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SUMMARY

For two random variables X and Y , �=Pr[Y¿X ] + 1
2Pr[Y =X ] is advocated as a general measure of

e�ect size to characterize the degree of separation of their distributions. It is estimated by U=mn, a gen-
eralization of the Mann–Whitney U statistic, derived by dividing U by the product of the two sample
sizes. It is equivalent to the area under the receiver operating characteristic curve. It is readily visual-
ized in terms of two Gaussian distributions with appropriately separated peaks. The e�ect of discretiza-
tion of a continuous variable is explored. Tail-area-based con�dence interval methods are developed
which can be applied to very small samples or extreme outcomes. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

It is now the established policy of many leading health research journals to prefer point and
interval estimates of e�ect size to p-values as an expression of the uncertainty resulting from
limited sample sizes. The p-value is a probabilistic abstraction, which is commonly misinter-
preted, particularly when dichotomized at 0.05 or some other conventional � level: ‘signi�cant’
is interpreted as ‘real’ and ‘not signi�cant’ as ‘null’. Lack of awareness of issues such as
power remains prevalent in the research community. The common interpretation of ‘not sig-
ni�cant’ as ‘the study was too small’ has led to publication bias seriously compromising both
the interpretability of the whole corpus of published research and the feasibility of unbiased
meta-analyses. Furthermore, commonly the interpretation of p-values requires to heed the is-
sue of multiple comparisons, for which there is no entirely satisfactory answer. Conversely,
when the emphasis is shifted to point and interval estimation, correctly interpreted, i.e. not
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merely ‘hypothesis testing by the back door’ by examining whether the interval includes the
null hypothesis value, the resulting �gures are expressed on a measurement scale that is di-
rectly interpretable by researchers: for quantitative variables, in units such as mmHg for blood
pressure; for binary outcomes, in terms of naturally interpretable proportions. This is more
informative than the p-value.
In a study comparing two independent groups, in the case of a binary outcome several

measures of e�ect size are available, notably the di�erence of proportions and its reciprocal,
the number needed to treat, which are absolute measures, and relative risk and odds ratio
which are relative measures. For a continuous outcome measure, the natural absolute measure
is the di�erence in means, for which a con�dence interval is readily obtained corresponding to
either the Student or Welch test. In the event of seriously non-Gaussian distributional form, or
for an ordinal outcome, a median di�erence may be estimated, with a con�dence interval [1].
Once again, use of an absolute measure leads to point and interval estimates on the original
scale of measurement. Conversely, when the binary variable is the outcome and the continuous
one is the explanatory variable, the logistic regression coe�cient can characterize the strength
of relationship. The units are then based on but inverse to the original scale. For example, in
a logistic regression of presence of disease by age in a cross-sectional study, the regression
coe�cient might be 0.070 per year, interpreted as an increase in odds of presence of disease
by a factor e0:070 = 1:073 per year.
However, such measures are only helpful as a communication of the results if the scale

of measurement is familiar to the relevant research community. Often this is not the case.
Many comparisons involve outcomes such as visual analogue scales for self-rated pain or
other symptom levels, or psychometric rating scales, albeit validated according to accepted
criteria; in both instances, readers not involved in the original research may be at a loss
to interpret a 1- or a 10-unit di�erence for clinical importance. It is then more informative
to quote a relative measure of e�ect size. For the homoscedastic Gaussian case, the natural
relative measure is the standardized di�erence � obtained by dividing the di�erence of means
by the (pooled) standard deviation.
An analogous relative e�ect size measure which does not embody parametric assumptions,

applicable to both continuous and ordinal data, is �=Pr[Y¿X ] + 1
2Pr[Y =X ], where X and

Y denote independent random variables on the same support. It is estimated by �̂=U=mn,
Mann–Whitney statistic U divided by the product of the two sample sizes m and n. U is
de�ned in the usual manner as

∑m
i= 1

∑n
j= 1Uij where Uij=1;

1
2 or 0 according as Yj is greater

than, equal to or less than Xi. Then U=mn serves as an obvious empirical estimate of �. It
can be regarded as expressing the degree of overlap (or, conversely, separation) between
the values constituting the two samples, and is applicable to both continuous and ordinal
cases.
Hitherto, U=mn has seen little use as a measure of e�ect size. This is largely because statis-

ticians and software have done little to promote its use, so that the wider research community
remains unaware of its usefulness as a widely applicable measure, more informative than a
p-value. Furthermore, it is not obvious to users how to obtain a con�dence interval from
widely used software such as SPSS, and the method implemented there does not cope well
with small sample sizes or extreme outcomes. The purpose of this and an accompanying
article [2] is to show the feasibility of calculating appropriate con�dence intervals for this
measure by convenient methods, enabling this measure to take its place alongside other well-
established though arguably not immediately intuitive measures such as the odds ratio.
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Both U=mn and the corresponding theoretical value � range from 0 to 1, with values of
0 and 1 indicating no overlap. On the null hypothesis that X and Y are identically dis-
tributed, �=0:5, but the converse does not hold. � can be regarded as a measure of sepa-
ration, or equally, a measure of discriminatory ability [3]. It is equivalent to AUROC, the
area under the receiver operating characteristic curve, and the mean ridit [4]. It has been
termed the ‘probability of concordance’, ‘common language e�ect size’ [5] and ‘measure
of stochastic superiority’ [6]. It is discussed in the form presented here by Fay and Gen-
nings [7], and is linearly related to Somers’ D which is 2� − 1 [8–10]. Furthermore, in a
study such as Ukoli et al. [11] evaluating height and weight of children against international
norms, the mean centile score is equivalent to the U=mn value that would be obtained by
comparing the series of interest against the normative series. A related index, Agresti’s �
de�ned as Pr[Y¿X ]=Pr[X¿Y ] [12–14] will not be considered further here as it is potentially
unbounded.
Hanley and McNeil [15] presented a Wald or delta method for calculating a con�dence

interval for the AUROC without parametric assumptions. A procedure to plot the ROC curve
and obtain this con�dence interval is available in SPSS from the Graphs menu. Hanley and
McNeil also developed a modi�cation based on assumed exponential distributions. Both meth-
ods have the de�ciencies of producing zero width intervals in extreme cases and limits outwith
[0,1] in near-extreme ones. SPSS does not issue any warning when this occurs. The Wald
variance imputed to U=mn can also be used in hypothesis testing, either for a one-sample test
of H0: �= �0 for some speci�ed value �0 or a two-sample test of H0: �1 = �2. A con�dence
interval for �1–�2 may be calculated analogously.
An alternative asymptotic approach was developed by Halperin et al. [16] and Mee [17].

This method is closely analogous to the Wilson [18] score interval for the single pro-
portion: con�dence limits are obtained by inversion, i.e. solving a quadratic of the form
|� − �̂|= z√{�(1 − �)=N̂J }. This avoids the de�ciency of the Wald method in extreme and
near-extreme cases, but only because the formula for the pseudo-sample size N̂J incorporates
an ad hoc shift modi�cation to cope with these cases.
Work on boundary-respecting methods has been limited. Obuchowski and Lieber [19] pre-

sented lower con�dence limits for �̂=1, only. A tanh−1 transformation for D recommended
by Simono� et al. [20], equivalent to a logit transformation for �, was implemented by
Edwardes [8] for D estimated from clustered data. In extreme cases, the variance estimate is
calculated by a shift modi�cation similar to the Mee method above.
The measure �̂=U=mn studied here is mathematically identical to the AUROC, nevertheless,

calculating it and plotting the ROC curve should be regarded as meeting rather di�erent
objectives. When the purpose is to characterize the trade-o� between sensitivity and speci�city
of a single test as the cutpoint is altered, the ROC curve is the obvious summary of the data.
But it should be borne in mind that in this situation the AUROC has the de�ciency that it
disregards the relative importance of the two types of errors. (Moreover, use of the curve to
identify an optimal cutpoint, as, e.g. in Reference [21] is logically �awed due to over�tting
to the vagaries of �ne structure of the training data set. Arguably, as in Reference [10], the
usefulness of the ROC area is mainly that it can be compared with other ROC areas for
di�erent diagnostic tests for the same disease in the same population, because the di�erence
between two ROC areas for di�erent tests for the same disease in the same population is
governed by di�erences in disease status in pairs of patients in that population whose results
for two di�erent diagnostic tests are non-concordant. Comparisons of ROC areas for the same
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disease between populations are more likely to be misleading, as they may re�ect di�erences in
the population distributions of the diagnostic indicators, rather than di�erences in the predictive
performance of the diagnostic indicators.)
The present paper explores some issues relating to the U=mn statistic, and shows the feasi-

bility of developing con�dence interval methods based on tail areas, albeit of limited practical
usefulness. The accompanying paper develops more widely applicable asymptotic methods
and evaluates their performance.

2. AN EXAMPLE

Fearnley and Williams [22] studied a series of 19 men charged with o�ence against the person
and referred to the forensic psychiatry service. Subjects were rated for impulsivity using the
Monroe dyscontrol scale (RDS) [23, 24] that can range from 0 to 54. Scores for the 19
subjects were 4*, 5, 8, 12, 14, 16, 18, 19, 23, 24, 28, 29, 35, 36*, 38*, 39*, 39, 44* and 45*.
Scores for 6 subjects with history of head injury leading to loss of consciousness for over 48
hours are asterisked. The distributional form does not appear close to Gaussian, especially for
the head injury cases.
Using Minitab, the estimated median di�erence between subjects with and without head

injury is 17, with a default con�dence interval reported as 1–27. This is a 95.2 per cent
interval; construction of a 95 per cent interval is precluded by the highly discrete behaviour
with such small sample sizes. But these �gures are only readily interpreted by those familiar
with the RDS. Alternatively, the results may be summarized by calculating �̂=0:801. For
this, a 100(1 − �) per cent interval can be calculated for any �; a 95 per cent con�dence
interval is 0.515–0.933 using method 5 of the accompanying paper [2]. These �gures clearly
indicate a very substantial observed e�ect size, with a wide con�dence interval re�ecting
small sample uncertainty. The upper limit of 0.933 indicates that there may possibly be little
overlap between the two distributions in the population from which these observations have
been drawn. The lower limit is just above 0.5, corresponding to an obviously trivial di�erence,
yet implying rejection of the null hypothesis at a conventional � level very much in the same
way as the corresponding 2-tailed exact conditional p-value of 0.036. Familiarity with the
RDS is not a prerequisite to interpreting these relative measures.

3. RELATIONSHIP BETWEEN U=mn AND STANDARDIZED DIFFERENCE

For the general Gaussian case with X∼N(�1; �21) and Y∼N(�2; �22); �=�((�2 − �1)=√
�21 + �

2
2) [25, 26] where � denotes the cdf of the standard Gaussian distribution. In partic-

ular, for the homoscedastic Gaussian case, expressed without loss of generality as X∼N(0; 1)
and Y∼N(�; 1); � reduces to �(�=√2) [3]. Table I gives values of � corresponding to selected
values of � and vice versa. We choose to estimate � rather than �, as it is less dependent
on distributional assumptions, thus more satisfactory than the standardized di�erence in ex-
treme cases, as �̂=1 suggests � is large without implying any speci�c value. The degree of
separation implied by a particular value of � is readily visualized by plotting two Gaussian
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Table I. Correspondence between proposed
measure � and standardized di�erence � in the

homoscedastic Gaussian case.

� � � �

0.50 0.000 0.00 0.500
0.55 0.178 0.25 0.570
0.60 0.358 0.50 0.638
0.65 0.545 0.75 0.702
0.70 0.742 1.00 0.760
0.75 0.954 1.25 0.812
0.80 1.190 1.50 0.856
0.85 1.466 1.75 0.892
0.90 1.812 2.00 0.921
0.95 2.326 2.50 0.961
0.99 3.290 3.00 0.983
0.999 4.370 3.50 0.993

4.00 0.998
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Figure 1. Relative frequency curves for Gaussian distributions N(0,1) and N(�; 1)
with �=0:7416 corresponding to �=0:7.

curves with equal standard deviations and peaks separated by the corresponding standardized
di�erence (Figure 1).
At the planning stage of a study, best practice is to elicit separately from the investigator

the di�erence between group means that is judged both plausible in the light of current un-
derstanding and importantly large in the context, and the relevant standard deviation, calculate
the corresponding � and use, for example, the Altman nomogram [27] to obtain the sample
size required to achieve the desired power. Sometimes the investigator is reluctant to specify
these two parameters separately, but only � as a relative e�ect measure. In this situation some
investigators may be more ready to specify the target degree of separation in terms of �.
This � could then be converted to the corresponding � assuming a homoscedastic Gaussian
model, and the sample size assessed accordingly. Alternatively, it is used directly as a basis
for planning sample size based on the Mann–Whitney test, for example, in nQuery Advisor
4.0. Though � is speci�ed as Pr[X¡Y ] for both the cases ‘continuous outcome’ and ‘ordered
categories’, and, moreover, the formula used does not incorporate tie correction, and so may
be incorrect for the latter case.
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4. CONDORCET AND RELATED PARADOXICAL EFFECTS

Consider three independent random variables X , Y and Z . In the simplest, homoscedastic
Gaussian case with X∼N(�1; 1); Y∼N(�2; 1) and Z∼N(�3; 1), the standardized di�erences
�XY ; �XZ and �YZ expressing their separation are simply related by �XZ = �XY + �YZ . From the
relationship �=�(�=

√
2), the corresponding �XY , �XZ and �YZ are related by �−1(�XZ)=�−1

(�XY ) + �−1(�YZ). We expect a similar relationship to hold approximately for the �̂’s, in
particular, that when �̂XY and �̂YZ are both greater than 1

2 , �̂XZ¿max(�̂XY , �̂YZ), and also to
some degree when the assumptions of Gaussian distributional form and homoscedasticity are
relaxed. But very di�erent patterns can sometimes occur.
Since U=mn is simply an alternative way of expressing the information from the

Mann–Whitney U statistic, the classical Condorcet (or Escher staircase) non-transitive dom-
inance paradox [28] applies to U=mn just as to the test. It is exempli�ed by the data sets
X= {3; 5; 7}, Y= {1; 6; 8} and Z= {2; 4; 9}. Here, a Kruskal–Wallis test comparing the three
groups on an equal footing would assign identical rank sums to all. But ranks are altered
by omitting uninvolved groups, so here the Mann–Whitney criterion ranks pairs of groups
X¡Y¡Z¡X. From the fact that �̂XY = �̂YZ =5=9, one would expect �̂XZ to be greater than
5/9, around 0.610 by summating the corresponding �’s; in fact, it is only 4/9.
Conversely, for any n, consider X= {1; 2; : : : ; n}, Z= {n+1; n+2; : : : ; 2n}, and Y=X∪Z.

Then �̂XY = �̂YZ = 3
4 whereas �̂XZ =1. A real example approaching this situation involving

three independent groups occurs in a parasitology study [29] comparing Trinoton luridum
(X ), Anatoecus dentatus (Y ) and Carnus hemapterus (Z) for which �̂XY =0:759, �̂YZ =0:725
and �̂XZ =0:968. Similar behaviour could result from e�ective triage of a presenting series
of subjects Y into subgroups X and Z , for example, when a telephone ambulance dispatch
prioritization algorithm for injuries is validated by reference to an injury severity scale. Or
equivalently, for a non-age-dependent biochemical gene product marker for the autosomal
dominant disorder, Huntington’s disease, for which penetrance increases from 0 at birth in
a sigmoid fashion to approach 100 per cent in elderly heterozygotes [30]. Here, group Z
comprises known a�ected subjects, group Y young clinically una�ected o�spring of established
heterozygotes, whose genotype is unknown but whose posterior risk of heterozygosity is still
at its 50 per cent prior level, and group X their elderly counterparts whose posterior risk has
declined to near zero.
The hypothetical examples above may be extremes for the behaviour of �̂XZ given �̂XY and

�̂YZ . The possibility of behaviour so far from additivity on the � scale should be regarded as
a curiosity rather than a serious limitation in practice.

5. EFFECT OF DISCRETIZATION ON U=mn

Hanley and McNeil [15] pointed out that �̂ values estimated directly as U=mn are not inter-
changeable with those obtained by �tting continuous distributions to the data. They illustrated
this with numerical results and with ROC ‘curves’ for the same data constructed as line seg-
ments and smooth convex curves through points. It is well recognized [31, 32] that discretizing
continuous data reduces the power available in hypothesis testing with a shift alternative; this
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occurs predominantly because discretization tends to reduce �. It is important to distinguish
three cases:

CF continuous distributions, leading (theoretically) to data free of ties
CR continuous distributions, leading (in practice) to rounded or discretized data
DT discrete distributions, leading naturally to tied data.

CF and DT should be regarded as genuinely distinct cases, and the �̂ for each should be
regarded as a meaningful estimate, not requiring adjustment. Hanley and McNeil’s exemplar
data set comprised m=58 ‘normal’ and n=51 ‘abnormal’ ratings of computed tomography
images expressed on a 5-point Likert-scale. �̂ calculated directly from the data was 0.893,
contrasting with an estimate �̃=0:911 estimated by �tting a smooth Gaussian-based ROC
curve by maximum likelihood. Hanley and McNeil do not indicate clearly whether the 0.893 or
the ‘adjusted’ �gure of 0.911 should be quoted. It appears that here it would be less appropriate
to quote 0.911, for two reasons. The data are poorly �tted by a homoscedastic Gaussian model.
Furthermore, there is the more basic reason that the investigators chose to use a 5-point scale,
not considering it meaningful to elicit ratings on a more �nely subdivided or continuous scale.
Under these circumstances the value 0.893 obtained by regarding the data as arising from case
DT is the appropriate point estimate. Subject to distributional reservations, 0.911 represents
the degree of separation that would have been obtained had it been meaningful to express on
a continuous scale, but this is regarded as counterfactual. It is in the hybrid case CR that it
is important to examine the e�ect of bias that may have been introduced by discretization. In
case DT, the number of categories used is an inherent part of the structure of the data, and
ideally con�dence interval methods for this case should be developed which incorporate this
information. Nevertheless, the evaluation in the subsequent paper [2] shows that asymptotic
con�dence interval methods developed primarily for case CF, with the assumption that the
underlying distributions of the two random variables X and Y are absolutely continuous so
that ties occur with probability zero, also perform well on data generated from a discrete
distribution with 5 categories.
To examine the degree of bias introduced when data from inherently continuous distribu-

tions is discretized or rounded, we develop analyses analogous to those in Reference [32] by
considering three readily tractable models:

Double Gaussian: X∼N(−�=2; 1), Y∼N(�=2; 1);
Double beta: X∼B(1; �), Y∼B(�; 1);
Beta-uniform: X∼B(1; 1), Y∼B(�; 1).

For the double Gaussian model, theoretically the support is X , Y∈(−∞;∞), but we use an
e�ective range between ±(�=2 + 3), of width r= � + 6. The support for double beta and
beta-uniform models is X , Y∈ [0,1], with e�ective range width r=1.
We examine the e�ect of discretizing the sample space by cutpoints at equal intervals of

width r=k. For distributions on [0,1], and k=3 and 4, we use 4 sets of cutpoints, labelled as
o�sets 0 to 3 de�ned modulo 4:

k=3: O�set 0: 1/6, 1/2, 5/6 k=4: O�set 0: 1/4, 1/2, 3/4
O�set 1: 3/12, 7/12, 11/12 O�set 1: 1/16, 5/16, 9/16, 13/16
O�set 2: 1/3, 2/3 O�set 2: 1/8, 3/8, 5/8, 7/8
O�set 3: 1/12, 5/12, 9/12 O�set 3: 3/16, 7/16, 11/16, 15/16.
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Similarly, for other odd and even values of k. Thus, o�set 0 places a boundary at 12 , and o�set
2 produces an interval centred at 12 . The number of bins produced is generally k+1, but only k
for o�set 0 with even k and o�set 2 with odd k. For the Gaussian model, we split the interval
(−�=2− 3, �=2 + 3) in these proportions, with the �rst and last categories open ended. Thus,
for each combination of the three models for the CF case with �=0:55, 0.75, 0.90 and 0.95,
we generate the relevant pair of theoretical distributions. Then for each combination of k=3,
4, 6 and 12 and o�sets 0–3, we discretize them at the relevant cutpoints and calculate the
resulting � value that would occur in case CR, �* exactly from the discretized distributions.
Table II shows the resulting discretized �* values. In every case �* underestimates �. The

bias is small if k is large and for midrange �. It is serious if k is small and � is close
to 1. In this situation the degree of bias depends on distributional form, being least for the
double beta model and greatest for the Gaussian, with beta-uniform generally intermediate—
in e�ect, k=3 is a more drastic discretization for the Gaussian model with its long, thin
tails. Furthermore, the o�set can substantially a�ect the degree of bias—not surprisingly, this
occurs particularly when k instead of k + 1 bins ensue. In practice, of course, a data set
will give limited information on what o�set applies—hence, in interpreting an observed U=mn
value in case CR, it is important to bear in mind the resulting uncertainty in the degree of
underestimation.

6. TAIL AREA MODELLING APPROACH

In order to develop con�dence interval methods, assume that X1, X2; : : : ; Xm are iid, drawn
from some density f(x), and Y1,Y2; : : : ; Yn are iid, with density g(y). The corresponding cdfs
are F and G. The support for f and g may be the doubly in�nite real line or a �nite subset
such as [0,1]—these two cases are equivalent as it is desirable for a method to be invariant
under monotonic transformation of the support space, such as logit. The supports of f and g
need not be identical, but must overlap, else � ≡ 1 (or 0). Then � is de�ned as

Pr[Y¿X ]=
∫
f(x)(1−G(x)) dx=

∫
g(y)F(y) dy

Though the methods developed here are intended primarily for case CF, it is preferable to
rede�ne � as Pr[Y¿X ] + 1

2Pr[Y =X ] in order to accommodate tied data.
In practice we do not know the distributional form of X and Y . Nevertheless, we inves-

tigate the feasibility of constructing tail-based CI’s for � for various simple distributional
assumptions. The primary objective of U is to detect a shift in location, so an obvious choice
of model is X∼N(0; 1), Y∼N(�; 1) for some �. As above, �=�(�=√2), so that values of �
above and below 0 correspond to � above or below 1

2 . But to develop tail-based con�dence
intervals, we also need to obtain probabilities of each possible sequence of X ’s and Y ’s.
Unfortunately, in general, order statistics from a Gaussian model are not closed form [33],
and the issue is a similar one here.
Accordingly, we seek more tractable alternative models. Ones experimented with include:

Uniform:

f(x) = 1 (06x61) else 0

g(y) = 1 (06y − a61) else 0 for some a∈[−1; 1]
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Table II. E�ect on � of discretizing continuous distributions based on homoscedastic double
Gaussian, double beta and beta-uniform models.

Degree of discretization

O�set k =3 k =4 k =6 k =12

Double Gaussian model
� �
0.55 0.178 0 0.5382 0.5418 0.5459 0.5489

1 0.5368 0.5416 0.5459 0.5489
2 0.5354 0.5415 0.5459 0.5489
3 0.5368 0.5416 0.5459 0.5489

0.75 0.954 0 0.6919 0.7070 0.7279 0.7441
1 0.6797 0.7050 0.7279 0.7441
2 0.6673 0.7030 0.7279 0.7441
3 0.6797 0.7050 0.7279 0.7441

0.90 1.812 0 0.8256 0.8428 0.8701 0.8922
1 0.7992 0.8373 0.8700 0.8922
2 0.7727 0.8318 0.8699 0.8922
3 0.7992 0.8373 0.8700 0.8922

0.95 2.326 0 0.8841 0.8990 0.9235 0.9432
1 0.8529 0.8919 0.9233 0.9432
2 0.8213 0.8848 0.9231 0.9432
3 0.8529 0.8919 0.9233 0.9432

Double beta model
� �
0.55 1.104 0 0.5456 0.5456 0.5479 0.5494

1 0.5450 0.5469 0.5484 0.5495
2 0.5426 0.5472 0.5486 0.5496
3 0.5450 0.5469 0.5484 0.5495

0.75 1.647 0 0.7279 0.7317 0.7417 0.7479
1 0.7255 0.7352 0.7429 0.7481
2 0.7181 0.7363 0.7433 0.7481
3 0.7255 0.7352 0.7429 0.7481

0.90 2.431 0 0.8705 0.8799 0.8912 0.8978
1 0.8688 0.8818 0.8917 0.8979
2 0.8636 0.8824 0.8918 0.8979
3 0.8688 0.8818 0.8917 0.8979

0.95 3.000 0 0.9236 0.9336 0.9429 0.9483
1 0.9228 0.9345 0.9431 0.9483
2 0.9198 0.9348 0.9431 0.9483
3 0.9228 0.9345 0.9431 0.9483

Beta uniform model
� �
0.55 1.222 0 0.5458 0.5460 0.5481 0.5495

1 0.5449 0.5472 0.5486 0.5496
2 0.5432 0.5473 0.5487 0.5496
3 0.5455 0.5469 0.5485 0.5496
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Table II. Continued.

Degree of discretization

O�set k =3 k =4 k =6 k =12

0.75 3.000 0 0.7292 0.7344 0.7431 0.7483
1 0.7271 0.7368 0.7438 0.7484
2 0.7222 0.7373 0.7439 0.7484
3 0.7277 0.7364 0.7436 0.7483

0.90 9.000 0 0.8676 0.8557 0.8797 0.8948
1 0.8605 0.8711 0.8855 0.8957
2 0.8246 0.8775 0.8873 0.8959
3 0.8530 0.8726 0.8852 0.8956

0.95 19.000 0 0.9088 0.8739 0.9114 0.9394
1 0.9184 0.9020 0.9257 0.9425
2 0.8332 0.9226 0.9337 0.9436
3 0.8738 0.9227 0.9308 0.9425

Triangular:

f(x) = 1− |x| (−16x61) else 0

g(y) = 1− |y − a| (−16y − a61) else 0 for some a∈[−1; 1]

Bi-exponential:

f(x) = 1
2 e

−|x| (−∞¡x¡+∞)

g(y) = 1
2 e

−|y−a| (−∞¡y¡+∞) for some a∈(−∞;+∞)

All three lead to closed form outcome probabilities, tractable for very small m and n, never-
theless rapidly become unwieldy as m and n increase.
A more promising approach is the double beta model, X∼B(1; �), Y∼B(�; 1), for �¿1,

representing � between 1
2 and 1. (For � between 0 and

1
2 , we interchange these.) Unlike

the models above, these are asymmetrical, to equal and opposite degrees, but if we consider
the equivalent distributions for logit X and logit Y , say, the degree of evident asymmetry is
greatly reduced. With this model, probabilities of the extreme outcomes U =0 and U =mn
are readily derived for any m and n, as �nite alternating sums of beta functions. Furthermore,
probabilities of all outcomes can be obtained for the cases m=1 or n=1, though these are
of course of little practical use.
The �nal model chosen is the beta-uniform model, as described below. This is chosen purely

on grounds of expediency, as all outcome probabilities are readily calculated. The obvious
precedent for such an unashamedly pragmatic approach is the choice of the same distribution,
beta, as conjugate prior for binomial parameter estimation in the Bayesian paradigm, and for
the same reasons.
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The beta-uniform model is not symmetrical. Moreover, except in the H0 case the two
distributions are qualitatively di�erent in shape, one uniform, the other skew. Two di�erent
versions, models 1 and 2 can be �tted, which generally lead to di�erent results. The ambiguity
is resolved by calculating the probability for each outcome on both models, and averaging
these, to give the �nal model 3. The resulting method is equivariant in the sense of Blyth
and Still [34], i.e. if (�1, �2) is the calculated interval corresponding to U = u, then (1− �2,
1− �1) is the interval corresponding to U =mn− u.

7. THE BETA-UNIFORM MODEL

All models have support [0,1] and are indexed by a parameter � that ranges on (−∞, +∞).
Values of � above and below 0 correspond to � above and below 1

2 . If �¿0, let �=1+�¿1.
If �60, let �=1− �¿1.
Model 1: ∀�, X∼B(1; 1) f(x)=1
Also: for �¿0, Y∼B(�; 1) g(y)= �y�−1

for �60, Y∼B(1; �) g(y)= �(1− y)�−1
Model 2: ∀�, Y∼B(1; 1) g(y)=1
Also: for �¿0, X∼B(1; �) f(x)= �(1− x)�−1

for �60, X∼B(�; 1) f(x)= �x�−1

On both models,

�= �=(�+ 1) = (�+ 1)=(�+ 2) if �¿0

�=1=(�+ 1)=1=(2− �) if �60

Then the probability of any sequence of X ’s and Y ’s is easily derived.

De�ne qi=1 if the ith element of the sequence is a Y

qi=0 if the ith element of the sequence is an X

}
for i=1; 2; : : : ; t=m+ n:

Then, for example, with m=2 and n=3, the vector q= {0; 1; 1; 0; 1} corresponds to the out-
come XYYXY , or in order statistics notation, x(1)¡y(1)¡y(2)¡x(2)¡y(3).

De�ne pi=1− qi; i=1; 2; : : : ; t.
Let ri=

∑i
j= 1 qj — a partial sum, or the number of Y ’s among the �rst i observations.

Similarly, let si=
∑i

j= 1 pj, vi=
∑t

j= i pj, wi=
∑t

j= i qj.
Then the expressions for Pr[q] are remarkably simple and highly tractable:

Model 1; �¿0 : m!n!�n=
∏t
i=1(i + ri�) ≡∏t

i= 1(pisi + qiri(1 + �))=(i + ri�)

Model 1; �60 : m!n!�n=
∏t
i=1(i − wt+1−i�)≡∏t

i= 1(pisi + qiri(1− �))=(i − wt+1−i�)
Model 2; �¿0 : m!n!�m=

∏t
i=1(i + vt+1−i�)≡

∏t
i= 1(pisi(1 + �) + qiri)=(i + vt+1−i�)

Model 2; �60 : m!n!�m=
∏t
i=1(i − si�) ≡∏t

i= 1(pisi(1− �) + qiri)=(i − si�):
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It is easily veri�ed that the Pr[q] for all possible q summate to 1, and that substituting
m= n=1 leads back to the previous formulae for �. The second expressions are manageable
for large m and n.
We then de�ne Prmodel3[q]= 1

2(Prmodel1[q] + Prmodel2[q]) ∀q.
Hence, con�dence limits for � are obtained iteratively by seeking values of � that make the

appropriate aggregated tail areas equal to �=2, i.e. 0.025, etc. The procedure is analogous to
that used to obtain ‘exact’ [35] intervals for the binomial proportion, which align the minimum
coverage with 1− �. Mid-p intervals [36] which aim to align the mean coverage with 1− �
may also be obtained by giving the observed outcome a weight of 1

2 when accumulating tail
probabilities. (As an alternative to what is essentially the construction of two 1-sided 1− �=2
limits, shortened, inherently 2-sided intervals analogous to the Sterne [37] and Blaker [38]
intervals for the binomial parameter could also be developed.)
However, an additional complexity arises in de�ning tail areas. Generally, several di�erent

q outcomes correspond to the same value of U . We could accumulate ‘exact’ tail areas by
two approaches: summating probabilities of U values that are as or more extreme than that
observed; or by summating probabilities of q vectors that either have a more extreme U , or
else have the same U , but a similar or lower probability to that observed. The latter approach
does not lead to a workable method, because the behaviour of tail probabilities accumulated
in this way as the centre of symmetry �=0 is approached or passed is discontinuous, and
moreover non-monotonic. Thus, tail areas are de�ned entirely from the distribution of U .
In general, this, and any tail area modelling approach, involves calculating probabilities

for a large number of outcomes, e.g. 184 756 if m= n=10. Only for extreme outcomes can
we bypass enumerating these. So the tail area modelling approach is really only suitable for
small samples or extreme outcomes. In general an asymptotic method analogous to the score
interval [18] for the single proportion would be preferable. Such methods are developed and
evaluated in the accompanying paper.
Specimen results for the beta-uniform model are shown in Table III. These are lower limits

cutting o� a 0.025 tail area, as normally used in forming 95 per cent con�dence intervals. For
the �rst two blocks of the table, upper limits may be found from entries for complementary
values of U , thus the 95 per cent ‘exact’ interval for m=2, n=3, U =1, �̂=0:1667 runs
from 0.006202 to 1− 0:216181, i.e. 0.783819. Throughout the �nal block, the upper limit is
1. The three values in bold are exact and readily veri�ed from �rst principles.

8. DISCUSSION

I have sought to present �̂=U=mn as a very general and widely applicable, indeed much
needed measure of separation of two frequency distributions. Any novel measure will only
achieve wide currency and ful�l its potential if it becomes accepted by both statisticians and
the wider research community as appropriate and useful.
Scepticism has been expressed on several grounds. Firstly, that researchers will be unable

to visualize or identify the implication of any speci�ed value of U=mn. Also, for another
relative measure of e�ect size, Cohen’s � [39] in an otherwise excellent paper Landis and
Koch [40] tentatively identi�ed six zones ranging from poor (�¡0) through slight, fair,
moderate and substantial to almost perfect (�¿0:8). Unfortunately, these labels have been
seized upon by the user community and applied widely without heed to the fact that � values
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Table III. Specimen results for the beta-uniform model. Lower limits cutting o� a 0.025 tail area
are shown, corresponding to both ‘exact’ and ‘mid-P’ accumulations of tail areas.

m n U U=mn Exact Mid-P

2 3 0 0.0 0.000000 0.000000
2 3 1 0.1667 0.006202 0.008895
2 3 2 0.3333 0.015320 0.024220
2 3 3 0.5 0.051290 0.074019
2 3 4 0.6667 0.121315 0.151274
2 3 5 0.8333 0.216181 0.248602
2 3 6 1.0 0.303475 0.391775

3 3 0 0.0 0.000000 0.000000
3 3 1 0.1111 0.004606 0.006310
3 3 2 0.2222 0.009866 0.013861
3 3 3 0.3333 0.022753 0.037235
3 3 4 0.4444 0.072245 0.086748
3 3 5 0.5556 0.112141 0.129628
3 3 6 0.6667 0.157500 0.189725
3 3 7 0.7778 0.245262 0.275498
3 3 8 0.8889 0.328589 0.361852
3 3 9 1.0 0.412762 0.500000

6 6 36 1.0 0.722647 0.775969
10 10 100 1.0 0.854912 0.884312
19 19 361 1.0 0.937114 0.950000
39 39 1521 1.0 0.975000 0.980076
60 60 3600 1.0 0.985433 0.988368
100 100 10 000 1.0 0.992230 0.993782
100 10 1000 1.0 0.941073 0.954760
10 100 1000 1.0 0.941073 0.954760

1000 1000 1 000 000 1.0 0.999584 0.999683

(a) tend to be highest when � is used in weighted form for an ordinal scale, intermediate in
the binary case, and lowest in the unordered categorical case, and (b) tend to be highest for
within-observer variation, intermediate for between-observers and lowest for between-methods
variation. Analogously, concern has been expressed that it may in time become common
practice for the range of possible values of U=mn to be divided into zones delimited by
round but essentially arbitrary values, with adjectival labels such as the above, following
some publication advocating this practice. Similarly, it might become customary for the same
essentially arbitrary value of � to appear in most power calculations, with little consideration
of the appropriateness in the particular context.
The response to the above points is, �rstly, that a measure of this form is de�nitely needed,

especially when the original scale of measurement is not readily interpreted. Alternative mea-
sures to achieve the same objective could be developed, for example, based on Normal scores,
but would be more complex and thus less likely to gain wide acceptance. Furthermore, the
danger that a proposed statistical method will be abused by being applied naively is an argu-
ment not for avoiding developing such a tool but rather for promoting understanding of its
appropriate use, alongside a greater understanding of statistical issues in general throughout
the user community.
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Another possible criticism is that U=mn might dampen the in�uence of extreme values.
In fact, the converse is true. Suppose, in Normal order statistics notation, y(n)¿x(m). Then
as y(n) → ∞, holding y(1), y(2); : : : ; y(n−1) and x constant, �̂ remains unaltered whilst �̂
asymptotes down to a �nite value,

√
((m + n − 2)=(n(n − 1))), and the pooled variance t

(albeit inappropriate) asymptotes down to
√
(m(1 − 2=(m + n))=(n − 1)), a low value, only

signi�cant at the conventional �=0:05 level when m is around 2n or higher.
Of course, there are ways in which two distributions or two samples can di�er, that are far

from a shift alternative. For instance, X and Y might have very di�erent degrees of dispersion,
so that the support for one variable is entirely within the support for the other. The measure
developed here is less useful in such a situation.
An Excel spreadsheet is available at the author’s website http://www.cardi�.ac.uk/medicine/

epidemiology statistics/research/statistics/newcombe.htm which facilitates visualization of any
�∈(0; 1) in terms of pairs of Gaussian distributions with peaks separated by the corresponding
�. It displays the value of � corresponding to � and Gaussian curves for N(0,1) and N(�; 1)
as in Figure 1 which corresponds to �=0:7. No units are shown as they are redundant, any
pair N(�; �2) and N(�+ ��; �2) would be equivalent.
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