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Journal of Educational and Behavioral Statistics 
Summer 2002, Vol. 27, No. 2, pp. 147-161 

Infinite Parameter Estimates in Logistic Regression: 
Opportunities, Not Problems 

David Rindskopf 
CUNY Graduate Center 

Infinite parameter estimates in logistic regression are commonly thought of as a 
problem. This article shows that in principle an analyst should be happy to have 
an infinite slope in logistic regression, because it indicates that a predictor is per- 
fect. Using simple approaches, hypothesis tests may be performed and confidence 
intervals calculated even when a slope is infinite. Some functions of parameters 
that are infinite are still well defined, and reasonable estimates of these quanti- 
ties (in particular, LD50) may be obtained even when the maximum likelihood 
estimates do not, in a strict sense, exist. Surprisingly, these techniques can pro- 
vide more reasonable and useful results than the most popular alternative method, 
exact logistic regression. 

Keywords: boundary estimates, exact statistics, inverted hypothesis test, logistic regression 

In certain cases, estimates of logistic regression coefficients can be infinite (either 
theoretically or practically, in the sense of being "very large"). One might think that 
this is a problem; indeed, some authors (e.g., Ryan, 1996) give examples and show 
that different standard computer programs can give strange (and very different) esti- 
mates of parameters for the same data set. Hosmer and Lemeshow (1989) also dis- 
cuss this problem, and note that zero cells or complete separation will cause 
problems for the usual maximum likelihood (ML) estimation procedures. Mehta 
and Patel (1995) have presented examples using real data in which the traditional 
ML estimates do not exist, and provide an alternative approach using "exact" meth- 
ods. An additional problem is that when the parameter estimates are large, the stan- 
dard errors are also very large, and large sample theory does not appear to apply, 
leading to further complications in the interpretation of the results of the analysis. 

In this article I show that the problems are, for the most part, illusory, and that 
differences among computer programs are not as large as might be believed. Fur- 
ther, I show that the problems that do arise can be dealt with in a straightforward 
way that can be implemented on some of the standard software packages now in 
use. Most of these techniques are "known," in the sense in that they are in the lit- 
erature; in particular, the book Statistical Modeling in GLIM (Aitkin, Anderson, 
Francis, & Hinde, 1989) demonstrates a number of useful techniques. But the dis- 
cussions cited here, in standard sources on logistic regression, about problems with 
infinite parameter estimates, lead me to believe that even many experts in the area 
are unaware of the possible solutions. 
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Binomial Example 
I begin with a simple example of the problem and some possible solutions. Con- 
sider a binomial outcome; suppose one observes no failures in 10 trials. What infer- 
ences can be made? The usual large sample theory is not applicable here, but it 
would not be applicable with no (or all) failures even if there were 100 trials, or 
1,000 trials. The estimate of the proportion is no problem; it is .00 (for the proba- 
bility of failure) or 1.00 (for the probability of success). The problem is the stan- 
dard error: Large-sample estimates would give 0 for the standard error, regardless 
of sample size. But intuitively it seems that an observed proportion of .00 is a more 
accurate estimate if the sample size is larger, and less accurate if the sample size is 
smaller. 

Note that most small-sample methods are no better. For example, using a logit 
transformation, where logit(p) = ln[p/(l-p)], gives problems even with the estimate. 
An observed proportion of zero has a logit of minus infinity (-INF, as it will be 
denoted in the tables), and an observed proportion of one has a logit of plus infinity 
(+INF). Here is the first example of an infinite parameter estimate. The standard 
error is also +INF, so we not only have an apparently problematic estimate, but a 
useless standard error. The standard error is useless not only because it is infinite, 
and therefore can't be used in any standard formulas, but because we know that the 

implication of this is wrong: If a standard error indicates the precision with which 
a parameter is estimated, it can't be infinite if there is a reasonable amount of data. 

(Technically, in this case the problem is that the log-likelihood is not nearly qua- 
dratic, as it must be for the usual methods to apply; see Kalbfleisch, 1985). 

One approach that has advantages in this case is Bayesian statistics. Neverthe- 
less, I realize that most statisticians are not Bayesians, so I will concentrate on clas- 
sical inferential procedures in this article. But one technique common in loglinear 
models, adding .5 (or some other small value) to cell counts when there are many 
zero counts in a table, is actually identical in effect to what a Bayesian would do if 
he or she had a slightly informative prior. For large, sparse, tables it is better not 
to add .5 to each cell; that corresponds to a stronger prior for such tables. Adding 
some small constant to each cell will make all parameter estimates finite, as well 
as standard errors, and will provide smoothed estimates of cell frequencies. On the 
other hand, it precludes 0 and 1 as plausible values for predicted proportions, and 
may smooth too much toward the equiprobability model. (For more refined meth- 
ods of this sort, see Clogg, Rubin, Schenker, Schultz, & Weidman, 1991). 

Confidence Intervals by Inverting a Hypothesis Test 

If the usual large-sample and small-sample approaches are of no use in this situa- 
tion, must we abandon classical statistical methods? My answer is no; we merely 
have to use some ideas that are seldom applied. The first is inverting a hypothesis 
test. In the case of r = 0 successes in n = 10 trials, for example, consider all the pos- 
sible values of the population proportion n that would not be rejected by a hypoth- 
esis test at some level of significance a. These can all be considered plausible 
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values for the parameter. For zero failures in 10 trials, any value of n less than 

approximately .175 will give a likelihood ratio goodness-of-fit less than 3.84, so 
the 95% confidence interval for n is (.000, .175). See Aitkin, et. al., (1989, pp. 
117-118) for a more detailed discussion of this example. 

Figure 1 shows a plot of the likelihood-ratio goodness-of-fit statistic (GOF) for 
this example. The horizontal axis is the probability of success on a single trial; the 
vertical axis is -2 times the natural logarithm of the likelihood. At the value of the 
ML estimate (n = 0), the GOF is 0; at just under n = .18, the GOF is greater than 
3.84, the critical value of the chi square distribution for a significance level of .05. 
Therefore, any value of n less than .18 is plausible, while values greater than .18 
are implausible. (The more precise value n = .175 given in the previous paragraph 
can be obtained algebraically from the equation for the log-likelihood.) 

Compare this interval with an alternative solution to this problem that involves 
the quasi-Bayesian idea mentioned above of adding .5 to successes and failures. 
This results in r = .5, n = 11. The estimate of the population proportion is now p = 
.5/11 = 1/22 = 0.04545. Using the logit transformation, finding a 95% confidence 
interval for the logit, and translating back into proportions, produces a confidence 
interval of (.006, .261) for the proportion (see Appendix for details). Adding .5 to 
r and 1 to n has changed the lower limit slightly (from 0 to .006), and changed the 
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FIGURE 1. Plot of-2 log likelihoodfor r = O, n = 10. Horizontal axis is probability, 
vertical axis is -2 times the natural logarithm of the likelihood. 
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upper limit even more (from .175 to .261). Thus with fairly small n this procedure 
can have a larger effect than we might want. 

Logistic Regression 
One might wonder if the binomial example is related to the stated problem of infi- 
nite parameter estimates in logistic regression. In fact, the binomial model can be 
written as a special case of logistic regression with no predictor variables. The 
model is ln[n / (1 - In)] = P. The confidence interval applied using the logit trans- 
formation in the previous section is equivalent to this formulation of logistic 
regression, and can be calculated using standard statistical packages (except for the 
final step). While most packages for logistic regression require a predictor vari- 
able, some can be tricked by creating a variable ONE = 1, and entering that as the 
only predictor. SPSS, for example, will detect that the variable ONE is collinear 
with the constant term; it will then omit the constant term and use ONE instead. If 
requested, SPSS will print exp(b), and 95% confidence intervals for exp(b). In this 
case, these are values for odds; to get proportions, divide the odds by 1 + odds. 

Plotting Data for Logistic Regression. 
We now proceed to examine a data set with a "real" independent variable. This data 
set is from Ryan (1996); see Table 1. While the relationship may not be obvious on 
inspection of the raw data, it becomes obvious when the data are plotted, as in Fig- 
ure 2. (This data set is so simple that the plot shows what is happening. But in gen- 
eral, a useful plot for logistic regression with repeated X values, using SPSS, is to 
SORT by X; AGGREGATE, breaking on X; create an aggregated variable = 
MEAN(), where Y is the 0/1 outcome variable. For the aggregated data set, plot 
MEAN(Y) by X. If X has a large number of values, and few repeated X values, create 
a new X variable with 10 to 20 categories, depending on total sample size, and then 
use the same procedure.) 

The plot here shows an obvious functional relationship, such that for any X less 
than or equal to 19, Y= 0, while for any X greater than or equal to 20, Y = 1. The 

TABLE 1 
Example Data Setfrom Ryan (1996, Table 9.1, p. 263), With Pairs of Values 
Representing X (Predictor) and Y (Outcome) 

29, 1 25, 1 12, 0 24, 1 12, 0 
26,1 15,0 15,0 30,1 20,1 
29,1 16,0 24,1 25,1 14,0 
26,1 18,0 24,1 15,0 27,1 
21,1 15,0 14,0 29,1 28,1 
24, 1 29, 1 26, 1 26,1 23, 1 
18,0 22,1 27,1 19,0 16,0 
17,0 22, 1 16,0 17,0 24, 1 
26,1 10,0 19,0 11,0 19,0 
22,1 10,0 18,0 13,0 21,1 
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FIGURE 2. Plot of artificial data from Ryan (1996). 

rule is simple to state verbally, but the perfect relationship presents an obvious prob- 
lem for logistic regression, which was not meant to represent perfect relationships. 
This seems very strange: We want to predict well, but when we predict too well, our 
tools are inadequate. Here we can see two problems for logistic regression: (a) the 

slope is infinite, and (b) the intercept is indeterminate. 

Parameter Estimates, Interpretation, and Use 

Table 2 shows the population values from which the data were generated, and some 
solutions when logistic regression is applied to these data. Some solutions are from 

Ryan (1996), and others are from ML programs. The second S-Plus results are 
from a recoding in which 20 was subtracted from each X value, so that the new X 
variable was approximately centered. The estimates of the intercept and slope 
shown in Table 2 vary widely, leading to a hypothesis that nothing useful can come 
from these analyses. (Of course, due to the transformation of X in the last method, 
the intercept will be different.) Since we already pointed out that the slope is actu- 

ally infinite, this would be a reasonable conjecture. But in fact several useful results 
can be deduced, and these can lead us to conclude that some of the solutions in the 
table are reasonable, while others are unreasonable (yes, there are reasonable and 
unreasonable estimates of parameters that are infinite!). 
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TABLE 2 
Logistic Regression Estimates for Ryan Data Set, Using Different Methods of Estimation 
and Computer Programs 

Program bo bl LD50 =-bo/b 

Ryan: "Population" -78.8 4.0 19.70 
Ryan: Initial -25.3270 1.2642 20.03 
Ryan: Exact -12.4801 1.7414 7.17 
S-Plus: GLM -243.57 12.46 19.55 
S-Plus: X-20 5.638 17.4605 19.68 * 

Note. *Adjusted back to original scale of X. 

First, consider that the usual intercept and slope form for the equation is not 
the only way to specify the model; sometimes other ways that use different para- 
meters are of more interest. For example, in many circumstances in biology and 
medicine, the slope and the so-called LD50 are the important parameters. LD50 
is the value of the predictor, X, for which the response rate is 50%. The same con- 
struct is used in item response models in psychometrics: The item difficulty is 

usually specified as the value of theta, the underlying trait, for which the proba- 
bility of answering an item correctly is .50. Thus, most IRT models write the 

logistic (or probit) equation not in terms of an intercept and slope, but in terms 
of the LD50 (for Rasch models), or the LD50 and the slope (for two-parameter 
models). 

In terms of the usual logistic regression parameters, LD50 = -bo/b; that is, the 

negative of the intercept divided by the slope. One might think that if the slope is 

going towards infinity, and the intercept seems fairly indeterminate as well, then 
what hope is there for the quotient to be of any use? However, this intuition turns 
out not to be accurate. A better intuition comes from viewing the plot of such a data 
set. A logistic curve must rise from a floor at or near zero for X values less than 19, 
up to a ceiling at or near 1 for X values greater than or equal to 20. The point at 
which the curve crosses .5 on the vertical axis (LD50) clearly should be about 
halfway between X values of 19 and 20. Figure 3 illustrates these facts using a 

logistic curve with a slope of 10; while quite far from being infinite, that value for 
the slope produces quite a steep curve over the range of X values of interest. 

It is not surprising, therefore, that Table 2 shows, for most of the logistic regres- 
sion results, that the LD50 is about half way between 19 and 20, as it should be for 
these data. (The LD50 value for the last method was translated back to the origi- 
nal scale for comparability with the other results.) Ryan's initial estimates give an 
LD50 slightly higher than 20, but this is reasonably close for an initial estimate of 
parameters. Even though one parameter is going toward +INF, and another toward 
-INF, their ratio is going toward a finite (and useful) limit. Only the exact method 
gives a result that is clearly wrong. We conclude that if X is continuous, the usual 
logistic regression can provide a reasonable estimate of LD50 even in the extreme 
case of an infinite slope. Further, the "exact" method, which because of its name 
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FIGURE 3. Plot of logistic curve with slope equal to 10. 
Note: This curve provides a nearly perfectfit to the Ryan (1996) data. 

seems to have magical appeal, can give results that are problematic. We give fur- 
ther examples of these problems later. 

Note the results (except for the "exact" analysis) do not disagree as much as 

implied by Ryan. The LD50 seems right for all but the "exact" method. Further, if 
one calculates predicted proportions for all X values in the observed range, all 

except the "exact" method give reasonable predictions. That is, for X values less 
than or equal to 19, most of these equations predict nearly .00, and for X values 
greater than or equal to 20, they predict nearly 1.00, as they should. Therefore, even 
though the slope and intercept are headed towards infinity in opposite directions, 
the linear combinations produce predicted logits (and ultimately predicted pro- 
portions) that seem correct for each of the ML estimation procedures. The "exact" 
method fails here, giving predictions that are far from the observed data; the equa- 
tion gives predicted probabilities near one for most of the range of observed X val- 
ues, not just those over 20. 

With more than one predictor, there is no standard method of calculating LD50. 
Some care is needed, because dividing the intercept by the slope for any predictor 
will give the LD50 for that variable when all other variables have the value zero. In 
most cases, this will not be what is desired. One solution is to center all predictors 
before running the logistic regression. The LD50 for each predictor will then be 
meaningful in the context of a zero value for all other predictors. For categorical 
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predictors, coding is still important, but (unlike the case with continuous predictors) 
most standard methods of coding will produce reasonable results. 

In this data set the slope is obviously infinite; the standard errors (not reported 
here) will also tend toward infinity. Is there a reasonable way to test whether the 

slope is significantly different from zero? Yes; merely fit the data with only a con- 
stant term in it, using the method described above. If the value of-2 log-likelihood 
changes by more than 3.84, the omitted variable was a useful predictor; otherwise, 
it is nonsignificant. While this method can be used with nearly any logistic regres- 
sion program, to get a confidence interval for the slope requires tools not always 
found in standard programs. We will illustrate these tools in the discussion of the 
next example. 

Example from Mehta and Patel (1995): CD4, CD8, and HIV 

Mehta and Patel (1995) analyzed the following data set in their groundbreaking arti- 
cle on exact logistic regression. The data in Table 3 shows the relationship between 
two biochemical measures, CD4 and CD8, and the development of HIV. The data 
set is small, and ML methods might be suspected to have problems. In fact, Mehta 
and Patel say that "... we cannot estimate the [logistic] parameters ... by the max- 
imum likelihood method because the observed data fall on the boundary of the 

parameter space.. ." The LogXact demonstration program (Cytel Software Corpo- 
ration, 1992) states that ". .. the maximum likelihood estimates do not exist and no 

convergence is possible for this small data set." However, as we will see, these prob- 
lems can generally be resolved satisfactorily, while the "exact" method may give 
some misleading results. 

Descriptive Statistics for HIV Data 

In this example, we are trying to predict HIV status in children from CD4 and CD8 
cell counts, which have been categorized on a three-point scale (i.e., into three cat- 
egories). This data set is discussed in Mehta and Patel (1995), and it is used in the 

TABLE 3 
Relationship of CD4 and CD8 to Development of HIV in Children 

Develop HIV? 

CD4 CD8 Yes No Total P(yes) 

0 2 1 0 1 1.0000 
1 2 2 0 2 1.0000 
0 0 4 3 7 .5714 
1 1 4 8 12 .3333 
2 2 1 2 3 .3333 
1 0 2 5 7 .2857 
2 0 0 2 2 .0000 
2 1 0 13 13 .0000 

154 



Infinite Parameter Estimates in Logistic Regression 

demonstration of LogXact. In that demonstration, the two predictors are coded 

using two dummy variables for each, with the last level (level 2) of each used as 
the base category. This is the worst possible choice for producing interpretable 
parameters, as can be seen from the results in Table 4, which shows the data 

arranged in a two-way table. On the other hand, it is the "best" choice for produc- 
ing problematic parameter estimates, which was apparently the goal of the demon- 
stration. The lower right-hand corer of each section of Table 4 shows the value 
that will determine the intercept (i.e., ln(1/2) = -.69). The other cells in the bottom 
row and right-hand column are all proportions of either zero or one, so the esti- 
mates of the parameters corresponding to the dummy variables will all be either 
minus or plus infinity. For the remaining cells, it is the sums of various parameters 
that matter; these can and should converge to reasonable values even though the 

parameters contributing to these sums go towards infinity (in opposite directions). 

Parameter Estimates, Interpretation, and Use: HIV Data 

Table 5 shows the parameter estimates from two computer programs. One is a 

program that produces "exact" analyses; the second is an ordinary logit model 

analysis program that uses maximum likelihood estimation; the third is ML using 
S-Plus glm. The ML parameter estimates look odd, but they are approaching the 

right answer more closely than the "exact" parameter estimates: The CD4 pa- 
rameters are heading towards infinity, and the CD8 parameters towards negative 
infinity. For a logit model, parameters with an absolute value of about 20 for a 

TABLE 4 
HIV Data Arranged as a 3 x 3 Table 

CD8 

CD4 0 1 2 

Proportions with HIV 
0 .57 * 1.00 
1 .29 .33 1.00 
2 .00 .00 .33 

Odds of HIV 
0 1.333 * +INF 
1 .400 .500 +INF 
2 -INF -INF .500 

Logit [= ln(odds)] of HIV 
0 .288 * +INF 
1 -.916 -.693 +INF 
2 -INF -INF -.693 

Note. *No observations in this cell. 
+INF = plus infinity, -INF = minus infinity. 
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TABLE 5 
Parameter Estimates for Original Coding of HIV Data 

Parameter LogXact ML* ML: S-Plus 

Intercept -.6931 -.6931 -.6931 
CD4_0 2.9353 20.958 8.958 
CD4_1 2.4456 19.754 7.754 
CD8_0 -2.2471 -19.977 -7.977 
CD8_1 -2.3190 -19.754 -7.754 

Note. *ML estimates produced using MQUAL, written by D. Rindskopf in APL. 

dummy variable are close enough to infinity for practical purposes (e.g., a logit of 
20, represents odds of nearly 500,000,000, and a proportion of 0.9999999979388; 
a slope of 20 changes the odds by a factor of 500,000,000). A slope parameter of 

eight changes the odds by a factor of 2,980, and a logit of eight corresponds to a 

proportion of .9997. 
We also want to examine the expected proportions produced by these solutions. 

Of course the expected logits (which are translated into expected odds, and then 
into expected proportions) are functions of the parameter estimates. Because of 
this, intuition would lead us to suspect that we cannot get useful estimates, but 

again intuition is wrong. Table 6 contains the results for ML estimation; Table 6 
also contains the results for the "exact" method. The ML estimates of cell propor- 
tions accurately reproduce the observed values, both for the cells that have "extreme" 
observed proportions of zero and one, as well as the other cells of the table. There- 
fore, the main-effects-only model fits the data well. Furthermore, the ML proce- 
dure produces an estimate for the cell with no observations. The "exact" parameters, 
on the other hand, come nowhere near reproducing the observed proportions of 

TABLE 6 
Expected Proportions for HIV Data, Original Coding 

CD8 

CD4 0 1 2 

Expected proportions from ML Estimates 
0 .571 .625 1.00 
1 .286 .333 1.00 
2 .000 .000 .333 

Expected proportions from the Exact Estimates 
0 .499 .481 .904 
1 .379 .362 .852 
2 .050 .047 .333 
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zero and one in the data, nor do they accurately reproduce the three nonzero cells 
not in the last row or column. 

Now we provide another illustration that functions of parameters may be useful 
even when the parameter estimates are heading towards infinity. Though the coef- 
ficients for both CD4_0 and CD4_1 are very large positive numbers, they are very 
close to each other; similarly, the coefficients for CD8_0 and CD8_1, though large 
and negative, are close to each other. We might therefore hypothesize that each 

pair of coefficients is equal, and rewrite the model with two predictors instead of 
four. We define a dummy variable CD4A to equal 1 if CD4 is either 0 or 1, and to 

equal 0 if CD4 is 2; similarly, we define a dummy variable CD8A to equal 1 if CD8 
is either 0 or 1, and to equal 0 if CD8 is 2. (This is the same as adding together the 

corresponding original dummy variables to impose a restriction, as discussed in 

Rindskopf, 1984.) The resulting model has a likelihood-ratio chi-square of 1.434 
(df= 5, p = .921), and therefore fits the data quite well. We can expect that the 

resulting estimated probabilities are more stable than those from the previous 
model. As might be expected, the parameter estimates are still approaching infin- 

ity, as are the standard errors, but this does not affect the model fit, the interpreta- 
tion, or the predicted proportions. 

Significance Testing Using Differences in Model Fit 

As might be expected, not only are the ML parameter estimates extremely large, 
but so are their standard errors. For the HIV data set, the standard errors were 3,425 
for each parameter except the intercept, the point at which the procedure termi- 
nated. The usual methods for testing the significance of parameters, or for finding 
confidence intervals for the parameters, are therefore of no use. However, we may 
easily test for significance of parameters and sets of parameters using the differ- 
ence in model fit statistics, much as in the usual procedure for loglinear and logis- 
tic regression models (and analogous to tests of R-square change in regression). 
Finding confidence intervals is more involved, and cannot be done using some soft- 
ware (e.g., SPSS logistic regression), but can be done using any software that 
allows offsets to fix (logistic) regression coefficients (e.g., SAS GENMOD, SPSS 
loglinear, GLIM, and S-Plus). 

First we test whether each parameter is significantly different from zero. To do 
this, we compare the fit of the full model (here the main effects model) to models 
with each of the parameters omitted in turn. The main effects model fits perfectly 
here; the likelihood ratio (LR) chi-square is nearly zero. Table 7 shows the LR for 
models with each parameter omitted; ordinarily, we would subtract the LR for the 
full model from these values, but as it is zero, the differences are the same as the 
fit statistics. Clearly, each of the parameters differs significantly from zero. As will 
be seen in the examination of confidence intervals, the results for the "exact" 
method are somewhat different: CD8_1 is barely significant at the .05 level, and 
CD8_0 is not. 

Next we do a test that is not really needed here, given the previous results, but 
which we include as an illustration. To test whether CD4 status is an important pre- 
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TABLE 7 
HIV Data: Tests That Parameters Equal Zero 

Effect Omitted LR difference p* 

CD4_0 11.536 .0007 
CD4_1 11.018 .0009 
CD8_0 8.010 .005 
CD8_1 8.188 .004 

Note. *Each test has one df. 

dictor, we fit a model with both CD4 dummy variables omitted and compare the 
fit to that of the full model; the importance of CD8 is tested in the same way. 
Because two parameters are removed for each test, the LR difference is referred to 
as a chi-square distribution with two degrees of freedom. Table 8 contains the 

results; as would be expected, each variable is important. Comparable tests using 
the "exact" procedure produce similar results here: Both sets of parameters are 

highly significant. This is somewhat surprising given the borderline significance 
of the individual CD8 parameters using the "exact" method. 

TABLE 8 
HIV Data: Tests That Sets of Parameters Equal Zero 

Effects Omitted LR difference p* 

CD4_0 and CD4_1 13.760 .001 
CD8_0 andCD8_1 9.187 .010 

Note. *Each test has two df 

Confidence Intervals Using Hypothesis Test Inversion 

Finding confidence intervals is similar to testing hypotheses that parameters 
equal zero, in that the procedure involves a comparison of models. For confidence 
intervals, we must find values of a parameter that change the model fit by 3.84 

(the critical value of chi-square with one degree of freedom). Computer programs 
such as SAS GENMOD, SPSS loglinear, GLIM, and S-Plus allow the specifica- 
tion of an "offset", which can be used to accomplish this task. Here I will demon- 
strate the use of the S-Plus gim procedure. The usual model is specified using the 
command 

glm(hiv ~ cd4_0 + cd4_1 + cd8_0 + cd8_1, family = binomial(link = logit)) 

To restrict the coefficient for CD4_0, for example, to equal 2, we would change 
the model specification to: 

hiv - cd4_1 + cd8_0 + cd8_1 + offset(2* cd4_0) 
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By trying different constants, one can rather quickly find the value that changes 
the residual deviance (as it is called in the output) by 3.84. The similarity of this 
method to the hypothesis test is that, for hypothesis testing, one can fix the pa- 
rameter at zero by removing the predictor. That method, of course, can be used 
with any standard logistic regression package, while offsets are available only in 
some packages. 

Table 9 shows the 95% confidence intervals produced by the "exact" method, 
and by ML estimation using the method of inversion of the hypothesis test. Notice 
that the "exact" values are much more conservative than the ML estimates for the 
confidence intervals. For the CD8 dummy variables, one "exact" confidence inter- 
val does not cover zero, and the other barely does, while the ML estimates clearly 
exclude zero as plausible values. 

One may also be interested in confidence intervals around the predicted pro- 
portions for some (or all) cells in the table, or more generally for some particu- 
lar value Xi of a set of predictor variables X in a logistic regression. Generally 
one could get these by using the variances and covariances of the parameter esti- 
mates, but because these are problematic in this situation, a different approach is 

required. Using the method of inverting the hypothesis test, we obtained confi- 
dence intervals for all model parameters, including the intercept. As pointed out 

by Mehta and Patel (1995), one can make the intercept represent the predicted 
logit for any particular value Xi of the predictors by transforming the predictors 
using X* = X - Xi. Using X* in the logistic regression, the intercept will now rep- 
resent the logit for X = Xi, and the confidence interval for the logit can be trans- 
formed to a confidence interval for the odds or proportion expected to respond 
at that value of X. 

This example demonstrates that although ML estimates may technically be 
undefined in some cases, we can still follow sensible procedures to get parameter 
estimates, useful functions of parameter estimates, and confidence intervals. At the 
same time, "exact" methods may produce parameter estimates that are clearly defi- 
cient, functions of parameter estimates that are also deficient, and confidence inter- 
vals that are too conservative. 

TABLE 9 
"Exact" and ML Confidence Intervals for HIV Data 

LogXact ML* 

Parameter Lower Upper Lower Upper 
CD4_0 .54 +INF 2.12 +INF 
CD4_1 .45 +INF 1.50 +INF 
CD8_0 -INF .07 -INF -1.28 
CD8_1 -INF -.02 -INF -1.28 

Note. *Produced using S-Plus 4.5, using offset ( in equation. 
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Discussion and Conclusion 

While SPSS logistic regression and S-Plus glm will produce parameter estimates 
even when one or more parameters is going to infinity, some programs may not do 
so. Whether a program believes it has "converged" may be monitored in more than 
one way. If a program is monitoring changes in the parameter values, then it will 
never believe the procedure has converged, because they will keep getting bigger 
(towards +INF) or smaller (towards -INF). On the other hand, if the program is 

monitoring changes in the log likelihood, then it will converge at some point, as 
the log likelihood is bounded. In either case, the decision about whether the results 
will be printed lies with the programmer, and practices may differ from one pack- 
age to another. 

Note that it is not useful to extend the number system to define a parameter as 

being +INF or -INF. If this is done, then linear combinations are not defined, so all 
of the derived quantities of interest that were demonstrated here could not be com- 

puted. While it is true that these would be the most accurate estimate of the pa- 
rameters (they are, in fact, infinite), it makes them worthless. Therefore, in these 
cases, the parameter estimates we use cannot be unique; they depend on the stop- 
ping criterion. Two computer programs (or one program with the criterion reset) 
will give different (finite) estimates of the parameters that are infinite. However, 
they should give (nearly) identical estimates of all important functions of the param- 
eter estimates, as demonstrated above. It may seem strange to say that a parameter 
estimate is useful only if it is not unique; this contradicts the typical desiderata for 
estimation. However, by giving up uniqueness in estimating the model parameters, 
we can obtain quite useful results, and give up only a small amount in that we can 
estimate important quantities almost, but not quite, uniquely. 

Why does the "exact" method fail to give reasonable results? I can only con- 

jecture about this. When a parameter is infinite, then the exact method should give 
an infinite estimate also. The LogXact program uses what Mehta and Patel (1995) 
call a "median unbiased estimate." While such an estimate may have some desir- 
able properties, it apparently has other properties that are problematic, leading to 
inaccurate estimates of many important functions of the parameters. 

In conclusion, I hope that this article changes the common view of infinite param- 
eter estimates in logistic regression. Infinite parameter estimates are desirable in 

logistic regression, because it means that prediction is perfect (the presumed goal). 
Unfortunately, logistic regression is not the perfect mathematical model in this sit- 
uation; it is attempting to approximate a step function, the actual model for perfect 
prediction. In this case, as well as near-perfect prediction, a reasonable alternative 
to the usual large-sample standard errors, confidence intervals, and hypothesis tests 
is to establish confidence intervals by inverting the usual chi-square tests, or to test 

hypotheses about coefficients or sets of coefficients using the usual technique of 

comparing model fits. Furthermore, many useful functions of the parameters are 
accurately estimated even when one or more parameters is approaching infinity. 
While "exact" methods may have advantages in some cases, particularly when 
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sample sizes are small, they are not a panacea, and can be problematic in cases 
where ML estimates are not. 

Appendix 

Calculations of 95% confidence interval for a proportion, using logit transform; 
r = 0, n = 10, with .5 added to r and n-r. 

p = (r+.5)/(n+1) 
Odds = p/(l-p) = 0.047619. 

Logit = ln(Odds) = -3.0445 
SE = sqrt(1/[n*p*(l-p)]) = 1.023532 
W = 1.96*SE = 2.006 

LowerLogit = Logit - W = -5.0505 
LowerOdds = exp(LowerLogit) = 0.00640 

LowerProp = LowerOdds /(1 + LowerOdds) = 0.00636 

Similar calculations produce the following results for the upper limit: 

UpperLogit = -1.038522 

UpperOdds = 0.353977 

UpperProp = 0.2614 
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