Package 'changepoint'

May 22, 2012

```
Type Package
Title An R package for changepoint analysis
Version 0.7
Date 2012-05-13
```


Author Rebecca Killick r.killick@lancs.ac.uk, Idris A. Eckley i.eckley@lancs.ac.uk
 Contributors Paul Fearnhead p.fearnhead@lancs.ac.uk
 Maintainer Rebecca Killick r.killick@lancs.ac.uk
 Description Implements various mainstream and specialised changepoint methods for finding single and multiple changepoints within data. Many popular non-parametric and frequentist methods are included. The cpt.mean, cpt.var, cpt.meanvar functions should be your first point of call.

Depends R(>=2.11), methods, graphics, base
License GPL
LazyLoad yes
Repository CRAN
Date/Publication 2012-05-22 13:05:33

R topics documented:

changepoint-package 4
binseg.mean.cusum 5
binseg.mean.norm 6
binseg.meanvar.exp 8
binseg.meanvar.gamma 9
binseg.meanvar.norm 11
binseg.meanvar.poisson 12
binseg.var.css 13
binseg.var.norm 15
cpt-class 16
cpt.mean 18
cpt.meanvar 21
cpt.reg-class 23
cpt.var 25
cpts 27
cpts-methods 28
cpts<- 29
cpts<-methods 30
cpttype 30
cpttype-methods 31
cpttype<- 31
cpttype<-methods 32
data.set 32
data.set-methods 33
data.set<- 33
data.set<-methods 34
decision 34
distribution 36
distribution-methods 37
distribution<- 37
distribution<-methods 38
ftse100 38
HC1 39
likelihood 39
likelihood-methods 40
method 40
method-methods 41
method<- 41
method<-methods 42
multiple.mean.cusum 42
multiple.mean.norm 44
multiple.meanvar.exp 47
multiple.meanvar.gamma 49
multiple.meanvar.norm 51
multiple.meanvar.poisson 53
multiple.var.css 56
multiple.var.norm 58
ncpts 60
ncpts-methods 61
ncpts.max 61
ncpts.max-methods 62
ncpts.max<- 62
ncpts.max<-methods 63
param 63
param-methods 64
param.est 65
param.est-methods 65
param.est<- 66
param.est<-methods 67
PELT.mean.norm 67
PELT.meanvar.exp 68
PELT.meanvar.gamma 70
PELT.meanvar.norm 71
PELT.meanvar.poisson 72
PELT.var.norm 74
pen.type 75
pen.type-methods 76
pen.type<- 76
pen.type<-methods 77
pen.value 77
pen.value-methods 78
pen.value<- 78
pen.value<-methods 79
plot-methods 79
print-methods 80
segneigh.mean.cusum 80
segneigh.mean.norm 82
segneigh.meanvar.exp 83
segneigh.meanvar.gamma 85
segneigh.meanvar.norm 86
segneigh.meanvar.poisson 88
segneigh.var.css 89
segneigh.var.norm 91
single.mean.cusum 92
single.mean.cusum.calc 94
single.mean.norm 96
single.mean.norm.calc 97
single.meanvar.exp 99
single.meanvar.exp.calc 101
single.meanvar.gamma 103
single.meanvar.gamma.calc 105
single.meanvar.norm 107
single.meanvar.norm.calc 108
single.meanvar.poisson 110
single.meanvar.poisson.calc 112
single.var.css 114
single.var.css.calc 116
single.var.norm 117
single.var.norm.calc 119
summary-methods 121
Index 122

```
changepoint-package Contains funcions that run various single and multiple changepoint
methods
```


Description

Implements various mainstream and specialised changepoint methods for finding single and multiple changepoints within data. Many popular non-parametric and frequentist methods are included. Users should start by looking at the documentation for cpt.mean, cpt.var and cpt.meanvar.

Details

Package:	changepoint
Type:	Package
Version:	0.7
Date:	$2012-05-13$
License:	GPL
LazyLoad:	yes

Author(s)

Rebecca Killick r.killick@lancs.ac.uk, Idris A. Eckley i.eckley@lancs.ac.uk with contributions from Paul Fearnhead p.fearnhead@lancs.ac.uk.

Maintainer: Rebecca Killick r.killick@lancs.ac.uk

References

Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

cpt.mean,cpt.var,cpt.meanvar

Examples

```
# change in variance
x=c(rnorm(100,0,1),rnorm(100,0,10))
ansvar=cpt.var(x)
plot(ansvar)
print(ansvar)
# change in mean
y=c(rnorm(100,0,1),rnorm(100,5,1))
ansmean=cpt.mean(y)
plot(ansmean,cpt.col='blue')
print(ansmean)
# change in mean and variance
z=c(rnorm(100,0,1),rnorm(100,2,10))
ansmeanvar=cpt.meanvar(z)
plot(ansmeanvar,cpt.width=3)
print(ansmeanvar)
```

binseg.mean.cusum Multiple Changes in Mean using Binary Segmentation method - Cu mulative Sums

Description

Calculates the optimal positioning and number of changepoints for the cumulative sums test statistic using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.mean.cusum(data, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q
Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in mean for data where no assumption about the distribution is made. The value returned is the result of finding the optimal location of up to Q changepoints using the cumulative sums test statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
M. Csorgo, L. Horvath (1997) Limit Theorems in Change-Point Analysis, Wiley
E. S. Page (1954) Continuous Inspection Schemes, Biometrika 41(1/2), 100-115

See Also

binseg.mean.norm,cpt.mean,multiple.mean.cusum,single.mean.cusum,segneigh.mean.cusum

Examples

```
# Example of multiple changes in mean at 50,100,150 in simulated data
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50, 5, 1),rnorm(50,10,1),rnorm(50,3,1))
binseg.mean.cusum( }\textrm{X},\textrm{Q}=5,\textrm{pen}=0.8\mathrm{ ) # returns optimal number as 3 and the locations as c(50,100,150)
binseg.mean.cusum(x,Q=2,pen=0.8) # returns optimal number as 2 as this is the maximum number of changepoints it can
# Example no change in mean
set.seed(10)
x=rnorm(200,0,1)
binseg.mean.cusum(x,Q=5,pen=0.8) # returns optimal number as 0
```

binseg.mean.norm Multiple Changes in Mean using Binary Segmentation method - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.mean.norm(data, $\mathrm{Q}=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q
Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in mean for data that is assumed to be normally distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Change in mean likelihood: Hinkley, D. V. (1970) Inference About the Change-Point in a Sequence of Random Variables, Biometrika 57, 1-17
Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

binseg.var.norm,binseg.meanvar.norm,cpt.mean,PELT.mean.norm,multiple.mean.norm,single.mean.norm,segnei

Examples

```
# Example of multiple changes in mean at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50,5,1),rnorm(50,10,1),rnorm(50,3,1))
binseg.mean.norm(x,Q=5,pen=2*log(200)) # returns optimal number as 3 and the locations as c(50,100,150)
binseg.mean.norm(x,Q=2,pen=2*log(200)) # returns optimal number as 2 as this is the maximum number of changepoints
# Example no change in mean
```

set.seed(10)
$\mathrm{x}=\operatorname{rnorm}(200,0,1)$
binseg.mean.norm(x, $\mathrm{Q}=5$, pen= $2 * \log (200)$) \# returns optimal number as 0
binseg.meanvar.exp Multiple Changes in Mean and Variance using Binary Segmentation method - Exponential Data

Description

Calculates the optimal positioning and number of changepoints for Exponential data using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.meanvar.exp(data, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Exponential distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Change in Exponential model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

binseg.meanvar.norm,binseg.meanvar.gamma,cpt.meanvar,PELT.meanvar.exp,multiple.meanvar.exp,single.mear

Examples

\# Example of multiple changes in mean and variance at $50,100,150$ in simulated Exponential data
set.seed(1)
$x=c(\operatorname{rexp}(50, r a t e=1), \operatorname{rexp}(50$, rate $=5), \operatorname{rexp}(50$, rate=1), $\operatorname{rexp}(50$, rate=10))
binseg.meanvar. $\exp (x, Q=5$, pen $=2 * \log (200))$ \# returns optimal number as 3 and the locations as $c(50,100,150)$
binseg. meanvar. $\exp (x, Q=2, \operatorname{pen}=2 \star \log (200))$ \# returns optimal number as 2 as this is the maximum number of changepoint
\# Example no change in mean or variance
set.seed(1)
$x=r \exp (200$, rate=1)
binseg.meanvar.exp(x,pen=2*log(200)) \# returns optimal number as 0
binseg.meanvar.gamma Multiple Changes in Mean and Variance using Binary Segmentation method - Gamma Data (i.e. change in scale parameter)

Description

Calculates the optimal positioning and number of changepoints for Gamma data using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.meanvar.gamma(data, shape=1, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
shape \quad Numerical value of the true shape parameter for the data. Either single value or vector of length nrow(data). If data is a matrix and shape is a single value, the same shape parameter is used for each row.
Q Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Gamma distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the \log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Change in Gamma scale parameter: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

binseg.meanvar.norm,cpt.meanvar,PELT.meanvar.gamma,multiple.meanvar.gamma,single.meanvar.gamma,segnei\&

Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated Gamma data
set.seed(1)
x=c(rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=3),rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=10))
binseg.meanvar.gamma(x,shape=1,Q=5,pen=2*log(200)) # returns optimal number as 3 and the locations as c(47,104,150
binseg.meanvar.gamma(x,shape=1,Q=2,pen=2*log(200)) # returns optimal number as 2 as this is the maximum number of o
# Example no change in mean or variance
set.seed(1)
x=rgamma(200, shape=1,rate=1)
binseg.meanvar.gamma(x,shape=1,pen=2*log(200)) # returns optimal number as 0
```

binseg.meanvar.norm Multiple Changes in Mean and Variance using Binary Segmentation method - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.meanvar.norm(data, $\mathrm{Q}=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be normally distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Change in mean and variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

binseg.var.norm,binseg.mean.norm,cpt.meanvar,PELT.meanvar.norm,multiple.meanvar.norm,single.meanvar.nc

Examples

\# Example of multiple changes in mean and variance at $50,100,150$ in simulated normal data set.seed(1)
$x=c(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,5,3), \operatorname{rnorm}(50,10,1), \operatorname{rnorm}(50,3,10))$
binseg.meanvar.norm ($x, Q=5$, pen $=4 * \log (200)$) \# returns optimal number as 4 and the locations as $c(50,100,150,152)$
binseg.meanvar. norm $(x, Q=3$, pen $=4 * \log (200))$ \# returns optimal number as 2 as this is the maximum number of changepoi
\# Example no change in mean or variance
set.seed(1)
x=rnorm (200, 0, 1)
binseg.meanvar.norm(x,pen=4*log(200)) \# returns optimal number as 0
binseg.meanvar.poisson
Multiple Changes in Mean and Variance using Binary Segmentation method - Poisson Data

Description

Calculates the optimal positioning and number of changepoints for Poisson data using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.meanvar.poisson(data, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Poisson distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the \log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Change in Poisson model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

cpt.meanvar,PELT.meanvar.poisson,multiple.meanvar.poisson,single.meanvar.poisson,segneigh.meanvar.poi

Examples

\# Example of multiple changes in mean and variance at $50,100,150$ in simulated Poisson data set.seed(1)
x=c(rpois(50, lambda=1), rpois(50, lambda=5), rpois(50, lambda=1), rpois(50, lambda=10))
binseg.meanvar. poisson ($x, Q=5$, pen $=2 * \log (200)$) \# returns optimal number as 3 and the locations as $c(50,100,150)$
binseg. meanvar. poisson ($\mathrm{x}, \mathrm{Q}=2$, pen $=2 * \log (200)$) \# returns optimal number as 2 as this is the maximum number of changep
\# Example no change in mean or variance
set.seed(1)
x=rpois(200, lambda=1)
binseg. meanvar.poisson(x,pen=2*log(200)) \# returns optimal number as 0

binseg.var.css	Multiple Changes in Variance using Binary Segmentation method - Cumulative Sums of Squares

Description

Calculates the optimal positioning and number of changepoints for the cumulative sums of squares test statistic using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.var.css(data, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in variance for data where no assumption about the distribution is made. The value returned is the result of finding the optimal location of up to Q changepoints using the cumulative sums of squares test statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
C. Inclan, G. C. Tiao (1994) Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance, Journal of the American Statistical Association 89(427), 913-923
R. L. Brown, J. Durbin, J. M. Evans (1975) Techniques for Testing the Constancy of Regression Relationships over Time, Journal of the Royal Statistical Society B 32(2), 149-192

See Also

binseg.var.norm,cpt.var,multiple.var.css,single.var.css,segneigh.var.css

Examples

```
# Example of multiple changes in variance at 50,100,150 in simulated normal data
set.seed(10)
x=c(rnorm(50,0,1),rnorm(50,0,10),rnorm(50,0,5),rnorm(50,0,1))
binseg.var.css(x,Q=5, pen=1.358) # returns optimal number as 4 and the locations as c ( 50, 52,100,149)
binseg.var.css(x,Q=2, pen=1.358) # returns optimal number as 2 as this is the maximum number of changepoints it can
```

\# 1.358 is the asymptotic value of the penalty for 95% confidence
\# Example no change in variance
set.seed(1)
$\mathrm{x}=$ rnorm $(200,0,1)$
binseg.var.css(x,Q=5, pen=1.358) \# returns optimal number as 0
binseg.var.norm Multiple Changes in Variance using Binary Segmentation method Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using Binary Segmentation method. Note that this is an approximate method.

Usage

binseg.var.norm(data, $Q=5$, pen=0,know.mean=FALSE,mu=NA)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of changepoints you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the decision as to the optimal number of changepoints.
know. mean Logical, if TRUE then the mean is assumed known and mu is taken as its value. If FALSE, and $m u=-1000$ (default value) then the mean is estimated via maximum likelihood. If FALSE and the value of mu is supplied, mu is not estimated but is counted as an estimated parameter for decisions.
mu \quad Numerical value of the true mean of the data. Either single value or vector of length nrow(data). If data is a matrix and mu is a single value, the same mean is used for each row.

Details

This function is used to find a multiple changes in variance for data that is assumed to be normally distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the \log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Change in variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

binseg.mean.norm,binseg.meanvar.norm,cpt.var,PELT.var.norm,multiple.var.norm,single.var.norm,segneigh.

Examples

```
# Example of multiple changes in variance at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50,0,10),rnorm(50,0,5),rnorm(50,0,1))
binseg.var.norm(x,Q=5, pen=2*log(200)) # returns optimal number as 3 and the locations as c(50,99,150)
binseg.var.norm(x,Q=2, pen=2*log(200)) # returns optimal number as 2 as this is the maximum number of changepoints
# Example no change in variance
set.seed(10)
x=rnorm(200,0,1)
binseg.var.norm(x,Q=5, pen=2*log(200)) # returns optimal number as 0
```

```
cpt-class Class "cpt"
```


Description

A class for changepoint objects.

Objects from the Class

Objects can be created by calls of the form new("cpt", ...).
new("cpt", ...): creates a new object with class cpt

Slots

data.set: Object of class "numeric", the original vector of data
cpttype: Object of class "character", the type of changepoint that was identified
method: Object of class "character", the method that was used to search for changepoints
distribution: Object of class "character", the assumed distribution of the data
pen.type: Object of class "character", the penalty type specified in the analysis
pen.value: Object of class "numeric", the value of the penalty used in the analysis
cpts: Object of class "numeric", vector of changepoints identified
ncpts.max: Object of class "numeric", maximum number of changepoint that can be identified
param.est: Object of class "list", list where each element is a vector of parameter estimates, if requested
date: Object of class "character", date and time the changepoint analysis was run

Methods

cpts signature(object = "cpt"): retrieves cpts slot
cpttype signature (object $=$ "cpt"): retrieves cpttype slot
data.set signature(object = "cpt"): retrieves data.set slot
distribution signature(object = "cpt"): retrieves distribution slot
ncpts.max signature (object $=$ "cpt"): retrieves ncpts.max slot
method signature(object = "cpt"): retrieves method slot
param.est signature(object = "cpt"): retrieves param.est slot
pen.type signature(object $=$ "cpt"): retrieves pen.type slot
pen.value signature(object = "cpt"): retrieves pen.value slot
cpts<- signature(object = "cpt"): replaces cpts slot
cpttype<- signature (object = "cpt"): replaces cpttype slot
data.set<- signature(object = "cpt"): replaces data.set slot
distribution<- signature (object = "cpt"): replaces distribution slot
ncpts.max<- signature (object = "cpt"): replaces ncpts.max slot
method<- signature(object = "cpt"): replaces method slot
param.est<- signature(object = "cpt"): replaces param.est slot
pen.type<- signature(object = "cpt"): replaces pen.type slot
pen.value<- signature(object = "cpt"): replaces pen.value slot
print signature(object = "cpt"): prints details of the cpt object including summary
summary signature(object = "cpt"): prints a summary of the cpt object
plot signature (object = "cpt"): plots the cpt object with changepoints highlighted
param signature (object = "cpt"): calculates the parameter estimates for the cpt object
likelihood signature(object = "cpt"): returns the overall likelihood of the cpt object

Author(s)

Rebecca Killick

```
See Also
data.set-methods,cpts-methods,cpt.reg,cpt.mean,cpt.var,cpt.meanvar
```


Examples

```
showClass("cpt") # shows the structure of the cpt class
x=new("cpt") # creates a new object with the cpt class defaults
cpts(x) # retrieves the cpts slot from x
cpts(x)<-c(10,50,100) # replaces the cpts slot from x with c(10,50,100)
# Example of a change in variance at 100 in simulated normal data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,0,10))
ans=cpt.var(x)
print(ans) # prints details of the analysis including a summary
summary(ans)
plot(ans) # plots the data with change (vertical line) at 100
likelihood(ans) # raw likelihood of the data with changepoints, second value is likelihood + penalty
```

cpt.mean Identifying Changes in Mean

Description

Calculates the optimal positioning and (potentially) number of changepoints for data using the user specified method.

Usage

cpt.mean(data, penalty="SIC", value=0, method="AMOC",$Q=5$, dist="Normal", class=TRUE, param. estimates=TRUE

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, n=length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.

```
method Choice of "AMOC", "PELT", "SegNeigh" or "BinSeg".
Q The maximum number of changepoints to search for using the "BinSeg" method.
    The maximum number of segments (number of changepoints +1) to search for
    using the "SegNeigh" method.
dist The assumed distribution of the data. Currently only "Normal" and "CUSUM"
    supported.
class Logical. If TRUE then an object of class cpt is returned.
param.estimates
    Logical. If TRUE and class=TRUE then parameter estimates are returned. If
    FALSE or class=FALSE no parameter estimates are returned.
```


Details

This function is used to find changes in mean for data that is assumed to be distributed as the dist parameter. The changes are found using the method supplied which can be single changepoint (AMOC) or multiple changepoints using exact (PELT or SegNeigh) or approximate (BinSeg) methods.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of method.

If method is AMOC then a single value (one dataset) or vector (multiple datasets) is returned:
cpt The most probable location of a changepoint if a change was identified or NA if no changepoint.

If method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n.

If method is SegNeigh then a list is returned with elements:
cps Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If method is BinSeg then a list is returned with elements:
cps $\quad 2 \mathrm{XQ}$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in Normal mean: Hinkley, D. V. (1970) Inference About the Change-Point in a Sequence of Random Variables, Biometrika 57, 1-17

CUSUM Test: M. Csorgo, L. Horvath (1997) Limit Theorems in Change-Point Analysis, Wiley
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

cpt.var,cpt.meanvar,plot-methods,cpt

Examples

```
# Example of a change in mean at 100 in simulated normal data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,10,1))
cpt.mean(x,penalty="SIC",method="AMOC",class=FALSE) # returns 100 to show that the null hypothesis was rejected an
ans=cpt.mean(x, penalty="Asymptotic",value=0.01,method="AMOC")
cpts(ans)# returns 100 to show that the null hypothesis was rejected, the change in mean is at 100 and we are 99% con
ans=cpt.mean(x,penalty="Manual",value=0.8,method="AMOC",dist="CUSUM") # returns 101 as the changepoint location
# Example of multiple changes in mean at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50,5,1),rnorm(50, 10, 1),rnorm(50, 3, 1))
cpt.mean(x,penalty="Manual",value="2* log(n)",method="BinSeg",Q=5, class=FALSE) # returns optimal number of change
```

\# Example multiple datasets where the first row has multiple changes in mean and the second row has no change in mean set.seed(1)
$x=c(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,5,1), \operatorname{rnorm}(50,10,1), \operatorname{rnorm}(50,3,1))$
$y=\operatorname{rnorm}(200,0,1)$
$\mathrm{z}=$ rbind (x, y)
cpt.mean(z, penalty="Asymptotic", value=0.01, method="SegNeigh", Q=5, class=FALSE) \# returns list that has two elemen ans=cpt.mean(z, penalty="Asymptotic", value=0.01, method="PELT")
cpts(ans[[1]]) \# same results as for the SegNeigh method.
cpts(ans[[2]]) \# same results as for the SegNeigh method.
cpt.meanvar Identifying Changes in Mean and Variance

Description

Calculates the optimal positioning and (potentially) number of changepoints for data using the user specified method.

Usage

cpt.meanvar(data, penalty="SIC", value=0, method="AMOC", Q=5, dist="Normal", class=TRUE, param. estimates=T

Arguments

\(\left.$$
\begin{array}{ll}\text { data } & \begin{array}{l}\text { A vector or matrix containing the data within which you wish to find a change- } \\
\text { point. If data is a matrix, each row is considered a separate dataset. }\end{array}
$$

Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and

"Manual" penalties. If Manual is specified, the manual penalty is contained in

the value parameter. If Asymptotic is specified, the theoretical type I error is

contained in the value parameter.\end{array}\right]\)| The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The |
| :--- |
| value of the penalty when using the Manual penalty option. This can be a nu- |
| meric value or text giving the formula to use. Available variables are, n=length |
| of original data, null=null likelihood, alt=alternative likelihood, tau=proposed |
| changepoint, diffparam=difference in number of alternatve and null parameters. |

Details

This function is used to find changes in mean and variance for data that is assumed to be distributed as the dist parameter. The changes are found using the method supplied which can be single changepoint (AMOC) or multiple changepoints using exact (PELT or SegNeigh) or approximate (BinSeg) methods.

Value

If class=TRUE then an object of S4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of method.

If method is AMOC then a single value (one dataset) or vector (multiple datasets) is returned:
cpt The most probable location of a changepoint if a change was identified or NA if no changepoint.

If method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

If method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If method is BinSeg then a list is returned with elements:
cps $\quad 2 \times Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in Normal mean and variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
Change in Gamma shape parameter: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
Change in Exponential model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

Change in Poisson model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

cpt.var,cpt.mean,plot-methods,cpt

Examples

\# Example of a change in scale parameter (mean and variance) at 100 in simulated gamma data set.seed(1)
$x=c($ rgamma $(100$, shape $=1$, rate $=1)$, rgamma $(100$, shape $=1$, rate $=5)$)
cpt.meanvar (x, penalty="SIC", method="AMOC", dist="Gamma", class=FALSE, shape=1) \# returns 97 to show that the null hy ans=cpt.meanvar (x, penal ty="AIC", method="AMOC", dist="Gamma", shape=1)
cpts(ans) \# returns 97 to show that the null hypothesis was rejected, the change in scale parameter is at 97
\# Example of multiple changes in mean and variance at $50,100,150$ in simulated normal data
set.seed(1)
$x=c(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,5,3), \operatorname{rnorm}(50,10,1), \operatorname{rnorm}(50,3,10))$
cpt.meanvar (x, penalty="Manual", value $=" 4 * \log (n) "$, method="BinSeg", $Q=5, c l a s s=F A L S E)$ \# returns optimal number of cha
\# Example multiple datasets where the first row has multiple changes in mean and variance and the second row has no c set.seed(1)
$x=c(r n o r m(50,0,1), \operatorname{rnorm}(50,5,3), \operatorname{rnorm}(50,10,1), \operatorname{rnorm}(50,3,10))$
$y=\operatorname{rnorm}(200,0,1)$
z=rbind(x, y)
cpt.meanvar(z, penalty="Asymptotic", value=0.01, method="SegNeigh", Q=5, class=FALSE) \# returns list that has two eler ans=cpt.meanvar(z,penalty="Asymptotic", value=0.01, method="PELT")
cpts(ans[[1]]) \# same results as for the SegNeigh method.
cpts(ans[[2]]) \# same results as for the SegNeigh method.

```
cpt.reg-class Class "cpt.reg"
```


Description

A class for changepoint objects, specifically change in regression.

Objects from the Class

Objects can be created by calls of the form new("cpt", ...).
new("cpt", ...): creates a new object with class cpt

Slots

data.set: Object of class "numeric", the original vector of data cpttype: Object of class "character", the type of changepoint that was identified
method: Object of class "character", the method that was used to search for changepoints, default change in regression
distribution: Object of class "character", the assumed distribution of the data
pen. type: Object of class "character", the penalty type specified in the analysis
pen.value: Object of class "numeric", the value of the penalty used in the analysis
cpts: Object of class "numeric", vector of changepoints identified
ncpts.max: Object of class "numeric", maximum number of changepoint that can be identified
param.est: Object of class "list", list where each element is a vector of parameter estimates, if requested
date: Object of class "character", date and time the changepoint analysis was run

Methods

cpts signature(object = "cpt.reg"): retrieves cpts slot
cpttype signature (object = "cpt.reg"): retrieves cpttype slot
data.set signature(object = "cpt.reg"): retrieves data.set slot
distribution signature (object $=$ "cpt.reg") : retrieves distribution slot
ncpts.max signature(object = "cpt.reg"): retrieves ncpts.max slot
method signature(object $=$ "cpt.reg"): retrieves method slot
param.est signature(object = "cpt.reg"): retrieves param.est slot
pen.type signature (object $=$ "cpt.reg"): retrieves pen.type slot
pen.value signature (object = "cpt.reg"): retrieves pen.value slot
cpts<- signature(object = "cpt.reg"): replaces cpts slot
cpttype<- signature (object = "cpt.reg"): replaces cpttype slot
data.set<- signature(object = "cpt.reg"): replaces data.set slot
distribution<- signature (object = "cpt.reg"): replaces distribution slot
ncpts.max<- signature (object = "cpt.reg"): replaces ncpts.max slot
method<- signature(object = "cpt.reg"): replaces method slot
param.est<- signature(object = "cpt.reg"): replaces param.est slot
pen.type<- signature(object = "cpt.reg"): replaces pen.type slot
pen.value<- signature(object = "cpt.reg"): replaces pen.value slot
print signature(object = "cpt.reg"): prints details of the cpt object including summary
summary signature(object = "cpt.reg"): prints a summary of the cpt object
param signature (object = "cpt.reg"): calculates the parameter estimates for the cpt object

Author(s)

Rebecca Killick

See Also

plot-methods,cpts-methods,cpt

Examples

```
showClass("cpt.reg")
x=new("cpt.reg") # creates a new object with the cpt.reg class defaults
data.set(x) # retrieves the data.set slot from x
data.set(x)<-matrix(1:10,nrow=5,ncol=2) # replaces the data.set slot from x with a matrix
```

cpt.var Identifying Changes in Variance

Description

Calculates the optimal positioning and (potentially) number of changepoints for data using the user specified method.

Usage

cpt. var(data, penalty="SIC", value=0, know.mean=FALSE, mu=NA, method="AMOC", $\mathrm{Q}=5$, dist="Normal", class=TRUE

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
know.mean Only required for dist="Normal". Logical, if TRUE then the mean is assumed known and mu is taken as its value. If FALSE, and mu=NA (default value) then the mean is estimated via maximum likelihood. If FALSE and the value of mu is supplied, mu is not estimated but is counted as an estimated parameter for decisions.
mu Only required for dist="Normal". Numerical value of the true mean of the data. Either single value or vector of length nrow(data). If data is a matrix and mu is a single value, the same mean is used for each row.
method Choice of "AMOC", "PELT", "SegNeigh" or "BinSeg".
Q The maximum number of changepoints to search for using the "BinSeg" method. The maximum number of segments (number of changepoints +1) to search for using the "SegNeigh" method.

```
dist The assumed distribution of the data. Currently only "Normal" and "CSS" sup-
    ported.
class Logical. If TRUE then an object of class cpt is returned.
param.estimates
    Logical. If TRUE and class=TRUE then parameter estimates are returned. If
    FALSE or class=FALSE no parameter estimates are returned.
```


Details

This function is used to find changes in variance for data that is assumed to be distributed as the dist parameter. The changes are found using the method supplied which can be single changepoint (AMOC) or multiple changepoints using exact (PELT or SegNeigh) or approximate (BinSeg) methods. Note that for the dist="CSS" option the preset penalties are $\log ($.$) to allow comparison with$ dist="Normal".

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of method.
If method is AMOC then a single value (one dataset) or vector (multiple datasets) is returned:
cpt The most probable location of a changepoint if a change was identified or NA if no changepoint.

If method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n.

If method is SegNeigh then a list is returned with elements:
cps Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If method is BinSeg then a list is returned with elements:
cps $\quad 2 \mathrm{XQ}$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Normal: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
CSS: C. Inclan, G. C. Tiao (1994) Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance, Journal of the American Statistical Association 89(427), 913-923
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

cpt.mean,cpt.meanvar,plot-methods,cpt

Examples

\# Example of a change in variance at 100 in simulated normal data
set.seed(1)
$\mathrm{x}=\mathrm{c}(\operatorname{rnorm}(100,0,1), \operatorname{rnorm}(100,0,10))$
cpt.var(x, penalty="SIC", method="AMOC", class=FALSE) \# returns 100 to show that the null hypothesis was rejected and ans=cpt.var (x, penalty="Asymptotic", value=0.01, method="AMOC")
cpts(ans)\# returns 100 to show that the null hypothesis was rejected, the change in variance is at 100 and we are 99%
\# Example of multiple changes in variance at $50,100,150$ in simulated data
set.seed(1)
$x=c(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,0,10), \operatorname{rnorm}(50,0,5), \operatorname{rnorm}(50,0,1))$
cpt. var (x, penalty="Manual", value=" $\log (2 * \log (n))$ ", method="BinSeg", dist="CSS", $\mathrm{Q}=5$, class=FALSE) \# returns optimal r
\# Example multiple datasets where the first row has multiple changes in variance and the second row has no change in set.seed(10)
$\mathrm{x}=\mathrm{c}(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,0,10), \operatorname{rnorm}(50,0,5), \operatorname{rnorm}(50,0,1))$
$y=\operatorname{rnorm}(200,0,1)$
$z=r b i n d(x, y)$
cpt.var(z, penalty="Asymptotic", value=0.01, method="SegNeigh", Q=5, class=FALSE) \# returns list that has two element
ans=cpt.var(z, penalty="Asymptotic", value=0.01, method="PELT")
cpts(ans[[1]]) \# same results as for the SegNeigh method.
cpts(ans[[2]]) \# same results as for the SegNeigh method.

```
cpts Generic Function - cpts
```


Description

Generic function

Usage

cpts(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic function.

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

cpts-methods

Examples

```
x=new("cpt") # new cpt object
cpts(x) # retrieves the cpts slot from x
```

cpts-methods $\quad \sim \sim$ Methods for Function cpts $\sim \sim$

Description

~~ Methods for function cpts $\sim \sim$

Methods

```
signature(object = "cpt") Retrieves cpts slot from an object of class cpt
signature(object = "cpt.reg") Retrieves cpts slot from an object of class cpt.reg
```

```
    cpts<- Generic Function - cpts<-
```


Description

Generic function

Usage

cpts(object)<-value

Arguments

$\begin{array}{ll}\text { object } & \begin{array}{l}\text { Depending on the class of object depends on the method used (and if one ex- } \\ \text { ists) }\end{array} \\ \text { value } & \text { Replacement value }\end{array}$

Details

Generic function.

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

cpts<--methods

Examples

```
x=new("cpt") # new cpt object
cpts(x)<-10 # replaces the vector of changepoint in object x with 10
```

```
cpts<--methods ~~ Methods for Function cpts<- ~~
```


Description

~~Methods for function cpts<- ~~

Methods

signature ($\mathrm{x}=$ "cpt") Assigns the value following <- to the cpts slot in x
signature ($\mathrm{x}=$ "cpt.reg") Assigns the value following $<-$ to the cpts slot in x
cpttype Generic Function - cpttype

Description

Generic function

Usage

cpttype(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

cpttype-methods

Examples

x=new("cpt") \# new cpt object
cpttype(x) \# retrieves the cpttype slot from x
cpttype-methods $\quad \sim$ Methods for Function cpttype $\sim \sim$

Description

~~ Methods for function cpttype ~~

Methods

signature (object = "cpt") Retrieves cpttype slot from an object of class cpt
signature(object = "cpt.reg") Retrieves cpttype slot from an object of class cpt.reg

```
    cpttype<- Generic Function - cpttype<-
```


Description

Generic function

Usage

cpttype(object)<-value

Arguments

object Depending on the class of object depends on the method used (and if one exists)
value \quad Replacement value

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

cpttype<--methods

Examples

```
x=new("cpt") # new cpt object
cpttype(x)<-"mean" # replaces the existing cpttype in object x with "mean"
```

```
cpttype<--methods ~~ Methods for Function cpttype<- ~~
```


Description

~~Methods for function cpttype<-~~

Methods

signature ($x=$ "cpt") Assigns the value following <- to the cpttype slot in x
signature ($x=$ "cpt.reg") Assigns the value following <- to the cpttype slot in x

```
data.set Generic Function-data.set
```


Description

Generic function

Usage

data.set(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

Examples

```
x=new("cpt") # new cpt object
data.set(x) # retrieves the data.set slot from x
```

data.set-methods ~~Methods for Function data.set ~~

Description

~~ Methods for function data. set ~~

Methods

signature (object = "cpt") Retrieves the data.set slot from objects with class cpt
signature (object = "cpt.reg") Retrieves the data.set slot from objects with class cpt.reg

```
data.set<-
Generic Function - data.set<-
```


Description

Generic function

Usage

data.set (object)<-value

Arguments

object Depending on the class of object depends on the method used (and if one exists)
value Replacement value

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

data.set<--methods

Examples

```
x=new("cpt") # new cpt object
data.set(x)<-c(1,2,3,4,5) # replaces the existing data.set slot in x with c(1, 2, 3,4,5)
```

```
data.set<--methods ~~ Methods for Function data.set<- ~~
```


Description

~~ Methods for function data. set<- ~~

Methods

signature ($\mathrm{x}=$ "cpt") Assigns the value following $<-$ to the data.set slot in x
signature ($x=$ "cpt.reg") Assigns the value following <- to the data.set slot in x

```
decision Likelihood Ratio Decision Function
```


Description

Uses the function parameters to decide if a proposed changepoint is a true changepoint or due to random variability. Test is conducted using the user specified penalty.

Usage

decision(tau, null, alt=NA, penalty="SIC", n=0, diffparam=1, value=0)

Arguments

tau	A numeric value or vector specifying the proposed changepoint location(s).
null	The value of the null likelihood to be used in the liklihood ratio calculation. If tau is a vector, so is null. If the test statistic is already known, replace the null argument with the test statistic.
alt	The value of the alternative likelihood (at tau) to be used in the likelihood ratio calculation. If tau is a vector, so is alt. If the test statistic is already known, then it is used in replacement of the null argument and the alternative should not be specified (default NA to account for this)
penalty	Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter.

$\mathrm{n} \quad$ The length of the original data, required to give sensible "no changepoint".
diffparam The difference in the number of parameters in the null and alternative hypotheses, required for the SIC, BIC, AIC, Hanna-Quinn and possibly Manual penalties.
value The value of the penalty when using the Manual or Asymptotic option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.

Details

This function is used to test whether tau is a true changepoint or not. This test uses the likelihood ratio as the test statistic and performs the test where the null hypothesis is no change point and the alternative hypothesis is a single changepoint at tau. The test is (null-alt)>=penalty, if TRUE then the changepoint is deemed a true changepoint, if FALSE then n (length of data) is returned.
If the test statistic is already known then it replaces the null value and the alternative is not required (default NA). In this case the test is null>=penalty, if TRUE then the changepoint is deemed a true changepoint, if FALSE then n (length of data) is returned.

In reality this function should not be used unless you are performing a changepoint test using output from other functions. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

A list is returned with two elements, cpt and pen.
cpt If tau is a single value then a single value is returned: Either the value of the true changepoint location or n (length of data) if no changepoint is found.
If tau is a vector of length m then a vector of length m is returned:Each element is either the value of the true changepoint location or n (length of data) if no changepoint is found. The first element is for the first value of tau and the final element is for the final value of tau.
pen \quad The numeric value of the penalty used for the test(s).

Author(s)

Rebecca Killick

References

SIC/BIC: Schwarz, G. (1978) Estimating the Dimension of a Model, The Annals of Statistics 6(2), 461-464

AIC: Akaike, H. (1974) A new look at the statistical model identification, Automatic Control, IEEE Transactions on 19(6), 716-723
Hannan-Quinn: Hannan, E. J. and B. G. Quinn (1979) The Determination of the Order of an Autoregression, Journal of the Royal Statistical Society, B 41, 190-195

See Also

cpt.mean,cpt.var,cpt.meanvar,single.mean.norm,single.var.norm,single.meanvar.norm

Examples

\# Example of finding a change
out $=c(100,765.1905,435.6529)$ \# tau, null, alt
decision(out[1], out[2], out[3], penalty="SIC", $\mathrm{n}=200$, diffparam=1) \# returns 100 as a true changepoint
\# Example of no change found
out=c(53,-22.47768,-24.39894) \# tau, null, alt
decision(out[1], out[2], out[3], penalty="Manual", $n=200$, diffparam=1, value=" $2 * \log (n)$ ")
distribution Generic Function-distribution

Description

Generic function

Usage

distribution(object)

Arguments

$\begin{array}{ll}\text { object } & \text { Depending on the class of object depends on the method used (and if one ex- } \\ \text { ists) }\end{array}$

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

distribution-methods

Examples

```
x=new("cpt") # new cpt object
distribution(x) # retrieves the distribution slot from x
```

distribution-methods $\quad \sim \sim$ Methods for Function distribution ~~

Description

$\sim \sim$ Methods for function distribution ~~

Methods

signature(object = "cpt") Retrieves distribution slot from an object of class cpt
signature (object = "cpt.reg") Retrieves distribution slot from an object of class cpt.reg

```
    distribution<- Generic Function - distribution<-
```


Description

Generic function

Usage

distribution(object)<-value

Arguments

object Depending on the class of object depends on the method used (and if one exists)
value Replacement value

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

```
    distribution<--methods
```


Examples

```
x=new("cpt") # new cpt object
distribution(x)<-"normal" # replaces the current distribution slot of x with "normal"
```

```
distribution<--methods
```

 ~~Methods for Function distribution<- ~~

Description

~~Methods for function distribution<- ~~

Methods

signature ($\mathrm{x}=$ "cpt") Assigns the value following <- to the distribution slot in x
signature ($\mathrm{x}=$ "cpt.reg") Assigns the value following <- to the distribution slot in x

$$
\text { ftse100 FTSE } 100 \text { Daily Returns: 2nd April } 1984 \text { - 11th March } 2011
$$

Description

This dataset gives the daily returns (c_t+1/c_t -1) of the UK FTSE 100 index from 2nd April 1984 until the 11th March 2011.

Usage

ftse100

Format

A matrix of dimension 6807×2 where the first column is the Date and the second column is the Daily Return.

Source

Yahoo! Finance

Description

This dataset gives the $\mathrm{G}+\mathrm{C}$ content in 3 kb windows along the Human Chromosome from 10 Mb to 33 Mb (no missing data).

Usage

HC1

Format

A vector of length 23553.

Source

http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9606\&build=previous
likelihood Generic Function-likelihood

Description

Generic function to calculate the likelihood

Usage

likelihood(object)

Arguments

object Depending on the class of object depends on the method used to calculate the likelihood (and if one exists)

Details

Generic Function to calculate the likelihood.

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick
method

See Also

likelihood-methods, cpt.mean,cpt.var,cpt.meanvar

Examples

```
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50,0,10),rnorm(50,0,5),rnorm(50,0,1))
out=cpt.var(x,penalty="Manual",value=" 2* log(n)",method="BinSeg", Q=5)
likelihood(out) # returns the raw likelihood (783.9144) and the likelihood + penalty (805.1076)
```

likelihood-methods ~~Methods for Function likelihood ~~

Description

~~Methods for function likelihood ~~

Methods

signature (object = "cpt") Returns the likelihood of the data with the fitted changepoints, two values are returned, the raw likelihood and the likelihood + penalty. Only valid for cpttype="mean","variance" or "mean and variance".

```
method Generic Function-method
```


Description

Generic function

Usage

method(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

```
method-methods
```


Examples

x=new("cpt") \# new cpt object
$\operatorname{method}(x)$ \# retrieves the method slot from x
method-methods $\quad \sim \sim$ Methods for Function method $\sim \sim$

Description

$\sim \sim$ Methods for function method $\sim \sim$

Methods

signature (object = "cpt") Retrieves method slot from an object of class cpt
signature (object = "cpt.reg") Retrieves method slot from an object of class cpt.reg

$$
\text { method<- } \quad \text { Generic Function }- \text { method<- }
$$

Description

Generic function

Usage

method (object)<-value

Arguments

object	Depending on the class of object depends on the method used (and if one ex- ists)
value	Replacement value

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

method<--methods

Examples

```
x=new("cpt") # new cpt object
method(x)<-"mean" # replaces the existing method slot in x with "mean"
```

```
method<--methods ~~ Methods for Function method<- ~~
```


Description

~~ Methods for function method<- ~~

Methods

signature ($\mathrm{x}=$ "cpt") Assigns the value following <- to the method slot in x
signature ($x=$ "cpt.reg") Assigns the value following <- to the method slot in x

$$
\text { multiple.mean.cusum } \quad \text { Multiple Changes in Mean-Cumulative Sums }
$$

Description

Calculates the optimal positioning and number of changepoints for the cumulative sums test statistic using the user specified method.

Usage

multiple.mean. cusum(data, mul.method="BinSeg", penalty="Asymptotic", value=0.05, Q=5, class=TRUE, param.e

Arguments

data	A vector or matrix containing the data within which you wish to find a change- point. If data is a matrix, each row is considered a separate dataset.
mul.method	Choice of "SegNeigh" or "BinSeg".
penalty	Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn" and "Manual" penal- ties. If Manual is specified, the manual penalty is contained in the value param- eter.
value	The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, n=length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
QThe maximum number of changepoints to search for using the "BinSeg" method. The maximum number of segments (number of changepoints + 1) to search for using the "SegNeigh" method.	
classLogical. If TRUE then an object of class cpt is returned. param.estimates	
Logical. If TRUE and class=TRUE then parameter estimates are returned. If	
FALSE or class=FALSE no parameter estimates are returned.	

Details

This function is used to find multiple changes in mean for data where no assumption about the distribution is made. The changes are found using the method supplied which can be exact (SegNeigh) or approximate (BinSeg). Note that the programmed penalty values are not designed to be used with the CUSUM method, it is advised to use Asymptotic or Manual penalties.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.

If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.

If mul.method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.
If mul.method is BinSeg then a list is returned with elements:
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54
M. Csorgo, L. Horvath (1997) Limit Theorems in Change-Point Analysis, Wiley
E. S. Page (1954) Continuous Inspection Schemes, Biometrika 41(1/2), 100-115

See Also

multiple.var.css,cpt.mean,binseg.mean.cusum,single.mean.cusum,segneigh.mean.cusum,cpt

Examples

\# Example of multiple changes in mean at $50,100,150$ in simulated data
set.seed(1)
$\mathrm{x}=\mathrm{c}(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,5,1), \operatorname{rnorm}(50,10,1), \operatorname{rnorm}(50,3,1))$
multiple.mean.cusum(x, mul.method="BinSeg", penalty="Manual", value $=0.8, \mathrm{Q}=5$, class=FALSE) \# returns optimal number o
\# Example multiple datasets where the first row has multiple changes in mean and the second row has no change in mean set.seed(1)
$x=c(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,5,1), \operatorname{rnorm}(50,10,1), \operatorname{rnorm}(50,3,1))$
$y=\operatorname{rnorm}(200,0,1)$
z=rbind(x, y)
multiple.mean.cusum(z,mul.method="SegNeigh", penalty="Manual", value=1, $\mathrm{Q}=5$, class=FALSE) \# returns list that has tw
ans=multiple.mean.cusum(z,mul.method="BinSeg", penalty="Manual", value=0.8)
cpts(ans[[1]]) \# same results as for the SegNeigh method.
cpts(ans[[2]]) \# same results as for the SegNeigh method.

multiple.mean.norm Multiple Changes in Mean - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using the user specified method.

Usage

multiple.mean.norm(data, mul.method="PELT", penalty="SIC", value $=0, Q=5$, class=TRUE, param. estimates=TRUE

Arguments

data	A vector or matrix containing the data within which you wish to find a change- point. If data is a matrix, each row is considered a separate dataset. Choice of "PELT", "SegNeigh" or "BinSeg".
mul.method	Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and
"Manual" penalties. If Manual is specified, the manual penalty is contained in	
the value parameter. If Asymptotic is specified, the theoretical type I error is	
contained in the value parameter.	

Details

This function is used to find multiple changes in mean for data that is assumed to be normally distributed. The changes are found using the method supplied which can be exact (PELT or SegNeigh) or approximate (BinSeg).

Value

If class=TRUE then an object of S4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.
If mul.method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

If mul.method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If mul.method is BinSeg then a list is returned with elements:
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in Normal mean: Hinkley, D. V. (1970) Inference About the Change-Point in a Sequence of Random Variables, Biometrika 57, 1-17

PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

multiple.var.norm,multiple.meanvar.norm,cpt.mean,PELT.mean.norm,binseg.mean.norm,single.mean.norm,segn

Examples

```
# Example of multiple changes in mean at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50,5,1),rnorm(50, 10,1),rnorm(50, 3, 1))
multiple.mean.norm(x,mul.method="BinSeg",penalty="Manual",value="2*log(n)",Q=5,class=FALSE) # returns optimal n
# Example multiple datasets where the first row has multiple changes in mean and the second row has no change in mean
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50,5,1),rnorm(50, 10,1),rnorm(50, 3, 1))
y=rnorm(200,0,1)
z=rbind(x,y)
multiple.mean.norm(z,mul.method="SegNeigh", penalty="Asymptotic",value=0.01,Q=5,class=FALSE) # returns list that
ans=multiple.mean.norm(z,mul.method="PELT", penalty="Asymptotic",value=0.01)
cpts(ans[[1]]) # same results as for the SegNeigh method.
cpts(ans[[2]]) # same results as for the SegNeigh method.
```


Description

Calculates the optimal positioning and number of changepoints for Exponential data using the user specified method.

Usage

multiple.meanvar.exp(data, mul.method="PELT", penalty="SIC", value=0, $\mathrm{Q}=5$, class=TRUE, param. estimates=TR

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
mul.method Choice of "PELT", "SegNeigh" or "BinSeg".
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $n=l e n g t h$ of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.

Q The maximum number of changepoints to search for using the "BinSeg" method. The maximum number of segments (number of changepoints +1) to search for using the "SegNeigh" method.
class Logical. If TRUE then an object of class cpt is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find multiple changes in mean and variance for data that is assumed to be Exponential distributed. The changes are found using the method supplied which can be exact (PELT or SegNeigh) or approximate (BinSeg).

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.

If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.
If mul.method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

If mul.method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If mul.method is BinSeg then a list is returned with elements:
cps $\quad 2 \mathrm{XQ}$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in Exponential model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted
Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

multiple.meanvar.norm,multiple.meanvar.gamma,cpt.meanvar,PELT.meanvar.exp,binseg.meanvar.exp,single.me

Examples

\# Example of multiple changes in mean and variance at $50,100,150$ in simulated Exponential data
set.seed(1)
$x=c(\operatorname{rexp}(50$, rate $=1), r \exp (50$, rate $=5), \operatorname{rexp}(50$, rate $=1), \operatorname{rexp}(50$, rate=10) $)$
multiple.meanvar. $\exp (x$, mul.method="BinSeg", penalty="Manual", value=" $2 * \log (n) ", Q=5$, class=FALSE) \# returns optimal
\# Example multiple datasets where the first row has multiple changes in mean and variance and the second row has no c

```
set.seed(1)
x=c(rexp (50,rate=1),rexp(50,rate=5),rexp(50,rate=1),rexp(50,rate=10))
y=rexp(200,rate=1)
z=rbind(x,y)
multiple.meanvar.exp(z,mul.method="SegNeigh",penalty="Manual",value=2*log(200),Q=5,class=FALSE) # returns list
ans=multiple.meanvar.exp(z,mul.method="PELT", penalty="Manual",value=2*log(200))
cpts(ans[[1]]) # same results as for the SegNeigh method.
cpts(ans[[2]]) # same results as for the SegNeigh method.
```

multiple.meanvar.gamma

Multiple Changes in Mean and Variance - Gamma Data (i.e. change in scale parameter)

Description

Calculates the optimal positioning and number of changepoints for Gamma data using the user specified method.

Usage

multiple.meanvar.gamma(data, shape=1, mul.method="PELT", penalty="SIC", value=0, Q=5, class=TRUE, param.e

Arguments

data	A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
shape	Numerical value of the true shape parameter for the data. Either single value or vector of length nrow(data). If data is a matrix and shape is a single value, the same shape parameter is used for each row.
mul.method	Choice of "PELT", "SegNeigh" or "BinSeg".
penalty	Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter.
value	The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
Q	The maximum number of changepoints to search for using the "BinSeg" method. The maximum number of segments (number of changepoints +1) to search for using the "SegNeigh" method.
class	Logical. If TRUE then an object of class cpt is returned.
param.estimates	
	Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find multiple changes in mean and variance for data that is assumed to be Gamma distributed. The changes are found using the method supplied which can be exact (PELT or SegNeigh) or approximate (BinSeg).

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.

If mul.method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n.

If mul.method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If mul.method is BinSeg then a list is returned with elements:
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in Gamma shape parameter: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

multiple.meanvar.norm,cpt.meanvar,PELT.meanvar.gamma,binseg.meanvar.gamma,single.meanvar.gamma,segneiq

Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated Gamma data
set.seed(1)
x=c(rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=3),rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=10))
multiple.meanvar.gamma(x,shape=1,mul.method="BinSeg",penalty="Manual",value="2*log(n)", Q=5, class=FALSE) # retur
\# Example multiple datasets where the first row has multiple changes in mean and variance and the second row has no c set.seed(1)
\(x=c(r g a m m a(50\), shape \(=1\), rate \(=1)\), rgamma ( 50 , shape \(=1\), rate \(=3)\), rgamma \((50\), shape \(=1\), rate \(=1)\), rgamma \((50\), shape \(=1\), rate \(=10))\) \(y=\) rgamma (200, shape \(=1\),rate=1)
\(z=r\) ind \((x, y)\)
multiple.meanvar.gamma(z, shape=1,mul.method="SegNeigh", penalty="SIC", Q=5, class=FALSE) \# returns list that has tw ans=multiple.meanvar.gamma(z,shape=1,mul.method="PELT", penalty="SIC")
cpts(ans[[1]]) \# same results as for the SegNeigh method.
cpts(ans[[2]]) \# same results as for the SegNeigh method.
```

multiple.meanvar.norm Multiple Changes in Mean and Variance - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using the user specified method.

Usage

multiple.meanvar.norm(data, mul.method="PELT", penalty="SIC", value=0, Q=5, class=TRUE, param.estimates=T

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
mul.method Choice of "PELT", "SegNeigh" or "BinSeg".
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.

Q The maximum number of changepoints to search for using the "BinSeg" method. The maximum number of segments (number of changepoints +1) to search for using the "SegNeigh" method.
class Logical. If TRUE then an object of class cpt is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find multiple changes in mean and variance for data that is assumed to be normally distributed. The changes are found using the method supplied which can be exact (PELT or SegNeigh) or approximate (BinSeg).

Value

If class=TRUE then an object of S4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.

If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.

If mul.method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

If mul.method is SegNeigh then a list is returned with elements:
cps Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If mul.method is BinSeg then a list is returned with elements:
cps $\quad 2 x \mathrm{Q}$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in Normal mean and variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

multiple.var.norm,multiple.mean.norm,cpt.meanvar,PELT.meanvar.norm,binseg.meanvar.norm,single.meanvar.

Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50,5, 3),rnorm(50,10,1),rnorm(50, 3, 10))
multiple.meanvar.norm(x,mul.method="BinSeg",penalty="Manual",value="4*log(n)",Q=5,class=FALSE) # returns optima
# Example multiple datasets where the first row has multiple changes in mean and variance and the second row has no c
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50, 5, 3),rnorm(50,10,1),rnorm(50, 3, 10))
y=rnorm(200,0,1)
z=rbind(x,y)
multiple.meanvar.norm(z,mul.method="SegNeigh", penalty="Asymptotic",value=0.01,Q=5, class=FALSE) # returns list t 
ans=multiple.meanvar.norm(z,mul.method="PELT", penalty="Asymptotic",value=0.01)
cpts(ans[[1]]) # same results as for the SegNeigh method.
cpts(ans[[2]]) # same results as for the SegNeigh method.
```

multiple.meanvar. poisson

Multiple Changes in Mean and Variance - Poisson Data

Description

Calculates the optimal positioning and number of changepoints for Poisson data using the user specified method.

Usage

multiple.meanvar. poisson(data, mul.method="PELT", penalty="SIC", value $=0, Q=5$, class=TRUE, param. estimate

Arguments

data	A vector or matrix containing the data within which you wish to find a change- point. If data is a matrix, each row is considered a separate dataset. Choice of "PELT", "SegNeigh" or "BinSeg".
mul.method	Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and
"Manual" penalties. If Manual is specified, the manual penalty is contained in	
the value parameter. If Asymptotic is specified, the theoretical type I error is	
contained in the value parameter.	

Details

This function is used to find multiple changes in mean and variance for data that is assumed to be Poisson distributed. The changes are found using the method supplied which can be exact (PELT or SegNeigh) or approximate (BinSeg).

Value

If class=TRUE then an object of S4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.
If mul.method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n.

If mul.method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If mul.method is BinSeg then a list is returned with elements:
> cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
> op.cpts The optimal changepoint locations for the penalty supplied.
> pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in Poisson model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

cpt.meanvar,PELT.meanvar.poisson,binseg.meanvar.poisson,single.meanvar.poisson,segneigh.meanvar. poiss

Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated Poisson data
set.seed(1)
x=c(rpois(50,lambda=1),rpois(50,lambda=5),rpois(50, lambda=1), rpois(50, lambda=10))
multiple.meanvar.poisson(x,mul.method="BinSeg", penalty="Manual",value="2*log(n)",Q=5, class=FALSE) # returns opt
# Example multiple datasets where the first row has multiple changes in mean and variance and the second row has no c
set.seed(1)
x=c(rpois(50, lambda=1), rpois(50,lambda=5), rpois(50,lambda=1), rpois(50,lambda=10))
y=rpois(200,lambda=1)
z=rbind(x,y)
multiple.meanvar.poisson(z,mul.method="SegNeigh",penalty="Manual",value=2*log(200),Q=5,class=FALSE) # returns l
ans=multiple.meanvar.poisson(z,mul.method="PELT",penalty="Manual",value=2*log(200))
cpts(ans[[1]]) # same results as for the SegNeigh method.
cpts(ans[[2]]) # same results as for the SegNeigh method.
```


Description

Calculates the optimal positioning and number of changepoints for the cumulative sums of squares test statistic using the user specified method.

Usage

multiple.var.css(data, mul.method="BinSeg", penalty="SIC", value $=0, Q=5$, class=TRUE, param. estimates=TRUE

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
mul.method Choice of "SegNeigh" or "BinSeg".
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.

Q The maximum number of changepoints to search for using the "BinSeg" method. The maximum number of segments (number of changepoints +1) to search for using the "SegNeigh" method.
class Logical. If TRUE then an object of class cpt is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find multiple changes in variance for data where no assumption about the distribution is made. The changes are found using the method supplied which can be exact (SegNeigh) or approximate (BinSeg). Note that the penalty values are \log (.) to be comparable with the distributional penalties.

Value

If class=TRUE then an object of S4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.

If mul.method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.
If mul.method is BinSeg then a list is returned with elements:
cps $\quad 2 \mathrm{xQ}$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54
C. Inclan, G. C. Tiao (1994) Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance, Journal of the American Statistical Association 89(427), 913-923
R. L. Brown, J. Durbin, J. M. Evans (1975) Techniques for Testing the Constancy of Regression Relationships over Time, Journal of the Royal Statistical Society B 32(2), 149-192

See Also

multiple.mean.cusum,cpt.var,binseg.var.css,single.var.css,segneigh.var.css,cpt

Examples

```
# Example of multiple changes in variance at 50,100,150 in simulated data
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50,0,10),rnorm(50,0,5),rnorm(50,0,1))
multiple.var.css(x,mul.method="BinSeg",penalty="Manual",value="log(2*log(n))", Q=5,class=FALSE) # returns optima
```

\# Example multiple datasets where the first row has multiple changes in variance and the second row has no change in set.seed(10)
$\mathrm{x}=\mathrm{c}(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,0,10), \operatorname{rnorm}(50,0,5), \operatorname{rnorm}(50,0,1))$

```
y=rnorm(200,0,1)
```

z=rbind(x, y)
multiple.var.css(z,mul.method="SegNeigh", penalty="Asymptotic", value=0.01, Q=5, class=FALSE) \# returns list that ha
ans=multiple.var.css(z,mul.method="SegNeigh", penalty="Asymptotic", value=0.01)
cpts(ans[[1]]) \# same results as for class=FALSE.
cpts(ans[[2]]) \# same results as for class=FALSE.
multiple.var.norm Multiple Changes in Variance - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using the user specified method.

Usage

multiple.var.norm(data, mul.method="PELT", penalty="SIC", value=0, Q=5, know.mean=FALSE, mu=NA, class=TRUE

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
mul.method Choice of "PELT", "SegNeigh" or "BinSeg".
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
Q The maximum number of changepoints to search for using the "BinSeg" method. The maximum number of segments (number of changepoints +1) to search for using the "SegNeigh" method.
know. mean Logical, if TRUE then the mean is assumed known and mu is taken as its value. If FALSE, and mu=-1000 (default value) then the mean is estimated via maximum likelihood. If FALSE and the value of mu is supplied, mu is not estimated but is counted as an estimated parameter for decisions.
mu Numerical value of the true mean of the data. Either single value or vector of length nrow(data). If data is a matrix and mu is a single value, the same mean is used for each row.
class Logical. If TRUE then an object of class cpt is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find multiple changes in variance for data that is assumed to be normally distributed. The changes are found using the method supplied which can be exact (PELT or SegNeigh) or approximate (BinSeg).

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a vector/list is returned depending on the value of mul.method. If data is a matrix (multiple datasets) then a list is returned where each element in the list is either a vector or list depending on the value of mul.method.

If mul.method is PELT then a vector is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n.

If mul.method is SegNeigh then a list is returned with elements:
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

If mul.method is BinSeg then a list is returned with elements:
cps $\quad 2 x Q$ Matrix containing the changepoint positions on the first row and the test statistic on the second row.
op.cpts The optimal changepoint locations for the penalty supplied.
pen Penalty used to find the optimal number of changepoints.

Author(s)

Rebecca Killick

References

Change in variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

Binary Segmentation: Scott, A. J. and Knott, M. (1974) A Cluster Analysis Method for Grouping Means in the Analysis of Variance, Biometrics 30(3), 507-512
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

multiple.mean.norm,multiple.meanvar.norm,cpt.var,PELT.var.norm,binseg.var.norm,single.var.norm,segneig

Examples

```
# Example of multiple changes in variance at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50, 0, 10),rnorm(50,0,5),rnorm(50,0,1))
multiple.var.norm(x,mul.method="BinSeg",penalty="Manual",value="2*log(n)",Q=5,class=FALSE) # returns optimal nur
# Example multiple datasets where the first row has multiple changes in variance and the second row has no change in
set.seed(10)
x=c(rnorm(50,0,1),rnorm(50,0,10),rnorm(50,0,5),rnorm(50,0,1))
y=rnorm(200,0,1)
z=rbind(x,y)
multiple.var.norm(z,mul.method="SegNeigh",penalty="Asymptotic",value=0.01,Q=5,class=FALSE) # returns list that h
ans=multiple.var.norm(z,mul.method="PELT",penalty="Asymptotic",value=0.01)
cpts(ans[[1]]) # same results as for the SegNeigh method.
cpts(ans[[2]]) # same results as for the SegNeigh method.
```

```
ncpts Generic Function - ncpts
```


Description

Generic function

Usage

ncpts(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

ncpts-methods

Examples

```
x=new("cpt") # new cpt object
ncpts(x) # returns the number of changepoints (i.e. length of the cpts slot in x minus 1)
```

ncpts-methods $\quad \sim$ Methods for Function ncpts $\sim \sim$

Description

~~ Methods for function ncpts ~~

Methods

signature (object $=$ "cpt") Returns the number of changepoints (i.e. length of the cpts slot minus 1) from an object of class cpt
signature (object = "cpt.reg") Returns the number of changepoints (i.e. length of the cpts slot minus 1) from an object of class cpt.reg
ncpts.max Generic Function-ncpts.max

Description

Generic function

Usage

ncpts.max (object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic function.

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

```
ncpts.max-methods
```


Examples

```
x=new("cpt") # new cpt object
ncpts.max(x) # retrieves the ncpts.max slot from x
```

ncpts.max-methods $\quad \sim$ Methods for Function ncpts.max $\sim \sim$

Description

~~ Methods for function ncpts.max ~~

Methods

signature (object = "cpt") Retrieves ncpts.max slot from an object of class cpt
signature(object = "cpt.reg") Retrieves ncpts.max slot from an object of class cpt.reg

```
ncpts.max<- Generic Function - ncpts.max<-
```


Description

Generic function

Usage

ncpts.max (object)<-value

Arguments

object Depending on the class of object depends on the method used (and if one exists)
value Replacement value

Details

Generic function.

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

ncpts.max<--methods

Examples

```
x=new("cpt") # new cpt object
ncpts.max(x)<-10 # replaces the vector of changepoint in object x with 10
```

ncpts.max<--methods $\quad \sim \sim$ Methods for Function ncpts.max $<-\sim \sim$

Description

~~ Methods for function ncpts.max<- ~~

Methods

signature ($\mathrm{x}=$ "cpt") Assigns the value following <- to the ncpts.max slot in x
signature ($\mathrm{x}=$ "cpt.reg") Assigns the value following <- to the ncpts.max slot in x

param

Generic Function - param

Description

Generic function that returns parameter estimates.

Usage

param(object,...)

Arguments

object Depending on the class of object depends on the method used to find the parameter estimates (and if one exists)
$\ldots \quad$ Other variables that may be required depending on the class of object, see individual methods.

Details

Generic Function that returns parameter estimates

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

param-methods,cpt.mean,cpt.var,cpt.meanvar

Examples

```
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,0,10))
ans=cpt.var(x,penalty="Asymptotic",value=0.01,method="AMOC",param.estimates=FALSE)
# if estimates were not requested in the analysis then they can be created at a later stage if required
ans=param(ans) # fills the param.est slot with the parameter estimes.
param.est(ans) # variance is 0.8067621
```

param-methods $\sim \sim$ Methods for Function param ~~

Description

$\sim \sim$ Methods for function param ~~

Methods

signature (object = "cpt") Replaces the param.value slot in object with the parameter estimates that are appropriate for the changepoint type (cpttype slot). If the Gamma distribution is used then the shape parameter is required as a variable.
signature (object = "cpt.reg") Replaces the param.value slot in object with the parameter estimates that are appropriate for the changepoint distribution (distribution slot).

```
    param.est Generic Function - param.est
```


Description

Generic function

Usage

param.est(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

param.est-methods

Examples

x=new("cpt") \# new cpt object
param.est(x) \# retrieves the param.est slot from x

```
param.est-methods ~~ Methods for Function param.est ~~
```


Description

~~ Methods for function param. est ~~

Methods

signature (object = "cpt") Retrieves param.est slot from an object of class cpt
signature (object = "cpt.reg") Retrieves param.est slot from an object of class cpt.reg

Description

Generic function

Usage

param.est(object)<-value

Arguments

$\begin{array}{ll}\text { object } & \begin{array}{l}\text { Depending on the class of object depends on the method used (and if one ex- } \\ \text { ists) }\end{array} \\ \text { value } & \text { Replacement value }\end{array}$

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

param.est<--methods

Examples

x=new("cpt") \# new cpt object
param.est(x)<-list(mean=0) \# replaces the current param.est list in x with list(mean=0)
param.est<--methods $\quad \sim \sim$ Methods for Function param.est $<-\sim \sim$

Description

~~ Methods for function param.est<- ~~

Methods

signature ($\mathrm{x}=$ "cpt") Assigns the value following $<-$ to the param.est slot in x
signature ($\mathrm{x}=$ "cpt.reg") Assigns the value following <- to the param.est slot in x
PELT.mean.norm Multiple Changes in Mean using PELT pruned method - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using PELT pruned method.

Usage

PELT.mean.norm(data, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
pen \quad Numeric value of the linear penalty function. This value is used in the decision for each individual changepoint so that in total the penalty is k^{*} pen where k is the optimal number of changepoints detected.

Details

This function is used to find a multiple changes in mean for data that is assumed to be normally distributed. The value returned is the result of testing H 0 :existing number of changepoints against H 1 : one extra changepoint using the \log of the likelihood ratio statistic coupled with the penalty supplied. The PELT method keeps track of the optimal number and location of changepoints as it passes through the data.

Value

A vector of the changepoint locations is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n.

Author(s)

Rebecca Killick

References

Change in Normal mean: Hinkley, D. V. (1970) Inference About the Change-Point in a Sequence of Random Variables, Biometrika 57, 1-17
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

See Also

PELT.var.norm,PELT.meanvar.norm,cpt.mean,binseg.mean.norm,multiple.mean.norm,single.mean.norm,segneigh

Examples

```
# Example of multiple changes in mean at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50,5,1),rnorm(50, 10, 1),rnorm(50, 3, 1))
PELT.mean.norm(x,pen=2*log(200)) # returns c(50,100,150,200)
# Example no change in mean
set.seed(10)
x=rnorm(200,0,1)
PELT.mean.norm(x,pen=2*log(200)) # returns 200 to show no change in mean has been found
```

PELT.meanvar.exp Multiple Changes in Mean and Variance using PELT pruned method -
Exponential Data

Description

Calculates the optimal positioning and number of changepoints for Exponential data using PELT pruned method.

Usage

PELT.meanvar. $\exp ($ data, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
pen \quad Numeric value of the linear penalty function. This value is used in the decision for each individual changepoint so that in total the penalty is k^{*} pen where k is the optimal number of changepoints detected.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Exponential distributed. The value returned is the result of testing H 0 :existing number of changepoints against H 1 : one extra changepoint using the \log of the likelihood ratio statistic coupled with the penalty supplied. The PELT method keeps track of the optimal number and location of changepoints as it passes through the data.

Value

A vector of the changepoint locations is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

Author(s)

Rebecca Killick

References

Change in Exponential model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

See Also

PELT.meanvar.norm,PELT.meanvar.gamma,cpt.meanvar,binseg.meanvar.exp,multiple.meanvar.exp,single.meanva

Examples

\# Example of multiple changes in mean and variance at $50,100,150$ in simulated Exponential data set.seed(1)
$x=c(r \exp (50, r a t e=1), r \exp (50, r a t e=3), r \exp (50, r a t e=1), r \exp (50, r a t e=10))$
PELT.meanvar. $\exp (x, \operatorname{pen}=2 * \log (200))$ \# returns $c(53,100,150,200)$
\# Example no change in rate parameter
set.seed(1)
$x=r \exp (200$, rate=1)
PELT.meanvar. $\exp (x, \operatorname{pen}=2 * \log (200))$ \# returns 200 to show no change in mean or variance has been found

PELT.meanvar.gamma Multiple Changes in Mean and Variance using PELT pruned method Gamma Data (i.e. change in scale parameter)

Description

Calculates the optimal positioning and number of changepoints for Gamma data using PELT pruned method.

Usage

PELT.meanvar.gamma(data, shape=1, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
shape \quad Numerical value of the true shape parameter for the data. Either single value or vector of length nrow(data). If data is a matrix and shape is a single value, the same shape parameter is used for each row.
pen \quad Numeric value of the linear penalty function. This value is used in the decision for each individual changepoint so that in total the penalty is k^{*} pen where k is the optimal number of changepoints detected.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Gamma distributed. The value returned is the result of testing H 0 :existing number of changepoints against H1: one extra changepoint using the \log of the likelihood ratio statistic coupled with the penalty supplied. The PELT method keeps track of the optimal number and location of changepoints as it passes through the data.

Value

A vector of the changepoint locations is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

Author(s)

Rebecca Killick

References

Change in Gamma shape parameter: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

See Also

PELT.meanvar.norm,cpt.meanvar,binseg.meanvar.gamma,multiple.meanvar.gamma,single.meanvar.gamma,segneiq

Examples

```
# Example of multiple changes in scale parameter at 50,100,150 in simulated gamma data
set.seed(1)
x=c(rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=3),rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=10))
PELT.meanvar.gamma(x,pen=2*log(200)) # returns c(47,102,150,200)
# Example no change in scale parameter
set.seed(1)
x=rgamma(200, shape=1, rate=1)
PELT.meanvar.gamma(x, pen=2* log(200)) # returns 200 to show no change in mean or variance has been found
```

```
PELT.meanvar.norm Multiple Changes in Mean and Variance using PELT pruned method -
    Normal Data
```


Description

Calculates the optimal positioning and number of changepoints for Normal data using PELT pruned method.

Usage

PELT.meanvar.norm(data, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
pen \quad Numeric value of the linear penalty function. This value is used in the decision for each individual changepoint so that in total the penalty is k^{*} pen where k is the optimal number of changepoints detected.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be normally distributed. The value returned is the result of testing H 0 :existing number of changepoints against H1: one extra changepoint using the log of the likelihood ratio statistic coupled with the penalty supplied. The PELT method keeps track of the optimal number and location of changepoints as it passes through the data.

Value

A vector of the changepoint locations is returned:
cpt
Vector containing the changepoint locations for the penalty supplied. This always ends with n .

Author(s)

Rebecca Killick

References

Change in Normal mean and variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

See Also

PELT.var.norm,PELT.mean.norm,cpt.meanvar,binseg.meanvar.norm,multiple.meanvar.norm,single.meanvar.norn

Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50, 5, 3),rnorm(50,10,1),rnorm(50, 3, 10))
PELT.meanvar.norm(x,pen=4*log(200)) # returns c(50,100,150,200)
# Example no change in mean or variance
set.seed(1)
x=rnorm(200,0,1)
PELT.meanvar.norm(x, pen=4*log(200)) # returns 200 to show no change in mean or variance has been found
```


PELT.meanvar. poisson Multiple Changes in Mean and Variance using PELT pruned method Poisson Data

Description

Calculates the optimal positioning and number of changepoints for Poisson data using PELT pruned method.

Usage

PELT.meanvar.poisson(data, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
pen \quad Numeric value of the linear penalty function. This value is used in the decision for each individual changepoint so that in total the penalty is k^{*} pen where k is the optimal number of changepoints detected.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Poisson distributed. The value returned is the result of testing H 0 :existing number of changepoints against H 1 : one extra changepoint using the \log of the likelihood ratio statistic coupled with the penalty supplied. The PELT method keeps track of the optimal number and location of changepoints as it passes through the data.

Value

A vector of the changepoint locations is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

Author(s)

Rebecca Killick

References

Change in Poisson model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

See Also

```
cpt.meanvar,binseg.meanvar.poisson,multiple.meanvar.poisson,single.meanvar.poisson,segneigh.meanvar.p
```


Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated Poisson data
set.seed(1)
x=c(rpois(50,lambda=1),rpois(50, lambda=3),rpois(50,lambda=1),rpois(50,lambda=10))
PELT.meanvar.poisson(x,pen=2*log(200)) # returns c(50,100,150,200)
# Example no change in parameter
set.seed(1)
x=rpois(200,lambda=1)
PELT.meanvar.poisson(x, pen=2*log(200)) # returns 200 to show no change in mean or variance has been found
```


Description

Calculates the optimal positioning and number of changepoints for Normal data using PELT pruned method.

Usage

PELT.var.norm(data, pen=0, know.mean=FALSE, mu=NA)

Arguments

data A vector containing the data within which you wish to find changepoints.
pen \quad Numeric value of the linear penalty function. This value is used in the decision for each individual changepoint so that in total the penalty is k^{*} pen where k is the optimal number of changepoints detected.
know.mean Logical, if TRUE then the mean is assumed known and mu is taken as its value. If FALSE, and $m u=-1000$ (default value) then the mean is estimated via maximum likelihood. If FALSE and the value of mu is supplied, mu is not estimated but is counted as an estimated parameter for decisions.
mu \quad Numerical value of the true mean of the data. Either single value or vector of length nrow(data). If data is a matrix and mu is a single value, the same mean is used for each row.

Details

This function is used to find a multiple changes in variance for data that is assumed to be normally distributed. The value returned is the result of testing H0:existing number of changepoints against H1: one extra changepoint using the log of the likelihood ratio statistic coupled with the penalty supplied. The PELT method keeps track of the optimal number and location of changepoints as it passes through the data.

Value

A vector of the changepoint locations is returned:
cpt Vector containing the changepoint locations for the penalty supplied. This always ends with n .

Author(s)

Rebecca Killick

References

Change in variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
PELT Algorithm: Killick, R. and Fearnhead, P. and Eckley, I.A. (2011) An exact linear time search algorithm for multiple changepoint detection, Submitted

See Also

PELT.mean.norm,PELT.meanvar.norm,cpt.var,binseg.var.norm,multiple.var.norm,single.var.norm,segneigh.va

Examples

```
# Example of multiple changes in variance at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50,0,1),rnorm(50,0,10),rnorm(50,0,5),rnorm(50,0,1))
PELT.var.norm(x,pen=2*log(200)) # returns c(50,99,150,200)
# Example no change in variance
set.seed(10)
x=rnorm(200,0,1)
PELT.var.norm(x,pen=2*log(200)) # returns 200 to show no change in variance has been found
```

```
    pen.type Generic Function - pen.type
```


Description

Generic function

Usage

pen.type(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

pen.type-methods

Examples

```
x=new("cpt") # new cpt object
pen.type(x) # retrieves the pen.type slot from x
```

pen.type-methods $\sim \sim$ Methods for Function pen.type $\sim \sim$

Description

$\sim \sim$ Methods for function pen. type $\sim \sim$

Methods

```
signature(object = "cpt") Retrieves pen.type slot from an object of class cpt
signature(object = "cpt.reg") Retrieves pen.type slot from an object of class cpt.reg
```

 pen.type<-
 Generic Function - pen.type<-

Description

Generic function

Usage

pen.type(object)<-value

Arguments

object Depending on the class of object depends on the method used (and if one exists)
value Replacement value

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

```
pen.type<--methods
```


Examples

```
x=new("cpt") # new cpt object
pen.type(x)<-"SIC" # replaces the existing pen.type slot in x with "SIC"
```

```
pen.type<--methods ~~ Methods for Function pen.type<- ~~
```


Description

~~Methods for function pen. type<- ~~

Methods

signature ($\mathrm{x}=$ "cpt") Assigns the value following <- to the pen.type slot in x
signature ($x=$ "cpt.reg") Assigns the value following $<-$ to the pen.type slot in x

$$
\text { pen.value } \quad \text { Generic Function - pen.value }
$$

Description

Generic function

Usage

pen. value(object)

Arguments

object Depending on the class of object depends on the method used (and if one exists)

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

pen.value-methods

Examples

x=new("cpt") \# new cpt object
pen.value(x) \# retrieves the pen.value slot from x
pen.value-methods ~~Methods for Function pen.value ~~

Description

$\sim \sim$ Methods for function pen. value $\sim \sim$

Methods

signature (object = "cpt") Retrieves pen.value slot from an object of class cpt
signature (object = "cpt.reg") Retrieves pen.value slot from an object of class cpt.reg

```
    pen.value<- Generic Function - pen.value<-
```


Description

Generic function

Usage

pen.value(object)<-value

Arguments

object Depending on the class of object depends on the method used (and if one exists)
value Replacement value

Details

Generic Function

Value

Depends on the class of object, see individual methods

Author(s)

Rebecca Killick

See Also

pen.value<--methods

Examples

```
x=new("cpt") # new cpt object
pen.value(x)<-5 # replaces the existing pen.value slot in x with 5
```

pen.value<--methods $\quad \sim$ Methods for Function pen.value<- ~~

Description

~~ Methods for function pen.value<-~~

Methods

signature ($x=$ "cpt") Assigns the value following $<-$ to the pen.value slot in x
signature ($\mathrm{x}=$ "cpt.reg") Assigns the value following <- to the pen.value slot in x

| plot-methods $\quad \sim \sim$ Methods for Function plot in Package 'graphics' $\sim \sim$ |
| :--- | :--- |

Description

~~ Methods for function plot in Package 'graphics' $\sim \sim$

Methods

signature ($\mathrm{x}=$ "ANY") Generic plot function, see graphics package description using ?plot
signature ($\mathrm{x}=$ "cpt") Plots the data and identifies the changepoints using vertical lines (change in variance), horizontal lines (change in mean). Optional arguments to control the lines: cpt. col equivilent to col to change the colour of the changepoint line; cpt. width equivilent to lwd to change the width of the changepoint line; cpt. style equivilent to lty to change the style of the line.
signature ($\mathrm{x}=$ "cpt.reg") Plotting is only valid for one regressor. Plots the regressor against the response and identifies the changepoints using horizontal lines. Optional arguments to control the lines: cpt.col equivilent to col to change the colour of the changepoint line; cpt. width equivilent to lwd to change the width of the changepoint line; cpt. style equivilent to lty to change the style of the line.

```
print-methods ~~ Methods for Function print in Package 'base' ~ 
```


Description

~~ Methods for function print in Package 'base' ~~

Methods

signature ($\mathrm{x}=$ "ANY") Generic print function, see base package description using ?print
signature ($\mathrm{x}=$ "cpt") Prints out information contained within the object x including a summary
signature ($x=$ "cpt.reg") Prints out information contained within the object x including a summary

segneigh.mean.cusum \quad| Multiple Changes in Mean using Segment Neighbourhood method - |
| :--- |
| Cumulative Sums |

Description

Calculates the optimal positioning and number of changepoints for Cumulative Sums test statistic using Segment Neighbourhood method.

Usage

segneigh.mean.cusum(data, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of segments (number of changepoints $+1)$ you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in mean for data that is not assumed to have a particular distribution. The value returned is the result of finding the optimal location of up to Q changepoints using the cumulative sums test statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.

Author(s)

Rebecca Killick

References

M. Csorgo, L. Horvath (1997) Limit Theorems in Change-Point Analysis, Wiley
E. S. Page (1954) Continuous Inspection Schemes, Biometrika 41(1/2), 100-115

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

segneigh.mean.cusum,cpt.mean,multiple.mean.cusum,single.mean.cusum,binseg.mean.cusum

Examples

```
# Example of multiple changes in mean at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50,5,1),rnorm(50,10,1),rnorm(50, 3, 1))
segneigh.mean.cusum( }x,Q=5,pen=1) # returns optimal number as 3 and the locations as c(50,101,150
segneigh.mean.cusum( }x,Q=3,pen=1) # returns optimal number as 2 as this is the maximum number of changepoints it can
# Example no change in mean
set.seed(10)
x=rnorm(200,0,1)
segneigh.mean.cusum(x,Q=5,pen=1) # returns optimal number as 0
```

segneigh.mean.norm Multiple Changes in Mean using Segment Neighbourhood method Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using Segment Neighbourhood method. Note that this gives the same results as PELT method but takes more computational time.

Usage

segneigh.mean.norm(data, Q=5, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of segments (number of changepoints +1) you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints, used as k^{*} pen where k is the number of changepoints to be tested.

Details

This function is used to find a multiple changes in mean for data that is assumed to be normally distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the \log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using k^{*} pen as the penalty function where k is the number of changepoints tested (k in $(1, Q)$).

Value

A list is returned containing the following items
cps Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

Author(s)

Rebecca Killick

References

Change in Normal mean: Hinkley, D. V. (1970) Inference About the Change-Point in a Sequence of Random Variables, Biometrika 57, 1-17
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

segneigh.var.norm,segneigh.meanvar.norm,cpt.mean,PELT.mean.norm,multiple.mean.norm,single.mean.norm,bi

Examples

```
# Example of multiple changes in mean at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50, 5, 1),rnorm(50, 10, 1),rnorm(50, 3, 1))
segneigh.mean.norm( }\textrm{x},\textrm{Q}=5\mathrm{ , pen =2*log(200)) # returns optimal number as 3 and the locations as c(50,100,150)
segneigh.mean.norm(x,Q=3,pen=2*log(200)) # returns optimal number as 2 as this is the maximum number of changepoint
# Example no change in mean
set.seed(10)
x=rnorm(200,0,1)
segneigh.mean.norm(x,Q=5,pen=2*log(200)) # returns optimal number as 0
```

```
segneigh.meanvar.exp Multiple Changes in Mean and Variance using Segment Neighbour-
    hood method - Exponential Data
```


Description

Calculates the optimal positioning and number of changepoints for Exponential data using Segment Neighbourhood method. Note that this gives the same results as PELT method but takes more computational time.

Usage

segneigh.meanvar.exp(data, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of segments (number of changepoints +1) you wish to search for, default is 5 .
pen
Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints, used as k^{*} pen where k is the number of changepoints to be tested.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Exponential distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using k^{*} pen as the penalty function where k is the number of changepoints tested (k in $(1, \mathrm{Q})$).

Value

A list is returned containing the following items
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

Author(s)

Rebecca Killick

References

Change in Exponential model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

segneigh.meanvar.norm,segneigh.meanvar.gamma,cpt.meanvar,PELT.meanvar.exp,multiple.meanvar.exp,single.

Examples

\# Example of multiple changes in mean and variance at $50,100,150$ in simulated Exponential data set.seed(1)
$x=c(r \exp (50, r a t e=1), r \exp (50$, rate=5), rexp (50, rate=1), rexp(50, rate=10))
segneigh.meanvar. $\exp (x, Q=5$, pen $=2 \star \log (200))$ \# returns optimal number as 3 and the locations as $c(50,100,150)$
segneigh. meanvar. $\exp (\mathrm{X}, \mathrm{Q}=3$, pen $=2 * \log (200))$ \# returns optimal number as 2 as this is the maximum number of changepo
\# Example no change in mean or variance
set.seed(1)
$x=\operatorname{rexp}(200$, rate $=1)$
segneigh.meanvar. $\exp (x, \operatorname{pen}=2 * \log (200))$ \# returns optimal number as 0

```
segneigh.meanvar.gamma
```

Multiple Changes in Mean and Variance using Segment Neighbourhood method - Gamma Data (i.e. change in scale parameter)

Description

Calculates the optimal positioning and number of changepoints for Gamma data using Segment Neighbourhood method. Note that this gives the same results as PELT method but takes more computational time.

Usage

segneigh.meanvar.gamma(data, shape $=1, \mathrm{Q}=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
shape \quad Numerical value of the true shape parameter for the data. Either single value or vector of length nrow(data). If data is a matrix and shape is a single value, the same shape parameter is used for each row.
Q Numeric value of the maximum number of segments (number of changepoints $+1)$ you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints, used as k^{*} pen where k is the number of changepoints to be tested.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Gamma distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the \log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using $k *$ pen as the penalty function where k is the number of changepoints tested (k in $(1, \mathrm{Q})$).

Value

A list is returned containing the following items
cps Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

Author(s)

Rebecca Killick

References

Change in Gamma shape parameter: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

segneigh.meanvar.norm,cpt.meanvar,PELT.meanvar.gamma,multiple.meanvar.gamma,single.meanvar.gamma,binse

Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated Gamma data
set.seed(1)
x=c(rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=3),rgamma(50, shape=1,rate=1),rgamma(50, shape=1,rate=10))
segneigh.meanvar.gamma(x, shape=1, Q=5, pen=2*log(200)) # returns optimal number as 3 and the locations as c(47,102
segneigh.meanvar.gamma(x, shape=1, Q=3, pen=2*log(200)) # returns optimal number as 2 as this is the maximum number
# Example no change in mean or variance
set.seed(1)
x=rgamma(200, shape=1,rate=1)
segneigh.meanvar.gamma(x,shape=1,pen=2*log(200)) # returns optimal number as 0
```

segneigh.meanvar.norm	Multiple Changes in Mean and Variance using Segment Neighbour- hood method - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using Segment Neighbourhood method. Note that this gives the same results as PELT method but takes more computational time.

Usage

segneigh.meanvar.norm(data, $Q=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q
Numeric value of the maximum number of segments (number of changepoints $+1)$ you wish to search for, default is 5 .
pen
Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints, used as k^{*} pen where k is the number of changepoints to be tested.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be normally distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using $k *$ pen as the penalty function where k is the number of changepoints tested (k in $(1, \mathrm{Q})$).

Value

A list is returned containing the following items
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2^{*} \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

Author(s)

Rebecca Killick

References

Change in Normal mean and variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

segneigh.var.norm,segneigh.mean.norm,cpt.meanvar,PELT.meanvar.norm,multiple.meanvar.norm,single.meanva

Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated normal data
set.seed(1)
x=c(rnorm(50, 0, 1),rnorm(50,5,3),rnorm(50,10,1),rnorm(50,3,10))
segneigh.meanvar.norm( }\textrm{x},\textrm{Q}=5\mathrm{ , pen=4* log(200)) # returns optimal number as 3 and the locations as c(50,100,150)
segneigh.meanvar.norm(x,Q=3, pen=4*log(200)) # returns optimal number as 2 as this is the maximum number of changep
# Example no change in mean or variance
set.seed(1)
x=rnorm(200, 0, 1)
segneigh.meanvar.norm(x,pen=4*log(200)) # returns optimal number as 0
```

```
segneigh.meanvar.poisson
```

Multiple Changes in Mean and Variance using Segment Neighbourhood method - Poisson Data

Description

Calculates the optimal positioning and number of changepoints for Poisson data using Segment Neighbourhood method. Note that this gives the same results as PELT method but takes more computational time.

Usage

segneigh.meanvar.poisson(data, $\mathrm{Q}=5$, pen=0)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of segments (number of changepoints +1) you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints, used as k^{*} pen where k is the number of changepoints to be tested.

Details

This function is used to find a multiple changes in mean and variance for data that is assumed to be Poisson distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the \log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using $k *$ pen as the penalty function where k is the number of changepoints tested $(\mathrm{k}$ in $(1, \mathrm{Q}))$.

Value

A list is returned containing the following items
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

Author(s)

Rebecca Killick

References

Change in Poisson model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

```
cpt.meanvar,PELT.meanvar.poisson,multiple.meanvar.poisson,single.meanvar.poisson,binseg.meanvar.poiss
```


Examples

```
# Example of multiple changes in mean and variance at 50,100,150 in simulated Poisson data
set.seed(1)
x=c(rpois(50,lambda=1), rpois(50,lambda=5), rpois(50, lambda=1), rpois(50, lambda=10))
segneigh.meanvar.poisson(x,Q=5, pen=2*log(200)) # returns optimal number as 3 and the locations as c(50,100,150)
segneigh.meanvar.poisson( }x,Q=3,pen=2*\operatorname{log}(200)) # returns optimal number as 2 as this is the maximum number of chan
# Example no change in mean or variance
set.seed(1)
x=rpois(200, lambda=1)
segneigh.meanvar.poisson(x,pen=2*log(200)) # returns optimal number as 0
```

segneigh.var.css Multiple Changes in Variance using Segment Neighbourhood method
- Cumulative Sums of Squares

Description

Calculates the optimal positioning and number of changepoints for Cumulative Sums of Sqaures test statistic using Segment Neighbourhood method.

Usage

segneigh.var.css(data, $Q=5$, pen=0)

Arguments

data
Q
pen

A vector containing the data within which you wish to find changepoints.
Numeric value of the maximum number of segments (number of changepoints $+1)$ you wish to search for, default is 5 .

Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints.

Details

This function is used to find a multiple changes in variance for data that is not assumed to have a particular distribution. The value returned is the result of finding the optimal location of up to Q changepoints using the cumulative sums of squares test statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using pen as the penalty function.

Value

A list is returned containing the following items
$\mathrm{cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.

Author(s)

Rebecca Killick

References

C. Inclan, G. C. Tiao (1994) Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance, Journal of the American Statistical Association 89(427), 913-923
R. L. Brown, J. Durbin, J. M. Evans (1975) Techniques for Testing the Constancy of Regression Relationships over Time, Journal of the Royal Statistical Society B 32(2), 149-192
Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

```
segneigh.var.norm,cpt.var,multiple.var.css,single.var.css,binseg.var.css
```


Examples

```
# Example of multiple changes in variance at 50,100,150 in simulated normal data
set.seed(10)
x=c(rnorm(50,0,1),rnorm(50, 0, 10),rnorm(50,0,5),rnorm(50,0,1))
segneigh.var.css(x,Q=5, pen=1.368) # returns optimal number as 3 and the locations as c(52,100,149)
segneigh.var.css(x,Q=3, pen=1.368) # returns optimal number as 2 as this is the maximum number of changepoints it ca
# 1.358 is the asymptotic value of the penalty for 95% confidence
# Example no change in variance
set.seed(1)
x=rnorm(200,0,1)
segneigh.var.css(x,Q=5, pen=1.368) # returns optimal number as 0
```

```
segneigh.var.norm
```

Multiple Changes in Variance using Segment Neighbourhood method - Normal Data

Description

Calculates the optimal positioning and number of changepoints for Normal data using Segment Neighbourhood method. Note that this gives the same results as PELT method but takes more computational time.

Usage

segneigh.var.norm(data, $\mathrm{Q}=5$, pen=0, know.mean=FALSE, mu=NA)

Arguments

data A vector containing the data within which you wish to find changepoints.
Q Numeric value of the maximum number of segments (number of changepoints $+1)$ you wish to search for, default is 5 .
pen \quad Numeric value of the linear penalty function. This value is used in the final decision as to the optimal number of changepoints, used as k^{*} pen where k is the number of changepoints to be tested.
know.mean Logical, if TRUE then the mean is assumed known and mu is taken as its value. If FALSE, and $m u=-1000$ (default value) then the mean is estimated via maximum likelihood. If FALSE and the value of mu is supplied, mu is not estimated but is counted as an estimated parameter for decisions.
mu \quad Numerical value of the true mean of the data. Either single value or vector of length nrow(data). If data is a matrix and mu is a single value, the same mean is used for each row.

Details

This function is used to find a multiple changes in variance for data that is assumed to be normally distributed. The value returned is the result of finding the optimal location of up to Q changepoints using the \log of the likelihood ratio statistic. Once all changepoint locations have been calculated, the optimal number of changepoints is decided using k^{*} pen as the penalty function where k is the number of changepoints tested (k in $(1, \mathrm{Q})$).

Value

A list is returned containing the following items
$\mathrm{Cps} \quad$ Matrix containing the changepoint positions for $1, \ldots, \mathrm{Q}$ changepoints.
op.cpts The optimal changepoint locations for the penalty supplied.
like Value of the $-2 * \log$ (likelihood ratio) + penalty for the optimal number of changepoints selected.

Author(s)

Rebecca Killick

References

Change in variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

Segment Neighbourhoods: Auger, I. E. And Lawrence, C. E. (1989) Algorithms for the Optimal Identification of Segment Neighborhoods, Bulletin of Mathematical Biology 51(1), 39-54

See Also

segneigh.mean.norm,segneigh.meanvar.norm,cpt.var,PELT.var.norm,multiple.var.norm,single.var.norm,binse

Examples

\# Example of multiple changes in variance at $50,100,150$ in simulated normal data
set.seed(1)
$\mathrm{x}=\mathrm{c}(\operatorname{rnorm}(50,0,1), \operatorname{rnorm}(50,0,10), \operatorname{rnorm}(50,0,5), \operatorname{rnorm}(50,0,1))$
segneigh.var. $\operatorname{norm}(x, Q=5$, pen $=2 * \log (200))$ \# returns optimal number as 3 and the locations as $c(50,99,150)$
segneigh. var. $\operatorname{norm}(x, Q=3$, pen $=2 * \log (200))$ \# returns optimal number as 2 as this is the maximum number of changepoint
\# Example no change in variance
set.seed(10)
x=rnorm (200, 0, 1)
segneigh.var.norm(x, Q=5, pen=2*log(200)) \# returns optimal number as 0

```
single.mean.cusum Single Change in Mean-Cumulative Sums
```


Description

Calculates the cumulative sums (cusum) test statistic for all possible changepoint locations and returns the single most probable (max).

Usage

single.mean.cusum(data, penalty="Asymptotic", value $=0.05$, class=TRUE, param.estimates=TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter.
value The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=test statistic, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
class Logical. If TRUE then an object of class cpt is returned. If FALSE a vector is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find a single change in mean for data that is is not assumed to follow a specific distribtuion. The value returned is the result of testing H 0 :no change in mean against H 1 : single change in mean using the cumulative sums test statistic coupled with the penalty supplied.

Warning: The prescribed penalty values are not defined for use on CUSUM tests. The values tend to be too large and thus manual penalties are preferred.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a single value is returned:
cpt The most probable location of a changepoint if H 0 was rejected or NA if H 1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
cpt \quad Vector of length m containing where each element is the result of the test for data[m,$]$. If $\mathrm{cpt}[\mathrm{m}]$ is a number then it is the most probable location of a changepoint under H1. Otherwise cpt[m] has the value NA and indicates that H1 was rejected.

Author(s)

Rebecca Killick

References

M. Csorgo, L. Horvath (1997) Limit Theorems in Change-Point Analysis, Wiley
E. S. Page (1954) Continuous Inspection Schemes, Biometrika 41(1/2), 100-115

See Also

```
cpt.mean,cpt
```


Examples

\# Example of a change in mean at 100 in simulated normal data
set.seed(1)
$x=c(\operatorname{rnorm}(100,0,1), \operatorname{rnorm}(100,10,1))$
single.mean.cusum(x, penalty="Manual", value=1, class=FALSE) \# returns 101 to show that the null hypothesis was rejec ans=single.mean.cusum(x, penalty="Manual", value=1)
cpts(ans) \# returns 101 to show that the null hypothesis was rejected, the change in mean is at 101
\# Example of a data matrix containing 2 rows, row 1 has a change in mean and row 2 had no change in mean
set.seed(1)
$x=c(\operatorname{rnorm}(100,0,1), \operatorname{rnorm}(100,10,1))$
$y=\operatorname{rnorm}(200,0,1)$
$z=r b i n d(x, y)$
single.mean.cusum(z, penalty="Manual", value=1, class=FALSE) \# returns vector $c(101,200)$ which shows that the first ans=single.mean.cusum(z, penalty="Manual", value=" $\log (\log (n)) ")$
cpts (ans[[1]]) \# test using a manual penalty which is the $\log ($ SIC) penalty and gives the same values for this exampl
cpts(ans[[2]]) \# result is the same as above, c(101, 200)

```
single.mean.cusum.calc
```

Single Change in Mean - Cumulative Sums

Description

Calculates the cumulative sums (cusum) test statistic for all possible changepoint locations and returns the single most probable (max).

Usage

single.mean.cusum.calc(data, extrainf = TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
extrainf Logical, if TRUE the test statistic is returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in mean for data where no distributional assumption is made. The changepoint returned is simply the location where the test statistic is maximised, there is no test performed as to whether this location is a true changepoint or not.
In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint
If data is a vector (single dataset) and extrainf=TRUE then a vector with two elements is returned:
test statistic The cumulative sums test statistic
If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
$\mathrm{cpt} \quad$ Vector of length m containing the most probable location of a changepoint for each row in data. $\operatorname{cpt}[1]$ is the most probable changepoint of the first row in data and $\mathrm{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the test statistic for each row in data.

Author(s)

Rebecca Killick

References

M. Csorgo, L. Horvath (1997) Limit Theorems in Change-Point Analysis, Wiley
E. S. Page (1954) Continuous Inspection Schemes, Biometrika 41(1/2), 100-115

See Also

single.mean. cusum, cpt.mean

Examples

```
# Example of a change in mean at 100 in simulated data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,10,1))
single.mean.cusum.calc(x,extrainf=FALSE) # finds change at }10
single.mean.cusum.calc(x) # finds change at 101 and gives the test statistic as 2.463326
# Example of no change in mean in simulated data
set.seed(1)
x=rnorm(100,0,1)
single.mean.cusum.calc(x,extrainf=FALSE) # finds change at 97, this is the most probable point of change but if a ch
single.mean.cusum.calc(x)# change at 97, test statistic is 0.0398342
```


Description

Calculates the scaled log-likelihood (assuming the data is normally distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.mean.norm(data, penalty="SIC", value=0, class=TRUE,param.estimates=TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value \quad The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $n=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
class Logical. If TRUE then an object of class cpt is returned. If FALSE a vector is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find a single change in mean for data that is assumed to be normally distributed. The value returned is the result of testing H0:no change in mean against H 1 : single change in mean using the log of the likelihood ratio statistic coupled with the penalty supplied.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a single value is returned:
cpt The most probable location of a changepoint if H 0 was rejected or NA if H 1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
cpt Vector of length m containing where each element is the result of the test for data[m,]. If cpt[m] is a number then it is the most probable location of a changepoint under H 1 . Otherwise cpt[m] has the value NA and indicates that H 1 was rejected.

Author(s)

Rebecca Killick

References

Change in Normal mean: Hinkley, D. V. (1970) Inference About the Change-Point in a Sequence of Random Variables, Biometrika 57, 1-17

See Also

cpt.mean,single.meanvar.norm,single.var.norm,cpt

Examples

```
# Example of a change in mean at 100 in simulated normal data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,10,1))
single.mean.norm(x,penalty="SIC",class=FALSE) # returns 100 to show that the null hypothesis was rejected and the c
ans=single.mean.norm(x, penalty="Asymptotic",value=0.01)
cpts(ans) # returns 100 to show that the null hypothesis was rejected, the change in mean is at 100 and we are 99% con
```

\# Example of a data matrix containing 2 rows, row 1 has a change in mean and row 2 had no change in mean
set.seed(1)
$x=c(\operatorname{rnorm}(100,0,1), \operatorname{rnorm}(100,10,1))$
$y=\operatorname{rnorm}(200,0,1)$
z=rbind(x, y)
single.mean. norm(z, penalty="SIC", class=FALSE) \# returns vector $c(100,200)$ which shows that the first dataset has a
ans=single.mean.norm(z, penalty="Manual", value=" $\log (n) ")$
cpts(ans[[1]]) \# test using a manual penalty which is the same as the SIC penalty for this example
cpts(ans[[2]]) \# result is the same as above, c(100, 200)

```
single.mean.norm.calc Single Change in Mean - Normal Data
```


Description

Calculates the scaled log-likelihood (assuming the data is normally distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.mean.norm.calc(data, extrainf $=$ TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
extrainf Logical, if TRUE the scaled null and alternative likelihood values are returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in mean for data that is assumed to be normally distributed. The changepoint returned is simply the location where the log likelihood is maximised, there is no test performed as to whether this location is a true changepoint or not.
The returned likelihoods are scaled so that a test can be directly performed using the log of the likelihood ratio, $\lambda=\frac{1}{\sigma^{2}}\{$ null -alt $\}$, which should be maximised.

In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations

If data is a vector (single dataset) and extrainf=TRUE then a vector with three elements is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations
null The scaled null likelihood (log likelihood of entire data with no change)
alt The scaled alternative liklihood at cpt (log likelihood of entire data with a change at cpt)

If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
cpt Vector of length m containing the most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations for each row in data. cpt[1] is the most probable changepoint of the first row in data and $\mathrm{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the scaled null likelihood for each row in data, the final column is the scaled maximum of the alternative likelihoods for each row in data.

Author(s)

Rebecca Killick

References

Change in Normal mean: Hinkley, D. V. (1970) Inference About the Change-Point in a Sequence of Random Variables, Biometrika 57, 1-17

```
See Also
single.mean.norm, cpt.mean
```


Examples

```
# Example of a change in mean at 100 in simulated normal data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,10,1))
single.mean.norm.calc(x,extrainf=FALSE) # finds change at 100
single.mean.norm.calc(x) # finds change at 100 and gives null likelihood as 5025.0857 and alternative likelihood as
# Example of no change in mean in simulated normal data
set.seed(1)
x=rnorm(100,0,1)
single.mean.norm.calc(x,extrainf=FALSE) # finds change at 96, this is the most probable point of change but if a che
single.mean.norm.calc(x)# change at 96, null liklihood is 79.86945 and alternative is 75.73725
```

single.meanvar.exp Single Change in Mean and Variance - Exponential Data

Description

Calculates the scaled log-likelihood (assuming the data is Exponential distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.meanvar. \exp (data, penalty="SIC", value=0, class=TRUE, param.estimates=TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, n=length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.

```
class Logical. If TRUE then an object of class cpt is returned. If FALSE a vector is
    returned.
param.estimates
    Logical. If TRUE and class=TRUE then parameter estimates are returned. If
    FALSE or class=FALSE no parameter estimates are returned.
```


Details

This function is used to find a single change in scale parameter (mean and variance) for data that is assumed to be Exponential distributed. The value returned is the result of testing H0:no change in mean or variance against H 1 : single change in mean and/or variance using the \log of the likelihood ratio statistic coupled with the penalty supplied.

Value

If class=TRUE then an object of $S 4$ class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a single value is returned:
$\mathrm{cpt} \quad$ The most probable location of a changepoint if H 0 was rejected or NA if H 1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
cpt Vector of length m containing where each element is the result of the test for data[m,]. If $\mathrm{cpt}[\mathrm{m}]$ is a number then it is the most probable location of a changepoint under H 1 . Otherwise $\mathrm{cpt}[\mathrm{m}]$ has the value NA and indicates that H 1 was rejected.

Author(s)

Rebecca Killick

References

Change in Exponential model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

cpt.meanvar,single.meanvar.norm,single.meanvar.gamma,cpt

Examples

```
# Example of a change in mean and variance at 100 in simulated Exponential data
set.seed(10)
x=c(rexp(100,rate=1),rexp(100,rate=5))
single.meanvar.exp(x,penalty="SIC",class=FALSE) # returns 99 to show that the null hypothesis was rejected and the
ans=single.meanvar.exp(x,penalty="AIC")
cpts(ans) # returns 99 to show that the null hypothesis was rejected, the change in mean and variance is at 99
```

\# Example of a data matrix containing 2 rows, row 1 has a change in rate parameter and row 2 had no change in rate par set.seed(10)
$x=c(\operatorname{rexp}(100$, rate $=1), r \exp (100$, rate $=10))$
$y=\operatorname{rexp}(200$, rate $=1)$
$z=r b i n d(x, y)$
single.meanvar. $\exp (z$, penalty="SIC", class=FALSE) \# returns vector $c(99,200)$ which shows that the first dataset has
ans=single.meanvar.exp(z,penalty="Manual", value="diffparam*log(n)") \# list returned
cpts (ans[[1]]) \# test using a manual penalty which is the same as the SIC penalty for this example. The same changep
cpts(ans[[2]]) \# same as above, no change found

```
single.meanvar.exp.calc
```

Single Change in Mean and Variance - Exponential Data

Description

Calculates the scaled log-likelihood (assuming the data is Exponential distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.meanvar.exp.calc(data, extrainf = TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
extrainf Logical, if TRUE the scaled null and alternative likelihood values are returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in mean and variance for data that is assumed to be Exponential distributed. The changepoint returned is simply the location where the log likelihood is maximised, there is no test performed as to whether this location is a true changepoint or not.

The returned likelihoods are scaled so that a test can be directly performed using the log of the likelihood ratio, $\lambda=\{$ null - alt $\}$, which should be maximised.

In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations

If data is a vector (single dataset) and extrainf=TRUE then a vector with three elements is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations
null The scaled null likelihood (log likelihood of entire data with no change)
altlike The scaled alternative liklihood at cpt (log likelihood of entire data with a change at cpt)

If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
cpt Vector of length m containing the most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations for each row in data. cpt[1] is the most probable changepoint of the first row in data and $\mathrm{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the scaled null likelihood for each row in data, the final column is the scaled maximum of the alternative likelihoods for each row in data.

Author(s)

Rebecca Killick

References

Change in Exponential Model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

```
single.meanvar.exp,cpt.meanvar
```


Examples

```
# Example of a change in mean and variance at 100 in simulated Exponential data
set.seed(10)
x=c(rexp (100,rate=1),rexp(100,rate=5))
single.meanvar.exp.calc(x,extrainf=FALSE) # finds change at 99
single.meanvar.exp.calc(x) # finds change at 99 and gives null likelihood as -192.5052 and alternative likelihood a
```

\# Example of no change in rate parameter (mean or variance) in simulated Exponential data
set.seed(10)
$x=r \exp (100, r a t e=1)$
single.meanvar.exp.calc (x,extrainf=FALSE) \# finds change at 90 , this is the most probable point of change but if a
single.meanvar.exp.calc(x)\# change at 90, null liklihood is 3.196690 and alternative is 1.060281

$$
\begin{array}{ll}
\text { single.meanvar.gamma } & \begin{array}{l}
\text { Single Change in Mean and Variance - Gamma Data (i.e. change in } \\
\text { scale parameter) }
\end{array}
\end{array}
$$

Description

Calculates the scaled log-likelihood (assuming the data is Gamma distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.meanvar.gamma(data, shape=1, penalty="SIC", value=0, class=TRUE, param.estimates=TRUE)

Abstract

Arguments data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset. shape \quad Numerical value of the true shape parameter for the data. Either single value or vector of length nrow(data). If data is a matrix and shape is a single value, the same shape parameter is used for each row. penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. value The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $\mathrm{n}=$ length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters. class Logical. If TRUE then an object of class cpt is returned. If FALSE a vector is returned. param.estimates Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find a single change in scale parameter (mean and variance) for data that is assumed to be Gamma distributed. The value returned is the result of testing H0:no change in mean or variance against H 1 : single change in mean and/or variance using the \log of the likelihood ratio statistic coupled with the penalty supplied.

Value

If class=TRUE then an object of $S 4$ class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.

If data is a vector (single dataset) then a single value is returned:
cpt The most probable location of a changepoint if H 0 was rejected or NA if H 1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
$\mathrm{cpt} \quad$ Vector of length m containing where each element is the result of the test for data[m,$]$. If $\mathrm{cpt}[\mathrm{m}]$ is a number then it is the most probable location of a changepoint under H 1 . Otherwise $\mathrm{cpt}[\mathrm{m}]$ has the value NA and indicates that H 1 was rejected.

Author(s)

Rebecca Killick

References

Change in Gamma scale parameter: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

cpt.meanvar,single.meanvar.norm,cpt

Examples

\# Example of a change in scale parameter (mean and variance) at 100 in simulated gamma data set.seed(1)
$\mathrm{x}=\mathrm{c}($ rgamma (100 , shape $=1$, rate $=1)$, rgamma (100 , shape=1, rate=5))
single.meanvar.gamma(x, penalty="SIC", class=FALSE) \# returns 97 to show that the null hypothesis was rejected and th ans=single.meanvar.gamma(x, penalty="AIC")
cpts(ans) \# returns 97 to show that the null hypothesis was rejected, the change in scale parameter is at 97
\# Example of a data matrix containing 2 rows, row 1 has a change in scale parameter and row 2 had no change in scale p set.seed(10)
$\mathrm{x}=\mathrm{c}($ rgamma $(100$, shape $=1$, rate=1), rgamma (100 , shape $=1$, rate=10))
$y=\operatorname{rgamma}(200$, shape $=1$, rate $=1)$
z=rbind(x, y)
single.meanvar.gamma(z, penalty="SIC", class=FALSE) \# returns vector $c(99,200)$ which shows that the first dataset ha ans=single.meanvar.gamma(z,penalty="Manual", value="diffparam*log(n)") \# list returned
$\operatorname{cpts}(a n s[[1]])$ \# test using a manual penalty which is the same as the SIC penalty for this example. The same changep cpts(ans[[2]]) \# same as above, no change found

```
single.meanvar.gamma.calc
    Single Change in Mean and Variance - Gamma Data (i.e. change in
    scale parameter)
```


Description

Calculates the scaled log-likelihood (assuming the data is Gamma distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.meanvar.gamma.calc(data, shape=1, extrainf $=$ TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
shape \quad Numerical value of the true shape parameter for the data. Either single value or vector of length nrow(data). If data is a matrix and shape is a single value, the same shape parameter is used for each row.
extrainf Logical, if TRUE the scaled null and alternative likelihood values are returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in mean and variance for data that is assumed to be Gamma distributed. The changepoint returned is simply the location where the log likelihood is maximised, there is no test performed as to whether this location is a true changepoint or not.
The returned likelihoods are scaled so that a test can be directly performed using the \log of the likelihood ratio, $\lambda=\{$ null -alt $\}$, which should be maximised.
In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations

If data is a vector (single dataset) and extrainf=TRUE then a vector with three elements is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations
null The scaled null likelihood (log likelihood of entire data with no change)
altlike The scaled alternative liklihood at cpt (log likelihood of entire data with a change at cpt)

If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
cpt Vector of length m containing the most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations for each row in data. cpt[1] is the most probable changepoint of the first row in data and $\mathrm{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the scaled null likelihood for each row in data, the final column is the scaled maximum of the alternative likelihoods for each row in data.

Author(s)

Rebecca Killick

References

Change in Gamma scale parameter: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

single.meanvar.gamma, cpt.meanvar

Examples

```
# Example of a change in scale parameter (mean and variance) at 100 in simulated gamma data
set.seed(1)
x=c(rgamma(100, shape=1,rate=1),rgamma(100, shape=1, rate=5))
single.meanvar.gamma.calc(x,extrainf=FALSE) # finds change at 97
single.meanvar.gamma.calc(x) # finds change at 97 and gives null likelihood as -230.8446 and alternative likelihooc
# Example of no change in scale parameter (mean or variance) in simulated gamma data
set.seed(10)
x=rgamma(100, shape=1, rate=1)
single.meanvar.gamma.calc(x,extrainf=FALSE) # finds change at 72, this is the most probable point of change but if
single.meanvar.gamma.calc(x)# change at 72, null liklihood is -13.28644 and alternative is -16.27421
```


Description

Calculates the scaled log-likelihood (assuming the data is normally distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.meanvar.norm(data, penalty="SIC", value=0, class=TRUE, param.estimates=TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, $n=l e n g t h$ of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
class Logical. If TRUE then an object of class cpt is returned. If FALSE a vector is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find a single change in mean and variance for data that is assumed to be normally distributed. The value returned is the result of testing H0:no change in mean or variance against H1: single change in mean and/or variance using the log of the likelihood ratio statistic coupled with the penalty supplied.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a single value is returned:
cpt The most probable location of a changepoint if H 0 was rejected or NA if H 1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
cpt Vector of length m containing where each element is the result of the test for data[m,$]$. If $\mathrm{cpt}[\mathrm{m}]$ is a number then it is the most probable location of a changepoint under H 1 . Otherwise $\mathrm{cpt}[\mathrm{m}]$ has the value NA and indicates that H 1 was rejected.

Author(s)

Rebecca Killick

References

Change in Normal mean and variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

```
See Also
cpt.meanvar,single.mean.norm,single.var.norm,cpt
```


Examples

\# Example of a change in mean and variance at 100 in simulated normal data
set.seed(1)
$x=c(r n o r m(100,0,1), r n o r m(100,1,10)) ~$
single.meanvar.norm(x, penalty="SIC", class=FALSE) \# returns 99 to show that the null hypothesis was rejected and the ans=single.meanvar.norm(x, penalty="Asymptotic", value=0.01)
cpts(ans) \# returns 99 to show that the null hypothesis was rejected, the change in mean and variance is at 99 and we
\# Example of a data matrix containing 2 rows, row 1 has a change in mean and variance and row 2 had no change in mean o set.seed(10)
$\mathrm{x}=\mathrm{c}($ rnorm $(100,0,1), \operatorname{rnorm}(100,1,10))$
$y=\operatorname{rnorm}(200,0,1)$
z=rbind (x, y)
single.meanvar.norm(z, penalty="Asymptotic", value=0.01, class=FALSE) \# returns vector c(99,200) which shows that th ans=single.meanvar.norm(z,penalty="Manual", value="diffparam*log(n)") \# list returned
cpts(ans[[1]]) \# test using a manual penalty which is the same as the SIC penalty for this example, result shows that cpts (ans[[2]]) \# but the second dataset returns a change in mean and variance at 198 which was rejected under the asy

```
single.meanvar.norm.calc
```

Single Change in Mean and Variance - Normal Data

Description

Calculates the scaled log-likelihood (assuming the data is normally distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

```
single.meanvar.norm.calc(data, extrainf \(=\) TRUE)
```


Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
extrainf Logical, if TRUE the scaled null and alternative likelihood values are returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in mean and variance for data that is assumed to be normally distributed. The changepoint returned is simply the location where the log likelihood is maximised, there is no test performed as to whether this location is a true changepoint or not.
The returned likelihoods are scaled so that a test can be directly performed using the log of the likelihood ratio, $\lambda=\{$ null -alt $\}$, which should be maximised.
In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations

If data is a vector (single dataset) and extrainf=TRUE then a vector with three elements is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations
null The scaled null likelihood (log likelihood of entire data with no change)
altlike The scaled alternative liklihood at cpt (log likelihood of entire data with a change at cpt)

If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
cpt Vector of length m containing the most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations for each row in data. cpt[1] is the most probable changepoint of the first row in data and $\mathrm{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the scaled null likelihood for each row in data, the final column is the scaled maximum of the alternative likelihoods for each row in data.

Author(s)

Rebecca Killick

References

Change in Normal mean and variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

> single.meanvar.norm, cpt.meanvar

Examples

```
# Example of a change in mean and variance at 100 in simulated normal data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,1,10))
single.meanvar.norm.calc(x,extrainf=FALSE) # finds change at }10
single.meanvar.norm.calc(x) # finds change at 100 and gives null likelihood as 765.2189 and alternative likelihood
# Example of no change in mean or variance in simulated normal data
set.seed(10)
x=rnorm(100,0,1)
single.meanvar.norm.calc(x,extrainf=FALSE) # finds change at 99, this is the most probable point of change but if a
single.meanvar.norm.calc(x)# change at 99, null liklihood is -13.11733 and alternative is -37.16001
```

single.meanvar.poisson

Single Change in Mean and Variance - Poisson Data

Description

Calculates the scaled log-likelihood (assuming the data is Poisson distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.meanvar. poisson(data, penalty="SIC", value=0, class=TRUE, param.estimates=TRUE)

Arguments

data
penalty

A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.

```
value The theoretical type I error e.g.0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, \(\mathrm{n}=\) length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
class Logical. If TRUE then an object of class cpt is returned. If FALSE a vector is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.
```


Details

This function is used to find a single change in scale parameter (mean and variance) for data that is assumed to be Poisson distributed. The value returned is the result of testing H0:no change in mean or variance against H 1 : single change in mean and/or variance using the \log of the likelihood ratio statistic coupled with the penalty supplied.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.

If data is a vector (single dataset) then a single value is returned:
cpt The most probable location of a changepoint if H 0 was rejected or NA if H1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
$\mathrm{cpt} \quad$ Vector of length m containing where each element is the result of the test for data $[\mathrm{m}$,$] . If \mathrm{cpt}[\mathrm{m}]$ is a number then it is the most probable location of a changepoint under H 1 . Otherwise $\mathrm{cpt}[\mathrm{m}]$ has the value NA and indicates that H 1 was rejected.

Author(s)

Rebecca Killick

References

Change in Poisson model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

cpt.meanvar,cpt

Examples

\# Example of a change in mean and variance at 100 in simulated Poisson data
set.seed(10)
$\mathrm{x}=\mathrm{c}($ rpois(100, lambda $=1)$, rpois $(100$, lambda $=5))$
single.meanvar. poisson(x, penalty="SIC", class=FALSE) \# returns 99 to show that the null hypothesis was rejected and ans=single.meanvar.poisson(x,penalty="AIC")
cpts(ans) \# returns 99 to show that the null hypothesis was rejected, the change in mean and variance is at 99
\# Example of a data matrix containing 2 rows, row 1 has a change in parameter and row 2 had no change in parameter
set.seed(1)
$x=c(r p o i s(100, l a m b d a=1), r p o i s(100, l a m b d a=10))$
$y=$ rpois(200, lambda=1)
$z=r b i n d(x, y)$
single.meanvar. poisson(z, penalty="SIC", class=FALSE) \# returns vector c $(99,200)$ which shows that the first dataset ans=single.meanvar. poisson(z, penalty="Manual", value="diffparam* $\log (n)$ ") \# list returned $\operatorname{cpts}(a n s[[1]])$ \# test using a manual penalty which is the same as the SIC penalty for this example. The same changep cpts(ans[[2]]) \# same as above, no change found

```
single.meanvar.poisson.calc
```

Single Change in Mean and Variance - Poisson Data

Description

Calculates the scaled log-likelihood (assuming the data is Poisson distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.meanvar.poisson.calc(data, extrainf = TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
extrainf Logical, if TRUE the scaled null and alternative likelihood values are returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in mean and variance for data that is assumed to be Poisson distributed. The changepoint returned is simply the location where the log likelihood is maximised, there is no test performed as to whether this location is a true changepoint or not.
The returned likelihoods are scaled so that a test can be directly performed using the log of the likelihood ratio, $\lambda=\{$ null - alt $\}$, which should be maximised.
In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations

If data is a vector (single dataset) and extrainf=TRUE then a vector with three elements is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations
null The scaled null likelihood (log likelihood of entire data with no change)
altlike The scaled alternative liklihood at cpt (log likelihood of entire data with a change at cpt)

If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
cpt Vector of length m containing the most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations for each row in data. cpt[1] is the most probable changepoint of the first row in data and $\mathrm{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the scaled null likelihood for each row in data, the final column is the scaled maximum of the alternative likelihoods for each row in data.

Author(s)

Rebecca Killick

References

Change in Poisson Model: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

single.meanvar. poisson, cpt.meanvar

Examples

```
# Example of a change in mean and variance at 100 in simulated Poisson data
set.seed(10)
x=c(rpois(100,lambda=1),rpois(100,lambda=5))
single.meanvar.poisson.calc(x,extrainf=FALSE) # finds change at 99
single.meanvar.poisson.calc(x) # finds change at 99 and gives null likelihood as -1243.330 and alternative likeliho
# Example of no change in parameter (mean or variance) in simulated Poisson data
set.seed(10)
x=rpois(100,lambda=1)
```

single.meanvar.poisson.calc (x,extrainf=FALSE) \# finds change at 17, this is the most probable point of change but i single.meanvar. poisson.calc(x)\# change at 17, null liklihood is 34.13681 and alternative is 31.20430
single.var.css Single Change in Variance - Cumulative Sums of Squares

Description

Calculates the cumulative sums of squares (css) test statistic for all possible changepoint locations and returns the single most probable (max).

Usage
 single.var.css(data, penalty="SIC", value=0, class=TRUE, param.estimates=TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
penalty Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value \quad The theoretical type I error e.g. 0.05 when using the Asymptotic penalty (options are $0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95)$. The value of the penalty when using the Manual penalty option. This can be a numeric value or text giving the formula to use. Available variables are, n=length of original data, null=test statistic, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
class Logical. If TRUE then an object of class cpt is returned. If FALSE a vector is returned.
param.estimates
Logical. If TRUE and class=TRUE then parameter estimates are returned. If FALSE or class=FALSE no parameter estimates are returned.

Details

This function is used to find a single change in variance for data that is is not assumed to follow a specific distribtuion. The value returned is the result of testing H 0 :no change in variance against H1: single change in variance using the cumulative sums of squares test statistic coupled with the penalty supplied.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a single value is returned:
$\mathrm{cpt} \quad$ The most probable location of a changepoint if H 0 was rejected or NA if H 1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
cpt Vector of length m containing where each element is the result of the test for data[m,]. If cpt[m] is a number then it is the most probable location of a changepoint under H 1 . Otherwise $\mathrm{cpt}[\mathrm{m}]$ has the value NA and indicates that H 1 was rejected.

Author(s)

Rebecca Killick

References

C. Inclan, G. C. Tiao (1994) Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance, Journal of the American Statistical Association 89(427), 913-923
R. L. Brown, J. Durbin, J. M. Evans (1975) Techniques for Testing the Constancy of Regression Relationships over Time, Journal of the Royal Statistical Society B 32(2), 149-192

See Also

cpt.var,cpt

Examples

\# Example of a change in variance at 100 in simulated normal data set.seed(1)
$x=c(\operatorname{rnorm}(100,0,1), \operatorname{rnorm}(100,0,10))$
single.var.css(x, penalty="Asymptotic", value=0.05, class=FALSE) \# returns 105 to show that the null hypothesis was r ans=single.var.css(x,penalty="Asymptotic", value=0.01)
cpts(ans) \# returns 105 to show that the null hypothesis was rejected, the change in variance is at 105 and we are 99
\# Example of a data matrix containing 2 rows, row 1 has a change in variance and row 2 had no change in variance set.seed(10)
$x=c(\operatorname{rnorm}(100,0,1), \operatorname{rnorm}(100,0,10))$
$y=\operatorname{rnorm}(200,0,1)$
$z=r b i n d(x, y)$
single.var.css(z, penalty="Asymptotic", value=0.05, class=FALSE) \# returns vector $c(102,200)$ which shows that the fi ans=single.var.css(z, penalty="Manual", value=2)
cpts(ans[[1]]) \# test using a manual penalty which is the same as the AIC penalty for this example
cpts(ans[[2]]) \# result is the same as above, c(102, 200)

Description

Calculates the cumulative sums of squares (css) test statistic for all possible changepoint locations and returns the single most probable (max).

Usage

single.var.css.calc(data, extrainf = TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
extrainf Logical, if TRUE the test statistic is returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in variance for data where no distributional assumption is made. The changepoint returned is simply the location where the test statistic is maximised, there is no test performed as to whether this location is a true changepoint or not.
In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint
If data is a vector (single dataset) and extrainf=TRUE then a vector with two elements is returned:
test statistic The cumulative sums of squares test statistic
If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
cpt Vector of length m containing the most probable location of a changepoint for each row in data. cpt[1] is the most probable changepoint of the first row in data and $\operatorname{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the test statistic for each row in data.

Author(s)

Rebecca Killick

References

C. Inclan, G. C. Tiao (1994) Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance, Journal of the American Statistical Association 89(427), 913-923
R. L. Brown, J. Durbin, J. M. Evans (1975) Techniques for Testing the Constancy of Regression Relationships over Time, Journal of the Royal Statistical Society B 32(2), 149-192

See Also

single.var.css, cpt.var

Examples

\# Example of a change in variance at 100 in simulated normal data set.seed(1)
$x=c(r \operatorname{norm}(100,0,1), r \operatorname{norm}(100,0,10))$
single.var.css.calc (x,extrainf=FALSE) \# finds change at 105
single.var.css.calc(x) \# finds change at 105 and gives test statistic as 4.979771
\# Example of no change in variance in simulated normal data
set.seed(1)
x=rnorm(100, 0, 1)
single.var.css.calc (x,extrainf=FALSE) \# finds change at 53 , this is the most probable point of change but if a chang single.var.css.calc(x)\# change at 53 , test statistic is 0.6922931

```
single.var.norm Single Change in Variance - Normal Data
```


Description

Calculates the scaled log-likelihood (assuming the data is normally distributed) for all possible changepoint locations and returns the single most probable (max).

Usage

single.var.norm(data, penalty="SIC", value=0, know.mean=FALSE, mu=NA, class=TRUE, param.estimates=TRUE)

Arguments

data
A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.

penalty	Choice of "None", "SIC", "BIC", "AIC", "Hannan-Quinn", "Asymptotic" and "Manual" penalties. If Manual is specified, the manual penalty is contained in the value parameter. If Asymptotic is specified, the theoretical type I error is contained in the value parameter.
value	The theoretical type I error e.g. 0.05 when using the Asymptotic penalty. The value of the penalty when using the Manual penalty option. This can be a nu- meric value or text giving the formula to use. Available variables are, n=length of original data, null=null likelihood, alt=alternative likelihood, tau=proposed changepoint, diffparam=difference in number of alternatve and null parameters.
Logical, if TRUE then the mean is assumed known and mu is taken as its value.	
know.mean	If FALSE, and mu=-1000 (default value) then the mean is estimated via maxi- mum likelihood. If FALSE and the value of mu is supplied, mu is not estimated but is counted as an estimated parameter for decisions.
muNumerical value of the true mean of the data. Either single value or vector of length nrow(data). If data is a matrix and mu is a single value, the same mean is used for each row.	
classLogical. If TRUE then an object of class cpt is returned. If FALSE a vector is returned.	
param.estimates	

Details

This function is used to find a single change in variance for data that is assumed to be normally distributed. The value returned is the result of testing $\mathrm{H} 0:$ no change in variance against H 1 : single change in variance using the \log of the likelihood ratio statistic coupled with the penalty supplied.

Value

If class=TRUE then an object of S 4 class "cpt" is returned. The slot cpts contains the changepoints that are solely returned if class=FALSE. The structure of cpts is as follows.
If data is a vector (single dataset) then a single value is returned:
cpt The most probable location of a changepoint if H0 was rejected or NA if H1 was rejected.

If data is an mxn matrix (multiple datasets) then a vector is returned:
cpt \quad Vector of length m containing where each element is the result of the test for data[m,$]$. If $\mathrm{cpt}[\mathrm{m}]$ is a number then it is the most probable location of a changepoint under H 1 . Otherwise $\mathrm{cpt}[\mathrm{m}]$ has the value NA and indicates that H 1 was rejected.

Author(s)

Rebecca Killick

References

Change in variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

cpt.var,single.meanvar.norm,single.mean.norm,cpt

Examples

```
# Example of a change in variance at 100 in simulated normal data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,0,10))
single.var.norm(x,penalty="SIC",class=FALSE) # returns 100 to show that the null hypothesis was rejected and the ch
ans=single.var.norm(x,penalty="Asymptotic",value=0.01)
cpts(ans) # returns 100 to show that the null hypothesis was rejected, the change in variance is at 100 and we are 99%
# Example of a data matrix containing 2 rows, row 1 has a change in variance and row 2 had no change in variance
set.seed(10)
x=c(rnorm(100,0,1),rnorm(100,0,10))
y=rnorm(200,0,1)
z=rbind(x,y)
single.var.norm(z,penalty="SIC",class=FALSE) # returns vector c(100,200) which shows that the first dataset has a 
ans=single.var.norm(z,penalty="Manual",value="diffparam*log(n)")
cpts(ans[[1]]) # test using a manual penalty which is the same as the SIC penalty for this example
cpts(ans[[2]]) # result is the same as above, c(100, 200)
```

single.var.norm.calc Single Change in Variance - Normal Data

Description

Calculates the scaled negative log-likelihood (assuming the data is normally distributed) for all possible changepoint locations and returns the single most probable (min).

Usage

single.var.norm.calc(data, know.mean=FALSE, mu=NA, extrainf = TRUE)

Arguments

data A vector or matrix containing the data within which you wish to find a changepoint. If data is a matrix, each row is considered a separate dataset.
know.mean Logical, if TRUE then the mean is assumed known and mu is taken as its value. If FALSE, and $m u=-1000$ (default value) then the mean is estimated via maximum likelihood. If FALSE and the value of mu is supplied, mu is not estimated but is counted as an estimated parameter for decisions.

Numerical value of the true mean of the data. Either single value or vector of length nrow(data). If data is a matrix and mu is a single value, the same mean is used for each row.
extrainf Logical, if TRUE the scaled null and alternative negative likelihood values are returned along with the changepoint location. If FALSE, only the changepoint location is returned.

Details

This function is used to find a single change in variance for data that is assumed to be normally distributed. The changepoint returned is simply the location where the log likelihood ratio is maximised, there is no test performed as to whether this location is a true changepoint or not.
The returned negative log likelihoods are scaled so that a test can be directly performed using the \log of the likelihood ratio, $\lambda=\{$ null $-a l t\}$, which should be maximised.
In reality this function should not be used unless you are performing a changepoint test using the output supplied. This function is used in the "see also" functions that perform various changepoint tests, ideally these should be used.

Value

If data is a vector (single dataset) and extrainf=FALSE then a single value is returned:
cpt The most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations

If data is a vector (single dataset) and extrainf=TRUE then a vector with three elements is returned:
null The scaled null likelihood (negative log likelihood of entire data with no change)
alt The scaled alternative liklihood at cpt (negative log likelihood of entire data with a change at cpt)

If data is an mxn matrix (multiple datasets) and extrainf=FALSE then a vector is returned:
cpt Vector of length m containing the most probable location of a changepoint (scaled max log likelihood over all possible changepoint locations for each row in data. cpt[1] is the most probable changepoint of the first row in data and $\mathrm{cpt}[\mathrm{m}]$ is the most probable changepoint for the final row in data.

If data is a matrix (multiple datasets) and extrainf=TRUE then a matrix is returned where the first column is the changepoint location for each row in data, the second column is the scaled null likelihood for each row in data, the final column is the scaled maximum of the alternative likelihoods for each row in data.

Author(s)

Rebecca Killick

References

Change in variance: Chen, J. and Gupta, A. K. (2000) Parametric statistical change point analysis, Birkhauser

See Also

single.var.norm, cpt.var

Examples

```
# Example of a change in variance at 100 in simulated normal data
set.seed(1)
x=c(rnorm(100,0,1),rnorm(100,0,10))
single.var.norm.calc(x,extrainf=FALSE) # finds change at 100
single.var.norm.calc(x) # finds change at 100 and gives null likelihood as 765.1905 and alternative likelihood as 4
# Example of no change in variance in simulated normal data
set.seed(1)
x=rnorm(100,0,1)
single.var.norm.calc(x,extrainf=FALSE) # finds change at 53, this is the most probable point of change but if a char
single.var.norm.calc(x)# change at 53, null liklihood is -22.47768 and alternative is -24.39894.
```

summary-methods ~~Methods for Function summary in Package 'base' ~~

Description

~~ Methods for function summary in Package 'base' ~~

Methods

signature(object $=$ "ANY") Generic summary function, see base package description using ?summary
signature (object $=$ "cpt") Prints out a summary of the object to the terminal.
signature (object = "cpt.reg") Prints out a summary of the object to the terminal.

Index

```
*Topic changepoint
    changepoint-package, 4
*Topic classes
    cpt-class,16
    cpt.reg-class,23
*Topic cpt
    cpt-class,16
    cpt.reg-class,23
    cpts,27
    cpts-methods,28
    cpts<-, 29
    cpts<--methods, 30
    cpttype, 30
    cpttype-methods,31
    cpttype<-, 31
    cpttype<--methods,32
data.set, 32
data.set-methods, 33
data.set<-, 33
data.set<--methods, 34
distribution, 36
distribution-methods, 37
distribution<-, 37
distribution<--methods, 38
likelihood, 39
likelihood-methods,40
method,40
method-methods,41
method<-, 41
method<--methods, 42
ncpts,60
ncpts-methods,61
ncpts.max, 61
ncpts.max-methods,62
ncpts.max<-, 62
ncpts.max<--methods, 63
param, }6
param-methods,64
param.est, }6
```

param.est-methods, 65
param.est<-, 66
param.est<--methods, 67
pen.type, 75
pen.type-methods, 76
pen.type<-, 76
pen.type<--methods, 77
pen.value, 77
pen.value-methods, 78
pen.value<-, 78
pen.value<--methods, 79
plot-methods, 79
print-methods, 80
summary-methods, 121
*Topic datasets
ftse100, 38
HC1, 39
*Topic methods
binseg.mean. cusum, 5
binseg.mean.norm, 6
binseg.meanvar.exp, 8
binseg.meanvar.gamma, 9
binseg.meanvar.norm, 11
binseg.meanvar.poisson, 12
binseg.var.css, 13
binseg.var.norm, 15
cpt.mean, 18
cpt.meanvar, 21
cpt.var, 25
cpts, 27
cpts-methods, 28
cpts<-, 29
cpts<--methods, 30
cpttype, 30
cpttype-methods, 31
cpttype<-, 31
cpttype<--methods, 32
data.set, 32
data.set-methods, 33

```
data.set<-, 33
data.set<--methods, 34
decision, 34
distribution, 36
distribution-methods, 37
distribution<-, 37
distribution<--methods, 38
likelihood, 39
likelihood-methods,40
method, 40
method-methods, 41
method<-, 41
method<--methods,42
multiple.mean.cusum, 42
multiple.mean.norm,44
multiple.meanvar.exp,47
multiple.meanvar.gamma,49
multiple.meanvar.norm, 51
multiple.meanvar.poisson, 53
multiple.var.css,56
multiple.var.norm,58
ncpts,60
ncpts-methods,61
ncpts.max, 61
ncpts.max-methods,62
ncpts.max<-, 62
ncpts.max<--methods,63
param, }6
param-methods,64
param.est,65
param.est-methods,65
param.est<-, 66
param.est<--methods,67
PELT.mean.norm,67
PELT.meanvar.exp,68
PELT.meanvar.gamma,70
PELT.meanvar.norm, 71
PELT.meanvar.poisson,72
PELT.var.norm, 74
pen.type, }7
pen.type-methods,76
pen.type<-, 76
pen.type<--methods,77
pen.value, 77
pen.value-methods,78
pen.value<-,}7
pen.value<--methods,79
plot-methods,79
```

PELT.meanvar.exp, 68
PELT.meanvar.gamma, 70
PELT. meanvar.norm, 71
PELT.meanvar. poisson, 72
PELT.var.norm, 74
segneigh.mean.cusum, 80
segneigh.mean.norm, 82
segneigh.meanvar.exp, 83
segneigh.meanvar.gamma, 85
segneigh.meanvar.norm, 86
segneigh.meanvar. poisson, 88
segneigh.var.css, 89
segneigh.var.norm, 91
single.mean. cusum, 92
single.mean. cusum. calc, 94
single.mean. norm, 96
single.mean.norm.calc, 97
single.meanvar.exp, 99
single.meanvar.exp.calc, 101
single.meanvar.gamma, 103
single.meanvar.gamma.calc, 105
single.meanvar.norm, 107
single.meanvar.norm.calc, 108
single.meanvar. poisson, 110
single.meanvar. poisson.calc, 112
single.var.css, 114
single.var.css.calc, 116
single.var.norm, 117
single.var.norm.calc, 119
*Topic plot
plot-methods, 79
*Topic print
print-methods, 80
$*$ Topic segmentation
changepoint-package, 4
*Topic summary
summary-methods, 121
*Topic ts
binseg.mean.cusum, 5
binseg.mean.norm, 6
binseg.meanvar.exp, 8
binseg.meanvar.gamma, 9
binseg.meanvar.norm, 11
binseg.meanvar. poisson, 12
binseg.var.css, 13
binseg.var.norm, 15
cpt.mean, 18
cpt.meanvar, 21
cpt.var, 25
decision, 34
multiple.mean. cusum, 42
multiple.mean.norm, 44
multiple.meanvar.exp, 47
multiple.meanvar.gamma, 49
multiple.meanvar.norm, 51
multiple.meanvar. poisson, 53
multiple.var.css, 56
multiple.var.norm, 58
PELT.mean.norm, 67
PELT.meanvar. \exp, 68
PELT.meanvar. gamma, 70
PELT.meanvar.norm, 71
PELT. meanvar. poisson, 72
PELT.var.norm, 74
segneigh.mean. cusum, 80
segneigh.mean.norm, 82
segneigh.meanvar.exp, 83
segneigh.meanvar.gamma, 85
segneigh.meanvar.norm, 86
segneigh.meanvar. poisson, 88
segneigh.var.css, 89
segneigh.var.norm, 91
single.mean. cusum, 92
single.mean.cusum.calc, 94
single.mean.norm, 96
single.mean.norm.calc, 97
single.meanvar. exp, 99
single.meanvar.exp.calc, 101
single.meanvar.gamma, 103
single.meanvar.gamma.calc, 105
single.meanvar.norm, 107
single.meanvar.norm.calc, 108
single.meanvar. poisson, 110
single.meanvar. poisson.calc, 112
single.var.css, 114
single.var.css.calc, 116
single.var.norm, 117
single.var.norm.calc, 119
*Topic univar
binseg.mean.cusum, 5
binseg.mean.norm, 6
binseg.meanvar.exp, 8
binseg.meanvar.gamma, 9
binseg.meanvar.norm, 11
binseg.meanvar. poisson, 12
binseg.var.css, 13

```
binseg.var.norm, 15
cpt.mean, 18
cpt.meanvar, 21
cpt.var, 25
decision, 34
multiple.mean.cusum, 42
multiple.mean.norm,44
multiple.meanvar.exp,47
multiple.meanvar.gamma,49
multiple.meanvar.norm, 51
multiple.meanvar.poisson, 53
multiple.var.css,56
multiple.var.norm,58
PELT.mean.norm,67
PELT.meanvar.exp,68
PELT.meanvar.gamma,70
PELT.meanvar.norm, 71
PELT.meanvar.poisson,72
PELT.var.norm,74
segneigh.mean.cusum, 80
segneigh.mean.norm, 82
segneigh.meanvar.exp, }8
segneigh.meanvar.gamma, 85
segneigh.meanvar.norm, }8
segneigh.meanvar.poisson, 88
segneigh.var.css, }8
segneigh.var.norm, }9
single.mean.cusum, }9
single.mean.cusum.calc, 94
single.mean.norm,96
single.mean.norm.calc, }9
single.meanvar.exp,99
single.meanvar.exp.calc, 101
single.meanvar.gamma, 103
single.meanvar.gamma.calc, 105
single.meanvar.norm,107
single.meanvar.norm.calc, 108
single.meanvar.poisson, 110
single.meanvar.poisson.calc,112
single.var.css, 114
single.var.css.calc,116
single.var.norm,117
single.var.norm.calc,119
binseg.mean.cusum, 5, 44, 81
binseg.mean.norm, 6, 6, 12, 16, 46, 68, 83
binseg.meanvar.exp, 8, 48, 69, 84
binseg.meanvar.gamma, 9, 9, 51, 71, 86
```

binseg.meanvar.norm, $7,9,10,11,16,53$, 72, 87
binseg.meanvar.poisson, 12, 55, 73, 89
binseg.var.css, 13, 57, 90
binseg.var.norm, 7, 12, 14, 15, 60, 75, 92
changepoint (changepoint-package), 4 changepoint-package, 4
cpt, 20, 23, 24, 27, 44, 46, 48, 51, 53, 55, 57, $60,93,97,100,104,108,111,115$, 119
cpt-class, 16
cpt-method, cpts (cpt-class), 16
cpt-method,cpts<- (cpt-class), 16
cpt-method, cpttype (cpt-class), 16
cpt-method, cpttype<- (cpt-class), 16
cpt-method, data.set (cpt-class), 16
cpt-method, data.set<- (cpt-class), 16
cpt-method, distribution (cpt-class), 16
cpt-method, distribution<- (cpt-class), 16
cpt-method,likelihood (cpt-class), 16
cpt-method,method (cpt-class), 16
cpt-method,method<- (cpt-class), 16
cpt-method, ncpts.max (cpt-class), 16
cpt-method, ncpts.max<- (cpt-class), 16
cpt-method, param (cpt-class), 16
cpt-method, pen.type (cpt-class), 16
cpt-method, pen.type<- (cpt-class), 16
cpt-method, pen.value (cpt-class), 16
cpt-method, pen.value<- (cpt-class), 16
cpt-method, plot (cpt-class), 16
cpt-method, print (cpt-class), 16
cpt-method, summary (cpt-class), 16
cpt.mean, 4, 6, 7, 18, 18, 23, 27, 36, 40, 44, $46,64,68,81,83,93,95,97,99$
cpt.meanvar, 4, 9, 10, 12, 13, 18, 20, 21, 27, $36,40,48,51,53,55,64,69,71-73$, 84, 86, 87, 89, 100, 102, 104, 106, $108,110,111,113$
cpt.reg, 18
cpt.reg-class, 23
cpt.reg-method, cpts (cpt.reg-class), 23
cpt.reg-method, cpts<- (cpt.reg-class), 23
cpt.reg-method, cpttype (cpt.reg-class), 23
cpt.reg-method, cpttype<-
(cpt.reg-class), 23
cpt.reg-method,data.set
(cpt.reg-class), 23
cpt.reg-method,data.set<-
(cpt.reg-class), 23
cpt.reg-method,distribution (cpt.reg-class), 23
cpt.reg-method,distribution<-
(cpt.reg-class), 23
cpt.reg-method, method (cpt.reg-class), 23
cpt.reg-method, method<-
(cpt.reg-class), 23
cpt.reg-method, ncpts.max
(cpt.reg-class), 23
cpt.reg-method, ncpts.max<-
(cpt.reg-class), 23
cpt.reg-method, param (cpt.reg-class), 23
cpt.reg-method, pen.type
(cpt.reg-class), 23
cpt.reg-method, pen.type<-
(cpt.reg-class), 23
cpt.reg-method, pen.value
(cpt.reg-class), 23
cpt.reg-method, pen.value<-
(cpt.reg-class), 23
cpt.reg-method, print (cpt.reg-class), 23 cpt.reg-method, summary (cpt.reg-class), 23
cpt.var, $4,14,16,18,20,23,25,36,40,57$, $60,64,75,90,92,115,117,119,121$
cpts, 27
cpts, cpt-method (cpts-methods), 28
cpts, cpt.reg-method (cpts-methods), 28
cpts-methods, 28
cpts<-, 29
cpts<-, cpt-method (cpts<--methods), 30
cpts<-, cpt.reg-method (cpts<--methods), 30
cpts<--methods, 30
cpttype, 30
cpttype, cpt-method (cpttype-methods), 31
cpttype, cpt. reg-method
(cpttype-methods), 31
cpttype-methods, 31
cpttype<-, 31
cpttype<-, cpt-method
(cpttype<--methods), 32
cpttype<-, cpt.reg-method
(cpttype<--methods), 32
cpttype<--methods, 32
data.set, 32
data.set, cpt-method (data.set-methods), 33
data.set, cpt.reg-method
(data.set-methods), 33
data.set-methods, 33
data.set<-, 33
data.set<-, cpt-method
(data.set<--methods), 34
data.set<-,cpt.reg-method
(data.set<--methods), 34
data.set<--methods, 34
decision, 34
distribution, 36
distribution, cpt-method (distribution-methods), 37
distribution, cpt.reg-method
(distribution-methods), 37
distribution-methods, 37
distribution<-, 37
distribution<-, cpt-method (distribution<--methods), 38
distribution<-,cpt.reg-method (distribution<--methods), 38
distribution<--methods, 38
ftse100, 38
HC1, 39
likelihood, 39
likelihood, cpt-method
(likelihood-methods), 40
likelihood-methods, 40
method, 40
method, cpt-method (method-methods), 41
method, cpt.reg-method (method-methods), 41
method-methods, 41
method<-, 41
method<-, cpt-method (method<--methods),
42
method<-, cpt.reg-method
(method<--methods), 42
method<--methods, 42
multiple.mean.cusum, 6, 42, 57, 81
multiple.mean.norm, $7,44,53,60,68,83$
multiple.meanvar.exp, 9, 47, 69, 84
multiple.meanvar.gamma, 10, 48, 49, 71, 86
multiple.meanvar. norm, $12,46,48,51,51$, 60, 72, 87
multiple.meanvar. poisson, $13,53,73,89$
multiple.var.css, $14,44,56,90$
multiple.var.norm, 16, 46, 53, 58, 75, 92
ncpts, 60
ncpts, cpt-method (ncpts-methods), 61
ncpts, cpt. reg-method (ncpts-methods), 61
ncpts-methods, 61
ncpts.max, 61
ncpts.max, cpt-method (ncpts.max-methods), 62
ncpts.max, cpt.reg-method (ncpts.max-methods), 62
ncpts.max-methods, 62
ncpts.max<-, 62
ncpts.max<-, cpt-method (ncpts.max<--methods), 63
ncpts.max<-, cpt.reg-method (ncpts.max<--methods), 63
ncpts.max<--methods, 63
param, 63
param, cpt-method (param-methods), 64
param, cpt.reg-method (param-methods), 64
param-methods, 64
param.est, 65
param.est,cpt-method (param.est-methods), 65
param.est, cpt.reg-method (param.est-methods), 65
param.est-methods, 65
param.est<-, 66
param.est<-,cpt-method
(param.est<--methods), 67
param.est<-, cpt.reg-method
(param.est<--methods), 67
param.est<--methods, 67
PELT.mean.norm, 7, 46, 67, 72, 75, 83
PELT. meanvar.exp, 9, 48, 68, 84
PELT. meanvar.gamma, 10, 51, 69, 70, 86
PELT.meanvar.norm, 12, 53, 68, 69, 71, 71, 75, 87
PELT.meanvar. poisson, $13,55,72,89$

PELT.var.norm, 16, 60, 68, 72, 74, 92
pen.type, 75
pen.type, cpt-method (pen.type-methods), 76
pen.type, cpt.reg-method
(pen. type-methods), 76
pen.type-methods, 76
pen.type<-, 76
pen.type<-, cpt-method
(pen.type<--methods), 77
pen.type<-, cpt.reg-method
(pen.type<--methods), 77
pen.type<--methods, 77
pen.value, 77
pen.value, cpt-method (pen.value-methods), 78
pen.value, cpt.reg-method (pen.value-methods), 78
pen. value-methods, 78
pen.value<-, 78
pen.value<-, cpt-method
(pen.value<--methods), 79
pen.value<-, cpt.reg-method
(pen.value<--methods), 79
pen.value<--methods, 79
plot, ANY-method (plot-methods), 79
plot, cpt-method (plot-methods), 79
plot, cpt.reg-method (plot-methods), 79
plot-methods, 79
print, ANY-method (print-methods), 80
print, cpt-method (print-methods), 80
print, cpt.reg-method (print-methods), 80
print-methods, 80
segneigh.mean.cusum, $6,44,80,81$
segneigh.mean.norm, 7, 46, 68, 82, 87, 92
segneigh.meanvar.exp, 9, 48, 69, 83
segneigh.meanvar.gamma, 10, 51, 71, 84, 85
segneigh.meanvar.norm, $12,53,72,83,84$, 86, 86, 92
segneigh.meanvar. poisson, $13,55,73,88$
segneigh.var.css, $14,57,89$
segneigh.var.norm, $16,60,75,83,87,90,91$
single.mean. cusum, $6,44,81,92,95$
single.mean.cusum.calc, 94
single.mean.norm, 7, 36, 46, 68, 83, 96, 99, 108, 119
single.mean.norm.calc, 97
single.meanvar.exp, 9, 48, 69, 84, 99, 102
single.meanvar.exp.calc, 101
single.meanvar.gamma, 10, 51, 71, 86, 100, 103, 106
single.meanvar.gamma.calc, 105
single.meanvar.norm, 12, 36, 53, 72, 87, 97, 100, 104, 107, 110, 119
single.meanvar.norm.calc, 108
single.meanvar. poisson, 13, 55, 73, 89, 110,113
single.meanvar.poisson.calc, 112
single.var.css, 14, 57, 90, 114, 117
single.var.css.calc, 116
single.var.norm, 16, 36, 60, 75, 92, 97, 108, 117, 121
single.var.norm.calc, 119
summary, ANY-method (summary-methods), 121
summary, cpt-method (summary-methods), 121
summary, cpt.reg-method (summary-methods), 121
summary-methods, 121

