== Algorithms to calculate probabilities associated with a multivariate normal distribution == This page contains 1. A list of software in MATLAB and/or FORTRAN prepared by Alan Genz 1. A listing of one MATLAB routine written by Genz. 1. A listing of MATLAB routine '''mvncdf.m''' from the MATLAB STatistics Toolbox. Alan Genz has an interesting page of links to FORTRAN and MATLAB code: http://www.math.wsu.edu/faculty/genz/software/software.html. The following MATLAB code was found at http://alex.strashny.org/b/mvncdf.m, via http://alex.strashny.org/a/Multivariate-normal-cumulative-distribution-function-(cdf)-in-MATLAB.html. {{{ function [p, err, N] = mvncdf(x, mu, Sigma, errMax, ci, Nmax) %MVNCDF Multivariate normal cumulative distribution function (cdf). % P = MVNCDF(X,MU,SIGMA) computes the multivariate normal cdf % with mean vector MU and variance matrix SIGMA at the values in % vector X. % % P = MVNCDF(X,MU,SIGMA,ERRMAX,CI,NMAX) uses additional control % parameters. The difference between P and the true value of the % cdf is less than ERRMAX CI percent of the time. NMAX is the % maximum number of iterations that the algorithm makes. By % default, ERRMAX is 0.01, CI is 99, and NMAX is 300. % % [P,ERR,N] = MVNCDF(...) also returns the estimated error and the % number of iterations made. % % See also NORMCDF. % Algorithm from Alan Genz (1992) Numerical Computation of % Multivariate Normal Probabilities, Journal of Computational and % Graphical Statistics, pp. 141-149. % Copyright 2005 Alex Strashny (alex@strashny.org) % version 1, April 29, 2005 % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA m1 = length(x); m2 = length(mu); [m3,m4] = size(Sigma); if m1 ~= m2 | m1 ~= m3 | m1 ~= m4 error('Dimentions of X, MU, and SIGMA must agree.'); end; m = m1; x = x(:) - mu(:); if nargin < 6 Nmax = 300; end; if nargin < 5 alph = 2.3; else alph = norminv(ci/100); end; if nargin < 4 errMax = 0.01; end; C = chol(Sigma)'; p = 0; N = 0; varSum = 0; % d is always zero f = zeros(m,1); f(1) = normcdf(x(1) / C(1,1)); y = zeros(m,1); err = 2 * errMax; while err > errMax & N < Nmax w = unifrnd(0,1,m-1,1); for i = 2:m y(i-1) = norminv(w(i-1)*f(i-1)); q = 0; for j = 1:i-1 q = q + C(i,j)*y(j); end; f(i) = normcdf((x(i) - q) / C(i,i)) * f(i-1); end; N = N + 1; del = (f(m) - p) / N; p = p + del; varSum = (N-2) * varSum / N + del^2; err = alph * sqrt(varSum); end; }}} The following code is the function '''mvncdf.m''' from the MATLAB Statistics Toolbox version 5.3: {{{ function [y,err] = mvncdf(varargin) %MVNCDF Multivariate normal cumulative distribution function (cdf). % Y = MVNCDF(X) returns the cumulative probability of the multivariate % normal distribution with zero mean and identity covariance matrix, % evaluated at each row of X. Rows of the N-by-D matrix X correspond to % observations or points, and columns correspond to variables or % coordinates. Y is an N-by-1 vector. % % Y = MVNCDF(X,MU,SIGMA) returns the cumulative probability of the % multivariate normal distribution with mean MU and covariance SIGMA, % evaluated at each row of X. MU is a 1-by-D vector, and SIGMA is a D-by-D % symmetric, positive definite matrix. MU can also be a scalar value, which % MVNCDF replicates to match the size of X. Pass in the empty matrix for MU % to use its default value when you want to only specify SIGMA. % % The multivariate normal cumulative probability at X is defined as the % probability that a random vector V, distributed as multivariate normal, % will fall within the semi-infinite rectangle with upper limits defined by % X, i.e., Pr{V(1)<=X(1), V(2)<=X(2), ... V(D)<=X(D)}. % % Y = MVNCDF(XL,XU,MU,SIGMA) returns the multivariate normal cumulative % probability evaluated over the rectangle with lower and upper limits % defined by XL and XU, respectively. % % [Y,ERR] = MVNCDF(...) returns an estimate of the error in Y. For % bivariate and trivariate distributions, MVNCDF uses adaptive quadrature on % a transformation of the t density, based on methods developed by Drezner % and Wesolowsky, and by Genz, as described in the references. The default % absolute error tolerance for these cases is 1e-8. For four or more % dimensions, MVNCDF uses a quasi-Monte Carlo integration algorithm based on % methods developed by Genz and Bretz, as described in the references. The % default absolute error tolerance for these cases is 1e-4. % % [...] = MVNCDF(...,OPTIONS) specifies control parameters for the numerical % integration used to compute Y. This argument can be created by a call to % STATSET. Choices of STATSET parameters are: % % 'TolFun' - Maximum absolute error tolerance. Default is 1e-8 % when D < 4, or 1e-4 when D >= 4. % 'MaxFunEvals' - Maximum number of integrand evaluations allowed when % D >= 4. Default is 1e7. Ignored when D < 4. % 'Display' - Level of display output. Choices are 'off' (the % default), 'iter', and 'final'. Ignored when D < 4. % % Example: % % mu = [1 -1]; Sigma = [.9 .4; .4 .3]; % [X1,X2] = meshgrid(linspace(-1,3,25)', linspace(-3,1,25)'); % X = [X1(:) X2(:)]; % p = mvncdf(X, mu, Sigma); % surf(X1,X2,reshape(p,25,25)); % % See also MVTCDF, MVNPDF, MVNRND, NORMCDF. % References: % [1] Drezner, Z. and G.O. Wesolowsky (1989) "On the Computation of the % Bivariate Normal Integral", J.Statist.Comput.Simul., 35:101-107. % [2] Drezner, Z. (1994) "Computation of the Trivariate Normal Integral", % Mathematics of Computation, 63:289-294. % [3] Genz, A. (2004) "Numerical Computation of Recutangular Bivariate % and Trivariate Normal and t Probabilities", Statistics and % Computing, 14(3):251-260. % [4] Genz, A. and F. Bretz (1999) "Numerical Computation of Multivariate % t Probabilities with Application to Power Calculation of Multiple % Contrasts", J.Statist.Comput.Simul., 63:361-378. % [5] Genz, A. and F. Bretz (2002) "Comparison of Methods for the % Computation of Multivariate t Probabilities", J.Comp.Graph.Stat., % 11(4):950-971. % Copyright 2005-2006 The MathWorks, Inc. % $Revision: 1.1.6.1.6.1 $ $Date: 2006/07/13 16:54:04 $ % Strip off an options structure if it's there. if isstruct(varargin{end}) opts = statset(statset('mvncdf'), varargin{end}); nin = nargin - 1; else opts = statset('mvncdf'); nin = nargin; end if nin < 1 error('stats:mvncdf:TooFewInputs','Requires at least one input.'); elseif nin < 4 % MVNCDF(XU,MU,SIGMA) upperLimitOnly = true; XU = varargin{1}; if ndims(XU)~=2 error('stats:mvncdf:InvalidData','X must be a matrix.'); end XL = -Inf(size(XU),class(XU)); if nin > 1, mu = varargin{2}; else mu = []; end if nin > 2, Sigma = varargin{3}; else Sigma = []; end else % MVNCDF(XL,XU,MU,SIGMA) upperLimitOnly = false; XL = varargin{1}; XU = varargin{2}; mu = varargin{3}; Sigma = varargin{4}; if ndims(XU)~=2 || ~isequal(size(XL),size(XU)) error('stats:mvncdf:InvalidData','XL and XU must be matrices and have the same size.'); elseif any(any(XL > XU)) error('stats:mvncdf:InvalidData','XL must be less than or equal to XU.'); end end % Get size of data. Column vectors provisionally interpreted as multiple scalar data. [n,d] = size(XU); if d<1 error('stats:mvncdf:TooFewDimensions','X must have at least one column.'); end % Assume zero mean, data are already centered if isempty(mu) XL0 = XL; XU0 = XU; % Get scalar mean, and use it to center data elseif isscalar(mu) XL0 = XL - mu; XU0 = XU - mu; % Get vector mean, and use it to center data elseif isvector(mu) [n2,d2] = size(mu); if d2 ~= d % has to have same number of coords as X error('stats:mvncdf:InputSizeMismatch',... 'MU must be a row vector with the same number of columns as X.'); elseif n2 == 1 % mean is a single row, rep it out to match data XL0 = XL - repmat(mu,n,1); XU0 = XU - repmat(mu,n,1); elseif n2 == n % if X and mu are column vectors and lengths match, provisionally % interpret this as multivariate data XL0 = XL - mu; XU0 = XU - mu; else % sizes don't match error('stats:mvncdf:InputSizeMismatch',... 'MU must be a row vector with the same number of columns as X.'); end else error('stats:mvncdf:InvalidMu', 'MU must be a row vector.'); end % Assume identity covariance, data are already standardized if isempty(Sigma) % Special case: if Sigma isn't supplied, then interpret X % and MU as row vectors if they were both column vectors if d == 1 XL0 = XL0'; XU0 = XU0'; [n,d] = size(XU0); end Sigma = eye(d); else % Special case: if Sigma is supplied, then use it to try to interpret % X and MU as row vectors if they were both column vectors. if (d == 1) if size(Sigma,1) == n XL0 = XL0'; XU0 = XU0'; [n,d] = size(XU0); elseif ~isscalar(mu) error('stats:mvncdf:InputSizeMismatch',... 'MU must be a row vector with the same number of columns as X.'); end end % Make sure Sigma is a valid covariance matrix sz = size(Sigma); if sz(1) ~= sz(2) error('stats:mvncdf:BadCovariance',... 'SIGMA must be a square matrix.'); elseif ~isequal(sz, [d d]) error('stats:mvncdf:InputSizeMismatch',... 'SIGMA must be a square matrix with size equal to the number of columns in X.'); else [T,err] = statchol(Sigma,0); if err ~= 0 error('stats:mvncdf:BadCovariance',... 'SIGMA must be symmetric and positive definite.'); end end end % Standardize Sigma and X to correlation if necessary s = sqrt(diag(Sigma)); Rho = Sigma ./ (s*s'); XL0 = XL0 ./ repmat(s',n,1); XU0 = XU0 ./ repmat(s',n,1); % Call the appropriate integration routine for the umber of dimensions. if d == 1 y = normcdf(XU0,0,1) - normcdf(XL0,0,1); if nargout > 1 err = NaN(size(y),class(y)); end elseif d <= 3 tol = opts.TolFun; if isempty(tol), tol = 1e-8; end if d == 2, rho = Rho(2); else rho = Rho([2 3 6]); end if upperLimitOnly if d == 2 y = bvncdf(XU0, rho, tol); else y = tvncdf(XU0, rho, tol); end else % lower and upper limits % Compute the probability over the rectangle as sums and differences % of integrals over semi-infinite half-rectangles. For degenerate % rectangles, force an exact zero by making each piece exactly zero. equalLims = (XL0==XU0); XL0(equalLims) = -Inf; XU0(equalLims) = -Inf; y = zeros(n,1,superiorfloat(XL0,XU0,Rho)); for i = 0:d k = nchoosek(1:d,i); for j = 1:size(k,1) X = XU0; X(:,k(j,:)) = XL0(:,k(j,:)); if d == 2 y = y + (-1)^i * bvncdf(X, rho, tol/4); else y = y + (-1)^i * tvncdf(X, rho, tol/8); end end end end if nargout > 1 err = repmat(cast(tol,class(y)),size(y)); end elseif d <= 25 tol = opts.TolFun; if isempty(tol), tol = 1e-4; end maxfunevals = opts.MaxFunEvals; verbose = find(strcmp(opts.Display,{'off' 'final' 'iter'})) - 1; y = zeros(n,1,superiorfloat(XL0,XU0,Rho)); err = zeros(n,1,class(y)); for i = 1:n [y(i),err(i)] = mvtcdfqmc(XL0(i,:),XU0(i,:),Rho,Inf,tol,maxfunevals,verbose); end else error('stats:mvncdf:DimensionTooLarge',... 'Number of dimensions must be less than or equal to 25.'); end end %---------------------------------------------------------------------- function p = bvncdf(b,rho,tol) % CDF for the bivariate normal. % % Implements the unnumbered equation between (3) and (4) in Section 2.2 of % Genz (2004), integrating in terms of theta between asin(rho) and +/- pi/2, % using adaptive quadrature. n = size(b,1); if rho == 0 p = cast(prod(normcdf(b),2), superiorfloat(b,rho)); else if rho > 0 p1 = normcdf(min(b,[],2)); p1(any(isnan(b),2)) = NaN; else p1 = normcdf(b(:,1))-normcdf(-b(:,2)); p1(p1<0) = 0; % max would drop NaNs end if abs(rho) < 1 loLimit = asin(rho); hiLimit = sign(rho).*pi./2; p2 = zeros(size(p1),class(p1)); for i = 1:n b1 = b(i,1); b2 = b(i,2); if isfinite(b1) && isfinite(b2) c1 = ((b1-b2).^2) ./ 2; c2 = b1.*b2; if c1 > 0 || c2 ~= 0 % b1 ~= b2 or b1 == b2 but ~= 0 p2(i) = quadl(@bvnIntegrand,loLimit,hiLimit,tol); else % b1 == b2 == 0 % get this case exactly p2(i) = hiLimit - loLimit; end else % This piece is zero if either limit is +/- infinity. If % either is NaN, p1 will already be NaN. end end else p2 = zeros(class(p1)); end p = cast(p1 - p2./(2.*pi), superiorfloat(b,rho)); end function integrand = bvnIntegrand(theta) % exp(-(b1.^2 + b2.^2 - 2*b1*b2*sin(theta))/(2*cos(theta).^2)); sintheta = sin(theta); cossqtheta = cos(theta).^2; nz = (cossqtheta > 0); if all(nz) expon = (c1 + c2.*(1-sintheta))./cossqtheta; else % some theta == +/- pi expon = -Inf(size(theta)); % cos^2 -> 0 faster than numerator can expon(nz) = (c1 + c2.*(1-sintheta(nz)))./cossqtheta(nz); end integrand = exp(-expon); end end %---------------------------------------------------------------------- function p = tvncdf(b,rho,tol) % CDF for the trivariate normal % % Implements equation (14) in Section 3.2 of Genz (2004), integrating each % term in (14) separately in terms of theta between 0 and asin(rho_j1), using % adaptive quadrature. n = size(b,1); % Find a permutation that makes rho_32 == max(rho) [dum,imax] = max(abs(rho)); if imax == 1 % swap 1 and 3 rho_21 = rho(3); rho_31 = rho(2); rho_32 = rho(1); b = b(:,[3 2 1]); elseif imax == 2 % swap 1 and 2 rho_21 = rho(1); rho_31 = rho(3); rho_32 = rho(2); b = b(:,[2 1 3]); else % imax == 3 rho_21 = rho(1); rho_31 = rho(2); rho_32 = rho(3); % b already in correct order end % CDF for the normal distribution. Phi = @(z) 0.5 * erfc(-z ./ sqrt(2)); p1 = Phi(b(:,1)).*bvncdf(b(:,2:3),rho_32,tol/3); if abs(rho_21) > 0 loLimit = 0; hiLimit = asin(rho_21); rho_j1 = rho_21; rho_k1 = rho_31; p2 = zeros(size(p1),class(p1)); for i = 1:n b1 = b(i,1); bj = b(i,2); bk = b(i,3); if isfinite(b1) && isfinite(bj) && ~isnan(bk) c1 = ((b1-bj).^2) ./ 2; c2 = b1.*bj; p2(i) = quadl(@tvnIntegrand,loLimit,hiLimit,tol/3); else % This piece is zero if either limit is +/- infinity. If % either is NaN, p1 will already be NaN. end end else p2 = zeros(class(p1)); end if abs(rho_31) > 0 loLimit = 0; hiLimit = asin(rho_31); rho_j1 = rho_31; rho_k1 = rho_21; p3 = zeros(size(p1),class(p1)); for i = 1:n b1 = b(i,1); bj = b(i,3); bk = b(i,2); if isfinite(b1) && isfinite(bj) && ~isnan(bk) c1 = ((b1-bj).^2) ./ 2; c2 = b1.*bj; p3(i) = quadl(@tvnIntegrand,loLimit,hiLimit,tol/3); else % This piece is zero if either limit is +/- infinity. If % either is NaN, p1 will already be NaN. end end else p3 = zeros(class(p1)); end p = cast(p1 + (p2 + p3)./(2.*pi), superiorfloat(b,rho)); function integrand = tvnIntegrand(theta) sintheta = sin(theta); cossqtheta = cos(theta).^2; nz = (cossqtheta > 0); if all(nz) % exp(-(b1.^2 + bj.^2 - 2*b1*bj*sin(theta))/(2*cos(theta).^2)); expon = (c1 + c2.*(1-sintheta))./cossqtheta; else % some theta == +/- pi expon = -Inf(size(theta)); % cos^2 -> 0 faster than numerator can expon(nz) = (c1 + c2.*(1-sintheta(nz)))./cossqtheta(nz); end sinphi = sintheta .* rho_k1 ./ rho_j1; numeru = bk.*cossqtheta - b1.*(sinphi - rho_32.*sintheta) ... - bj.*(rho_32 - sintheta.*sinphi); denomu = sqrt(cossqtheta.*(cossqtheta -sinphi.*sinphi ... - rho_32.*(rho_32 - 2.*sintheta.*sinphi))); integrand = exp(-expon) .* Phi(numeru./denomu); end end }}}