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This is very complicated, so I’ll provide two versions.  At a minimum, you should know the short one.  
It would be great if you knew them both. 
 
Short version: in order to do something as magical as provide a specific probability for observing 
a particular mean or a particular difference between two means, our statistical procedures must 
make some assumptions.  One of these assumptions is that the sampling distribution of the 
mean is normal.  That is, if you took a sample, calculated its mean, and wrote this down; then 
took another (independent) sample (from the same population) and got its mean and wrote it 
down; and did this an infinite number of times; then the distribution of the values that you wrote 
down would always be a perfect bell curve.  While maybe surprising, this assumption turns out 
to be relatively uncontroversial, at least when each of the samples is large, such as N ≥ 30.  But 
in order to use the same statistical procedures for all sample sizes and in order for the underlying 
procedures to be as straight- forward as they are, we must expand this assumption to saying that 
all populations from which we take samples are normal.  In other words, we have to assume 
that the data inside each of the samples are normal, not just that the means of the samples are 
normal.  This is a very strong assumption and it probably isn’t always true, but we have to 
assume this to use our procedures.  Luckily, there are simple ways to protect ourselves from the 
problems that would arise if these assumptions are not true. 
 
Now, the long version…. 
 
Nearly all of the inferential statistics that psychologists use (e.g., t-tests, ANOVA, simple 
regression, and MRC) rely upon something that is called the “Assumption of Normality.”  In 
other words, these statistical procedures are based on the assumption that the value of interest 
(which is calculated from the sample) will exhibit a bell-curve distribution function if oodles of 
random samples are taken and the distribution of the calculated value (across samples) is plotted.  
This is why these statistical procedures are called parametric.  By definition, parametric stats 
are those that make assumptions about the shape of the sampling distribution of the value of 
interest (i.e., they make assumptions about the skew and kurtosis parameters, among other 
things; hence the name).  The shape that is assumed by all of the parametric stats that we will 
discuss is normal (i.e., skew and kurtosis are both zero).  The only statistic of interest that we 
will discuss here is the mean. 
 
What is assumed to be normal? 
 
When you take the parametric approach to inferential statistics, the values that are assumed to be 
normally distributed are the means across samples.  To be clear: the Assumption of Normality 
(note the upper case) that underlies parametric stats does not assert that the observations within a 
given sample are normally distributed, nor does it assert that the values within the population 
(from which the sample was taken) are normal.  (At least, not yet.)  The core element of the 
Assumption of Normality asserts that the distribution of sample means (across independent 
samples) is normal.  In technical terms, the Assumption of Normality claims that the sampling 
distribution of the mean is normal or that the distribution of means across samples is normal. 
 



Example:  Imagine (again) that you are interested in the average level of anxiety suffered by 
graduate students.  Therefore, you take a group of grads (i.e., a random sample) and measure 
their levels of anxiety.  Then you calculate the mean level of anxiety across all of the subjects.  
This final value is the sample mean.  The Assumption of Normality says that if you repeat the 
above sequence many many many times and plot the sample means, the distribution would be 
normal.  Note that I never said anything about the distribution of anxiety levels within given 
samples, nor did I say anything about the distribution of anxiety levels in the population that was 
sampled.  I only said that the distribution of sample means would be normal.  And again, there 
are two ways to express this: “the distribution of sample means is normal” and/or “the sampling 
distribution of the mean is normal.”  Both are correct as they imply the same thing. 
 
Why do we make this assumption? 
 
As mentioned in the previous chapter, in order to know how wrong a best guess might be and/or 
to set up a confidence interval for some target value, we must estimate the sampling distribution 
of the characteristic of interest.  In the analyses that we perform, the characteristic of interest is 
almost always the mean.  Therefore, we must estimate the sampling distribution of the mean. 
 
The sample, itself, does not provide enough information for us to do this.  It gives us a start, but 
we still have to fill in certain blanks in order to derive the center, spread, and shape of the 
sampling distribution of the mean.  In parametric statistics, we fill in the blanks concerning 
shape by assuming that the sampling distribution of the mean is normal. 
 
Why do we assume that the sampling distribution of the mean is normal, as opposed to some 
other shape? 
 
The short and flippant answer to this question is that we had to assume something, and normality 
seemed as good as any other.  This works in undergrad courses; it won’t work here. 
 
The long and formal answer to this question relies on Central Limit Theorem which says that: 
given random and independent samples of N observations each, the distribution of sample means 
approaches normality as the size of N increases, regardless of the shape of the population 
distribution.  Note that the last part of this statement removes any conditions on the shape of 
population distribution from which the samples are taken.  No matter what distribution you start 
with (i.e., no matter what the shape of the population), the distribution of sample means becomes 
normal as the size of the samples increases.  (I’ve also seen this called “the Normal Law.”) 
 
  The long-winded, technical version of Central Limit Theorem is this: if a population has 
finite variance σ2 and a finite mean μ, then the distribution of sample means (from an infinite set 
of independent samples of N independent observations each) approaches a normal distribution 
(with variance σ2/N and mean μ) as the sample size increases, regardless of the shape of 
population distribution. 
 
In other words, as long as each sample contains a very large number of observations, the 
sampling distribution of the mean must be normal.  So if we’re going to assume one thing for 
all situations, it has to be a normal, because the normal is always correct for large samples. 



The one issue left unresolved is this: how big does N have to be in order for the sampling 
distribution of the mean to always be normal?  The answer to this question depends on the 
shape of the population from which the samples are being taken.  To understand why, we must 
say a few more things about the normal distribution.  As a preview: if the population is normal, 
than any size sample will work, but if the population is outrageously non-normal, you’ll need a 
decent-sized sample. 
 
The First Known Property of the Normal Distribution says that: given random and independent 
samples of N observations each (taken from a normal distribution), the distribution of sample 
means is normal and unbiased (i.e., centered on the mean of the population), regardless of the 
size of N. 
 
  The long-winded, technical version of this property is: if a population has finite variance σ2 
and a finite mean μ and is normally distributed, then the distribution of sample means (from an 
infinite set of independent samples of N independent observations each) must be normally 
distributed (with variance σ2/N and mean μ), regardless of the size of N. 
 
Therefore, if the population distribution is normal, then even an N of 1 will produce a sampling 
distribution of the mean that is normal (by the First Known Property).  As the population is 
made less and less normal (e.g., by adding in a lot of skew and/or messing with the kurtosis), a 
larger and larger N will be required.  In general, it is said that Central Limit Theorem “kicks in” 
at an N of about 30.  In other words, as long as the sample is based on 30 or more observations, 
the sampling distribution of the mean can be safely assumed to be normal. 
 
  If you’re wondering where the number 30 comes from (and whether it needs to be wiped 
off and/or disinfected before being used), the answer is this: Take the worst-case scenario (i.e., a 
population distribution that is the farthest from normal); this is the exponential.  Now ask: if the 
population has an exponential distribution, how big does N have to be in order for the sampling 
distribution of the mean to be close enough to normal for practical purposes?  Answer: around 
30.  (Note: this is a case where extensive computer simulation has proved to be quite useful.  
No-one ever “proved” that 30 is sufficient; this rule-of-thumb was developed by having a 
computer do what are called “Monte Carlo simulations” for a month or two.)  (Note, also: 
observed data in psychology and neuroscience are rarely as “bad” as a true exponential and, so, 
Ns of 10 or more are almost always enough to correct for any problems, but we still talk about 30 
to cover every possibility.) 
 
At this point let’s stop for a moment and review.  1. Parametric statistics work by making an 
assumption about the shape of the sampling distribution of the characteristic of interest; the 
particular assumption that all of our parametric stats make is that the sampling distribution of the 
mean is normal.  (To be clear: we assume that if we took a whole bunch of samples, calculated 
the mean for each, and then made a plot of these values, the distribution of these means would be 
normal.)  2. As long as the sample size, N, is at least 30 and we’re making an inference about 
the mean, then this assumption must be true (by Central Limit Theory plus some simulations), so 
all’s well if you always use large samples to make inferences about the mean. 
 
The remaining problem is this: we want to make the same assumption(s) for all of our inferential 



procedures and we sometimes use samples that are smaller than 30.  Therefore, as of now, we 
are not guaranteed to be safe.  Without doing more or assuming some more, our procedures 
might not be warranted when samples are small. 
 
This is where the second version of the Assumption of Normality (caps again) comes in.  By the 
First Known Property of the Normal, if the population is normal to start with, then the means 
from samples of any size will be normally distributed.  In fact, when the population is normal, 
even an N of 1 will produce a normal distribution (since you’re just reproducing the original 
distribution).  So, if we assume that our populations are normal, then we’re always safe when 
making the parametric assumptions about the sampling distribution, regardless of sample size. 
 
To prevent us from having to use one set of statistical procedures for large (30+) samples and 
another set of procedures for smaller samples, the above is exactly what we do: we assume that 
the population is normal.  (This removes any reliance on the Monte Carlo simulations [which is 
good, because simulations annoy people who always want proofs].)  The one thing about this 
that (rightfully) bothers some people is that we know -- from experience -- that many 
characteristics of interest to psychologists are not normal.  This leaves us with three options: 1. 
Carry on regardless, banking on the idea that minor violations of the Assumption of Normality 
(at the sample-means level) will not cause too much grief -- the fancy way of saying this is “we 
capitalize of the robustness of the underlying statistical model,” but it really boils down to 
looking away and whistling.  2. Remember that we only need a sample size as big as 30 to 
guarantee normality if we started with the worst-case population distribution -- viz., an 
exponential -- and psychological variables are rare this bad, so a sample size of only 10 or so will 
probably be enough to “fix” the non-normalness of any psych data; in other words, with a little 
background knowledge concerning the shape of your raw data, you can make a good guess as to 
how big your samples need to be to be safe (and it never seems to be bigger than 10 and is 
usually as small as 2, 3, or 4, so we’re probably always safe since nobody I know collects 
samples this small).  3. Always test to see if you are notably violating the Assumption of 
Normality (at the level of raw data) and do something to make the data normal (if they aren’t) 
before running any inferential stats.  The third approach is the one that I’ll show you (after one 
brief digression). 
 
Another Reason to Assume that the Population is Normal 
 
Although this issue is seldom mentioned, there is another reason to expand the Assumption of 
Normality such that it applies down at the level of the individual values in the population (as 
opposed to only up at the level of the sample means).  As hinted at in the previous chapter, the 
mean and the standard deviation of the sample are used in very different ways.  In point 
estimation, the sample mean is used as a “best guess” for the population mean, while the sample 
standard deviation (together with a few other things) is used to estimate how wrong you might 
be.  Only in the final step (when one calculates a confidence interval or a probability value), do 
these two things come back into contact.  Until this last step, the two are kept apart. 
 
In order to see why this gives us another reason to assume that populations are normal, note the 
following two points.  First, it is assumed that any error in estimating the population mean is 
independent of any error in estimating how wrong we might be.  (If this assumption is not 



made, then the math becomes a nightmare ... or so I’ve been told.)  Second, the Second Known 
Property of the Normal Distribution says that: given random and independent observations 
(from a normal distribution), the sample mean and sample variance are independent.  In other 
words, when you take a sample and use it to estimate both the mean and the variance of the 
population, the amount by which you might be wrong about the mean is a completely separate 
(statistically independent) issue from how wrong you might be about the variance.  As it turns 
out, the normal distribution is the only distribution for which this is true.  In every other case, 
the two errors are in some way related, such as over-estimates of the mean go hand-in-hand with 
either over- or under-estimates of the variance. 
 
Therefore, if we are going to assume that our estimates of the population mean and variance are 
independent (in order to simplify the mathematics involved, as we do), and we are going to use 
the sample mean and the sample variance to make these estimates (as we do), then we need the 
sample mean and sample variance to be independent.  The only distribution for which this is 
true is the normal.  Therefore, we assume that populations are normal. 
 
Testing the Assumption of Normality 
 
If you take the idea of “assuming” seriously, then you don’t have to test the shape of your data.  
But if you happen to know that your assumptions are sometimes violated -- which, starting now, 
you do, because I’m telling you that sometimes our data aren’t normal -- then you should 
probably do something before carrying on. 
 
There are at least two approaches to this.  The more formal approach is to conduct a statistical 
test of the Assumption of Normality (as it applies to the shape of the sample).  This is 
most-often done using either the Kolmogorov-Smirnov or the Shapiro-Wilk Test, which are both 
non-parametric tests that allow you to check the shape of a sample against a variety of known, 
popular shapes, including the normal.  If the resulting p-value is under .05, then we have 
significant evidence that the sample is not normal, so you’re “hoping” for a p-value of .05 or 
above. 
 
  Some careful folks say that you should reject the Assumption of Normality if the p-value is 
anything under .10, instead of under .05, because they know that the K-S and S-W tests are not 
very good at detecting deviations from the target shape (i.e., these tests are not very powerful).  
I, personally, use the .10 rule, but you’re not obligated to join me.  Just testing for normality at 
all puts you in the 99th percentile of all behavioral researchers. 
 
So which test should you use … K-S or S-W?  This is a place where different sub-fields of 
psychology and neuroscience have different preferences and I’ll discuss this in class.  (In brief, 
those who always work with large samples, such as those who use surveys, use K-S, while those 
who often use small samples, such as those studying information processing, use S-W.)  For 
now, I’ll explain how you can get both using SPSS. 
 
The easiest way to conduct tests of normality (and a good time to do this) is at the same time that 
you get the descriptive statistics.  Assuming that you use Analyze... Descriptive Statistics... Explore... 
to do this, all you have to do is go into the Plots sub-menu and (by clicking Plots on the upper 



right side of the Explore window) and then put a check-mark next to Normality plots with tests.  
Now the output will include a section labeled Tests of Normality, with both the K-S and S-W 
findings. 
 
If you would like to try the K-S test now, please use the data in Demo11A.sav from the first 
practicum.  Don’t bother splitting up the data by Experience; for now, just rerun Explore with 
Normality plots with tests turned on. The p-values for mACC_DS1 are .125 for K-S and .151 for S-W.  
The p-values for mACC_DS5 are .200 for K-S and .444 for S-W.  All of this implies that these data 
are normal (enough) for our standard procedures, no matter which test or criterion you use. 
 
Other people use informal rules-of-thumb to decide whether their data is normal enough, such as 
only worrying when either skew or kurtosis is outside the range of ±2.00.  I’m not a fan of this 
approach and won’t say much more about it. 
 
As to what you’re supposed to do when your data aren’t normal, that’s in the next chapter. 


