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Introduction 
 
Due to the ever-growing number of studies in experimental ecology, methods for 
summarizing results across a series of studies and reaching general conclusions are 
needed.  The process of statistically synthesizing the results of separate independent 
experiments is known as meta-analysis. Meta-analysis is a quantitative re-evaluation of 
the outcomes of two or more studies.  Meta-analysis involves combining the results of 
multiple studies to reach an overall conclusion about the magnitude of a treatment effect 
or covariate examined in a group of studies.  Meta-analysis can be performed whenever 
two or more studies examine the same conceptual hypothesis (i.e., same null hypothesis). 
For example, meta-analysis could be used to determine whether an initial study and a 
replication of that study yield similar or different results, and what overall inferences 
could be drawn from the combined results.  Meta-analysis can be used for synthesizing 
two studies or 200 studies, or any other number of studies that examine the same 
conceptual hypothesis. Meta-analysis is used to estimate the average effect of a treatment 
or covariate among a group of studies; is the effect large or small, is the effect positive or 
negative; does the overall combined effect differ from zero? 
 
The three major approaches to meta-analysis are: vote counting, combining significance 
levels, and by combining estimates of effect size.  Each approach to research synthesis 
has its advantages and disadvantages and the techniques used are dependent upon the 
type of information available for synthesis. 
 
Vote Counting 
 
An approach to meta-analysis commonly found in review articles is the technique called 
vote counting.  Vote counting is a method for synthesizing results across studies by 
counting the number of instances found in the literature that are consistent or inconsistent 
with an hypothesis. For example, Schoener (1983), Connell (1983), and Denno et al. 
(1995) examined the ecological literature for experimental studies to determine if 



interspecific competition is common or rare in nature. For each instance in each study 
that found interspecific competition, they tallied one vote. They then reported what 
proportion of studies show interspecific competition - calculated as the number of 
positive “votes” divided by the total number of instances examined. Schoener (1983) 
defined a positive vote to be detection of a negative effect of one species on another, 
while Connell (1983) defined a positive vote to be detection of a statistically significant 
negative effect of one species on another (α = 0.05).  The interpretation that the overall 
pattern in the data is either consistent with the hypothesis that interspecific competition is 
common in nature is either based on a subjective assessment that the observed proportion 
of instances of interspecific competition is sufficiently high, or could possibly be 
subjected to a binomial test with the binomial parameter equal to 0.5. 
 
The problems with vote counting are that one can define a positive vote in different ways, 
and more importantly, vote counting treats each study – each vote - as being equal. A 
vote derived from a study with a sample size of 2 is equivalent to vote from a highly 
replicated study. Furthermore, a vote from a study in which the magnitude of the 
observed effect is very small is equal to a study in which the magnitude of the observed 
effect is very large. Because vote counting does not take into account the sample sizes of 
the studies, vote counting is biased towards studies with small sample sizes, since studies 
with large sample sizes and small sample sizes are given the same weight (Cooper and 
Hedges 1994). 
 
On the other hand, if no other information than the existence and direction of an effect is 
reported in a series of studies, vote counting is the only means of synthesizing results. 
 
Combining Significance levels 
 
A long-standing approach to meta-analysis involves combining the significance levels 
derived from multiple tests of the same underlying null hypothesis. When the studies 
under evaluation provide data that do not meet the assumptions necessary to apply the 
parametric models described below, or only report the p-values, tests based on combining 
significance values can be used for synthesizing results.  Because of the non-parametric 
nature of the tests of combined significance, they can be applied broadly and are fairly 
easy to compute. P-values from studies in which an F, t, 2X , or other test statistic was 
applied can be readily combined to obtain an overall test of significance. While there are 
a number of tests of combined significance that can be used in synthesizing studies, 
Fisher’s method for combining probabilities is most widely used (Becker 1994, Sokal and 
Rohlf 1995): 
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where pi is the significance level obtained from the ith study, and -2 � log (pi) is 
distributed as a 2X  variate with 2k degrees of freedom.  In a series of experiments when 
each individual experiment yields a non-significant hypothesis test, if the treatment 



consistently increases of decreases the response variable the combined test of 
significance is likely to be statistically significant.  For an example of Fisher’s Method 
applied to ecological studies see Simberloff and Connor (1981) or McQuate and Connor 
(1990). 
 
The problem with combining probabilities is that the same probability calculated from 
different studies could arise if one study had a large sample size and a small effect size, 
and another study had a large effect size and a small sample size (Becker 1994). Hence, 
the overall test is for statistical significance and provides no information on the average 
magnitude of the treatment or covariate effect. 
 
Combining Estimates of Effect Size 
 
The most recent development in meta-analysis are procedures that permit one to combine 
estimates of “effect sizes” to obtain an overall estimate of the average effect size and its 
standard error, and to test hypotheses about the effects of covariates on the average effect 
size observed in a series of studies. Combining effect sizes is superior to combining 
probabilities because the same probability calculated from different studies could arise if 
one study had a large sample size and a small effect size, and another study had a large 
effect size and a small sample size (Becker 1994). However, effect sizes may be 
combined in an unambiguous way by weighting each effect size in proportion to its 
respective variance, which is in part a function of sample size (Shadish and Haddock 
1994). 
 
The effect size is critical in meta-analysis.  The effect size is chosen by the investigator 
and reflects the differences between experimental and control groups or is utilized to find 
the degree of relationship between the independent and dependent variables (Gurevitch 
and Hedges 1999).  The outcome of each study is summarized as an index of the effect 
size and these indices are summarized across studies (Gurevitch and Hedges 1999). 
 
Effect sizes are measures of the effect of some experimental treatment or a covariate on a 
response variable that is observed in each study. A variety of effect size measures are 
available to be used with response variable that are either continuous or discrete 
(Rosenthal 1994). Two families of effect size measures are available for continuous 
variables the d - family and the r - family. Effect size measures in the d – family are 
appropriate when effect sizes arise from the assessment of the effect of a discrete 
covariate such as in an ANOVA or t-test.   Effect size measures in the r – family are 
appropriate when effect sizes arise from the assessment of the effect of a continuous 
covariate such as in regression or correlation. 
 
The sample size used in estimating an effect size may differ among studies; thus 
estimates of effect sizes may vary in precision.  Therefore, when combining effect sizes, 
each effect size must be weighted in proportion to its precision.  The precision is a 
function of study sample size; thus the larger the sample sizes the greater the weight. In 
some instances it is possible to obtain estimates of effect sizes even when only a p-value 
or test statistic has been reported (See Box below). 



 
 
 
 
Obtaining effect-size when significance levels are given 
 
When an effect-size is not reported, it can be obtained from the significance level, where 
there is a given p-value.  Knowing the significance level is useful when an effect size 
estimate or a test of significance is not accessible.  Even so, this information can be used 
to obtain a lower limit effect size estimate using r = � � Z/ N  (Cooper and Hedges 
1994). A table of the standard normal deviates is needed in order to find Z, t, F, or 2X , 
depending on what kind of p-level you have.  Once the p values or t values are obtained, 
then r, Cohen’s d, or Hedges g can be calculated in order to get the effect size indices. 
 
The d- family is the most common method for obtaining effect size from significance 
levels when using categorical covariates.   The r- family is also used and in some cases 
the d and r families are combined to obtain effect size estimates.  The d-family effect size 
estimate and the r-family effect size estimate can be inter-converted. 
 

To obtain d use Cohen’s d equation: d �

t(n1 � n2 )
df n1n2

  

To obtain r use: r �
t2

t 2
� df

 

 
(See Cooper and Hedges (1994), Chapter 16 for computational formulas and calculations 
for the d and r family). 
 
Fixed-and Random-effects models 
 
Combining estimates of effect sizes in meta-analysis can be consummated by using one 
of two models: Fixed-effect models or Random-effect models. For a fixed-effect model, 
one assumes that the studies under examination share a common true effect size, and that 
the differences of the actual effect size are from sampling error alone (Scheiner and 
Gurevitch 1993).  Unlike fixed-effect models, in random-effects models one assumes that 
there is a distribution of effect sizes and that differences in effect sizes between studies 
are due not only to sampling error, but also to other factors such as measurement error 
and inherent differences between studies. The computations involved in fitting either 
model depend upon obtaining an effect size estimate for each study examined. 
 
Fixed-Effects Models 
 
The assumptions of fixed effects meta-analysis are that studies under examination share a 
common true effect size, the control and experimental groups are normally distributed, 
and the differences of effect size are assumed to be due to sampling error alone.  The 
variances of the sampling error are known as conditional variances, and will be applied in 



the actual synthesis of data. “The unbiased estimate of the population effect would then 
be the simple average of observed study effects; and its standard error would allow 
computations of confidence intervals around that average” (Cooper and Hedges 1994). 
 
In the both the Fixed - and Random - effects model there are two null hypotheses that can 
be examined; 
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the overall grand average effect size does not differ from zero; and )( ..�
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there is no difference between in average effect sizes among the p levels of the covariate. 
  
The null hypothesis of no covariate effect can be examined for both categorical and 
continuous covariates. For fixed-effects models, the model fitting with categorical 
covariates involves a weighted ANOVA and with continuous covariates a weighted 
regression. Statistical packages, such as SPSS, can be used to perform weighted ANOVA 
and weighted regression to fit fixed-effects model meta-analyses. The model sum-of-
squares is distributed as a 2X  variate with number of covariate levels – 1 dfs in the 
weighted ANOVA, and number of covariates in the weighted regression. 
 
Random-Effects Models 
 
In a fixed effects meta-analysis, the sample estimates of effect sizes, Ti, from the k studies 
are viewed as estimates of a common population parameter �I that is the underlying 
population effect size and is a fixed value so that �1 ������������k = ���Ti values from any 
particular study differs from ��because of sampling error or conditional variability. 
Because Ti is based on a random sample of subjects from a population it will differ 
somewhat from ��for the population. 
 
In a random effects model, �i is not a fixed value, rather it is a random variable that 
follows its own distribution. Hence, the total variability of an observed effect size vi* is a 
combination of both the sampling error or conditional variation, vi, about each 
population's �I, and random variation, � , of each �2

� i around the mean population effect 
size: 
 

Variance of estimated 
effects 

= random effects variance + estimation (or 
conditional) variance 

vi*   =               �  2
�

          +          vi . 
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�  is referred to as the random effects variance, the between studies variance, or the 
variance component, vi as the within-study variance, estimation variance, or the 
conditional variance of the Ti (i.e., conditional on � being fixed at the value �i ), and vi* 
as the unconditional variance. If the between studies variance equals zero, then the 
equations for random effects models reduce to those of fixed effects models. 
 
When would a random effects model be appropriate? If �  is significantly different from 
0, then it might be appropriate to use a random rather than a fixed effects model.  
However, since the power of this test might be low, the use of a random effects model 
may be warranted even when such a test is insignificant.  If the studies in a synthesis are 
viewed as a random sample from some larger population of potential studies that have 
been or could be done, and the researcher wishes to draw inferences about the larger 
population of potential studies, then a priori a random effects model is appropriate.  

2
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Things to consider before you begin  
 
When planning a meta-analysis it is important to consider sources of variation in the 
studies that are being included in the meta-analysis. Osenberg et al. (1999) suggest that 
variation among studies in effect magnitudes may arise from four sources: experimental, 
parametric, functional, and structural. Experimental variation arises when the procedures 
under which studies were conducted lead to differences in effect sizes. Parametric 
variation occurs when systems are governed by the same basic processes, yet differ in 
effect magnitudes generated by those processes. Functional variation is when systems are 
so distinct that the functions that describe the interactions between variables assume 
different shapes. Structural variation occurs when systems differ in their causal processes. 
In any event, one must be aware of sources of variation in effect sizes, and account for 
such variation by appropriate selection of an effect size measure or perhaps by 
conducting a mixed-model analysis.  
 
Publication Bias 
 
Like any study a meta-analysis is only as good as the data used in it. There can be 
problems with the available data such as: incomplete reporting of data, lack of 
independence, publication bias, and research bias. Studies that fail to report sample size 
and variance cannot be included meta-analyses that combine estimates of effect size. If 
more than one parameter is used in a study then the parameters are not independent. To 
correct for this lack of independence separate analyses need to be conducted or only one 
parameter must be examined. Studies performed in the same lab are also an example of a 
lack of independence that could lead to between study biases. Publication bias may exist 
when significant studies are published more than non-significant. Begg (1994) outlines 
approaches to determine if the published literature represents a biased sample of the 
studies actually conducted. Begg (1994) also describes the file-drawer problem, and a 
method of estimating how many non-significant, unpublished studies would have to exist 
to change the conclusion of a meta-analysis. It is also possible that researchers choose to 
study organism or systems in which it is more likely to detect an effect, this could be a 



problem for a meta-analysis which is trying to make generalization about the natural 
world (Gurevitch and Hedges 1999). 
 
 
 
 
Calculations 
 
Fixed-Effects Models 
 
The steps required to compute a fixed effects model in meta-analysis are similar to those 
in calculating an ANOVA; the means, sum of the scores, and the variance are calculated 
for each group.  The steps involved include: 
 
1. The calculation of the grand-mean 
2. Calculation of means for different categories of explanatory variables 
3. Calculation of the confidence intervals around the means 
4. Statistical tests are completed to determine the consistency of the effects within and 

among categories of the studies. 
 
Effect size is calculated for each experiment as the difference between the means of two 
groups of individuals, divided by their pooled standard deviation to standardize the effect 
among studies.   
 
(We use an effect size measure from the d - family to illustrate the calculations for the 
Fixed-effects model and one from the r - family to illustrate the Random Effects Model). 
 
Notation: 
 
k  = total number of independent studies among all groups 
mi = number of studies in each group 
p = number of groups (a level of the covariate) 

iT  = observed effect size 
iv  = conditional variance 

iw  = weight =
1
iv
,  

�  = population effect size, under the fixed–effects model, we assume �  is 
the common effect size. 

1 � ... � k� � �

 
Group Weighted Mean 
 
This is the general formula for the group-weighted mean.  The singular dot indicates that 
the effect size measure has been averaged across all studies within a particular level of 
the covariate.  The group weighted mean effect size estimate for the ith group 

�iT is 
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i = 1, …, p, where the weight w  is the reciprocal of the variance of ij ijT , w =1/ij ijv . 
 
Grand Weighted Mean 
 
The Grand Weighted Mean, T , is obtain by summing the group weighted means among 
all groups. Two dots indicate the overall grand mean. 
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Group Mean Conditional Variance 
 
The conditional variance is given by the reciprocal of the sum of the weights in each 
group. 
 

i�v �
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Grand Mean Conditional Variance 
 
The Grand Mean Conditional Variance (v..) or sampling variance is obtained by summing 
the Group Mean Conditional Variance among groups. 
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Now that you have obtained the grand weighted mean T  and the sampling variance v.., 
one can test the null hypothesis that the overall grand mean effect size does not differ 
from zero. 

��

 
Reject Ho :�i. � �o  if the absolute value of 

Z �
i�T� �� 0�

1
2i�v� �

 
 
Exceeds c

�
�100(� ) of the standard normal distribution at � = 0.05 

 
Confidence Intervals 
 
Confidence intervals for the Grand mean or Group mean effect sizes can be obtained 
using the following formula and by inserting the appropriate weighed mean effect sizes 
and conditional variances 
 

i�T � �c
1
2i�v� � � i� � i�T � �c

1
2i�v� �

 
If the confidence interval does not include zero, reject ��. 
 
Test of Heterogeneity of Effect Sizes Between and Within Groups 
 
To test the null hypothesis of no difference between groups (levels of the covariate) in the 
average effect size, an omnibus test for between group differences is conducted using the 
following formula: 
 

BETQ � i�w
i�1

p
�

2
i�T �
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wi.  is the reciprocal of the variance ( .iv1 ),  of T  i�
 
QBET  can be considered to be the weighted sum of squares of group mean effect sizes 
about the grand mean effect size. 
 
The null hypothesis is tested by comparing the observed value of QBET  with the upper-
tail critical values of the distribution with p-1 degrees of freedom (Cooper and Hedges 
1994).  If Q
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BET  exceeds C�, �� is rejected at � - level. 



 
To test for heterogeneity within groups, an omnibus test for within-group variation is 
conducted using the following formula: 
 

wQ � ijw
j�1

im
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The w  are the reciprocals of ij ijv , which is the sampling variance of ijT . 
 
The null hypothesis is tested by comparing the obtained value of Qw with the upper-tail 
critical values of the chi-squared distribution with k-p degrees of freedom, where 
k � m1 � m2 � ... � mp  is the total number of studies (Cooper and Hedges 1994). If Qw 

exceeds 100(1-�), H� is rejected. A significant Qw test would suggest that a Fixed-
Effects Model might be inappropriate. 
 
 
Estimating the random effects variance 
 
Several procedures are available to estimate the random effects variance, � . Shaddish 
and Haddock (1994) present two approaches that are appropriate when no attempt is 
being made to determine if study characteristics (covariates) account for variation in 
effect sizes. Raudenbush (1994) outlines a more general procedure that can be used when 
covariates are used to model the effects of study characteristics. The Raudenbush (1994) 
approach will be presented below in the section on fitting random effects models with 
covariates. 
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Shaddish and Haddock (1994) Method 1 for computation of �  2

�

 
Step 1 - Compute the unweighted variance of the effect sizes, T1,…Tk. 
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Step 2 - Compute an estimate of the random effects variance, � , as the difference 
between the total variance in the effect sizes minus the 1/k times the sum of the 
conditional variances, v
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Step 3 - Compute the unconditional variance of each effect size as 
 



ii vv ��
2* ˆ
�

� . 
 
We see that the unconditional variance in the random effects model is the sum of two 
components, and will always be greater than or equal to the unconditional variance 
estimated for a fixed effects model with the same data. As a result, standard errors and 
confidence intervals will be larger for the random effects models. Therefore, hypothesis 
tests will be conservative in the random effects case relative to the fixed effects case. 
 
Combining effects sizes under a random effects model 
 
When one is not examining the contribution of study characteristics (covariates) in a 
random effects model, then the procedures for combining effect sizes are similar to those 
used for fixed effect models. Confidence intervals of the average effect size and tests of 
the null hypothesis that the average effect size equals zero, , are calculated in a 
similar fashion, except that the unconditional variance, v

0:0 ��H
i*, is used in place of vi as the 

weight for each effect size.  
 
Fitting Models with Categorical or Continuous Covariates under a Random Effects 
Model 
 
Suppose we are interested in determining if the effect sizes differ among studies 
categorized into three groups, and group membership is determined via knowledge about 
each study. If we have k sample estimates, Ti, of the true effect size for each study �i, then 
 

iii eT ��� , 
 
where the ei are the errors of estimation and are assumed to be statistically independent 
with mean of zero and variance vi.  A model of the true effect sizes can be formulated to 
depend on study characteristics plus error: 
 

iippiii xxx ������ ������ ...22110 , 
 
where �0 is the model intercept, xi1,…xip are characteristics of the studies hypothesized to 
affect the study effect size, �i ; ���������p are coefficients measuring the association 
between study characteristics and effects sizes: and �i is the random effect of study i. The 
random effect of study i is the deviation of study i's true effect size from that predicted by 
the model.  Each �i is assumed to be independent with a mean of zero and variance � . 2

�

 
The model depicted above is identical to that for a fixed effects model except that the 
term �i has been added. This model could be viewed as a mixed model with fixed effects 
���������p and random effects �i = 1,…, k. 
 
Estimation 
 



Raudenbush (1994) outlines a procedure involving maximum likelihood estimates of the 
random effects variance � . This is an iterative procedure where one refits the model 
until the estimate of the random effects variance stabilizes, and then fits the final model 
with the weights given by  
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One could write a computer program to iteratively estimate �  and then use that estimate 
to fit the final model, or use existing modules in statistics packages in an iterative fashion 
to do the same. For example, for a meta-analysis in which one is combining correlations 
and has coded studies into p = 3 groups, one would perform the following steps to 
estimate �  and fit the final model: 
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Step 1 - Code the p groups with p - 1 dummy variables taking on values of 0 and 1 
 
Step 2 - Transform the r - values to Zr using Fisher Z tranformation  
 

� �� �� �rrZr ��� 11ln5.0  
 
Step 3 - Perform a Ordinary least squares regression (i.e., an unweighted regression) 
using the regression module in SPSS of the Zr - values on the dummy variables. In the 
case of p = 3, do a regression of Zr on x1 and x2. From this regression obtain the Mean 
Square Error (MSE). 
 
Step 4 - Calculate the conditional variances for each study. For Zr - values the condition 
variance is � �� 31 �� ii nv �, where ni is the sample size in the ith study, and calculate the 
mean conditional variance (MCV) using the Descriptive Statistics module under the 
Summarize option in SPSS. 
 
Step 5 - Calculate an initial estimate of the random effects variance �  as (MSE - MCV) 2ˆ

�

 
Step 6 - Compute the weights � �� �MCVMSEvw ii ��� 1  using the transform command 
in SPSS 
 
Step 7 - Perform the weighted least squares regression (WLS) of Zr - values on x1 and x2. 
Use the SPSS Weight Estimation Option in the Regression module.  
 
Step 8 - Use the regression coefficients estimated from the WLS regression to calculate 
residuals using a compute procedure under the Transform menu in SPSS. The residuals 
are calculated as resid = Zr - b0 - b1x1 - b2x2. 
 
Step 9 - Compute � �� �2

2 1 MCVMSEvw ii ���  using a compute procedure in the 
Transform menu in SPSS 



 
Step 10 - Compute ppi = wi2 (resid2 - vi) also using a compute procedure 
 
Step 11 - Use the descriptive statistic procedure to compute the sum of the wi2 and the 
sum of the ppi values 
 
Step 12 - Compute by hand a new estimate of the random effects variance, � , as  2ˆ
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Step 13 - Go back to Step 6 and repeat subsequent steps unless the new value of 

differs very little from the old value. If the estimated random effects variance is 
negative set � . 
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Step 14 - Once the final estimate of the random effects variance is obtained, perform a 
WLS regression of Zr on the dummy variables x1 and x2 with weights as � �� �2ˆ1 finaliv

�
�� .  

 
Step 15 - The results of this regression provides the necessary information for testing the 
hypothesis that the study characteristics are do not affect the estimated effect sizes. The 
regression sum-of-squares is distributed as �2 with (p – 1) degrees of freedom. Reject the 
null hypothesis of no effect of study characteristics if the calculated value of �2 exceeds 
the critical value at the specified ���
  
Connor et al. (2000) provide an example of a Random Effects Model meta-analysis using 
an effect size measure from the r-family. 
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Useful Websites on Meta-analysis 
 

Site Link 
  
MetaWin software http://www.metawinsoft.com/ 
BMJ articles on Meta-Analysis http://bmj.com/collections/ma.htm 
Statistics Software for Meta-
Analysis 

http://www.yorku.ca/faculty/academic/schwarze/meta_e.htm 

Ralf Schwarzer: Computer 
Programs for Meta-Analysis 

http://www.fu-berlin.de/gesund/gesu_engl/meta_e.htm 

Statistics.com  
Meta-analysis page 

http://www.statistics.com/content/freesoft/mno/meta-
ana53.html 

Meta-analysis and effect size http://seamonkey.ed.asu.edu/~alex/teaching/WBI/es.html 
 

http://www.metawinsoft.com/
http://bmj.com/collections/ma.htm
http://www.yorku.ca/faculty/academic/schwarze/meta_e.htm
http://www.fu-berlin.de/gesund/gesu_engl/meta_e.htm
http://www.statistics.com/content/freesoft/mno/meta-ana53.html
http://www.statistics.com/content/freesoft/mno/meta-ana53.html
http://seamonkey.ed.asu.edu/~alex/teaching/WBI/es.html
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