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Analysis of Variance (ANOVA) separates the effects of different factors in a dataset. Typical examples for gene
microarray data are the factors time and treatment. This separation can improve the interpretability of the
results. However, the main effects and interactions, calculated in ANOVA, can be heavily influenced by
outliers, large numbers of non-expressed genes with noise, and the heavy-tailedness of the distribution of
expression values. Robust methods are less affected by these and will improve the analysis.
In this paper, several methods to perform robust nonparametric ANOVA are applied to a large multi-
treatment time series dataset. The results are compared with the results obtained with parametric ANOVA
using Procrustes analysis. A further comparison is made by Gene Ontology (GO) enrichment analysis of
groups of genes identified as significant by inspection of the interaction terms in ANOVA. It is shown that
there are significant differences in the estimates of main effects and gene–treatment interactions. ROC curves
show an improved representation of current biological knowledge for one particular robust form of ANOVA,
using a combination of rank transformed data, with the median as location parameter.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The biological interpretation of high throughput gene expression
experiments is difficult, because interesting information can be
obscured by the effect of experimental factors on the data. A popular
statistical method in the analysis of microarray data is Analysis of
Variance (ANOVA). By applying ANOVA, a model can be made which
separates the experimental, biological and residual effects. ANOVA has
been applied to analyse microarray data in several research fields, for
instance to investigate diseases, nutrition, microbiology, plant biology
and many others [1–3]. The use of ANOVA for microarrays has been
proposed by Kerr et al. [4] with a fixed effect model. In this model the
array effect, dye effect, treatment effect, gene effect and interaction
effects aremodeled for two colour microarrays. The model was split in
two stages by Lee and Whitmore [5]. The objective of the first stage is
to normalize and filter out dye and array effects with ANOVA. The
second stage is a per gene ANOVA on the remaining effects. Wolfinger
et al. [6] assumed the array effect to be random in a model similar to
the approach of Lee et al. This results in a two-stage mixed-effect
model.

Regular parametric ANOVA assumes normally distributed data.
This condition is rarely met for microarray data; Durbin et al. [7] have
ns).
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shown that in many cases a mixture of a normal and a lognormal
distribution is more suited:

γ = α + μeη + � ð1Þ

Here, α is the background signal, μ is the real expression, and η and
� are normally distributed error terms. One could imagine that genes
that do not respond to a certain treatment lead to a normal
component in the overall distribution, whereas genes that do respond
provide the lognormal component. Moreover, there is always the
possibility of outliers because of, e.g., measurement errors.

All this implies that the estimates for the main effects and the
interactions are influenced by observations that are outlying, either
because of true biological differences in gene behaviour, or because of
measurement errors. Durbin et al. [7] stated that before further
statistical analysis can take place microarray data should be
transformed to approach normality, and several transformations
have been proposed in literature [8–10].

Here, we take a different approach, and concentrate on nonpara-
metric forms of ANOVA that do not rely on distributional assumptions
of the data. Nonparametric methods have been applied to microarray
data before, for instance to identify differentially expressed genes [11–
13], with good results. We compare three different methods for robust
ANOVA in the analysis of microarray data. The first method simply
replaces the non-robust mean with the robust median and proceeds
as in an ordinary ANOVA. Two further methods are based on rank
transformations.
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The three methods are compared using a large time series dataset
with several different treatments, designed to investigate the
differentiation of mesenchymal stem cells to osteoblasts in the
process of osteogenesis. Rather than focussing on the significance of
individual terms, we treat the ANOVA as a means to concentrate on
the interesting information. For this paper, we take the interaction
between gene and treatment because it is biologically the most
interesting term, and use Principal Component Analysis (PCA) for the
visualisation of this interaction matrix, as in [14]. In the field of
agricultural sciences this method is known as AMMI (Additive Main
effect Multiplicative Interaction) [15,16]. The ANOVA–PCA combina-
tion can be used to select interesting genes based on the scores of the
gene–treatment interaction [14].

Procrustes analysis [17] is used to compare the results from the
original approach with the robust approaches. Furthermore, results
from Gene Ontology (GO) [18] enrichment calculations [19] are used
to draw Receiver Operating Characteristics (ROC) curves. These ROC
curves can be used to assess the agreement between current
knowledge about a biological system and the enrichment results
from the selected genes [20]. Biological knowledge about the role of
genes known in stem cell differentiation is used and discussed in the
Supplementary material.

2. Methods and analysis

2.1. The mesenchymal stem cell dataset

The microarray experiment used in the examples presented here
was performed on human Mesenchymal Stem Cells (hMSCs),
triggered to undergo osteogenic differentiation (E. Piek et al., manu-
script in preparation, [14]). Dexamethasone induces the differentia-
tion of hMSCs cells to osteoblasts. It is known that BMP2 and Vitamin
D3 can potentiate osteogenesis in combination with dexamethasone
[21]. A time series experiment was performed and the expression
measurements were taken at 10 time points (at 1, 3, 6, 12, 24, 48, 72,
120, 192 and 288 h after onset of treatment). As onset of osteogenic
differentiation is expected during the first 24 h of treatment, frequent
sampling was performed within this time frame. In addition to
sampling multiple time points during the differentiation process,
another factor of interest is introduced to the experiment by inducing
osteogenesis of the hMSCs with different treatments. The three
treatments are named after the substances added to the culture
medium. For the first treatment (VIT) a combination of Vitamin D3
and dexamethasone is used. The second treatment (BMP) consists of a
combination of Bone Morphogenetic Protein 2 and dexamethasone.
The third treatment (DEX) consists of dexamethasone only. Further-
more an untreated sample (UNT) is measured as a control at each time
point. Thus, four time profiles are available for each gene on the
microarrays. The hybridizations were performed using Affymetrix
GeneChips Human Genome U133A [22].

All measurements have been performed in triplicate. The hybridi-
zations were randomly assigned to 6 different groups in order to
randomize the experimental effects of measuring at different points in
time. The normalization of the data was performed with Rosetta
Resolver Version 5 and subsequently the expression data was log
transformed [23]. The biological process of interest for the dataset
which is used for the analysis in this article is skeletal development.

2.2. ANOVA and PCA

ANOVA can be used in microarray data analysis to investigate the
significance of the effects from factors which could possibly influence
the gene expression. The ANOVA fixed-effects model [4] in which
three of the possible factors of interest are incorporated is given by
expression (2). In this model the measured gene expression (Xijkr) is
assumed to be the result of the added effects of the factors Time (T),
Treatment (S) and Gene (G) and their interactions over time point i,
treatment j, gene k and replicate r:

Xijkr = μ + Ti + Sj + Gk + TSij + TGik + GSjk + TSGijk + eijkr ð2Þ

with μ as the overall mean. The remaining variation is captured in the
error term eijkr. In the normal application of ANOVA, the sum of
squares and mean squares are calculated for each factor and
interaction, and the significance of the effects is calculated. Here,
instead of calculating sums of squares, the interaction matrices are
analysed with PCA [14] to identify genes with interesting biological
behaviour. Because uninteresting sources of variance have been
removed with ANOVA, the results are much more interpretable than
a PCA applied to the original data.

The gene–treatment interaction effect can be interpreted as the
response of a gene to the treatments, additional to general gene, time
and treatment effects. This is of course interesting to the biologists
who are looking for genes responding to the treatments incorporated
in the experiment. Genes are interesting when they can be correlated
with for instance a specific treatment or time point, depending on the
biological question for the dataset. For the visualisation of these
interactions, the technique of PCA is especially suited because it
focusses on the directions of maximal variance: the interesting genes
are likely to be among those with large positive or negative values.

In microarray analysis the number of measured genes is sub-
stantial; however, not all genes are expected to be involved in the
biological process of interest. The aim is therefore to find ameaningful
reduced set of genes. This set can consist of unknown genes as well as
genes known to be involved in the process. One way to make the
selection of genes from the results of the analysis with ANOVA and
PCA is to use the Hotelling T2 distribution [14]. For different values of
the cutoff parameter, different numbers of genes are obtained.

2.3. Robust ANOVA

Estimates of main effects and interactions can be severely affected
by outlying observations. These outliers can be caused either by
measurement errors, or consist of genes showing a behaviour that is
very different from the bulk of the genes, e.g. as a result of a treatment.
In the latter case, these outliers are the most interesting parts of the
data. Moreover, ANOVA requires normally distributed data, which in
practice is not often the case. We here analyse three ways to perform
more robust variants of ANOVA. The first relies on robust location
estimates, and the other two on rank transformations. Combinations
are possible, too. The classical, non-robust ANOVA will be indicated
with the label “CL”.

2.3.1. Robust location
An alternative to the mean as a location parameter, less influenced

by outliers, is the trimmed mean. When calculating the 20% trimmed
mean for instance, the mean is calculated from the data which remain
after the upper and lower 20% of these data are removed. The most
extreme form of trimming is taking the median of the data: then, the
upper and lower 50% of the data are excluded from influencing the
location of the data.

Thus, when fitting the ANOVA model from Eq. (2), μ is estimated
by a trimmed mean or even a median instead of the normal mean.
Similarly, trimmed means or medians are used for the calculation of
the main effects and interaction effects. This method will be indicated
with “RL” in the following. A more refined version for estimating
robust effects would be the median polish method [24]; in this paper
we do not pursue this further.

2.3.2. Rank transformation
Many nonparametric methods apply a rank transformation to the

data, to decrease the influence of outlying values. For ANOVA, the rank



Fig. 1. The main effects of the CL and RL method of the factors time (A), gene (B) and
treatment (C).
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transformation has been advocated by Iman [25]: with normally
distributed data the loss of power, associated with nonparametric
methods in general, is limited, but for non-normal data, the rank
transformation is more powerful. Harwell and Serlin [26] suggest to
use the rank transformation when the data are skewed or heavy-
tailed.

In this method, indicated with “RT–CL”, the original values in the
whole dataset are converted to ranks. For the hMSC dataset this
results in values from 1 to the number of datapoints: 22,283×10×4.
Again, the resulting data cube (now containing ranks) is analysed by
ANOVA to separate sources of variance. Here, too, means can be used
as location parameters, but also trimmedmeans or medians. Thus, the
rank transformation method can be combined with the RL method.
We will use means as location parameters and denote this method in
the following as “RT–CL”.

2.3.3. Aligned rank
An extension of the rank transformation is the aligned rank trans-

formation method (AR), suggested by Hartlaub et al. [27]. The AR
method was invented to reduce the influence of large main effects,
resulting in an increase of the type I error as reported by [28]. The
method was described by Gao and Song, Mansouri and Chang and
even earlier by Conover and Iman [11,29,30].

The difference between the RT–CL and the AR method lies in the
fact that in the AR method the main effects are subtracted from the
data before the data are rank transformed. This is done to compensate
for the possible differences in the size of these main effects. In
literature this method has shown good performance, but the
dimensions of the data were substantially smaller.

Again, this method can be combined with the RL method, even in
several ways. One can use the RL method for the robust estimation of
the main effects, subtract these and then do the rank transforma-
tion. After the rank transformation, one can use either means or a
robust location measure. This leads to four possible combinations:
CL–AR–CL, RL–AR–CL, CL–AR–RL and RL–AR–RL. In this paper, we
only consider the first of these cases and refer to it with ART–CL. The
other combinations perform worse, and are therefore not taken into
account.

2.4. Evaluation

In comparing the different approaches, we concentrate on the
main effects and the interaction between gene and treatment. We use
PCA for the visualisation of the interaction terms, and compare the
different interactionmatrices by Procrustes analysis [17]. Using a set of
50 predefined GO terms, available in the Supplementary material, we
set up ROC plots [31,20] that tell us howwell each method reproduces
current biological knowledge on bone formation.

2.4.1. Main effects
Robust estimates of main effects are expected to be different from

the classical estimates using the mean. As a result the calculated
interactions will also differ. Therefore the conclusions from the results
are influenced depending on the type of robust analysis.

2.4.2. Interaction matrices
Due to the large number of genes it is difficult to identify the

changes of genes in the score plots from the interaction matrices. In
fact we are interested in the differences between the plots; wewant to
know which genes have a similar location in the plots and, even more
interesting, which genes are at different locations.

A technique which can be applied to compare and investigate the
topology of data points in two multivariate datasets with equal
dimensions is Procrustes analysis [17]. The goal of Procrustes analysis
is to find a transformation, either a translation, rotation or reflection,
which results in the best match between the point configurations in
both plots. Thus, Procrustes analysis can be applied to investigate the
similarity of comparable data tables. An indication of the difference
between the classical interaction matrix and its robust counterparts
can be given for each gene, making it possible to identify the genes
which show the largest difference. In the plots below,we focus – rather
arbitrarily – on the twenty genes showing the largest Procrustes error
(in each case). Moreover, the overall Procrustes error indicates which
robust interaction matrix deviates most from the classical approach.

2.4.3. Comparison with known biology
Eventually, one is interested in finding new relations and pro-

cesses, influenced by the treatments. The minimal requirement of a
newmethod is that the processes which are expected to be found, are
indeed returned by the analysis (when the experiment has been
performed correctly). If that is not the case, chances are slim for
finding relevant but previously unknown relations. A method to
evaluate the agreement between current knowledge about a biologi-
cal system and the results found with a microarray experiment is the
application of ROC plots [20]. Annotation information from the Gene
Ontology [18] database is used to perform the evaluation of the
results. The terms associated with the Biological Function branch of
GO were applied as a description of the genes which are found. Before
any GO analysis was performed a list of terms expected to be found
was composed by biological experts [20], available in the Supple-
mentary material. This set is used as a reference for the results of the
GO enrichment analysis, which is performed next. The terms in the list
are considered as positive results and can be applied to calculate
sensitivity and specificity at different cutoffs in the GO enrichment. By
plotting one minus the specificity against the sensitivity, the ROC



Fig. 2. ROC plot of all methods with genes selected with α=1.10−2. The RT–CL method
shows the best results, because the line is closest to optimum in the upper left corner.
The ART–CL method shows the worst performance, it finds the smallest number of
processes for any given cutoff for GO enrichment.
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curve shows whether the results are better than results found by
chance alone.

Here we use the ROC plots to compare selected genes found with
robust methods and the classical application of ANOVA. In both cases,
the Hotelling T2 distribution is used to define a threshold (α=0.01).
With this selection, enrichments are calculated for all processes in the
biological process category. These results are summarised in an ROC
plot.

2.4.4. Software
Calculations are performed in R [32]; the GO enrichment cal-

culations are performed with the R package GOstats [33]. In-house
scripts for the nonparametric ANOVA and the ROC curves are available
upon request.

3. Results

The results for the RL method using trimmed means conform
expectations: they are in between the CL results and the results of RL
Fig. 3. Biplots of interaction matrix from interaction of gene and treatment: the CL method (le
large differences between the methods, which are known to be involved in osteogenesis are
using medians. Therefore we will not discuss trimmed means further,
and will in the remainder use medians with the RL method. First, the
main effects of the CL and RL methods are shown; the main effects of
the rank-based methods are comparable in their profile, but are less
easily comparable with the standard main effects because they are on
amuch larger scale due to the rank transformation. Next, the results of
the two-factor interaction gene–treatment are used to make compar-
isons of the different nonparametric methods and the CL method.

3.1. Main effects

The main effects for the factors time, gene and treatment are
represented in Fig. 1A, B and C, respectively. From the figure it is clear
that the robust and classical estimates are different. For the factor time
the absolute values for the robust method are bigger. The main effect
for the factor gene is approximately 0.2 larger for the RL method than
for the CL method. This is the logical effect of the difference between
the overall mean and overall median (5.563 and 5.337, respectively).
Because the averages are taken over large numbers of data points the
main effects alone are not very informative. In contrast to the effects of
time and gene, the effect of the factor treatment is larger for the CL
method. Obviously the differences will result in different interaction
matrices as well.

3.2. Comparison with known biology

When selectinggenes based on themethodology presentedhere one
would expect certain GO categories to be significantly enriched. Among
those are: ossification, skeletal development and others [20]. First, gene
selections are made for each of the nonparametric methods, using the
cutoffα=1·10−2 for the Hotelling T distribution. The agreement of the
resulting gene selections with the predefined categories is shown in
Fig. 2. As usual, a true positive is a gene belonging to a GO category (or
one of its descendants) present in the predefined categories. The ROC
curve of the RT–CL method is running closest to the optimum in the
upper left corner. The ART–CL method runs below the other methods.
This means that a gene selection performed with the RT–CL method
gives the best balance between false negatives and false positives.

3.3. Gene–treatment interaction

The two-factor interaction of gene and treatment contains informa-
tion about which genes have a specific response to the treatments. It is
ft) and the RLmethod (right). Genes are represented with points. A group of genes with
indicated with black points. Loadings, representing treatments are shownwith arrows.



Fig. 4. Histogram generated from the Procrustes comparison between results from the CL method and the RL method. The 20 genes with the largest difference are shown in the
inserted enlarged part of the right tail of the distribution.
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possible to visualise the information in the gene–treatment interaction
matrix with biplots, to correlate genes with specific treatments [14].

As an example of the kind of differences one can expect when
comparing classical and robust methods, the biplots from the gene–
treatment interaction matrices of the CL and RL methods are shown in
Fig. 3. The percentage of explained variance on the first PC is smaller in
the robust case. The loadings still show the separation between the
three treatments and the untreated control in the first PC. However,
there seems to be less separation between the three osteogenic
treatments in the second PC of the RL method. In the plots a group of
genes is indicated for which the individual Procrustes error is largest
(see below).

For all methods a separation between the untreated and
osteogenic treatments can be seen in the loadings, but the shape of
the distribution of genes and the distance of genes to the center
depend on the method. To see whichmethods are similar, we perform
Procrustes analysis.

First, a comparison is made between the CL and RL methods. The
RL interaction matrix is rotated and scaled to find the best match with
the CL interaction matrix. As a result of the analysis the rotated RL
interaction matrix can be compared to the original CL interaction
matrix. First, the distribution of the differences between the rotated
and the original is depicted in Fig. 4. Most errors are relatively small
compared to the outliers in the right tail of the distribution. This
means that the relative orientation of most genes has not changed,
because the bulk is in the center of the biplots, relatively irresponsive
to the effects of the treatments. One would then expect that these
elements experience only small changes when comparing the two
methods.

Second, from the Procrustes analysis the overall Procrustes error
can be calculated by taking the sum of squared differences between
the original CL data matrix and the rotated RL matrix. The overall
Procrustes error is shown in Table 1. Perhaps not surprisingly the rank-
based methods show a larger difference with the CL method than the
RL method.
Table 1
Comparison of the nonparametric methods RL, RT-CL and ART-CL with the classical
ANOVA-PCA.

RL vs CL 71.2
RT–CL vs CL 96.0
ART–CL vs CL 96.4

The overall Procrustes error is calculated as the sum of squared differences between the
original matrix and the rotated target matrix.
Third, to investigate which genes have a large Procrustes dif-
ference, when compared with the classical ANOVA–PCA, we calculate
the difference between the scores on PCs 1 and 2 of the original
interaction matrix and the optimal match with the corresponding
scores of the interaction matrix from the nonparametric method. The
difference matrix, obtained after this Procrustes rotation, is then
inspected with PCA. In Fig. 5 the scores corresponding to the genes are
shown for themethods RL, RT–CL and ART–CL. In the figures a number
of genes are indicated in black for which it is known that they are
involved in osteogenesis (from literature) and which have a large
Procrustes difference. Note that these genes are different from the
genes highlighted in Fig. 3. There are 7 genes in the set which are
found by the three methods; OMD, LEPR, IGFBP2, GAS1, COL11A1,
BGLAP and ADAM12. More detailed information and references
for these and other genes mentioned here, can be found in the
Supplementary material. The set of genes MMP7, LEP, IBSP, FRZB,
CHI3L1 and CHRDL1 are present among the set of genes with the
largest difference for the methods RL and ART–CL. There are three
genes which have a large error for the RL method; BMP6, LIF and PER1.
Finally, the difference for genes HEY1 and ID3 is apparent for the RT–
CL and the ART–CL methods.

The p-value cutoff for the genes ranked based on the Hotelling
T 2 distribution can also be used when we look specifically at the
gene–treatment interaction term. The difference between the meth-
ods is difficult to determine because there is a lot of overlap
between the interesting genes which are found by the methods.
There is a difference between the methods though, and it is in the
distribution of the interesting genes in the selection. To describe
these differences, we have chosen to use the 100 most extreme
genes from the biplot. These are the genes which are most in-
fluenced by the treatments in the experiment. From the selection of
100 genes for each method we will discuss a limited number of
genes known to be involved in osteogenesis based on literature. The
genes BMP6 and CDKN1C are found specifically with the RT–CL
method. Furthermore the genes PER1, HEY1 and PTGER2 are only
present in both rank-based methods (RT–CL and ART–CL) whereas
COL11A1, CHRDL1, ID3 and IGFBP2 are discovered with the classical
and RL method.

4. Discussion and conclusion

As explained before in the Introduction, the estimates for the main
effects and the interactions are influenced by outlying observations.
These can be the result of real biological differences in gene behaviour,
or result from measurement errors. We have shown that taking
a nonparametric approach which does not rely on distributional



Fig. 5. Results of PCA performed on the difference between the original Xmatrix and the
rotated Y matrix. Genes with a large difference will be on the outside of the plot.
Comparisons were made with the classical ANOVA–PCA as reference. It was then
compared with the RL (A), RT–CL (B) and the ART–CL (C) and methods, respectively.
Each point represents a gene. Several genes with low p-values, known from literature to
be responsive to osteogenic treatments, are shownwith black points. The threshold for
the p-values is pb1·10−5 for the Hotelling T 2 distribution on the first 2PCs.
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assumptions of the data gives different estimates of main effects and
interactions, which are not influenced by outliers.

Robust ANOVA methods lead to quite different results, compared
to classical ANOVA, for the data in this paper. This is an indication that
the assumptions of parametric ANOVA are not justified for this
dataset; otherwise, the differences would be less substantial.
Application of robust ANOVA leads to different estimates of main
effects and interactions. As a result, different biological conclusions
will be drawn, e.g., different genes will be selected on the basis of the
gene–treatment interaction. Furthermore, the robust methods take
slightly different approaches: using the median instead of the mean is
different from using ranks instead of expression values. The sizes of
the differences may depend on the data at hand.

When selecting genes with an interesting gene–treatment inter-
action, some genes are found with one method, and not with the
other. The RT–CL method, which is shown to give the best
representation of known biology, finds the genes BMP6 and CDKN1C
for instance. These genes are not present in the selections made with
the other methods. To give a more general picture of the biological
results, ROC plots are drawn. For this dataset the results from the ROC
plots for expected GO categories indicate that the rank transformation
method with normal means gives results which are most in
agreement with current biological knowledge of the system. From
the results it can be concluded that it is not advisable to use the ART–
CL method.

In addition to the methods that perform robust ANOVA shown in
the Results section, we have applied several other robust methods as
well. The rank transformation basedmethods can also be applied with
the robust location estimate. The results from these, RT–RL and ART–
RL, were much worse than the other methods and are therefore not
presented here. We also evaluated the interaction matrices (obtained
from either robust or classical ANOVA) using robust PCA (ROBPCA)
[34]. The goal of robust PCA is to obtain principal components that are
not influenced much by outliers in the data. Applying robust PCA on
the interaction matrices showed no real differences with normal PCA,
therefore results are not shown. A final opportunity for further robust
analysis is the Procrustes rotation: by rotating the data in such a way
that the majority of the points is correctly aligned in the two datasets,
the differences of the remaining points may stand out more clearly.
We did not pursue this avenue further, since the standard Procrustes
analysis provided enough insight already.
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