
Randomisation 
can do many things – 
but it cannot “fail”

Although randomisation has long been seen as crucial to reaching reliable insights from data, it is still falling victim 
to some peculiar – and troublesome – misconceptions. By Arthur H. Owora, John Dawson, Gary Gadbury, 
Luis M. Mestre, Greg Pavela, Tapan Mehta, Colby J. Vorland, Pengcheng Xun and David B. Allison

Randomisation is a study design 
strategy that mitigates the risk 
of study findings being the result 
of some form of bias – either 

known or unknown. In a study of a new 
medical treatment, say, you would have 
different groups of people, and each of the 
people in the study would have different 
heights, weights and ages, to name just a 
few variables. By randomising these people 
to each of our study groups, researchers 
are able to assume that the distributions 
of all these variables (and more) will be 
identical for all groups in the long run. If 
through repeated or larger experiments, 
the new treatment given to one of our study 
groups is seen to perform better than the 
old treatment given to another study group, 
the researchers can have confidence that 
the treatment is more effective overall: that 
the results are not just because one group 
consists of all the people who are shorter, or 
slimmer, or older.   

This type of study is called a randomised 
controlled trial (RCT), and experiments 
like these are now generally recognised to 
represent the best method for determining 
the causal effects of variables.1–4 They are 
by no means perfect: as with any other 
study design, RCTs have inherent limitations 
and can suffer from suboptimal execution. 
However, two misconceptions about RCTs 
seem to be common: one is the belief that 
properly implemented randomisation 
can “fail”; the other is the belief that 
baseline imbalances lock biases into trial 
findings. Here we explain why these are 
misconceptions and offer suggestions for 

responding to some fundamental concerns 
that may underlie these beliefs.

Misconception 1: 
Properly implemented 
randomisation can fail
Researchers often claim that 
randomisation has “failed” when, 
after randomising subjects into study 
groups, they look at the average baseline 
characteristics of these groups and notice 
a difference in one or more variables. 
Table 1 shows an example of a typical 
report of RCT baseline characteristics. For 
each group, the mean of age, height and 

Table 1: Example of independent t-test results for baseline characteristic differences in a two-arm RCT.

CharacteristicCharacteristic Group 1 (Group 1 (NN = 100)      mean (SD) = 100)      mean (SD) Group 2 (Group 2 (NN = 100)     mean (SD) = 100)     mean (SD) pp-value-value

Age (years) 41.0   (3.7) 42.4 (5.3) 0.03

Height (in.) 64.9   (4.6) 64.7 (3.8) 0.74

Weight (kg) 71.9 (10.1) 70.7 (8.9) 0.37

Randomisation

SIGNIFICANCE20 February 2022 © 2022 The Royal Statistical Society



our second issue, which is that calculating 
the p-value of such differences is illogical. 

p-values are based on the assumption 
that randomness alone is responsible 
for the observed difference. As such, 
they cannot also be used to test that 
assumption. A small p-value, suggesting 
that the observed difference is improbable if 
randomisation was properly implemented, 
either means randomisation was not 
properly implemented – either because of 
error or fraud – or that the improbable has 
happened. If the researcher knows that 
randomisation was properly implemented, 
then this is simply a chance finding. Thus, the 
common practice of testing for the statistical 
significance of baseline values in RCTs makes 
no sense except as a detector for fraud or 
errors, and in no way indicates a failure of 
randomisation. Simply put, randomisation 
is a process, not an outcome. Even when the 
process is implemented correctly, sometimes 
outcomes may appear to be non-random but, 
in fact, are the result of a random process.

Misconception 2: 
Baseline imbalances lock biases 
into trial findings
A researcher who looks at Table 1 and 
(wrongly) concludes that randomisation has 
failed might then make a second mistake, by 
deciding that the difference that exists in the 

sample.6 Some deviation from perfect 
equality is expected – and, indeed, if we did 
not observe at least some deviation from 
perfect equality, that would raise suspicions 
as to whether investigators were truly 
randomly assigning their subjects. Carlisle 
found precisely this in an influential 2017 
study of retracted RCTs: “the distribution of 
means for baseline variables in randomized, 
controlled trials was inconsistent with 
random sampling, due to an excess of 
very similar means and an excess of very 
dissimilar means”.7 Similar findings had 
been seen years earlier by Schulz et al.: “In 
reports of trials that had, apparently, used 
unrestricted randomisation, the differences 
in sample sizes between treatment and 
control groups were much smaller than 
would be expected due to chance”.8 
Such studies support the suspicion that 
investigators can be so uncomfortable with 
deviations from the equality expected under 
randomisation that they may deliberately 
attempt to reduce them through (presumably 
non-random) assignment methods. 

It is important to keep in mind that random 
assignments, when faithfully and properly 
implemented, may produce surprisingly 
different distributions for the various 
variables affecting experimental outcomes 
– and those differences may even reach 
statistical significance. But this brings us to 

weight is calculated and compared, and a 
p-value is calculated. 

The p-value is the probability under a 
specified statistical model that a statistical 
summary of the data would be equal to or 
more extreme than its observed value.5 Here 
we see that for age, the reported p-value 
is 0.03, meaning that the probability of 
observing a difference at least this extreme 
given the assumption of no difference in 
mean age between the groups is only 3%. 
This p-value is below the conventional 
threshold of “statistical significance” 
(p = 0.05, with the significance level also 
being known by the term alpha, or α), so 
a researcher might look at this table and 
conclude that “randomisation has failed”. 
But they would be wrong to do so, for 
two reasons.

Firstly, randomisation does not guarantee 
that on any given “roll of the dice” all 
variables will have identical empirical 
distributions across all groups in any finite 
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Figure 1: Distribution of biased and unbiased parameter estimates (mean score difference based on 10,000 
experiments).
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baseline age characteristic will bias the final 
outcome. This is not true, and to understand 
why, it is important to be clear about what bias 
is and what p-values are actually telling us. 

Bias is most familiar as a systematic shift 
in the expected observed value of a sample 
estimate of a parameter – say, the mean 
value – from its true population value. These 
deviations have many potential causes, 
such as the source of patients included in an 
RCT, or hand-picking which ones get treated 
and which do not. These sorts of biases are 
precisely what randomisation is used to 

eliminate. The mistake researchers make 
when they worry about baseline imbalances 
is to think that any single RCT will be free of 
differences that might look at first glance to 
be systematic bias. As we have already seen, 
randomisation is quite capable of producing 
differences that look like bias – but, unlike 
true bias, these “anomalies” will cancel each 
other out as more RCTs are conducted. 

Bias can also appear in the context of 
statistical tests that generate p-values. 
This time the bias affects the probability 
that a test rejects a hypothesis, given the 

assumptions made by the test. In the case of 
p-values, the null hypothesis is that there is 
no real difference between (say) the survival 
of patients in both the treatment and placebo 
arm, with any observed difference being 
due simply to chance. The definition of a 
p-value then implies that if we find a p-value 
of, say, 0.012, we can be sure the probability 
of observing a p-value lower than this is also 
0.012. If the test is biased, however, we would 
not have that assurance. 

Put more formally, a biased test may be 
defined as one that produces a distribution 

FAQs for practitioners
Having made the case that baseline imbalances in the samples of 
randomised experiments neither demonstrate failed randomisation nor 
create bias, does this mean that no further consideration of baseline 
imbalances is warranted? Not at all. 

Is it always pointless to test for baseline imbalances?
No. Testing for significant differences in baseline variables is entirely 
reasonable if the goal is to detect selection bias (e.g., in cluster 
randomised trials where subject recruitment is performed after random 
allocation of clusters to treatment).9 Testing is also reasonable if the goal 
is to detect potential errors or fraud in implementing the 
randomisation.10,11 However, testing for significant differences in baseline 
variables in RCTs, unless one has specific reasons to look for errors or 
fraud in data production, is pointless. If one knows one has randomised 
properly, statistical tests of significance offer no meaningful information.

Should we ignore methods for improving balance in 
baseline covariates?
No. Multiple methods are available to minimise baseline imbalances, 
and benefits exist to doing so.11 This may be especially valuable in 
studies with small numbers of randomised units, especially in cluster 
randomised controlled trials.12 It is important to note that 
implementing such procedures, which may include various forms of 
blocked, adaptive, minimisation, matched or stratified randomisation, 
may bring with it additional analytic nuances or requirements to be 
implemented when the data are analysed after collection.13 These 
different random allocation techniques reduce the prevalence of 
imbalances but do not completely rule out the possibility of 
imbalances, whose expected magnitudes could decrease with 
increasing sample size.14,15 But none of this implies that failing to 
address these nuances creates a bias in truly randomised experiments. 

Should we forget about statistically adjusting for pre-
randomisation covariates on which imbalances may occur? 
No. Controlling for pre-randomisation covariates, most obviously 
baseline values of variables in RCTs when those variables are risk 
factors (or correlates) but not longitudinal mediators of the outcome 
variables, can be sensible and, in almost all cases, will improve 

statistical power in truly randomised experiments.16 In doing so, 
pre-planning and pre-specification is advised.17–20 For example, 
controlling for baseline age when examining risk reduction of a 
dichotomous outcome (e.g., type 2 diabetes) between two weight-loss 
interventions in an RCT is wise (i.e., age is a prognostic factor for type 
2 diabetes) and can improve statistical power.20 However, again, while 
doing this is prudent, not planning to statistically adjust and not 
statistically adjusting for perceived imbalances in baseline values or 
potential imbalances in baseline values does not create bias in true 
and properly executed RCTs.

Should we only statistically adjust for imbalances of key pre-
randomisation covariates if this was pre-planned? 
No. It is reasonable to include as covariates variables on which baseline 
imbalances have occurred in the sample, even if doing so was not 
pre-planned or pre-specified. 

However, such analyses should be labelled as secondary or sensitivity 
analyses, and the fact that they were not pre-planned should be 
disclosed. The choice of including a covariate should not be based on 
the statistical significance of baseline treatment group differences.17 
Extensive discussions on the value of, and methods for, adjusting for 
baseline covariates on which imbalances have occurred in randomised 
experiments exist.18 Yet, to reiterate, failing to adjust for any such 
baseline variables on which imbalances have occurred in the sample of 
a truly and properly randomised experiment does not create bias. On 
the other hand, adjusting for a baseline imbalance due to chance could 
bias a previously unbiased result (e.g., adjusting for mediating factors).19

It should be emphasised that the importance of baseline imbalances 
depends on the nature of the effect being investigated. For example, 
suppose you are working on an RCT for preventing cardiometabolic 
outcomes. If, at baseline, 40% of patients with obesity are in one arm 
and only 5% of patients with obesity are in the other arm, regardless of 
the p-value associated with the baseline obesity proportion difference 
between the two RCT arms, obesity is a critical prognostic/risk factor for 
cardiometabolic outcomes, and therefore this should be considered in 
the interpretation of treatment efficacy. But, to reiterate, the observed 
imbalance does not mean that randomisation failed. Rather, it is a 
chance finding – a result that is possible even with randomisation. 
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of parameter estimates and/or p-values 
that do not conform to the rule that 
Prob(p < α) = α for all α, even though the 
null hypothesis is true. Thus, just as with 
a biased estimate of a parameter, the bias 
of a test refers to long-range expectations 
over (usually hypothetical) repeated runs 
of the experiment. 

To explain it another way, bias – whether 
in the estimate of parameters characterising 
treatment effects or in the production of 
p-values in significance testing procedures – 
is a characteristic of the sampling distribution 
of sample statistics (e.g., mean score 
difference). In either case, bias has no meaning 
when referring to a single realisation of a 
sample statistic extracted from a randomised 
sample because the bias is known to be zero. 
Hence, we can speak of biased estimation 
procedures and biased testing procedures, 
but we cannot speak of a single realisation of 
a testing procedure as biased except in two 
instances: first, when the expected value of the 
estimate has been theoretically or empirically 
shown to have a mean unequal to the true 
parameter being estimated (Figure 1, page 
21); and/or second, when we are speaking 
colloquially to mean that it is the result of a 
biased testing procedure.

If an RCT is conducted properly and the 
statistical analysis is chosen and performed 
properly, then an unbiased estimator (e.g., 
a difference in the means of two Gaussian 
random variables) cannot produce a biased 
estimate or a biased test of statistical 
significance. That is, if appropriate estimation 
and statistical significance testing procedures 
are being used, then unbiased estimates 
and test results are produced, on average, in 
the long run. That is what unbiased means. 
There is no guarantee that in any one “roll 
of the dice” the number that comes up will 
be exactly the population parameter when 
providing a sample estimate. Similarly, there 
is no guarantee that one will never make a 
Type I error (a mistaken rejection of the null 
hypothesis) or obtain a p-value less than α 
when conducting a significance test, even if 
the testing procedure is correct and the null 
hypothesis is true. The tests allow for some 
errors to occur under the null hypothesis; this 
is not an indication of bias. 

If, say, the experimental design of a 
study is such that it is at risk of producing 
deviations from what one expects from the 

theory of sampling – such as the absence 
of randomisation – then any deviations 
observed could indeed be due to bias. But to 
look at data from what we presume to be an 
appropriately obtained randomised sample 
and say “these data don’t look like what I 
would expect them to look like” and then 
insist that this can only be the result of bias 
makes no sense.  Yet that is exactly what is 
done when one focuses on those samples 
in which baseline differences appear large 
and then claims that, under that subset of 
realisations, there is bias. In randomised 
samples, there is no bias in the long run, 
and it is only in the long run that we can 
make claims about the unbiasedness of our 
estimation and testing procedures.

In conclusion…
Randomisation is a strategy for addressing 
biases that might otherwise undermine the 
reliability of insights from a study. It ensures 
the unbiasedness of parameter estimates 
and p-values testing the causal effects of 
independent variables, regardless of whether 
any real or perceived imbalance of baseline 
values occurs. Crucially, randomisation can 
only be expected to work its “magic” in the 
long run and not necessarily in any one single 
study. And if done properly, free from error 
and fraud, randomisation cannot “fail”. 
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