: unbalanced ANOVA is very sensitive to inhomogeneity
* Type I error rates can be too high or too low depending on the exact mapping of variance to sample size

ANOVA assumptions \neq n's

- Normality
* News is far more promising
* Unbalanced ANOVA is almost as robust to normality violations as a balanced ANOVA
- Upshot?
* Worry about homogeneity of variance
* Do not worry about normality
* Better yet, try not to have unequal n's!

\qquad
\qquad

Quasi-F ratios

Sometimes we do not have the error \qquad terms we need to assess certain effects in the model (think E[MS]) \qquad

- We can "create" an F value that will test the effect by pooling the available values \qquad Pooling produces a "quasi-F" statistic \qquad
* F will have specific degrees of freedom
* F can be used to assess significance \qquad
\qquad

Quasi-F ratios

- Example
* CRF-pqr, A, B, and C as random effects

- Which effects can we test?
- Which can we not?
- Focus on effect of A :
$\mathrm{E}\left(\mathrm{MS}_{\mathrm{A}}\right)={\sigma_{\varepsilon}{ }^{2}+\mathrm{n} \sigma_{\alpha \beta \gamma}{ }^{2}+\mathrm{nq} \mathrm{\sigma}_{\alpha \gamma}{ }^{2}+n r \sigma_{\alpha \beta}{ }^{2}+n q r \sigma_{\alpha}{ }^{2}, ~}$
$*$ Need to isolate nqro $_{\alpha}{ }^{2}$
* Need to remove $\sigma_{\varepsilon}{ }^{2}+\mathrm{no}_{\alpha \beta \gamma}{ }^{2}+\mathrm{nq} \mathrm{\sigma}_{\alpha \gamma}{ }^{2}+\mathrm{nro}_{\alpha \beta}{ }^{2}$

	E(MS)	Use combinations of other MS values e.g., $\mathrm{E}\left(\mathrm{MS}_{\mathrm{AxB}}\right)+\mathrm{E}\left(\mathrm{MS}_{\mathrm{AxC}}\right)-\mathrm{E}\left(\mathrm{MS}_{\mathrm{AxBxC}}\right)$
A		
B		
C		
AxB		
BxC	${ }^{\text {a }}$	
AxBxC	$\mathrm{O}_{t}{ }^{2}+\mathrm{no}_{\text {asp }}{ }^{2}$	
Residual	$\mathrm{\sigma}_{\varepsilon}^{2}$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quasi-F ratios

- Focus on effect of A :
$\mathrm{E}\left(\mathrm{MS}_{\mathrm{A}}\right)=\sigma_{\varepsilon}{ }^{2}+\mathrm{n} \sigma_{\alpha \beta \gamma}{ }^{2}+n q \sigma_{\alpha \gamma}{ }^{2}+n r \sigma_{\alpha \beta}{ }^{2}+n q r \sigma_{\alpha}{ }^{2}$
$*$ Need to isolate nqro $_{\alpha}{ }^{2}$
* Need to remove $\sigma_{\varepsilon}{ }^{2}+n \sigma_{\alpha \beta \gamma}{ }^{2}+n q \sigma_{\alpha \gamma}{ }^{2}+n r \sigma_{\alpha \beta}{ }^{2}$
$E\left(\mathrm{MS}_{\mathrm{AxB}}\right)=\sigma_{\varepsilon_{2}}{ }^{2}+\mathrm{no}_{\alpha \beta \gamma_{2}}{ }^{2}+\mathrm{nro}_{\alpha \beta_{2}}{ }_{2}^{2}$
$+\mathrm{E}\left(\mathrm{MS}_{\mathrm{AxC}}\right)=+\sigma_{\varepsilon_{2}}^{2}+\mathrm{no}_{\alpha \beta_{2}}^{2}+\mathrm{nq} \mathrm{\sigma}_{\alpha \gamma}{ }^{2}$
$E\left(M S_{\text {ancl }}\right)=-\sigma_{2}^{2}-n \sigma_{2}^{2}$
 \qquad
This means that the effect of A can be evaluated using the quasi-F'

$$
F^{\prime}=\frac{M S_{A}}{M S_{A \times B}+M S_{A \times C}-M S_{A \times B \times C}}
$$

\qquad
\qquad

Quasi-F ratios

General form for quasi-F' \qquad

$$
F^{\prime}=\frac{M S_{1}}{M S_{2}+M S_{3}-M S_{4}}
$$

* Degrees of freedom for the numerator is just the df ${ }_{1}$ (df for the effect you are testing)
* Degrees of freedom for the denominator must also be pooled. Use nearest integer value to: \qquad

$$
\mathrm{df}=\frac{\left(\mathrm{MS}_{2}+\mathrm{MS}_{3}-\mathrm{MS}_{4}\right)^{2}}{\mathrm{MS}_{2}^{2} / \mathrm{df}_{2}+\mathrm{MS}_{3}^{2} / \mathrm{df}_{3}+\mathrm{MS}_{4}^{2 / d f_{4}}}
$$

\qquad
\qquad

Quasi-F ratios

- Potential problem:
* Depending on the effect sizes, this formula can yield a negative denominator

$$
\mathrm{F}^{\prime}=\frac{\mathrm{MS}_{1}}{\mathrm{MS}_{2}+\mathrm{MS}_{3}-\mathrm{MS}_{4}}
$$

\qquad
\qquad
\qquad
\qquad
This can be circumvented by using a variation on the formula

$$
\begin{aligned}
& \mathrm{F}^{\prime \prime}=\frac{\mathrm{MS}_{1}+M \mathrm{~S}_{4}}{\mathrm{MS}_{2}+M S_{3}} \\
& \mathrm{~F}^{\prime \prime}=\frac{M S_{A}+M S_{A \times B \times C}}{M S_{A x C}+M S_{A \times B}}
\end{aligned}
$$

\qquad
\qquad
\qquad

Quasi-F ratios

Degrees of freedom for F" \qquad

* Numerator

$$
\left(\mathrm{MS}_{1}+\mathrm{MS}_{4}\right)^{2}
$$

$v_{1} \overline{\mathrm{MS}_{1}{ }^{2} \mathrm{df}_{1}+\mathrm{MS}_{4}{ }^{2} / \mathrm{df}_{4}}$

* Denominator
$r_{2}=\left(\mathrm{MS}_{2}+\mathrm{MS}_{3}\right)^{2}$
$v_{2} \overline{\mathrm{MS}_{2}{ }^{2} / \mathrm{df}_{2}+\mathrm{MS}_{3}{ }^{2} / \mathrm{df}_{3}}$

Suppose I give you this table, but I tell you A, B, and C are random variables

What's the problem?
How can you fix it?

$$
v_{1}=\frac{\left(\mathrm{MS}_{1}+\mathrm{MS}_{4}\right)^{2}}{\mathrm{MS}_{1}^{2} / \mathrm{df}+\mathrm{MS}_{4}{ }^{2} \mathrm{df}} \quad v_{2}=\frac{\left(\mathrm{MS}_{2}+\mathrm{MS}_{3}\right)^{2}}{\mathrm{SS}_{2}^{2} / \mathrm{df}+\mathrm{MS}_{2}^{2} / \mathrm{df}_{3}}
$$

\qquad

Quasi-F ratios

- Effect of A
* F " $(2,4)=0.07, \mathrm{p}=0.93$

- Effect of B

* $F^{\prime \prime}(2,6)=3.19, p=0.13$
- Effect of C
* $\mathrm{F}^{\prime \prime}(1,2)=0.71, \mathrm{p}=0.49$

Quasi-F ratios

- Distribution of quasi-F values (F' or F")
* Not actually a central F
* Central F is a good approximation of the distribution
- These principles can be used any time you need to figure out an error term, provided you can figure out $E(M S)$ values

Quasi-F ratios \& Contrasts

- How do you handle contrasts?
\qquad
- No single clear approach
* If you use the F^{\prime}, then the same denominator and df can be used for the contrasts.
* Common approach: separate tests on subsets of data
- Quasi-F's for procedure
* Justify ignoring irrelevant factors
* Proceed with simpler model

Summary so far

- Weighted and unweighted analyses for \qquad unequal n's: know when to use them
-Quasi F ratios:
\qquad
* F' or F"
* Pay attention to kinds of effects you have!

What are the steps?

- Example: fMRI and spatial learning
* All participants were scanned while learning three different environments
- One from the ground-level perspective
- One from the aerial perspective
- One from a "hybrid" perspective (aerial-with-turns)
* Want to know the effect of condition and hemisphere in the anterior superior parietal cortex (ROI defined from a previous study)

Data \& Predictions

- Data
* Extract percent signal change (relative to baseline)
- For each participant $(\mathrm{n}=14)$
- In each condition $(p=3)$
- In each hemisphere ($q=2$)
* Predictions

- Ground vs. Aerial (replication)
- Two alternatives for hybrid condition
" If area involved in orientation, hybrid = ground > aerial " If not, ground > hybrid = aerial

The Data

- Look at the data! \qquad

	Left	Right	Marginal
Ground	$0.28(0.06)$	$0.56(0.08)$	$0.42(0.06)$
Hybrid	$-0.19(0.06)$	$0.07(0.06)$	$-0.06(0.04)$
Aerial	$-0.17(0.05)$	$-0.03(0.02)$	$-0.10(0.03)$
Marginal	$-0.02(0.04)$	$0.20(0.03)$	

* Main effect of hemisphere?
* Main effect of condition?
* Interaction? (Let's look graphically)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sphericity and Contrasts

ANOVA table

Source	S S	$\mathbf{d f}$	MS	F	G-G p
BLOCK	.458	13	0.035		
HEMI	1.072	1	1.072	15.36	.002
Error(HEMI)	0.908	13	0.070		
COND	4.658	2	2.329	38.59	$<.001$
Error(COND)	1.569	26	0.060		
HEMI * COND	0.075	2	0.038	1.215	.313
Error(HEMI*COND)	0.805	26	0.031		

Main Effects

\qquad

Step through each one systematically \qquad

- Main effect of hemisphere
* Is sphericity met? NOT RELEVANT!
\qquad
* Significant effect $p=0.002$
* Effect size $\left(\eta_{p}{ }^{2}=0.54\right.$ or $\left.\eta_{G}{ }^{2}=0.25\right)$
* Only two levels:
- Conclude that right superior parietal cortex was
\qquad more active than left superior parietal cortex

Main Effects

Main effect of condition

* Is sphericity met? $\mathrm{G}-\mathrm{G} \varepsilon=0.74$ (no sig. violation)
* Significant effect p < 0.001 (G-G corrected)
* Effect size ($\eta_{\mathrm{p}}{ }^{2}=0.75$ or $\eta_{\mathrm{G}}{ }^{2}=0.59$)
* Three levels--how do they differ?
- Start with the graph
- Keep in mind the predictions as well
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Effects

-What contrasts would be interesting? \qquad

Main Effects

Assume sphericity is NOT met here (even though it is)

* What data for a given subject is relevant?
- Marginal means for each subject? NO
- Cell means for each subject? YES
» Contrast value would be the same either way
» Better estimate of residual error with full set
* How do you set up the weights?
- Weight every cell mean to construct contrast

Ground v Aerial \& Hybrid

\qquad

- Determine the weights first:

		Ground	Hybrid	Aerial
	c	+2	-1	-1
Left	1	+2	-1	-1
Right	1	+2	-1	-1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ground v Aerial \& Hybrid

\mathbf{c}	$\mathbf{2}$	$\mathbf{- 1}$	$\mathbf{- 1}$	$\mathbf{2}$	$\mathbf{- 1}$	$\mathbf{- 1}$		
sub	L_G	$\mathbf{L}-\mathbf{H}$	$\mathbf{\text { L_A }}$	R_G	R_H	R_S	ψ	$\psi^{\mathbf{2}}$
$\mathbf{1}$	0.38	-0.62	-0.09	1.21	0.09	0.02	3.78	14.27
2	0.20	-0.08	-0.26	0.73	0.14	0.11	1.95	3.82
3	0.36	-0.07	-0.03	0.75	-0.13	0.06	2.40	5.78
4	0.22	-0.10	-0.02	0.74	-0.01	-0.02	2.06	4.23
5	0.37	-0.09	-0.23	0.14	0.38	-0.01	0.97	0.93
6	0.36	-0.06	-0.25	0.28	0.05	-0.16	1.71	2.94
7	-0.16	-0.76	-0.09	0.82	0.14	0.09	1.94	3.76
8	0.58	-0.12	-0.03	0.44	0.09	-0.03	2.12	4.51
9	-0.04	0.04	-0.78	0.35	0.28	0.03	1.04	1.09
10	0.39	-0.21	-0.09	0.59	0.08	-0.08	2.25	5.07
11	0.57	-0.16	-0.17	0.72	-0.49	-0.17	3.58	12.84
12	0.58	-0.07	-0.09	0.72	0.24	-0.10	2.63	6.92
13	0.14	-0.09	-0.14	0.17	0.04	-0.02	0.81	0.66
14	-0.03	-0.20	-0.09	0.20	0.06	-0.08	0.65	0.42

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ground v Aerial \& Hybrid

$$
\begin{gathered}
\psi=27.90 / 14=1.99 \\
\mathrm{SS}_{\psi}=\frac{14^{*} 1.99^{2}}{12}=4.63 \\
\mathrm{SS}_{\text {res_1 }=} \frac{67.23-\left(27.90^{2} / 14\right)}{12}=0.97 \\
\mathrm{MS}_{\text {res_1 }}=0.97 /(14-1)=0.07 \\
\mathrm{~F}_{\psi}=4.63 / 0.07=62.22
\end{gathered}
$$

Ground v Aerial \& Hybrid

- All other aspects remain the same
* How much of the effect is accounted for?
- $\%$ effect $=\mathrm{SS}_{\psi} / \mathrm{SS}_{\text {effect }}=4.63 / 4.66=0.99$
- Ground > Aerial \& Hybrid
* Would we need to do more?
- Not really
- Only other interesting hypothesis from our prediction is Aerial v Hybrid, but there is no variance left for this contrast

Interactions

Same procedure applies to contrastcontrast interactions (if it had been significant)

* Define weights for each variable
* Example: Aerial v Hybrid x Left v Right

\qquad

Aerial v Hybrid x Left v Right

- Determine the weights first:

		Ground	Hybrid	Aerial
	c	0	+1	-1
Left	+1	0	+1	-1
Right	-1	0	-1	+1

Aerial v Hybrid x Left v Right

\mathbf{c}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{- 1}$	$\mathbf{1}$
$\mathbf{s u b}$	$\mathbf{L} \mathbf{-} \mathbf{G}$	$\mathbf{\text { L_H}}$	$\mathbf{L} \mathbf{L} \mathbf{A}$	R_G	R_H	R_S
1	0.38	-0.62	-0.09	1.21	0.09	0.02
2	0.20	-0.08	-0.26	0.73	0.14	0.11
3	0.36	-0.07	-0.03	0.75	-0.13	0.06
4	0.22	-0.10	-0.02	0.74	-0.01	-0.02
5	0.37	-0.09	-0.23	0.14	0.38	-0.01
6	0.36	-0.06	-0.25	0.28	0.05	-0.16
7	-0.16	-0.76	-0.09	0.82	0.14	0.09
8	0.58	-0.12	-0.03	0.44	0.09	-0.03
9	-0.04	0.04	-0.78	0.35	0.28	0.03
10	0.39	-0.21	-0.09	0.59	0.08	-0.08
11	0.57	-0.16	-0.17	0.72	-0.49	-0.17
12	0.58	-0.07	-0.09	0.72	0.24	-0.10
13	0.14	-0.09	-0.14	0.17	0.04	-0.02
14	-0.03	-0.20	-0.09	0.20	0.06	-0.08

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factorial Summary

\qquad

- Keep the big picture in mind \qquad
- Deal with effects separately
- Contrasts \& sphericity
* Use all of the subject data at the level it was entered into the ANOVA
* Be VERY careful about:
- $\Sigma \mathrm{c}^{2}$
- Correct number of observations
* All of this is easy in a spreadsheet or Matlab

