
Online
Supplement 2
Dealing with missing data

This supplement draws primarily on Chapters 5 and 10.

OS2.1 Dealing with missing data

Missing data is a major problem in many fields of research. Frequent causes of missing data are
the nature of the variables being studied (e.g., losses due to attrition or dropout in a long study)
or the impact of chance events (e.g., data loss due to equipment failure). It is also possible, but
less common, to deliberately design a study so that some data are missing.

Designing a study to have missing data on some measures seems like an odd thing to do, but
can be a very sensible strategy (e.g., when measuring many variables, some of which are expen-
sive to collect). Graham (2009) reviews a number of methods for the analysis of missing data
and considers some of the advantages and disadvantages of this kind of planned ‘missingness’.

More often than not, missing data occur as a consequence of processes beyond a
researcher’s control. Understanding the nature of these processes is central to dealing with
missing data. All modern methods for dealing with missing data build on an appreciation of
these processes. A crucial insight is that just because data are missing does not mean that all
the information associated with them is lost. This can be a difficult idea to grasp at first.

Imagine that two treatments for weight loss (A and B) are being compared in an independent
groups design. There are 20 participants per group, each measured at weekly intervals over a
period of six months. At the end of the study, mean weight loss in each of the two groups is
similar, but group A has complete data for 18 participants and group B for only six. The dropout
rate for the study is likely to be related to the effectiveness of the treatment. Participants who
don’t lose much weight are probably more likely to drop out. If you could factor this information
back into the analysis, it might provide evidence of an advantage for treatment A over treatment
B. Treatment A may be more effective than treatment B, but the initial estimate of the group
B mean is biased upwards (because information about the several participants who weren’t
losing much weight is not included). There is information in missing data. The challenge is to
find rigorous methods for recovering it and incorporating it into a statistical model.
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Modern methods for dealing with missingness draw on classic work by Little and Rubin
(1987). They classified the processes that cause missing data in terms of three ‘mechanisms’:
missing completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR). These mechanisms group the causes of missing data by their statistical properties.
This makes it simpler to match up messy, incomplete data sets with potential solutions.

Schafer and Graham (2002) provide an excellent overview of the distinctions between these
three mechanisms (and some of the potential confusion in distinguishing between them). MCAR
is the simplest to explain. If data are missing completely at random, then the cause of missing
data is entirely unrelated to any variable relevant to the analysis. Cases with incomplete data
can therefore be considered a random sample of the population of possible cases. This makes
MCAR the easiest mechanism to deal with, because its only consequence is to reduce the quan-
tity of data available for analysis. This is undesirable (e.g., decreasing statistical power), but
does not bias the analysis.

MCAR is widely considered implausible as a mechanism for missingness (Schafer and
Graham, 2002). It would be unrealistic to expect dropout in a longitudinal study to be unrelated
to potential predictors such as the health, socioeconomic status or personality of participants.
In other studies, missing data may arise because people are unwilling to answer certain ques-
tions – and again you’d expect gaps in the data to be related to some of the measures you are
interested in (e.g., political or religious views). Although the general consensus is that MCAR
is rare (except by design), there are restricted circumstances where it may occur. Missing data
may arise in experimental research through equipment failure, programming errors or other
potentially random events (e.g., interruptions in power supply). It is probably safe to assume
MCAR for data loss caused by such random events, provided one further criterion is met. This
is that the proportion of cases with missing data should be small (e.g., perhaps 5% or less).
This safeguard is important because if you are wrong (e.g., the equipment failure occurred
only for participants that behaved in a certain way) the degree of bias will be minimal. Oth-
erwise it is safest to assume that data are MAR or MNAR. It is possible to conduct a partial
check of the MCAR assumption by looking at differences between cases with and without miss-
ing data (though in complex data sets you may miss subtle patterns with this kind of quick
check).

MAR is the most misunderstood of the three mechanisms. The term ‘random’ in MAR is
used in a very restricted sense (Graham, 2009). Data are missing at random, conditional on
having incorporated information from all the available data into the analysis. MAR therefore
assumes that missing data arise through processes that are predictable based on what has been
measured (i.e., the observed data). If dropout in the weight loss example depends on how much
weight each participant is losing, then the mechanism is MAR. This is because weight loss was
measured at weekly intervals up until the point where the participant dropped out. MAR is a
highly plausible mechanism in many studies. This has important implications. Not only are the
missing data informative, but the incomplete cases can be used to extract that information. This
will lead to a more accurate and efficient statistical model.

Ignoring the presence of MAR data introduces bias – possibly substantial bias – into the anal-
ysis. This can be illustrated with the weight loss example. If dropout is related to weight loss,
group A will have fewer missing observations and produce a fairly accurate estimate of the
effectiveness of treatment A. In contrast, the remaining participants in group B will be those
who lost most weight. Their data will overestimate the effectiveness of treatment B. The dif-
ference between groups (looking at only those who completed the study) will be biased in
favor of treatment B. It is therefore important to measure variables that are likely to predict
dropout (e.g., data about treatment progress and demographic data such as age or sex). Even



Dealing with missing data 25

if dropout is not directly related to the outcome of interest, it may be essential to an unbiased
analysis.

The final mechanism is MNAR. It can be defined as dropout that is not completely at random
and not predictable from the observed data. This would, for the weight loss example, correspond
to a situation in which an unobserved, unmeasured variable (e.g., personality type) predicts both
missingness and weight loss. MNAR is the hardest mechanism to deal with (see Graham, 2009).

A practical solution for dealing with MNAR may be to follow up a random sample of missing
cases in order to discover how the missing data has biased the statistical analysis. The challenge
of working with MNAR data provides a further incentive to collect information about factors that
may cause data to go missing (Collins et al., 2001). For instance, in longitudinal studies Graham
(2009) suggests collecting data about participants’ intentions to drop out. If not all those who
intend to drop out leave the study, the information from those who remain can be used to reduce
bias in the analysis.

Real data doesn’t always align neatly with Little and Rubin’s three mechanisms (e.g., being a
mixture of all three). Fortunately, evidence suggests that the best methods for dealing with MAR
cope well when data are MCAR (Schafer and Graham, 2002; Graham, 2009). The same research
suggests that MAR solutions may reduce bias for MNAR data sets. This seems plausible if MAR
methods incorporate variables that, while not causing missingness, are correlated with unmea-
sured variables that do cause missingness (see Collins et al., 2001). The following sections focus
on methods for dealing with data that are MAR. They start with a brief survey of methods known
to be inadequate for dealing with MAR, before introducing one of the best available methods for
dealing with missing data: multiple imputation (MI).

OS2.1.1 Deletion methods

The most widely adopted strategy for dealing with missing data is to drop or remove cases with
missing values from the analysis. This strategy could be explicit, but is often adopted implicitly
because of the way that software typically handles missing data (see Box OS2.1). The most
popular method is listwise or casewise deletion. This involves dropping cases from an analysis
if any observation is missing for that case. Casewise deletion has two major deficiencies. The
most obvious is the loss of statistical power or precision arising from reduced sample size. A less
well-appreciated deficiency is that casewise deletion biases parameter estimates and inference
(unless data are MCAR).

Even if the MCAR assumption is plausible, casewise deletion should be avoided because it
is inefficient. Even small proportions of missing data in a data set can be very damaging to
statistical power if there are many cases with missing data. Because the variables with missing
data typically differ between cases, a small proportion of missing values can lead to many
(perhaps most) cases being dropped. If 5% of observations are missing at random from ten
variables, around 40% of cases will have some missing data.1

Pairwise deletion involves using as many cases as possible in a given analysis. This could
mean retaining as much data as possible for each of several analyses (e.g., producing a correla-
tion matrix). However, it can also refer to the practice of computing values (e.g., variances and
covariances) that are then combined for a more complex analysis (Peugh and Enders, 2004).
Like casewise deletion, pairwise deletion also assumes data are MCAR and can introduce addi-
tional problems in complex analyses (see Graham, 2009). Casewise or pairwise deletion are
acceptable choices only if the total number of cases with missing data is small and the MCAR
assumption is plausible.
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Box OS2.1 Coding missing data

There are no universal rules for coding missing data. The main conventions are to code missing data
with an unusual or impossible numeric code such as −99 or with a text string such as ‘NA’. Some
software will also accept blank slots or entries – but these are occasionally treated as zeroes (e.g.,
by some Excel functions).

If you do use a numeric code it is important to select one that will be recognized by whatever
software is being used as ‘missing’ rather than as an error or a zero. This can often be defined by
the user (e.g., in SPSS), and will lead to problems if not done consistently. Using −99 for a missing
value code will work for some analyses, but it could be a legitimate value in others. A particularly
bad choice is zero, partly because it is often a legitimate value and partly because it may be hard
to detect an incorrect code. It is very easy to make a mistake (e.g., for missing values to be unin-
tentionally included in an analysis). For this reason avoiding numeric codes is preferable if at all
possible.

Instead, use a text string such as ‘NA’ (where software allows). ‘NA’ is the built-in missing value
indicator in R (which has a range of functions and options for handling missing data). A miss-
ing value code is important because it acts as a ‘place holder’ in the data structure. Paired data
provide a simple illustration of the problem. If one observation from a pair is missing, omit-
ting the observation entirely would mess up the remaining pairings (by shifting the sequence
of data in one sample but not the other). On getting unusual or unexpected results from an
analysis, missing value codes (along with data entry errors) should be among the first things to
check.

OS2.1.2 Mean substitution and related regression methods

Rather than deleting cases with missing values an attractive alternative is to substitute each one
with an estimate of its true value. In mean substitution (also called mean imputation) a missing
observation is estimated from the mean of the available observations. There are several variants
of mean substitution, depending on the design of the study. In a repeated measures study you
could either use the mean of all repeated measurements (the grand mean) or the mean of the
measurements in that sample (the sample mean). In an independent measures study you could
use the mean of the group in question, the grand mean of all groups or the grand mean weighted
by group n.

Mean substitution is not recommended, regardless of whether data are MCAR, MAR or
MNAR. Even if the mean was an unbiased estimate (which it rarely is), the procedure inflates
sample size. Missing data are less informative than non-missing data (the value that should
have been observed is not known with certainty). Adding plausible values into the sample
ignores this property, and leads to standard errors that are too small (being computed from
a spuriously large sample size). As the variances and covariances are also underestimated, it
will also bias estimates of these parameters (as well as standardized effect size metrics such
as d or r).

A more sophisticated alternative is to use all the available data to predict missing values
(e.g., via regression). The predicted values could then be substituted for the missing data. This
method is known as conditional mean substitution or regression imputation. For simple study
designs this is identical to mean substitution. Regression imputation can be extended to take
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into account other variables that predict missingness, and produces unbiased parameter esti-
mates for intercepts and slopes (and hence means) if data are MAR or MCAR. However, because
the imputed data fall exactly on the regression line they are less variable than true values would
have been. Again, this leads to biased estimates of variances and covariances (and all statis-
tics and inferences derived from them). An ingenious solution is to add random error to each
imputed observation. This is known as single imputation (see Schafer and Graham, 2002). If the
proportion of missing values for each variable is small, single imputation performs reason-
ably well for MAR or MCAR data (with accurate parameter estimates and relatively low bias for
variances, covariances or inferences).

Schafer and Graham (2002) also discuss other practices for handling missing data. Many of
these merely disguise the problem rather than solve it. A common practice is to add dummy vari-
ables to code ‘missingness’. This allows the statistical analysis to run with all cases, but because
it separates out estimates of missing and non-missing data the analyses do not incorporate
any potential information from the missing cases.2 Jones (1996) explains how these prac-
tices can lead to highly misleading results. The dummy variable approach produces coefficients
equivalent to casewise deletion, but also spuriously inflates the sample size.

OS2.1.3 Multiple imputation

Two methods that improve on single imputation are maximum likelihood and multiple impu-
tation (MI). Maximum likelihood methods involve fitting a regression model to find the most
likely parameter estimates for a particular set of data. As they rely on iteratively fitting a model,
they can cope with data structures that present problems for standard least squares estimation.
These approaches provide an elegant solution to some missing data problems – but may not be
practical for many everyday situations. Maximum likelihood methods have applications other
than for missing data (some of which are considered in Chapter 17 and Chapter 18). The fol-
lowing discussion focuses on MI. The two approaches are, in principle, equally effective when
missing data are MAR or MCAR. An advantage of MI is that it is somewhat easier to implement
for standard regression models.

MI is a logical extension of single imputation. Single imputation produces a data set that
attempts to account for uncertainty in the prediction of imputed values. The weakness of single
imputation is that it underestimates the uncertainty introduced by imputation. Single imputa-
tion generates one imputed data set containing observed data and imputed values (predictions
from a regression model to which random noise has been added). What happens if a sec-
ond imputed data set is generated for the same observed data? The two imputed data sets
should have similar parameter estimates, but because each one has added random noise to
the imputed values, they won’t be identical. The presence of differences between the data sets
implies that there is a source of uncertainty that single imputation ignores. Multiple imputation
attempts to take into account the additional uncertainty implied by this between-imputation
variability.

The imputed values from single imputation can be regarded as a sample from a population
distribution summarizing all possible imputed values. From this perspective, single imputation
ignores the error inherent in sampling from this population. A potential analogy here is with a
random effects meta-analysis in which random error is incorporated from two sources (within
and between studies). Multiple imputation has to take account of sampling error within each
imputed data set and between imputed data sets. Just as you can estimate overall parameter
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estimates in random effects meta-analysis by pooling estimates across several studies, you can
do the same in MI by pooling estimates across several imputed data sets. This leads to more
precise, less biased parameter estimates and inferences. The larger the number of imputed data
sets being pooled, the more accurate the parameter estimates and inferences.

A drawback of MI is the additional effort required to impute multiple data sets, apply the same
statistical model to each data set and then pool the resulting statistics. Rubin (1987) provided
a relatively simple set of equations for pooling coefficients and standard errors from regression
models. If the number of imputed data sets is m, and bj is a coefficient (intercept or slope) from

the jth imputed data set, then the pooled estimate b̄ (‘b-bar’) of that coefficient is the arithmetic
mean of the coefficient from each imputed data set:

b̄ =

m∑
j=1

bj

m
Equation OS2.1

Within-imputation variance can be combined in the same way. The within-imputation variance
for the jth imputed data set is σ̂2

bj
(the sampling variance or squared SE of the coefficient). The

pooled within-imputation variance is thus the arithmetic mean of m sampling variances:

σ̂2
b̄

=

m∑
j=1

σ̂2
bj

m
Equation OS2.2

To obtain SEs for the pooled coefficients requires both the within-imputation and between-
imputation variance. The between-imputation variance is calculated by applying the usual
inferential sample variance formula (treating the coefficients as observations):

τ̂2
b̄

=

m∑
j=1

(bj − b̄)2

m − 1
=

m∑
j=1

(
b2

j

)
− mb̄2

m − 1
Equation OS2.3

Combining the two sources of variation is the next step. It applies a formula analogous to that
in random effects meta-analysis:

σ̂2
MI = σ̂2

b̄
+
(

1 + 1
m

)
τ̂2
b̄

Equation OS2.4

The square root of this sampling variance (σ̂MI) is the SE of the multiply imputed coefficient.
A test statistic for a test of the null hypothesis H0: b̄ = 0 is therefore:

b̄
σ̂MI

∼ t(ν) Equation OS2.5

This statistic has a t distribution with degrees of freedom equal to

ν = (m − 1)

(
1 +

mσ̂2
b̄

(m + 1)τ̂2
b̄

)2

Equation OS2.6
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and a CI for the imputed coefficient can be constructed as:

b̄ ± tν,1−α/2σ̂MI Equation OS2.7

OS2.1.4 Setting up multiple imputation

Rubin’s equations are an effective, but cumbersome, way to combine parameter estimates
for multiply imputed data sets. Even using specialist software a number of important deci-
sions have to be made. These include what variables to include in the imputation model,
whether to transform variables for imputation and how many imputations to use (see Graham,
2009).

MI works best when including all variables in the imputation model – regardless of whether
they are part of the subsequent analysis and regardless of whether they are predictors or out-
comes. Sometimes it is necessary to exclude variables because they are perfectly collinear (i.e.,
one is correlated perfectly with another variable or a combination of other variables) or because
there are too many. In both cases the problem is simply a practical one of running the imputa-
tion analysis. Where the analysis uses a derived variable (one computed from other variables
in the model) this should be included in the imputation model unless it is collinear with other
predictors. For instance, a psychometric scale derived as the sum of several subscales will be
collinear with the subscales (and perhaps only the subscales should be included in the imputa-
tion model). On the other hand, if the intention is to use a square root transformation of one of
the predictors, this will not be perfectly collinear with the untransformed variable and both can
be included.

Variables that are bounded in some way usually need to be transformed prior to imputation
(though the transformation can be reversed for the analysis). Thus a logarithmic transforma-
tion for a variable constrained to be greater than zero will guarantee that the imputed values
will also be greater than zero when the transformation is reversed (see Su et al., 2010). Cate-
gorical variables are trickier to deal with. Treating them as continuous will generally produce
reasonable results, although alternative approaches are available (Graham, 2009; Su et al.,
2010).

Recommendations for the number of imputations to be used vary greatly. Rubin (1987) has
shown that the efficiency of MI methods depends on the rate of missing information (Mr) and
the number of imputations m. Efficiency (relative to complete data) is high when the amount
of missing information is low and the number of imputations is large. Even small m will be
sufficient to produce efficient estimates in most cases. Early MI work suggested that m = 3 or
m = 5 was sufficient, whereas later work recommended values of m = 10 or m = 20 (e.g., see
Schafer and Graham, 2002). Recent findings reviewed by Graham (2009) indicate that the impact
on statistical power of the number of imputations should also be considered. Graham suggests
that with 50% missing information m = 40 should ensure a negligible loss of statistical power
(e.g., 1% or less). For this reason, unless missing values are rare, it is sensible to set m to a high
value (e.g., 30 to 60), where sufficient computing resources are available.

Imputation of missing data is a rapidly developing field. It has the power to dramatically
reduce bias and increase statistical power relative to crude approaches such as casewise dele-
tion. MI also requires additional assumptions – including distributional assumptions (e.g., that
the imputed residuals are sampled from an independent, normal distribution with constant vari-
ance), but you will generally be better off using MI than not. One reason for this is that any
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violations of the assumptions are diluted because only a small proportion of the overall data is
likely to be imputed (Schafer and Graham, 2002). If the proportion of missing data is very large
(e.g., over 50%) imputation may still be the best approach, but no method is likely to be very
accurate in such cases.

Example OS2.1 This example compares an analysis of complete data with an analysis of incom-
plete data. We’ll use a small simulated data set with n = 100. The data are samples from normally
distributed variables with a mean of zero and an SD of one. These are a predictor (x), an outcome
(y) and a third ‘auxiliary’ variable (aux). The auxiliary variable is correlated with x in the popula-
tion (ρ = −.50), but not correlated with the outcome y. The population correlation between x and
y is set at .70. The linear regression of y on x for the complete data set produces the prediction
equation:

ŷ = 0.01153 + 0.75121x

We created an incomplete data set by replacing the observed Y with a missing value code for
any case where aux was greater than zero. This mimics the kind of dropout that might occur if
participants were recruited to a study for an initial measurement, with an outcome measured at a
later date. In this instance 49 out of a possible 100 outcomes were replaced with missing values.
The mi package (Su et al., 2010) was then used to impute three data sets in R. All three variables
(x, y and aux) were included in the prediction model. As missingness is determined entirely by aux,
this meets the conditions of the MAR mechanism and so MI should produce a more accurate model
than the incomplete data set.

The coefficients and standard errors of the linear regression of y on x for the complete data set,
incomplete data and for each of these three imputed data sets (labeled j = 1 to 3) are shown in
Table OS.1. The estimates from the incomplete data are badly biased (relative to the complete data
set). This is most obvious for the intercept – but also true for the slope.

Table OS2.1 Coefficients and standard errors for the linear regression of y on x,
for complete data, incomplete data and three imputed data sets in
Example OS2.1

Intercept Slope

Data set Coefficient SE Coefficient SE

Complete −0.0115 0.0731 0.7512 0.0774
Incomplete 0.3975 0.1059 0.8734 0.1135
j = 1 0.0074 0.0765 0.7656 0.0811
j = 2 −0.0222 0.0778 0.6895 0.0826
j = 3 −0.1091 0.0864 0.6749 0.0916

In this case the imputed data sets produce coefficients and SEs that are closer to those for com-
plete data than for the incomplete data. There is a lot of variability between imputed data sets
(which is to be expected given that over 50% of y values are missing).
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Multiple imputation involves pooling these coefficients and SEs. Combining the intercept and
slopes is the easiest step and is done by taking the arithmetic mean of the imputed coefficients.
The pooled intercept b̄0 is therefore (0.0074 + −0.0222 + −0.1091)/3 = −0.0413 and the pooled
slope b̄1 is (0.7656+0.689+0.6749)/3=0.710. Even with m=3 and around half the data missing,
the pooled MI estimate of the regression line is close to that of the complete data set. MI won’t
always produce estimates this good, but can be expected to produce coefficients more similar to
the complete data set than the incomplete data set.

To obtain the within-imputation variance, the sampling variances are averaged:

σ̂2
b̄0

=

m∑
j=1

σ̂2
b0,j

m
= (0.0765)2 + (0.0778)2 + (0.0864)2

3
≈ 0.006456683

Because this result feeds into a later equation it is a good idea to retain as many decimal places as
possible in the result. The within-imputation variance for the slope is:

σ̂2
b̄1

=

m∑
j=1

σ̂2
b1,j

m
= (.0811)2 + (0.0826)2 + (0.0916)2

3
≈ 0.00726351

The between-imputation variance depends on deviations of the imputed intercept and slope from
the pooled averages b̄0 and b̄1 respectively. For the intercept τ̂2

b̄0
will be a variance computed

treating the m estimates as observations:

τ̂2
b̄0

=

m∑
j=1

(b0,j − b̄0)2

m − 1
=

m∑
j=1

(
b2

0,j

)
− mb̄2

0

m − 1

= 0.00742 + (−0.0222)2 + (−0.1091)2 − 3 × (−0.0413)2

2
≈ 0.00366667

The corresponding calculation for the slope is:

τ̂2
b̄1

=

m∑
j=1

(
b2

1,j

)
− mb̄2

1

m − 1
= 0.76562 + 0.68952 + 0.67492 − 3 × 0.712

2
≈ 0.00237181

The combined variances are therefore

σ̂2
MI,b0

= σ̂2
b̄0

+
(

1 + 1
m

)
τ̂2

b̄0
= 0.006456683 + (1 + 1/3) × 0.00366667 ≈ 0.01134558

and

σ̂2
MI,b1

= σ̂2
b̄1

+
(

1 + 1
m

)
τ̂2

b1
= 0.00726351 + (1 + 1/3)× 0.00237181 ≈ 0.01042592

Taking the square roots gives σ̂MI,b0 = 0.1065156 and σ̂MI,b1 = 0.1021074. Both standard errors
are larger than observed for the complete data. This makes sense (as inferences in the presence
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of missing data should be more uncertain than for complete data). The df for the imputed error
terms are

νb0 = (m − 1)

⎛
⎝1 +

mσ̂2
b̄0

(m + 1)τ̂2
b̄0

⎞
⎠

2

= 2
(

1 + 3 × 0.006456683
4 × 0.00366667

)2

≈ 10.77

and

νb1 = (m − 1)

⎛
⎝1 +

mσ̂2
b̄1

(m + 1)τ̂2
b̄1

⎞
⎠

2

= 2
(

1 + 3 × 0.00726351
4 × 0.00237181

)2

≈ 21.74

A test of the null hypothesis that the population intercept is zero can be reported as:

t(10.77) = −0.39,SE = 0.107,p = .706,95% CI − 0.041[−0.276,0.194]

This leads to the same conclusion as that for the complete data set, but differs from that for the
incomplete data set. For the slope, the test and CI are:

t(21.74) = 6.95,SE = 0.102,p < .001,95% CI = 0.710 [0.498,0.922]

This is a similar result to that of the complete data set and more accurate than the estimate for the
incomplete data set.

Using only three imputations is a good way to illustrate the calculations, but for a real application
m should be larger. Given that around 50% of the data are missing, m = 40 might be a reasonable
choice to get a precise measure of the between-imputation variance and maintain statistical power.
Running the same analysis twice with m = 40 produces similar pooled coefficients and standard
errors (identical to two decimal places), suggesting that this is sufficient. The pooled intercept for
the regression was around −0.07 with SE =0.13. The pooled slope was around 0.68 with an SE =12.

The mi package is one of several ways to do MI in R. It is one of the easiest to use and has
a number of useful features. It automatically recognizes and pre-processes some data types (e.g.,
dichotomous variables and variables constrained to be > 0). It can also be used in an interactive
mode that takes you through the imputation process step-by-step.

OS2.2 R code for Online Supplement 2

OS2.2.1 Missing data and multiple imputation (Example OS2.1)

Several R packages can impute missing data. Imputation is demonstrated here using mi (Su
et al., 2010). This also has an interactive version (not described here). Missing values should,
as a rule, be coded as NA within R. When loading data, or when missing values arise in other
contexts, R will usually code them NA automatically. Functions such as is.na() exist to work
with missing data and many functions have options for handling NA codes. Most regression
functions have an argument na.action that sets how the function behaves on encountering NA

codes. This is usually set to na.action = na.omit or na.action = na.fail (for further details
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see ?NA and ?na.fail). The former drops missing cases (equivalent to casewise deletion), while
the latter causes the call to fail and return a warning (a safe option for complex regression
functions). To check your present settings:

getOption(’na.action’)

?NA

?na.fail

For Example OS2.1, the first step is to import the incomplete data file from the SPSS file. Then
load mi and use the mi() function to impute m = 3 data sets.

library(foreign)

partial.data <- read.spss(‘mi_partial.sav’, to.data.frame=TRUE)

install.packages(’mi’)

library(mi)

n.imputed <- 3

imputed.dat <- mi(partial.data, n.imp = n.imputed, n.iter =

30, check.coef.convergence=TRUE)

The imputed.dat object holds all three data sets in a format that supports analysis via regres-
sion functions such as lm() or glm(). Increase the number of iterations to n.iter=40 or
n.iter=50 if there are problems with convergence. See ?mi for further details.

Use mi.data.frame() to extract a data frame from the imputation model object. The follow-
ing commands extract the first data set and run a simple linear regression and then obtain the
summary of the output:

imputed.data.1 <- mi.data.frame(imputed.dat, m=1)

lm(imputed.data.1$y ∼ imputed.data.1$x)

summary(lm(imputed.data.1$y ∼ imputed.data.1$x))

You can also use mi to analyze all data sets and combine the regression coefficients for you.
Here lm.mi() runs a linear regression model on the imputed data sets in imputed.data. The
functions display(), coef() and se.coef() are used to get summaries, coefficients and SEs
from mi objects (Gelman and Hill, 2007; Su et al., 2010).

imputed.model <- lm.mi(y.do ∼ x, imputed.dat)

display(imputed.model)

coef(imputed.model)

se.coef(imputed.model)

Compare this with the analysis of incomplete cases:

inc.mod <- lm(y.do ∼ x, data=partial.data, na.action=na.omit)

display(inc.mod)
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Although the mi package combines estimates of imputed regression coefficients and SEs it
doesn’t provide CIs or tests (largely because the authors of the mi package focus on statistical
modeling rather than hypothesis testing). However, Rubin’s calculations can be implemented
through basic arithmetic operators or via the mitools package. Using mitools has the advan-
tage of automating the awkward df calculation for the CIs. This sequence of commands extracts
the data frames from the mi output and creates an imputation list object that mitools will
recognize.

install.packages(’mitools’)

library(mitools)

dataset.list <- list(mi.data.frame(imputed.dat, m=1),

mi.data.frame(imputed.dat, m=2), mi.data.frame(imputed.dat, m=3))

mitools.list <- imputationList(dataset.list)

If m is large this becomes tedious, so the steps can be automated by writing a function
such as:

mi.to.mitools <- function(imputed.data.from.mi, m =

imputed.dat@m) {

# mi and mitools must be installed and loaded

data.list <- as.list(1:m)

for (i in 1:m) data.list[[i]] <-

mi.data.frame(imputed.data.from.mi, m = i)

mitools.list <- imputationList(data.list)

mitools.list

}

mi.to.mitools(imputed.dat)

These commands run the regression model on the data frames and combine them using func-
tions found in mitools. Unlike mi, a 95% CI for each parameter is included in the summary and
the df can be obtained if required:

mi.mods <- with(mitools.list, lm(y.do∼x))
summary(MIcombine(mi.mods))

MIcombine(mi.mods)$df

The output of the imputations and pooled results will vary every time you impute new data.
Unless you pool large numbers of imputed data sets your results will not necessarily be similar
to those reported in Example OS2.1.

OS2.2.2 R packages

Gelman, A., Hill, J., Yajima, M., Su, Y.-S., and Pittau, M. G. (2011) mi: Missing data imputation
and model checking. R package version 0.09-14.
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R-core members, DebRoy, S., Bivand, R., I. (2011) foreign: Read data stored by Minitab, S, SAS,
SPSS, Stata, Systat, dBase. R package version 0.8-42.

Lumley, T. (2010) mitools: Tools for multiple imputation of missing data. R package version 2.0.1.

OS2.3 Notes on SPSS syntax for Online Supplement 2

OS2.3.1 Multiple imputation

Recent versions of SPSS (e.g., from 17 onwards) provide multiple imputation facilities that are
fairly easy to run. These support pooling of results using Rubin’s equations for several types of
analysis.

The following syntax imputes missing values on the outcome variable (y.do) for 40 data sets
for the mi_partial.sav data set used in Example OS2.1 using the predictor x and auxiliary
variable aux. The data are delivered to a new SPSS data window (partial_m40), but not saved
to disk, by using DATASET DECLARE and adding an /OUTFILE subcommand.

SPSS data file: mi_partial.sav

DATASET DECLARE partial_m40.

MULTIPLE IMPUTATION x y.do aux

/IMPUTE METHOD=FCS MAXITER= 30 NIMPUTATIONS=40

SCALEMODEL=LINEAR INTERACTIONS=NONE

SINGULAR=1E-012 MAXPCTMISSING=NONE

/CONSTRAINTS x(ROLE=IND)

/CONSTRAINTS aux(ROLE=IND)

/IMPUTATIONSUMMARIES MODELS DESCRIPTIVES

/OUTFILE IMPUTATIONS=partial_m40.

The /IMPUTE subcommand includes several statements relating, among other things, to the
method of imputation, the maximum number of iterations the imputation process will go
through for each data set (30 in this case) and the number of imputations. The FCS (fully condi-
tional specification) method used here is broadly similar to that used in the R package mi. The
easiest way to obtain the syntax is to set up the analysis via the menus in SPSS and select paste.
For a simple imputation such as this, the main concerns are the number of iterations and the
number of imputations. The /IMPUTATIONSUMMARIES subcommand provides a summary of the
imputation model and useful descriptive statistics on missingness. The /CONSTRAINTS subcom-
mand allows variables to be included only as predictors in the imputation model, as imputed
variables or both. Here the constraints are unnecessary (because only y.do has missing values).

Some SPSS commands automatically recognize the imputed data sets and perform a pooled
analysis when run from menus. If using syntax directly, the crucial steps are to make sure the
imputed data sets are in the active window and to specify a subcommand such as /MISSING =

LISTWISE. This is required to analyze the original partial data set for comparison with the
pooled and imputed data analyses. The following syntax runs the simple linear regression of
the imputed outcome variable y.do on x and pools the output.
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DATASET ACTIVATE partial_m40.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/NOORIGIN

/DEPENDENT y.do

/METHOD=ENTER x.

The pooled analysis gives a very similar output to that obtained using mi in R when m=40. The
pooled intercept for Example OS2.1 is −0.053 with an SE of 0.144 and the slope is 0.682 with an
SE of 0.124. SPSS also reports t and p values (reported under ‘Sig.’).

SPSS also has features for inspecting the imputed data (including ‘marking’ them by high-
lighting imputed values in a different color) and selecting imputed data sets in the data view
(e.g., look at the <Edit> and <View> menus). If an imputed data set is active, SPSS also identifies
all analyses that can pool imputed data sets with an imputed data icon.

OS2.4 Notes

1. The probability of no missing data for a case is .9510 ≈ .60 and so (1 − .60) = .40 is the
proportion of cases with missing data.

2. If the data simply do not exist (rather than being potentially available but missing), the
dummy variable approach may still be appropriate.
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