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STATISTICAL DEVELOPMENTS AND APPLICATIONS

The Analysis of Count Data: A Gentle Introduction to Poisson
Regression and Its Alternatives

STEFANY COXE, STEPHEN G. WEST, AND LEONA S. AIKEN

Department of Psychology, Arizona State University

Count data reflect the number of occurrences of a behavior in a fixed period of time (e.g., number of aggressive acts by children during a
playground period). In cases in which the outcome variable is a count with a low arithmetic mean (typically <10), standard ordinary least squares
regression may produce biased results. We provide an introduction to regression models that provide appropriate analyses for count data. We
introduce standard Poisson regression with an example and discuss its interpretation. Two variants of Poisson regression, overdispersed Poisson
regression and negative binomial regression, are introduced that may provide more optimal results when a key assumption of standard Poisson
regression is violated. We also discuss the problems of excess zeros in which a subgroup of respondents who would never display the behavior are
included in the sample and truncated zeros in which respondents who have a zero count are excluded by the sampling plan. We provide computer
syntax for our illustrations in SAS and SPSS. The Poisson family of regression models provides improved and now easy to implement analyses of
count data.
[Supplementary materials are available for this article. Go to the publisher’s online edition of Journal of Personality Assessment for the following
free supplemental resources: the data set used to illustrate Poisson regression in this article, which is available in three formats—a text file, an SPSS
database, or a SAS database.]

Many researchers in psychology and the behavioral sciences
have theoretical questions that involve count variables. A count
variable is a variable that takes on discrete values (0, 1, 2, . . . )
reflecting the number of occurrences of an event in a fixed pe-
riod of time. A count variable can only take on positive integer
values or zero because an event cannot occur a negative num-
ber of times. There are numerous examples of the use of count
variables in psychology and the behavioral sciences. Clinical
and health psychologists have modeled the number of depres-
sive symptoms that a child exhibits (Computerized Diagnostic
Interview Schedule for Children; National Institute of Mental
Health, 1997), the number of alcoholic drinks consumed per
day (Armeli et al., 2005), the number of readmissions to alcohol
detoxification programs (Shanahan et al., 2005), and the number
of cigarettes smoked by adolescents (Siddiqui, Mott, Anderson,
& Flay, 1999). Sociologists have modeled the number of com-
plaints made by citizens to their local law enforcement office
(Worrall, 2002) and the number of accidents occurring at in-
tersections (Chin & Quddus, 2003). Psychologists interested in
personality assessment have modeled the number of disciplinary
incidents reported among a group of prison inmates (Walters,
2007).

Using count variables in ordinary least squares (OLS) regres-
sion may potentially pose problems. Standard (fixed effects)
OLS regression has minimal assumptions regarding predictors
in the model, so a count variable can be used as a predictor in
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OLS regression with only one caution. If the variance of the
predictor is very small, as may easily occur in count variables
with a small range, the regression coefficient for that predictor
will be very unstable and will have a large standard error (Co-
hen, Cohen, West & Aiken, 2003). However, this is not an issue
specific to count predictors; any predictor with a small variance
will result in an unstable regression coefficient.

Different problems may occur when a count variable is used
as an outcome or criterion variable in OLS regression. When the
mean of the outcome variable is relatively high (often defined
as greater than 10 as a rule of thumb), OLS regression can
typically be applied to a count outcome with minimal difficulty.
However, when the mean of the outcome is low, OLS regression
produces undesirable results including biased standard errors
and significance tests (Gardner, Mulvey, & Shaw, 1995).

The purpose of this article is to provide an introduction to
appropriate regression models for count outcomes, models that
have maximal statistical power while maintaining the proper
Type 1 error rate. We first review the specific problems that may
occur when standard OLS regression is applied to count out-
comes with a low mean. We then introduce Poisson regression,
a family of alternative regression models that is more appropri-
ate for outcome variables with low counts. We initially illustrate
the application of standard Poisson regression with an example
and discuss its interpretation. We then turn to two forms of com-
plications that may occur. First, actual data may have too much
variability to be represented by standard Poisson regression, a
problem termed overdispersion. We discuss and illustrate two
variants of Poisson regression designed to address this prob-
lem: overdispersed Poisson regression and negative binomial
regression. Second, problems may arise in Poisson regression
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associated with counts of zero. We briefly consider two variants
of problems with zeros: (a) the inclusion of a group of people
who would never display the behavior (e.g., nonsmokers), and
(b) people who could potentially display the behavior but who
are excluded by the sampling plan (e.g., a study of only those
people who are admitted to the hospital). These variants of basic
Poisson regression provide more accurate estimates and tests of
hypotheses when the assumptions of the basic Poisson model are
violated. To help enable researchers to utilize these techniques
in their own research, we also provide the computer syntax for
our illustrations in SAS and SPSS, standard packages widely
used by psychologists.1 Finally, we consider the strengths and
limitations of the Poisson family of regression models for count
data.

ASSUMPTIONS OF OLS REGRESSION

Standard OLS regression makes important assumptions re-
lated to the model errors that must be met for accurate statistical
inference (Cohen et al., 2003, chap. 4). Model errors for each
case are defined as the difference between an individual’s ob-
served score and their unobserved expected score. Errors are
therefore unobserved. Model residuals are estimates of model
errors and can be used to assess violations of OLS regression as-
sumptions. Residuals are defined for each case as the difference
between the individual’s observed score (Yi) and the individual’s
predicted score (Ŷi), or êi = Yi − Ŷi . The three major assump-
tions regarding the errors for OLS regression are (a) conditional
normality, (b) homoscedasticity (or constant variance), and (c)
independence. Conditional normality of the errors means that
for any value of the predictor X, the conditional distribution of
errors given X is a normal distribution. Homoscedasticity of the
errors means that the variances of the conditional distributions
of the errors at all values of X have the same common variance,
σ 2. Independence means that there is no clustering of the data
into groups or contexts that would provide information about the
values of other errors. These three properties (conditional nor-
mality, homoscedasticity, and independence) describe the error
structure of OLS regression.

Count outcome variables can violate the first two assump-
tions of OLS regression in several ways. Count variables often
violate the assumption of constant variance by displaying in-
creasing conditional variance with increases in the value of the
predictor. For example, consider the number of children in a
family. Many industrialized countries currently have a mean of
fewer than 2 children per family, so there is little variation in
the number of children per family in these countries (e.g., birth
rates: Germany, 1.40 children per woman; Japan, 1.23 chil-
dren per woman; United Kingdom, 1.66 children per woman2).
In contrast, many countries with economies based on subsis-
tence agriculture tend to have much larger mean family sizes
(e.g., Laos, 4.59 children per woman; Nigeria, 5.45 children per
woman; Uganda, 6.84 children per woman). As the extent of
subsistence agriculture in a country increases, the variation in
number of children per family would be expected to increase.
This statistical property is known as heteroscedasticity; it leads

1STATA is another commercial program that is widely used by economists
and sociologists for the analysis of count data. It is typically not available in
many psychology departments.

2Retrieved December 27, 2007 from http://www.nationmaster.com/
graph/peo tot fer rat-people-total-fertility-rate.

to biased standard errors and biased tests of significance when
OLS regression is applied. The conditional distributions of count
variables also tend to be positively skewed and kurtotic,3 with
many low-count observations and no observations below zero.
These conditions of heteroscedasticity and non-normal condi-
tional distributions mean that statistical significance tests such
as t tests of regression coefficients will be biased and inefficient
for count outcomes (Gardner et al., 1995; Long, 1997). This
result means that the actual Type 1 error rate may not match
the stated Type 1 error rate (typically, α = .05) and that the
statistical power to detect true effects may be affected.

OVERVIEW OF POISSON REGRESSION

Poisson regression is a member of a family of analyses known
as the generalized linear model (GLiM; see Dobson, 2002;
Fahrmeir & Tutz, 2001; Fox, 2008; McCullagh & Nelder, 1989;
Nelder & Wedderburn, 1972). GLiM generalizes OLS regres-
sion for use with many different types of error structures and
dependent variables. The GLiM family of analyses can provide
accurate results for data sets having binary, ordered categorical,
count, and time to failure (or success) dependent variables. The
GLiM introduces two major modifications to the OLS frame-
work. First, it allows transformations of the predicted outcome,
which can linearize a potentially nonlinear relationship between
the dependent variable and the predictors. This modification im-
plies that the predicted scores can be in a different metric (unit
of measurement) than the observed dependent variable scores.
In Poisson regression, the observed scores are counts, and the
predicted scores are the natural logarithms of the counts. In
GLiM, there is a special transformation function called the link
function that relates the metric of the predicted scores to the
metric of the observed criterion scores. In Poisson regression,
the link function is the natural log (i.e., loge or ln).

Second, the GLiM is flexible in error structure. The error
structure describes the conditional distribution of the errors
around the predicted value. OLS regression assumes a condi-
tional normal error structure, whereas GLiM allows for a variety
of other error structures. The foundation for Poisson regression
is the Poisson distribution, which is used to represent the dis-
tribution of the errors. The Poisson distribution is a member of
a set of probability distributions called the exponential family.
For all distributions in the exponential family, the height of the
probability curve for a specific value of Y, called the probability
density, contains an exponential function (i.e., the constant e =
2.718+ raised to a power). The normal distribution is a familiar
member of the exponential family. The equation for the normal
distribution is

f (y|µ, σ 2) = 1√
2πσ

e−(y−µ)2/2σ 2
. (1)

The probability density or height of the normal distribution
depends on two parameters, the mean µ and the variance σ 2.

3Skewness is the extent of asymmetry of the distribution and is indexed
in the population by γ1 = µ3/σ 3, where µ3 is estimated by 1/N�(Xi – X̄i )3,
and σ is the population standard deviation. Excess positive kurtosis refers to
distributions having sharper peaks and longer tails than the normal distribution.
Excess kurtosis relative to the value 0 for the normal distribution is indexed in
the population by µ4/σ 4 – 3. Positive kurtosis (long tails) is associated with bias
in estimates of standard errors.
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These two independent parameters, µ and σ 2, completely spec-
ify the normal distribution.

The Poisson distribution differs from the normal distribution
in several ways that make the Poisson more attractive for rep-
resenting the properties of count data. First, the Poisson distri-
bution is a discrete distribution that takes on a probability value
only for nonnegative integers; this characteristic of the Poisson
distribution makes it an excellent choice for modeling count
outcomes, which only take on integer values of 0 or greater. The
probability mass function for the Poisson distribution,

P (Y = y|µ) = µy

y!
e−µ, (2)

gives the probability of observing a given value, y, of variable
Y that is distributed as a Poisson distribution with parameter µ. y!
is y factorial = y (y – 1) (y – 2) . . . (2)(1). For the count variable
Y, the “number of disciplinary incidents in a prison group”
(Walters, 2007), µ is the arithmetic mean number of incidents
that occur in a specific time interval; the Poisson distribution
would yield the probability of 0, 1, 2, . . . incidents, given the
mean µ of the distribution. In contrast, the normal distribution is
continuous and takes on all possible values from negative infinity
to positive infinity and not just zero and positive integers.

The probability of a specific count also depends on the vari-
ance of the number of counts. In fact, the Poisson distribution is
specified by only one parameter µ. The parameter µ defines both
the mean and the variance of the distribution; both the mean and
variance equal µ. That the mean and variance are equal will often
be useful in modeling count outcomes, which typically display
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FIGURE 1.—Poisson distributions with different values of the mean parameter.

increasing variance with increases in the mean. In contrast, the
normal distribution requires two independent parameters to be
identified—the mean parameter µ and the variance parameter
σ 2.

The Poisson distribution increasingly resembles the normal
distribution as the expected mean value becomes larger. As a rule
of thumb, a Poisson distribution with an expected value greater
than 10 approaches a normal distribution in shape and symmetry.
However, the Poisson distribution is still discrete and has a single
parameter that describes both the mean and variance. Figure
1 shows the probability of each number of events for several
different values of µ. Notice how the distributions with very
low means are right skewed and asymmetric; the distribution
with a mean of 10 appears nearly symmetric. The variances of
distributions with higher means are larger.

Poisson regression is a GLiM with Poisson distribution error
structure and the natural log (ln) link function. The Poisson
regression model can be depicted as

ln(µ̂) = b0 + b1X1 + b2X2 + · · · + bpXp, (3)

where µ̂ is the predicted count on the outcome variable given
the specific values on the predictors X1, X2, . . . , Xp. Recall that
ln refers to the natural logarithm, b0 is the intercept, and b1 is
the regression coefficient for the first predictor, X1. The use of
GLiM with the Poisson error structure resolves the major prob-
lems with applying OLS regression to count outcomes, namely,
nonconstant variance of the errors and non-normal conditional
distribution of errors.

Equation 3 looks very much like an OLS regression equation.
There is a linear relationship between each predictor and the
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predicted score just as in OLS regression. What differs from
OLS regression is that the predicted score is not itself a count
but rather the natural logarithm of the count. Thus it is said
that Poisson regression is “linear in the logarithm.” It turns out
that all the types of regression analysis subsumed under the
GLiM model have this same property—there is a form of the
regression equation that is linear. For those familiar with logistic
regression, there is a form of the logistic regression equation that
is linear; specifically, logistic regression is “linear in the logit,”
that is,

logit(π̂ ) = ln

(
π̂

1 − π̂

)
= b0 + b1X1 + b2X2

+ · · · + bpXp, (4)

where π̂ is the predicted probability of being a case. The regres-
sion coefficients of these linear equations are simple and easy
to interpret given familiarity with OLS regression coefficients.
These linear equations, however, have the disadvantage that the
predicted scores are not in the same metric as the observed
dependent variable scores; rather, the predicted scores are in
a less familiar transformed metric. For Poisson regression, the
transformed metric is the natural logarithm of counts rather than
counts themselves.

Assuming a conditionally Poisson error distribution also
means that the residuals of a Poisson regression model are as-
sumed to be conditionally Poisson distributed rather than nor-
mally distributed as in OLS regression. A discrete distribution
such as the Poisson distribution will represent the discrete na-
ture of the residuals that must occur with a discrete outcome.
Otherwise stated, because the observed values are counts, the
residuals may take on only a limited set of values.

INTERPRETATION OF COEFFICIENTS

Recall that the Poisson regression model is of the following
form: ln(µ̂) = b0 + b1X1 + b2X2 + · · · + bpXp. One interpre-
tation of the regression coefficients is in terms of ln(µ̂) and is
similar to that of OLS regression. A 1-unit increase in X1 results
in a b1 unit increase in ln(µ̂), holding all other variables constant.
This interpretation is straightforward but has the disadvantage
of interpreting the change in the units of a transformation of
the outcome (i.e., the natural logarithm of the predicted count).
This interpretation may be of lesser interest when the counts
representing the outcome reflect a meaningful scale. Otherwise
stated, the researcher would like to talk about how the predic-
tors are expected to affect the number of times the event occurs.
A second interpretation in terms of the count variable can be
obtained following some algebraic manipulation of the regres-
sion equation. Raising both sides of the previous equation to the
power of e results in

eln(µ̂) = e(b0+b1X1+b2X2+···+bpXp). (5)

Note that performing the same operation on both sides of an
equation does not change the equality of the two sides of the
equation. A property of e and the natural log is that eln(x) = x,
so the left side of the Equation 5 can be simplified, resulting in

µ̂ = e(b0+b1X1+b2X2+···+bpXp). (6)

Now we have an equation that shows the effect of the predictors
on the actual predicted count, but it is not yet obvious how each
of the predictors contributes to the expected count. A property
of exponents is that xa+b+c = xaxbxc, so the single term on the
right side of the equation can be broken up into several smaller
parts, resulting in an equivalent equation:

µ̂ = eb0eb1X1eb2X2 · · · ebpXp . (7)

Now we can see that changes in a predictor result in multiplica-
tive changes in the predicted count. This contrasts with OLS
regression in which changes in the predictor result in additive
changes in the predicted value. To further clarify the interpreta-
tion, we can look at the term for a single predictor such as X1:
eb1X1 . Using the property of exponents shown previously, we
can examine the effect of a 1-unit change in X1 on the outcome:

eb1(X1+1) = eb1X1+b1 = eb1X1eb1 . (8)

The eb1 term in Equation 8 is the effect of a 1-unit change in
X1 on the outcome. For a 1-unit increase in X1, the predicted
count (µ̂) is multiplied by eb1 , holding all other variables con-
stant. Note that the unstandardized (raw) regression coefficient
is exponentiated. Given that the variance (standard deviation) of
the outcome variable depends on the predicted value in Poisson
regression, exponentiation of the standardized coefficient does
not yield an easily interpretable value.

EXAMPLE: DRINKS CONSUMED BY COLLEGE
STUDENTS ON SATURDAY NIGHT

This example uses simulated data that were created to closely
match the characteristics of data originally collected by DeHart,
Tennen, Armeli, Todd, and Affleck (2008) in a study of alco-
hol consumption by students at a university in the northeastern
United States. The observed outcome is the report of the number
of alcoholic drinks that an individual consumes on one particular
Saturday night during the study. Commonly in studies of alco-
hol consumption, one alcoholic drink is defined as one 12 ounce
can or bottle of beer, one 5-ounce glass of wine, one 12-ounce
wine cooler, or 1.5 ounces of liquor straight or in a mixed drink.
In the DeHart et al. (2008) data set, the students completed an
eight-item subscale of sensation seeking (excitement seeking,
facet E5 of extroversion) from Costa and McCrae’s (1992) Re-
vised NEO Personality Inventory. Each answer could potentially
range from 1 (low) to 7 (high) on sensation seeking. The actual
range of the mean scores for the eight items in the simulated
data was from 3.19 to 6.49. As with many Likert-type scales, no
meaningful value of 0 is defined for this scale. Also in the data
set is the participant’s gender, coded 0 = female and 1 = male.
For our simple illustrative example, we initially hypothesized
that sensation seeking would have a positive relationship with
the number of alcoholic drinks consumed. Later we consider a
two predictor model in which both sensation seeking and gender
are used to predict the number of alcoholic drinks consumed.
The SAS and SPSS computer syntax for the full set of analyses
of the two-predictor model are presented in Appendixes A and
B, respectively.

As a starting point, we used standard OLS regression to pre-
dict the number of alcoholic drinks consumed from the con-
tinuous measure of sensation seeking. This analysis permits



POISSON REGRESSION AND ITS ALTERNATIVES 125

TABLE 1.—Regression coefficients, standard errors, and p values for example
using only sensation seeking to predict number of alcoholic drinks consumed.

(1) OLS (2) Poisson (3) Overdispersed (4) Negative
Regression Regression Poisson Binomial

Intercept −.4514 −.1403 −0.1403 −0.0826
Standard error 0.9991 0.2128 0.3591 0.3524
p value 0.6514 0.5096 0.6960 0.8147

Sensation seeking 0.6523 0.2315 0.2315 0.2205
Standard error 0.1907 0.0397 0.0669 0.0667
p value 0.0006 <.0001 0.0005 0.0009

Scale = √
φ N/A 1.0000 1.6873 1.0000

Alpha N/A 0 0 0.7179
Deviance N/A 1151.6884 404.5057 452.5635
R2 or Pseudo R2 0.0284a 0.0296b N/A N/A

Note. OLS = ordinary least squares; N/A = not applicable. In the column labeled “(1),”
the predicted scores are in the form of a count of number of drinks; in columns labeled
“(2)”–“(4),” the predicted scores are in the form of the natural logarithm of the number of
drinks.

aR2. bPseudo R2.

comparison of the later results of the Poisson family of models
to those of OLS regression; use of OLS regression represents
the standard, nonoptimal practice in much of current literature
in psychology. The column labeled “(1)” in Table 1 shows the
regression coefficients for this model. Sensation seeking signif-
icantly predicts number of alcoholic drinks consumed. A 1-unit
increase in sensation seeking resulted in an average of 0.6523
more drinks consumed. Additionally, note that the intercept, that
is, the predicted number of drinks consumed for an individual
who scored 0 on the sensation-seeking measure, is negative,
specifically, –0.45 drinks. Of course, a negative count is impos-
sible. This illustrates yet another potential problem with apply-
ing OLS regression to count dependent variables—the predicted
scores will sometimes be out of range of actual counts, specif-
ically, impossible negative values. Figure 2 shows the scatter
plot of the OLS residuals versus observed scores on the sen-
sation predictor for this model. Heterogeneity of variance is
clearly present (i.e., there is more variability in the residuals
at the higher sensation seeking scale values than at the lower
values), indicating that OLS regression is not appropriate for
these data. In addition, note that the residuals are arrayed in a
set of parallel continuous lines, termed stripes, each of which
has a slightly negative slope. Stripes occur in scatter plots with
count data because the outcome can only take on integer rather
than continuous values, limiting the potential values that may
be taken by the residuals.

We then used standard Poisson regression to predict the num-
ber of alcoholic drinks consumed from sensation seeking. The
column labeled “(2)” of Table 1 shows the regression coeffi-
cients for the Poisson regression model. The linear form of the
prediction equation is ln(µ̂) = −0.1403 + 0.2315sensation, in
which the predicted scores are in the form of the logarithm
of counts, rather than actual counts, as in OLS regression. In
this form, the unstandardized coefficient b0 = −0.14 is the pre-
dicted logarithm of the counts when sensation seeking is 0, and
b1 = 0.23 is the predicted change in the logarithm of the counts
corresponding to a 1-unit change in sensation seeking. These
interpretations are straightforward but are in an unfamiliar met-
ric. To interpret the results in the original count metric, we

FIGURE 2.—Scatter plot of ordinary least squares residuals as a function of
sensation seeking. The variability of the residuals increases as values of sensa-
tion seeking increase. The residuals fall in a set of parallel straight lines with a
slightly negative slope termed stripes. For any specified value of sensation seek-
ing, there is a greater density of residuals with smaller than with larger values,
indicating the positive skew of the distribution of the residuals conditional on
sensation seeking.

exponentiate the equation for the ln(µ̂), resulting in the equa-
tion for the predicted number of alcoholic drinks consumed:
µ̂ = e−0.1403e0.2315sensation. The exponentiation of the intercept,
e−0.1403 = 0.87, is the predicted number of alcoholic drinks con-
sumed by a person who has a score of zero on the sensation-
seeking measure; note that this is a positive value as opposed
to the negative value from the OLS regression. Given that the
measure of sensation seeking does not include zero (indeed,
the minimum value of sensation seeking observed in this data
set was 3.19), this intercept value has little importance in this
example.4 The exponentiation of the regression coefficient for
sensation seeking, e0.2315 = 1.26, is the predicted multiplicative
effect of a 1-unit change in sensation seeking on number of
alcoholic drinks consumed. A person with a sensation seeking
score of 5 is expected to consume, on average, 1.26 times as
many drinks as a person with a sensation seeking score of 4.

Figure 3 shows a scatter plot of the observed data with the pre-
dicted regression line for both the OLS and Poisson regressions.
OLS regression produces a straight line (solid) representing the
predicted values. In contrast, there is slight curvature in the Pois-
son regression prediction line (dotted) in this data set, reflecting
the exponential or multiplicative nature of the model. In other
data sets in which there is a stronger relationship between the
predictor and outcome, a smaller mean on the outcome, or both,
the curvature in the Poisson regression prediction line can be
more dramatic (see, e.g., Cohen et al., 2003, Figure 13.4.2, p.
529).

4The intercept is the predicted value of the outcome when each of the
predictors is equal to zero. In this illustration, if the measure of sensation seeking
were rescaled so that zero had a meaningful value (e.g., if it were rescored as a 0
to 6 scale or it were mean centered, sensationC = sensation – mean[sensation]),
then the intercept would be interpretable. The lack of attention of the scaling
of the predictors unfortunately makes the intercept a parameter of no interest in
many behavioral science applications (see Cohen et al., 2003; Wainer, 2000).
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FIGURE 3.—Scatter plot of outcome versus sensation seeking. The straight solid
line represents the ordinary least squares fit; the slightly curved dotted line
represents the fit of the Poisson regression model.

MODEL FIT AND GAIN IN PREDICTION

Parameter estimation for GLiMs such as Poisson regression
employs maximum likelihood methods as opposed to the OLS
estimation used for OLS regression. Maximum likelihood es-
timation finds the population parameters that are most likely
to have produced the observed data. (See Enders, 2005, for a
more complete explanation of maximum likelihood estimation
that is accessible to behavioral science researchers.) In essence,
maximum likelihood estimation works by considering many
different parameter values, calculating the probability that the
observed data came from a population with those parameters,
and choosing as estimates the value of each parameter that yield
the highest probability of having produced the observed data.
After all parameters have been estimated for the model, it is
useful to have a measure of how adequately the model accounts
for the data.

R2 and Pseudo R2 Measures

In OLS regression, the squared multiple correlation or R2
multiple

(or equivalently R2) is a measure of the proportion of variation
in the outcome that is accounted for by the predictors. More gen-
erally, the R2 reflects the extent to which the model accounts for
the observed data. The calculation of the R2 measure in OLS
regression is based on the variation of the criterion, also called
the total sum of squares (SS). Variation in the criterion is the
sum of the squared deviations of the scores on the dependent
variable around their mean,

∑
(Y − Ȳ )2. OLS regression com-

pletely partitions total SS into a portion that is explained by the
regression model (explained SS) and a portion that remains un-
explained (residual SS). The R2 is calculated as the proportion
of variation accounted for by the model, or explained SS divided
by total SS.

Poisson regression, like most models in the GLiM family, has
no direct analogue to R2. However, any model estimated with
maximum likelihood methods will produce a deviance value
for the model, which can be used to assess fit of the model.
The deviance value differs from an R2 value in two important

ways. First, whereas the R2 value can indicate absolute fit of the
OLS model without reference to other models (i.e., proportion
of variation in the outcome variable that is accounted for by the
model), the deviance is a relative measure, so it can only be
interpreted in relation to another model. Second, the R2 value
reflects the goodness of fit of the model or how well the model
accounts for the data. In contrast, deviance represents badness
of fit of the model or how much worse the model is than a
perfectly fitting model (i.e., a model that has as many predictors
as participants and therefore can predict all values perfectly). A
large deviance is undesirable, reflecting that the model is much
worse than, or deviates a great deal from, the perfect model.

In Poisson regression, the total variation in the outcome can
not be completely partitioned into explained and unexplained
portions5 (Cameron & Trivedi, 1998). Instead, the deviance of
the model can be used to calculate a pseudo-R2 measure. These
pseudo-R2 measures help to assess how well the model predicts
the outcome. The pseudo-R2 measures actually represent the
proportional reduction in deviance due to the inclusion of the
predictors. Recalling that a large deviance reflects poor fit rela-
tive to a perfect model, the pseudo-R2 measures tell researchers
how much closer they have gotten to that perfect model. They
do not represent the proportion of variation accounted for by the
model (as R2 does in OLS regression).

Consider a Poisson regression model that contains no pre-
dictors. This model will have one regression coefficient, an in-
tercept b0, which represents the average count. This model is
analogous to an OLS regression model with no predictors other
than the intercept b0; the predicted score for every individual
is Ȳ , the arithmetic mean count averaged across all individuals.
Cameron and Windmeijer (1997) suggested that the deviance
of a Poisson regression model with only an intercept (i.e., no
predictors) can be completely separated into two nonoverlap-
ping parts. Recall that deviance is a measure of lack of fit; this
measure is reduced by adding predictors to the intercept-only
model if the predictors have some accuracy in accounting for
the outcome. The first part is the deviance that remains to be
accounted for after predictors are included (the unexplained
deviance or deviance of the fitted model). The second part rep-
resents the amount by which the deviance is reduced by adding
predictors that account for the outcome (or explained deviance);
the explained deviance of the fitted model is the deviance of the
intercept-only model minus the deviance of the fitted model.
Then

R2
deviance = 1 − deviance(fitted model)

deviance(intercept only)
. (9)

5Three problems arise with calculating R2 for Poisson regression in
the same manner as R2 for OLS regression (Cameron & Trivedi, 1998).
First, the convenient partitioning of the total sum of squares,

∑
(Yi − Ȳ )2 =∑

(Yi − Ŷi )2 + ∑
(Ŷi − Ȳ )2, breaks down. Because of the nonlinear relation-

ship between Ŷi and Yi , the cross-product term +2
∑

(Yi − Ŷi )(Ŷi − Ȳ ) will not
equal zero. Second, because maximum likelihood estimation does not minimize
the residual sum of squares, R2 can be less than 0 or greater than 1. Indeed,
adding a predictor variable can potentially decrease R2. Third, the interpretation
of R2 is problematic when the variance around the regression line changes as a
function of the predicted value.
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Like the R2 measure from OLS regression, this pseudo-R2 mea-
sure is bounded by 0 and 1 and typically increases as predictors
are added.

For the preceding example of the one-predictor equation with
sensation seeking as the only predictor, the deviance for the
model can be found in the column labeled “(2)” of Table 1. The
deviance is 1151.6884. The deviance of a model with no pre-
dictors (i.e., the intercept-only model) is 1186.7614 (not shown
in Table 1). Then

R2
deviance = 1 − deviance(sensation)

deviance(intercept only)

= 1 − 1151.6884

1186.7614
= 0.0296. (10)

Including the sensation-seeking predictor reduced the deviance
by about 3% compared to using no predictors.

We can also compute an R2
deviance measure for the two-

predictor equation containing sensation seeking and gender as
predictors. From the column labeled “(2)” of Table 2, the de-
viance with the two predictors is 959.4582. Then

R2
deviance = 1 − deviance(sensation + gender)

deviance(intercept only)

= 1 − 959.4582

1186.7614
= 0.1915. (11)

Including both predictors reduced the deviance by 19%
compared to using no predictors. This is analogous to a
squared multiple correlation for a two-predictor OLS regression
equation.

Other pseudo-R2 measures have been developed for GLiMs.
Cox and Snell (1989) developed a pseudo-R2 measure using the
likelihoods for the intercept-only model and the tested model to
assess improvement from the intercept-only model. A problem
with the Cox and Snell measure is that unlike R2 from OLS and
the pseudo-R2 for GLiM, the Cox and Snell index does not have
a maximum value of 1. Nagelkerke (1991) adjusted the Cox and
Snell measure to have a maximum value of 1 by dividing the
Cox and Snell measure by its maximum value. The Nagelkerke
fit measure has a minimum of 0 and a maximum of 1.

Gain in prediction for nested models. In OLS regression,
one thinks in terms of gain in prediction by the addition of one
or more predictors to an equation already containing at least
one predictor. In GLiM, one thinks of additional reduction in
deviance by the addition of predictors to an existing equation.
We compare two models, one of which is nested under the other.
Two models are nested if the more inclusive model contains all
predictors present in the simpler model. Continuing with our
example of prediction of alcohol consumption, suppose that
the researcher wants to examine the proportional reduction in
deviance by the addition of gender to an equation containing
only sensation seeking as a predictor. In this case, the sensation
seeking only model is nested within the gender plus sensation
seeking model; the sensation seeking only model serves as the
base model. The deviance of the one-predictor model, given in
the column labeled “(2)” of Table 1, is 1151.6884; the deviance

TABLE 2.—Regression coefficients, standard errors (SE), and p values for ex-
ample using sensation seeking and gender to predict number of alcoholic drinks
consumed.

(1) OLS (2) Poisson (3) Overdispersed (4) Negative
Regression Regression Poisson Binomial

Intercept −2.2325 −0.7888 −0.7888 −0.6436
Standard error 0.9360 0.2148 0.3258 0.3329
p value 0.0171 0.0002 0.0155 0.0532

Sensation seeking 0.7719 0.2608 0.2608 0.2351
Standard error 0.1749 0.0388 0.0589 0.0616
p value <.0001 <.0001 <.0001 0.0001

Gender 2.3699 0.8395 0.8395 0.8224
Standard error 0.2685 0.0629 0.0954 0.0956
p value <.0001 <.0001 <.0001 <.0001

Scale = √
φ N/A 1.0000 1.5169 1.0000

Alpha N/A 0 0 0.5105
Deviance N/A 959.4582 416.9831 459.7743
R2 or Pseudo R2 0.1868a 0.1915b N/A N/A

Note. OLS = ordinary least squares. N/A = not applicable. In the column labeled “(1),”
the predicted scores are in the form of a count of number of drinks; in columns labeled
“(2)”–“(4),” the predicted scores are in the form of the natural logarithm of the number of
drinks.

aR2. bPseudo R2.

of the two-predictor model, given in the column labeled “(2)”
of Table 2, is 959.4582. The proportional reduction in deviance
by the addition of gender to sensation seeking is given by

R2
deviance = 1 − deviance(sensation + gender)

deviance(sensation)

= 1 − 959.4582

1151.6884
= 0.1669. (12)

Adding gender to sensation seeking has reduced the deviance
by almost 17%. This is analogous to an R2 for gain in prediction
in OLS regression.

Tests of Significance of Model Fit

In OLS regression, we have a test of significance of the R2

and, in addition, a test of significance of gain in prediction by
the addition of predictors. For both, the test statistic is the F
test. In contrast, in GLiMs, the test statistic is a chi-square test.
The chi-square test is the difference between two deviances;
the first deviance is that from a base model, and the second
deviance is that from a more complete model. The chi-square
test examines the reduction in deviance from the addition of one
or more predictors to a base model. Consider first the single
predictor model with sensation seeking as the only predictor.
The base model is the null model containing only the intercept,
with deviance 1186.7614, shown previously. The deviance of
the model containing sensation seeking is 1151.6884. The chi-
square test statistic for the contribution of sensation seeking to
prediction is given as χ2(1 N = 400) = 1186.7614–1151.6884
= 35.073. The degrees of freedom for the chi-square test equal
the number of predictors added to the base model to form the
more complete model: here only one, sensation seeking. The
tabled critical value of χ2 with 1 df at α = 0.05 is 3.84; sensation
seeking makes a significant contribution.
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We may also test whether the two predictors sensation seeking
and gender in combination make a significant contribution to
prediction. Again the base model is the null model with deviance
1186.7614. The model deviance from the two-predictor model
is 959.4582. The chi-square test statistic for the contribution of
sensation seeking plus gender to prediction is given as χ2(2,
N = 400) = 1186.7614 – 959.4582 = 227.3032, p < .0001.
The 2 df for this test equal the number of predictors added to
the base model, here sensation seeking and gender. The two
predictors together make a significant contribution.

Significance of gain in prediction. We may also test for
gain in prediction by the addition of one or more predictors to
a model containing at least one predictor. In our example, the
deviance of the one-predictor model minus the deviance of the
two-predictor model is distributed as chi-square with degrees of
freedom equal to the number of parameters difference (i.e., the
difference in number of predictors in the base model vs. the en-
hanced model). There is one additional parameter estimated in
the two-predictor model compared to the one-predictor model,
so the degrees of freedom for this test equal 1. If the two-
predictor model fits much better than the one-predictor model,
the deviance reduction will be large, and the chi-square statistic
will be large. If the two-predictor model does not fit much better
than the one-predictor model, the deviance reduction will be
small, and the chi-square statistic will be small. Here, a signif-
icant chi-square value means that the two-predictor model fits
better than the one-predictor model (i.e., the additional predic-
tor is needed). The deviance of the one-predictor model, given
in the column labeled “(2)” of Table 1, is 1151.6884, and the
deviance of the two-predictor model, given in the column la-
beled “(2)” of Table 2, is 959.4582, yielding χ2(1, N = 400) =
1151.6885 – 959.4582 = 192.2302, p < .0001. This significant
chi-square statistic indicates that the model that includes gender
in addition to sensation seeking fits much better than the model
with only sensation seeking as a predictor.

MODELS CONTAINING INTERACTION TERMS
AND POLYNOMIAL TERMS

As in OLS regression, terms can be added to the Poisson re-
gression model to represent interactions and curvilinear effects.
For example, if we wish to add an interaction between predic-
tor variables X1 and X2 to the regression equation, it would
be represented as ln(µ̂) = b0 + b1X1 + b2X2 + b3X1X2. Note
that these effects are most easily interpreted in the metric of the
logarithm of the count. In this metric, b0 is the intercept, the
predicted ln(count) when X1 = 0 and X2 = 0, b1 is the slope
of X1 when X2 = 0, b2 is the slope of X2 when X1 = 0, and
b3 is the linear × linear interaction. Or, if we wish to study
a possible curvilinear effect of X1, it would be represented as
ln(µ̂) = b0 + b1X1 + b2X

2
1. Here, b0 is the intercept, b1 is the

slope of a tangent line to the quadratic curve when X1 = 0, and
b2 is related to rate of acceleration of the curve. These inter-
pretations in the logarithm of the count metric closely parallel
the usual interpretations of interactions and quadratic effects in
OLS regression (Aiken & West, 1991; West, Aiken, & Krull,
1996). However, typically these more complex models are ex-
tremely difficult to interpret when exponentiated to the original
count metric.

For researchers who wish to visualize the results of complex
Poisson regression analyses in the count metric, we recommend

plotting the predicted curves by exponentiating ln(µ̂) at different
values of X1. For interactions, this involves plotting separate
curvilinear relationships of the relationship between Y and X1
at different values of X2. If we had found an interaction between
sensation seeking and gender in our example, we could plot
separate curves for females (X2 = 0) and males (X2 = 1). If
instead X2 were a continuous variable such as age, we could
ideally choose meaningful values on the variable (e.g., 20, 30,
40, 50) or choose convenient values within the range of the
data (e.g., 1 SD below the mean, at the mean, and 1 SD above
the mean of X2). Again, we note that the interpretation of the
results of complex Poisson regression analyses is far easier in
the metric of the logarithm of the count.

ASSESSING MODEL ADEQUACY

In OLS regression, a typical graphical method used to assess
model adequacy is to plot the residuals against the observed
predictor values as in Figure 2. If there are multiple predic-
tors, the residuals should also be plotted against the predicted
value Ŷ (Cohen et al., 2003, chap. 4). This plot should show
no relationship between the observed value of the predictor and
mean of the respective residuals. Additionally, the plot should
show constant variance of the residuals across all values of the
observed value (homogeneity), a property that is not found in
Figure 2; this highlights that OLS regression is not appropriate
for these data.

The appropriate graphical method for assessing model ade-
quacy in Poisson regression is to plot the residuals against the
predicted outcome values (Cameron & Trivedi, 1998). However,
for nonlinear models such as Poisson regression, raw residuals
will always be heteroscedastic and asymmetric (Cameron &
Trivedi, 1998, p. 141), so alternative types of residuals must be
used. Pierce and Schafer (1986) suggested deviance residuals6

are the best choice for GLiMs, including Poisson regression.
Individual deviance residuals are summed to form the model
deviance. The plot of the deviance residuals versus predicted
values for the two-predictor Poisson regression model is shown
in Figure 4 (The SAS and SPSS computer syntax7 used to gener-
ate this plot are presented in Appendixes A and B, respectively).
Note that as expected, there is no relationship between the de-
viance residuals and the predicted value. The lowess fit line on
the plot represents the best nonparametric fit of the relation-
ship between the predicted values and the residuals (Cohen et
al., 2003, chap. 4). This line relatively closely tracks a residual
value = 0, indicating there is no relationship. A nonlinear re-
lationship between sensation seeking and alcohol consumption
would be reflected in a curvilinear lowess line.

Another way to assess model adequacy is to compare the
predicted values of the outcome to the observed values of the
outcome. Long (1997) outlined graphical methods to compare
predicted values to observed values including methods to cal-
culate the average predicted proportion for each value of the
outcome. That is, of the N cases, how many cases have a

6The deviance residual is the square root of the individual contribution of
case i to the deviance, di = sign(Yi − µ̂i )

√
2{l(Yi ) − l(µ̂i )}, where the sign(Yi

– µ̂i ) preserves the sign of the residual and l(Yi ) is the log of the density of Yi

when µ = Yi and l(µ̂i ) is the log of the density of Y when µ = µ̂i .
7GENLIN is included in SPSS Version 15 and 16 but only with the Advanced

Models module or Graduate Pack.
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FIGURE 4.—Scatter plot of deviance residuals against predicted value for the
two-predictor Poisson regression model. The solid line that closely tracks a
deviance residual value of 0 represents the nonparametric lowess fit.

predicted outcome value of 0, of 1, of 2, and so forth? Figure 5
shows the predicted outcome values and the observed outcome
values for the single predictor Poisson regression model just
discussed. Note that this model seems to underpredict very low
and very high values of the outcome and to overpredict middle
values.

Diagnostics

Regression diagnostics are a group of statistics that focus
on individual cases in the sample to help a researcher detect
outliers and poorly fitting cases. For OLS regression, regression
diagnostics are well developed and understood, with three main
types of diagnostic statistics: leverage statistics detect cases that
are extreme on the predictors, distance statistics detect cases that
have large discrepancies between the observed and predicted
values on the outcome variable, and influence statistics detect
cases that have a large influence on the regression coefficients.
The diagnostics for distance and influence are based on the key
idea of case deletion: The same regression model is estimated
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FIGURE 5.—Comparison of observed outcome counts to predicted outcome
counts from the single-predictor Poisson regression model.

with all cases included and then with a specific case (case i)
deleted, and the results are compared. Conceptually this would
be done N times, once for each case in the data set. For OLS
regression, simple relationships exist that allow the full set of
diagnostic statistics to be quickly and exactly calculated in a
single computer run. The researcher identifies cases with high
values on leverage, distance, and influence as potential outliers
for further examination. Authors have offered conventions for
values on the diagnostic statistics that call for further study of the
case and its influence. Cohen et al. (2003, chap. 10) presented a
full discussion of these issues.

However, in Poisson regression and other GLiMs, the calcu-
lation of diagnostic statistics becomes more complicated, and
clear conventions for their interpretation (e.g., cutoff scores)
have not been offered. In OLS regression, leverage measures
assess how extreme an observation is only on the predictors; the
outcome Y is ignored completely. Formally, leverage is a mea-
sure of the discrepancy of a case on the set of predictors from
the centroid of the predictor space, the point representing the
means on all the predictors (X̄1, X̄2, ..., X̄p). Leverage statistics
in OLS regression are calculated from a special matrix called
the Hat matrix, which is a function of only the predictors in OLS
regression. However, in GLiMs, there is a problem with lever-
age measures. The Hat matrix in GLiMs is not solely a function
of the predictors; in fact, in Poisson regression, the Hat matrix
is also a function of the mean of the outcome variable for each
case, µi . Thus the leverage measures for Poisson regression,
and for other GLiMs as well, do not have the same meaning
as they do in OLS regression and cannot be applied to Poisson
regression as they are in OLS regression. Leverage measures
are computed in standard software for GLiMs; Appendixes A
and B include syntax for SAS and SPSS to save the values of
the Hat matrix diagonal using the LEVERAGE keyword for both
SAS and SPSS.8

Distance measures assess the discrepancy between the ob-
served outcome value and the predicted outcome value; all dis-
tance measures are based on residuals (Yi − Ŷi). In OLS re-
gression, one measure used to assess distance for case i is the
studentized residual, a special standardized residual. In OLS re-
gression, the computation of the studentized residuals is quite
simple; studentized residuals can be calculated for all cases in
an analysis simultaneously. In contrast, Fox (2008) noted that
in GLiMs exact calculation of studentized residuals requires fit-
ting the regression model to data sets in which each case in turn
has been deleted; each of the N deviances would be compared
to the deviance of the full model. Such a procedure is com-
putationally intractable in larger data sets. Various procedures
that approximate the studentized residual have been suggested.
Cameron and Trivedi (1998) suggested estimating the studen-
tized deviance residuals for Poisson regression as

d∗
i = di√

1 − hii

, (13)

8Case diagnostics (leverage, Cook’s D, and DFBETAS) for PROC GEN-
MOD are available only in SAS Version 9.2 or later. Note that SAS and SPSS
will produce slightly different values for deviance residuals and influence be-
cause SAS produces leverage values ranging from 1/N to 1 and SPSS “centers”
the leverage values to range from 0 to (N – 1)/N .
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where di is the deviance residual for case i and hii is the ith di-
agonal element of the Hat matrix. Appendixes A and B include
syntax for SAS and SPSS to save the values of the raw and stu-
dentized deviance residuals using the STDRESDEV and STD-
DEVIANCERESID keywords, respectively. Studentized residu-
als are useful diagnostics; in OLS regression, they signal cases
that may be increasing standard errors and reducing power for
tests of significance of individual coefficients.

Influence measures assess how much the deletion of a par-
ticular case will actually change the values of predicted scores
and regression coefficients, that is, affect the results and con-
clusions from the regression analysis. OLS regression has both
global and specific measures of influence. DFFITS and Cook’s
D assess overall change in the predicted scores from deleting a
specific case; DFFITS measures the number of standard devia-
tions by which a case changes its own predicted score when the
case is included in versus deleted from the analysis. In addition,
OLS regression has measures of influence on the individual re-
gression coefficients; DFBETAS, one for each regression coef-
ficient for each case, assesses the number of standard deviations
by which an individual case changes each regression coefficient.
DFFITS and DFBETAS conceptually are computed by deleting
each case in turn and measuring the change in the predicted
score and regression coefficients, respectively. For GLiMs, once
again, calculation of exact estimates of these statistics is not
computationally possible in larger samples, so procedures that
provide approximations to DFFITS, Cook’s D, and DFBETAS
have been offered (Dobson, 2002; Fox, 2008; Williams, 1987).
The Cook’s D and DFBETAS measures can be obtained in SAS
using the COOKSD and DFBETAS keywords; Cook’s D can be
obtained in SPSS using the COOK keyword.

As noted previously, clear conventions for interpreting diag-
nostic statistics do not currently exist in GLiM, and different
approximations used in their calculation may place the values
in different metrics (scales). As indicated, there are no recom-
mended cutoff scores for diagnostics in GLiMs as there are
for diagnostics in OLS regression. The appropriate strategy for
use of diagnostics in Poisson regression is to look for the one
or at most several cases that are largest on some diagnostic
measure (for DFBETAS, the largest absolute values are con-
sidered because a case may substantially raise or lower a re-
gression coefficient). An excellent place to start is with cases
that have the highest absolute value of DFBETAS for the the-
oretically most important variables. These are the cases that
have the most effect on the regression coefficients for the tests
of theory. If DFBETAS is extreme for a case on a theoreti-
cally important variable, the case may be working in one of
two opposite ways; the case may be producing the significance
of the coefficient of the variable or it may be obscuring a sig-
nificant effect that is present but not seen when the case is
included.

As with all use of diagnostics, if a case is removed from
analysis, there must be justification for its removal (e.g., re-
moval from the drinking study of a student with such severe
alcohol addiction that the student is in an inpatient detoxifica-
tion program during the measurement of alcohol consumption
and thus yields a consumption score of zero). This advice for
the use of diagnostics is no different from that for use of di-
agnostics in OLS regression—proceed with caution, one case
at a time, and ask whether the case is changing the conclu-

sion concerning important theoretical variables in the regression
analysis.

Because there will be one diagnostic statistic of each type
for every case in the sample, it quickly becomes overwhelming
to examine them all. One straightforward, graphical way to
interpret these statistics is to construct index plots in which case
number is on the x-axis and the value of the diagnostic statistic
is on the y-axis. In this way, cases that are very discrepant
on one of the diagnostic statistics will “pop out” in the figure,
allowing the researcher to easily identify them. Separate index
plots are constructed for leverage, distance, global influence,
and the measure of specific influence for each predictor. Cases
with scores that are high in magnitude relative to other cases
in the data set deserve careful scrutiny. Cohen et al. (2003, pp.
391–419) described in detail the application of these procedures
to OLS regression and Fox (2008, pp. 412–415) described their
extension to the GLiM.

SHORTCOMINGS OF STANDARD POISSON REGRESSION

There are situations in which observed count data do not
meet all of the assumptions of the standard Poisson regression
model. There are two situations that are most commonly en-
countered in practice. First, the individual counts may exhibit
more variability than is expected from the Poisson model. Re-
call that the Poisson distribution has one parameter µ, which
characterizes both the mean and the variance of the distribution.
Thus, the Poisson model assumes that the conditional mean
and variance are equal, a condition known as equidispersion.
The situation in which the variance is larger than the mean is
known as overdispersion. Second, there may be fewer or more
values of “0” in the conditional distributions of the outcome
variable than one would expect in a Poisson distribution with
the specified mean and variance. Fewer zeros may occur when
the sampling plan excludes members of the population with a
score of 0, a problem known as truncated zeros. For example, if
all participants who did not have an alcoholic drink during the
observation night were excluded, this problem would exist. In
contrast, the problem of excess zeroes occurs when the popula-
tion being examined includes individuals who would never dis-
play the behavior. In our example of drinking behavior, excess
zeroes would occur if there are nondrinkers in the sample—
people who never drink for religious, health, or other reasons
(e.g., underage drinking is illegal). We initially consider the
problem of overdispersion and alternative models that address it.
Later, we briefly consider models for truncated zeros and excess
zeros.

Overdispersion

Although equidispersion is assumed in Poisson regression,
actual data can be overdispersed, that is, the conditional vari-
ance of the residuals may be larger than the conditional mean
(predicted value). If overdispersion is not accounted for, esti-
mates of the standard errors will be too small, test statistics
for the parameter estimates will be too large, significance will
be overestimated, and confidence limits will be too small. The
issue of overdispersion is not present in OLS regression be-
cause the normal distribution has two parameters, one defining
the mean and one defining the variance or dispersion of the
distribution.
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Overdispersion occurs for two primary reasons in cross-
sectional data.9 First, there may be individual differences in re-
sponses that are not accounted for by the regression model. This
problem commonly occurs if an important predictor is omitted
from the model. Consider the example described previously in
which sensation seeking and gender were used to predict the
number of alcoholic drinks consumed per day. When gender is
omitted from the model (as it was in our initial analysis) and
sensation seeking alone is used to predict number of drinks,
the variance in the outcome that would have been explained by
gender is considered to be unexplained heterogeneity.

Second, each count that occurs for an individual may not be
an independent event as is assumed by the Poisson distribution.
This situation is known as contagion or state dependence. For
example, the set of alcoholic drinks consumed by one person are
not likely to be independent occurrences. The probability that
an individual may consume a first drink in an evening is unlikely
to be equal to the probability he or she will consume a second
drink in an evening having once consumed a first; the second
drink is therefore not independent of the first. There are several
options for data that have an overdispersed outcome variable
due to unmeasured heterogeneity. Standard Poisson regression
may not be appropriate for data in which state dependence is
strongly suspected.

ALTERNATIVES TO STANDARD POISSON REGRESSION

Overdispersed Poisson Regression Models

The simplest adjustment for overdispersion that can be made
to the Poisson regression model is the overdispersed Poisson
model (Gardner et al., 1995; Land, McCall & Nagin, 1996;
Long, 1997). This model includes a second parameter that is
used in the estimation of the conditional variance known as the
overdispersion scaling parameter, φ. The model estimated with
this correction now essentially assumes an error distribution that
is Poisson with mean µ and variance φµ. The scaling param-
eter φ will be greater than 1 if overdispersion is present in the
data; φ will be equal to 1 if there is equidispersion, and the
resulting model is equivalent to the standard Poisson regression
model. Finally, φ will be less than 1 if the data are underdis-
persed. Underdispersion is rare in psychological data but may
theoretically occur. The amount of dispersion in the model is
typically determined by the Pearson chi-square goodness-of-fit
statistic10 (McCullagh & Nelder, 1989), which is a measure of
the overall fit of the model provided by the computer output.
The calculation of the scaling parameter is given by

φ = χ2
Pearson

df
. (14)

The overdispersed model allows the conditional variances to be
larger than their corresponding conditional means so that the

9Overdispersion also commonly occurs in longitudinal panel studies that
result in clustering of the data. We do not discuss alternative analysis models
for longitudinal designs such as generalized estimating equation models in this
article (see Zeger, Liang, & Albert, 1988).

10Some authors (e.g., Allison, 1999) have suggested that another test statistic,
the deviance chi-square goodness-of-fit statistic, can also be used to determine
dispersion of the model. The Pearson chi-square and the deviance chi-square
are typically very close in value.

standard errors (which are based on the conditional variances)
will be larger than the standard errors in the standard Poisson
model by a factor of

√
φ. Interpretation of coefficients for the

overdispersed Poisson model is identical to that of the standard
Poisson model. The deviance for this model is also adjusted by
the scaling factor; the deviance for the overdispersed Poisson
model is equal to the deviance for the standard Poisson model
divided by φ. The smaller deviance of this model indicates better
fit.

Following up the preceding example, an overdispersed Pois-
son model was used to predict number of alcoholic drinks con-
sumed from the single predictor, sensation seeking. The column
labeled “(3)” of Table 1 shows the regression coefficients for the
overdispersed Poisson model. The square root of the overdis-
persion parameter is 1.6873. The value of φ is 2.8470, which
is substantially larger than 1.00 for the standard Poisson model
that assumes equidispersion: The data clearly exhibit overdis-
persion. Note that the regression coefficients for this model are
identical to those of the standard Poisson model, presented in
Table 1, column labeled “(2).” However, the standard errors are
all larger; each standard error from the Poisson regression in (2)
is multiplied by the square root of the overdispersion parameter,
1.6873. For example, the standard error of sensation seeking in
the overdispersed Poisson model is equal to 0.0397 × 1.6873.
The regression coefficients and predicted values are identical
for these two models, so interpretation of the coefficients is
identical as well. A 1-unit change in sensation seeking results
in an e0.2315 = 1.26 times change in the predicted number of
alcoholic drinks consumed.

The column labeled “(3)” of Table 2 shows the regression
coefficients for the overdispersed Poisson model with both gen-
der and sensation seeking as predictors of number of alco-
holic drinks consumed. Again the scale parameter φ highlights
overdispersion in the data. The square root of the scaling param-
eter is 1.5169, so φ is equal to 2.3010. For all models, gender
is coded such that females have a value of 0 on the predictor
and males have a value of 1. The intercept is −0.7888, so the
exponentiation of it, e−0.7888 = 0.45, is the predicted number of
drinks for a female (gender = 0) who has a score of 0 on the
sensation-seeking scale (again, not a possible value). The regres-
sion coefficient for sensation seeking is 0.2608, so e0.2608 = 1.30
is the predicted multiplicative effect of a 1-unit change in sen-
sation seeking on number of drinks consumed, holding gender
constant. The regression coefficient for gender is 0.8395. Be-
cause gender is dummy coded, a 1-unit change (i.e., from 0 to
1) corresponds to the difference between females (coded 0) and
males (coded 1). The exponentiation of the regression coeffi-
cient, e0.8395 = 2.32, is the multiplicative difference in average
number of drinks consumed for males versus females, holding
sensation seeking constant; males consume, on average, 2.32
times more alcoholic drinks on a Saturday night than females.

Assessing whether the second predictor, gender, significantly
adds to prediction in the overdispersed Poisson model is not
possible here. The model with only sensation seeking as a
predictor is not nested within the model with both predictors
because the scaling parameter φ is different between the two
models. Likewise, the pseudo-R2 for the overdispersed Poisson
model cannot be calculated because the scaling parameter for the
two-predictor model is different from that of the intercept-only
model. A nested model test to determine whether the overdis-
persed Poisson model fits better than the standard Poisson model
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(i.e., a test of overdispersion) is discussed later in the “Tests of
Overdispersion” section.

Negative Binomial Regression Models

A second common method for accounting for overdispersion
is the negative binomial model (Gardner et al., 1995; Hilbe,
2007; Land et al., 1996; Long, 1997). One shortcoming of the
Poisson regression model described previously is that it does
not contain an error (disturbance) term that fully parallels the
error term found in an OLS regression equation. The standard
Poisson model does not allow for heterogeneity among individ-
uals. Often there is additional heterogeneity between individuals
that is not accounted for by the predictors in the model and the
Poisson error function alone, which results in overdispersion.
The negative binomial model accounts for overdispersion by
assuming that there will be unexplained variability among in-
dividuals who have the same predicted value. This additional
unexplained variability between individuals leads to larger vari-
ance (than expected by the Poisson distribution) in the overall
outcome distribution but has no effect on the mean. This addi-
tional variability is conceptually similar to the inclusion of an
error term in normal linear regression.

To illustrate, consider the alcohol study example presented
previously in which the number of drinks consumed per day is
predicted by both sensation seeking and gender. The standard
Poisson model assumes that the outcomes for all individuals
with the same values on the predictors are samples from a sin-
gle Poisson distribution with a given mean. That is, the subset of
women with a sensation-seeking score of 5 are treated as being
alike and modeled by a Poisson distribution with the same mean
parameter. The negative binomial model, however, allows the
observations of individuals with the same values on the predic-
tors to be modeled by Poisson distributions with different mean
parameters. That is, one woman with a sensation-seeking score
of 5 may be modeled with a Poisson distribution with a mean of
µ1, whereas another woman with a sensation-seeking score of
5 is modeled with a Poisson distribution with a mean of µ2.

Note that the data are still modeled using Poisson distribu-
tions but that each individual may be represented by a Poisson
distribution with a different mean parameter. The variation in
individual mean parameters for individuals with the same val-
ues on the predictors must be assumed to follow a probability
distribution. The negative binomial model uses another standard
(although less familiar) probability distribution, the gamma dis-
tribution (Freund & Walpole, 1980, pp. 196–197), to represent
the distribution of means. In the negative binomial model, the
error function is a mixture of two different probability distribu-
tions, the Poisson and gamma distributions.

The conditional mean of the outcome, given the values of the
predictors, is identical for the standard Poisson model and the
negative binomial model. In contrast, the conditional variance
of the outcome will be larger in the negative binomial model
than in the standard Poisson model. The variance for the neg-
ative binomial model is given by µ + αµ2 rather than µ as in
Poisson regression.11 The α parameter represents overdispersion
in the negative binomial model. If α = 0, there is no overdis-

11This is the negative binomial 2 or NB2 model described by McCullagh and
Nelder (1989). The negative binomial 1 or NB1, which has a slightly different
variance function, is also discussed by McCullagh and Nelder.

persion, and the negative binomial model reduces to standard
Poisson. An α parameter greater than zero indicates that overdis-
persion is present; larger values indicate more overdispersion.
Interpretation of regression coefficients for the negative bino-
mial model is identical to that for the standard Poisson model.
The unexplained heterogeneity (between-individual variation)
underlying the overdispersion is partialed out of the effects.

Consider again the alcohol consumption example. We now
estimate a negative binomial model with sensation seeking pre-
dicting number of alcoholic drinks consumed. Unlike the previ-
ous models, the negative binomial model takes into account the
fact that there may be unexplained heterogeneity in the outcome
(e.g., due to the omission of gender from the model). The col-
umn labeled “(4)” in Table 1 shows the regression coefficients
for the negative binomial model. The exponentiation of the re-
gression coefficient for sensation seeking, e0.2205 = 1.25, is the
multiplicative effect of a 1-unit change in sensation seeking
on number of alcoholic drinks consumed, allowing for hetero-
geneity between individuals. A person with a sensation-seeking
score of 5 is expected to consume, on average, 1.25 times as
many drinks as a person with a sensation-seeking score of 4.
The estimate of α for this model is 0.7179, which is greater than
0, indicating that there is overdispersion in the data.

The column labeled “(4)” in Table 2 shows the regression
coefficients for the negative binomial model with both gen-
der and sensation seeking as predictors of the number of alco-
holic drinks consumed. Recall that gender is dummy coded and
that females are coded 0. The exponentiation of the intercept,
e−0.6436 = 0.53, is the predicted number of drinks consumed by
a female with a score of 0 on the sensation-seeking measure,
not a meaningful value in this example. The regression coef-
ficient for sensation seeking is 0.2351, so e0.2351 = 1.27 is the
predicted multiplicative effect of a 1-unit change in sensation
seeking on number of drinks consumed, holding gender con-
stant. The regression coefficient for gender is 0.8224. The ex-
ponentiation of the regression coefficient, e0.8224 = 2.28, is the
multiplicative difference in average number of drinks consumed
for males versus females, holding sensation seeking constant;
males consume, on average, 2.28 times more alcoholic drinks
than females. The estimate of α for this model is 0.5105, which
is greater than 0, indicating that there is overdispersion in the
data.

Similar to the case of overdispersed Poisson regression, one
cannot assess the improvement of the model with two predic-
tors over the model with one predictor because the estimated
parameter α is different for the two models, so they are not
actually nested models. Likewise, a pseudo-R2 such as was cal-
culated for Poisson regression cannot be calculated for negative
binomial models. We discuss a nested model test to determine
whether the negative binomial model fits better than the stan-
dard Poisson model (i.e., a test of overdispersion) in the next
section.

Comparing Overdispersed Models

Tests of overdispersion. The likelihood ratio test
(Chernoff, 1954) or the Score test (also known as the Lagrange
multiplier [LM] test; Cook & Weisberg, 1983) may be used to
assess whether significant overdispersion is present in the data.
These two tests are asymptotically equivalent, meaning that they
will produce the same result with very large sample sizes. The
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likelihood ratio test is a nested model test that compares the
deviance of a model in which the scaling (φ) or overdispersion
(α) parameter has been fixed to a specific value to the deviance
of a model in which the scaling parameter is estimated. The
scaling parameter φ can be 1 or estimated; the overdispensation
parameter α can be 0 or estimated. Comparing the difference in
deviances to a chi-square distribution with 1 df will determine
whether overdispersion is present. If the test is significant, the
model with a freely estimated scaling parameter fits better than
the model in which the scaling parameter is fixed. Of the three
models discussed here, two nested model comparisons of this
type are possible—standard Poisson versus overdispersed Pois-
son and standard Poisson versus negative binomial (Long, 1997,
p. 247). The overdispersed Poisson regression model is not
nested within the negative binomial model.

For the two-predictor example, the nested model test of stan-
dard Poisson versus overdispersed Poisson regression is given
by χ2(1, N = 400) = 959.4582 – 416.9831 = 542.4751, which
is significant at p < .0001. The overdispersed Poisson model
fits better than the standard Poisson model. The nested model
test of standard Poisson versus negative binomial is given by
χ2(1, N = 400) = 959.4582 – 459.7743 = 499.6839, p <
.0001. The negative binomial model fits better than the stan-
dard Poisson model. Both of these tests indicate that significant
overdispersion is present in the data. A test of whether the neg-
ative binomial model fits better than the overdispersed Poisson
model is not possible because these two models are not nested.

The LM or Score test uses the likelihood function to determine
whether overdispersion is present. This test can be obtained
from SAS using the NOSCALE option (see Appendix A). The
appropriate use of this test is within the negative binomial model;
the test assesses whether the overdispersion parameter in the
negative binomial model (α) needs to be freely estimated or
can be fixed to 0 (i.e., the standard Poisson model). For the
two-predictor example, the LM test statistic is χ2(1, N = 400)
= 70.1861, p < .0001. The result of this test indicates that
the negative binomial model provides a significantly better fit
than the standard Poisson model and that the estimate of α is
significantly different from 0.

Comparing Non-Nested Models—Akaike (1973)
Information Criterion (AIC) and Bayesian Information
Criterion (BIC; Raftery, 1995)

Although no test of the difference in fit of two non-nested
models is possible, two closely related measures of the fit of
alternative non-nested models have been proposed that can guide
model selection. The AIC is composed of two additive parts.12

The first part is a function of the log likelihood of the proposed
model evaluated at the estimated parameter value, here µ̂, that
becomes smaller as the model fits better. The second part is a
function of the number of parameters (regression coefficients,

12The equation for the AIC = −2 ln f (y|θ̂ ) + 2k, where y = (y1, . . . , yn) is
a random sample of size n, θ̂ is a vector of the maximum likelihood parameter
estimates, ln f (y|θ̂) is the log-likelihood of the current model, and k is the
number of estimated parameters in the model. As shown in the equation, the
first term is a measure of lack of fit; the second term is a function that penalizes
models with a greater number of estimated parameters. The equation for the
BIC = −2 ln f (y|θ̂) + k ln(n), where n is sample size. The relative magnitude
of the penalty for having more estimated parameters is smaller for larger sample
sizes.

dispersion parameter) that are being estimated. The model with
the smallest AIC value is selected. Because models with a larger
number of parameters fit better, this second part penalizes more
complex models that use more parameters to achieve the same
fit, as indicated by the log likelihood. The BIC follows a similar
logic. The first part is identical to the AIC. The second part
reflects both the number of estimated parameters and the sample
size. In essence, the BIC penalizes complex models based on
large sample sizes less than does the AIC. Sample size plays
a role in model selection, with more complex models being
preferred for large sample sizes, whereas simpler models are
typically preferred for smaller sample sizes (MacCallum, 2003).
Although the AIC and BIC will typically lead to selection of the
same model, the BIC does lead to more accurate model selection
than AIC in some cases.

MODELS THAT ADDRESS PROBLEMS WITH ZEROS

Truncated Zeros

One useful expansion of Poisson models is to data in which no
zeroes are possible because of the sampling plan. For example, if
data are collected from a medical facility, the sample for a study
of medical visits will only include individuals who have visited
the medical facility at least once. No one in the sample can
have a value of 0 for number of visits. Long (1997) described
several models that can account for these “missing” zeroes.
The modeling approach is to modify the Poisson or negative
binomial model to model the probability of a given count on the
outcome variable given that the count is greater than 0 during
the observation period.

Structural Zeros: Zero Inflated Models

As mentioned earlier, count outcomes are typically right
skewed, so there are many low values of the dependent variable.
However, some outcomes may display even more low values
than expected by the Poisson distribution. For example, in the
alcohol consumption example, the sample may include some
never drinkers. These individuals will always respond that they
consumed zero drinks. In this case, the zeroes that are observed
in the sample can be thought of as coming from two groups in the
population: never drinkers who produce structural zeroes that
must always occur and drinkers (including occasional drinkers)
who produce zeroes with some probability on the night of the
study when the observations are collected.

The best solution to this problem is to attempt to identify the
people in the two populations by anticipating the problem in the
design of the study. Then those who produce structural zeroes
can be identified and eliminated from the data set, whereas those
who could potentially produce nonzero counts are retained, even
if they happen to have an observation of zero in the study. In
our illustration, asking questions about lifetime alcohol use and
reasons for not drinking would help identify participants who
never drink and can be eliminated. This strategy of eliminating
the nondrinkers assumes that the population of interest is the
people who potentially would consume alcohol.

If information identifying those individuals who are struc-
tural zeros is not available or the research interest is in the full
population including non-drinkers, zero inflated Poisson models
or zero inflated negative binomial models can be used (Greene,
1994; Hall & Zhengang, 2004; Long, 1997). Conceptually,
these models have two parts. In the first part, available predictors
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are used to estimate the probability that each individual with an
observed count of 0 is in each of two latent groups: those that
would never perform the behavior (structural zeros) and those
who might potentially perform the behavior during another ob-
servation session. Logistic regression is often used to estimate
these probabilities. Obviously, collection of good background
information (e.g., prior drinking history) greatly reduces the
uncertainty in the prediction of the latent group to which each
individual with a count of 0 should be assigned. The second
part of the model is to estimate the Poisson or negative binomial
model for the part of the data that does not contain structural
zeros. Current approaches estimate both parts simultaneously,
adjusting the mean and the variance of the Poisson or negative
binomial model in an attempt to eliminate the likelihood that
some of the zero observations are in fact structural zeros.
Both the zero inflated Poisson and negative binomial models
may currently be estimated in the software packages STATA
and Mplus (with zero inflated negative binomial becoming
available in Version 5.1). The Web site http://www.ats.ucla.edu/
stat/MPlus/output/zeroinflatedpoissonreg.htm presents sample
computer syntax. At this time, no routine exists in SPSS, and
only the experimental PROC COUNTREG exists in SAS for
zero inflated count models.13 COUNTREG does not currently
produce many of the relevant fit measures that are necessarily
to fully evaluate the model.

MODELS FOR RATES: VARIABLE LENGTH
OBSERVATION PERIODS

Regression models of the type discussed here can also be
expanded in other ways. For example, the Poisson regression
model assumes observation for all individuals occurs in the
same length time period. The worked example in this article
used number of alcoholic drinks consumed in one night as the
outcome. Other examples of outcomes with fixed time periods
are number of aggressive acts committed by a child during a
1-hr play period and number of cigarettes smoked per day. Mod-
els exist that can extend Poisson type models to variable time
periods. For example, Allison (1999) suggested that including
the natural log of the measurement interval as a predictor with
regression coefficient equal to 1 allows incorporation of vari-
able time periods and maintains the Poisson error structure of
the data. The resulting model is

ln(µ̂) = ln(time) + b0 + b1X1 + b2X2 + . . . + bpXp. (15)

This model is algebraically the same as a model of rates (i.e.,
events per unit time):

ln

(
µ̂

time

)
= b0 + b1X1 + b2X2 + . . . + bpXp, (16)

but maintains the correct error structure. The Poisson distribu-
tion only applies to discrete outcomes and so can only be used
with Equation 15. In both SPSS and SAS, the natural log of time
can be included in this way by including OFFSET = lntime in
the model statement options (where lntime is a variable created

13In SAS, zero-inflated models can be estimated using a far more complicated
procedure, PROC NLMIXED.

by the analyst to be the natural logarithm of the duration of the
measurement interval). Time-varying models are related to sur-
vival models, which seek to model the time to failure (e.g., time
to relapse following treatment for alcoholism) or success (e.g.,
time to reemployment following a job seeking skills program).

DISCUSSION

The purpose of this article was to introduce the reader to a
modern method of analyzing count outcomes: Poisson regres-
sion. We began by discussing the problems with using OLS re-
gression to analyze count outcomes and introduced the GLiM,
the Poisson distribution, and standard Poisson regression. An
example of a Poisson regression analysis that is relevant to per-
sonality assessment researchers, predicting the number of alco-
holic drinks consumed based on measures of sensation seeking
and gender, illustrated the interpretation of the model and eval-
uation of fit. We discussed the limitations of Poisson regression
related to the assumption of equidispersion. Two models that
relax the equidispersion constraint, the overdispersed Poisson
model and the negative binomial model, were introduced. We
expanded the example to include these models. We then intro-
duced models that are useful when there are no zeros or too
many zeros. Zero truncated models are useful for data sets in
which zeros are systematically excluded by the data collection
plan; zero inflated models for studies that include two groups,
one of which would always produce a 0 count of the behav-
ior (e.g., nondrinkers). Finally, we briefly discussed models for
rates in which the length of observation periods varies across
participants.

Other less powerful and less appropriate methods of analyz-
ing count outcomes exist. Prior to the development of Poisson
regression, researchers were encouraged to transform their count
outcomes to make them more appropriate for use with OLS re-
gression. Common transformations included the square root of
the outcome or the natural log of the outcome. There are several
reasons why these methods, although simple to implement, are
less desirable than optimal Poisson regression models. Count
outcomes are typically right skewed, have many low values,
and have a narrow range of values. Transforming the outcome
does not adequately handle the excess of small values and will
typically have little effect on the outcome when the range is very
narrow. More importantly, transformation of the outcome can-
not completely eliminate heteroscedasticity; Poisson regression
allows selection of the correct error structure, which properly
accommodates the heteroscedasticity.

In conclusion, we have provided an introduction to regression
models that are useful in analyzing count data. These models
are attractive alternatives to analyses using standard OLS re-
gression, particularly when the mean of the outcome variable is
not large (less than 10 as a rule of thumb). These models provide
tests of hypotheses that maximize the power of the statistical test
consistent with maintaining the Type 1 error rate at the desig-
nated nominal level (e.g., actual α ≈ .05 when nominal α = .05).
As illustrated in this article, the interpretation of the results and
tests of competing nested models are straightforward. Examina-
tion of the plots of the residuals can provide information about
the adequacy of the model. Standard computer packages such
as SPSS and SAS are increasingly incorporating easy-to-use
routines that permit researchers to implement these analyses in
their own research. We encourage researchers to consider using
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these more optimal approaches whenever count data represent
important outcomes in their research.
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APPENDIX A
SAS Syntax

/* Syntax for two-predictor Poisson regression */
proc genmod data = one;
model y = gender sensation/dist = poisson link = log;
output out = plots poi predicted = pred count resdev =
dev resid
stdresdev = stud dev resid leverage = hat diagonal
cooksd = all dfbetas = all ;
run;
/* Syntax for Figure 4 */
symbol1 color = black value = x interpol = sm50s;
proc gplot data = plots poi;
plot dev resid * pred count;
title2 “Deviance residuals vs predicted count for two-predictor
Poisson model”;
run;
/* Syntax for index plot of leverage */
symbol1 color = black value = x;
proc gplot data = plots poi;
plot hat diagonal * case;
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title2 “Index plot of leverage statistics (Hat diagonal) for all
cases”;
run;
/* Syntax for two-predictor overdispersed Poisson regression */
proc genmod data = one;
model y = gender sensation/dist = poisson link = log scale =
d;
output out = plots odpoi predicted = pred count resdev =
dev resid;
run;
/* Syntax for two-predictor negative binomial regression */
proc genmod data = one;
model y = gender sensation/dist = nb link = log;
output out = plots nb predicted = pred count resdev =
dev resid;
run;
/* Syntax for two-predictor negative binomial regression, testing
for overdispersion */
proc genmod data = one;
model y = gender sensation/dist = nb link = log noscale;
output out = plots nb test predicted = pred count resdev =
dev resid;
run;

APPENDIX B
SPSS Syntax

* Syntax for two-predictor Poisson regression.
GENLIN

y
WITH gender sensation
/MODEL gender sensation
INTERCEPT=YES
DISTRIBUTION=POISSON
LINK=LOG
/CRITERIA LIKELIHOOD=KERNEL
/SAVE MEANPRED DEVIANCERESID
STDDEVIANCERESID LEVER AGE COOK.
* Syntax for Figure 4.
GRAPH
/SCATTERPLOT(BIVAR)=MEANPRED WITH
DEVIANCERESID
/MISSING=LISTWISE.
* Syntax for index plot of leverage.
GRAPH
/SCATTERPLOT(BIVAR)=CASE WITH LEVERAGE
/MISSING=LISTWISE.
* Syntax for two-predictor overdispersed Poisson regression.
GENLIN
y
WITH gender sensat
/MODEL gender sensat
INTERCEPT=YES
DISTRIBUTION=POISSON
LINK=LOG
/CRITERIA SCALE=DEVIANCE LIKELIHOOD=KERNEL
/SAVE MEANPRED DEVIANCERESID.




