
STATISTICS IN MEDICINE, VOL. 3, 199-214 (1984) 

APPROACHES TO SAMPLE SIZE ESTIMATION IN THE 
DESIGN OF CLINICAL TRIALS-A REVIEW 

ALLAN DONNER 
Department of Epidemiology and Biostatistics, University of Wesrern Ontario, London, Canada N6A 587 

SUMMARY 
Over the last decade, considerable interest has focused on sample size estimation in the design of clinical trials. 
The resulting literature is scattered over many textbooks and journals. This paper presents these methods in a 
single review and comments on their application in practice. 
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INTRODUCTION 

Increased attention has focused recently on the importance of sample size considerations in the 
design of randomized controlled trials (RCTs). Freiman et al.' reviewed the power of 71 published 
RCTs which had failed to detect a significant difference between groups and found that 67 of these 
trials could have reasonably missed a 25 per cent therapeutic improvement, whereas 50 could have 
missed a 50 per cent improvement. The authors concluded that many of these studies were not only 
negative, but, because of insufficient numbers, might also mislead. However, it does not follow 
from this that an investigator should enroll as many patients as possible in a clinical trial. If the 
number of patients exceeds that required, the trial will be unnecessarily expensive and prolonged. 
An investigator must strike a balance between enrolling sufficient patients to detect important 
differences, but not so many patients such that he would unnecessarily waste important resources. 

In this paper, we review the recent literature concerning sample size estimation in the design of 
RCTs. The review restricts attention to designs with the primary purpose of comparing two groups 
of patients with respect to the occurrence of some specified event, such as death or the recurrence of 
disease; we also discuss trials where interest centres on time to the terminal event, rather than the 
occurrence of the event itself. Schwartz, Flamant and Lellouch' give an excellent account of sample 
size estimation for continuous outcome variables, and Lachin3 discusses the case of multi-group 
comparisons with respect to categorical outcome variables. 

Formal sample size planning in the design of a clinical trial usually depends on relatively simple 
and well-known formulae presented in introductory statistics texts. Fleiss4 points out that these 
formulae, although useful for short-term studies, may not prove adequate in the design of RCTs, 
where, over long periods of time, issues peculiar to human experimentation inevitably arise. 
Although published methods to deal with these issues exist, their literature is scattered over many 
textbooks and journals. We aim, therefore, to present these methods in a single review paper, and to 
comment on their practical utility, advantages and disadvantages. 

Lachin5 also presents a review of sample size evaluation for clinical trials. However, he deals 
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broadly with a variety of statistical procedures and response variables, whereas this review deals in 
depth with studies comparing two treatments with respect to the occurrence of (or time to) some 
specified event. 

NOTATION 

We assume comparison of an experimental treatment, E, with a control treatment, C. Standard 
formulae for sample size depend on the chosen probabilities a and /3 associated with a type I error 
(falsely declaring a treatment difference) and a type I1 error (falsely declaring no treatment 
difference), respectively. We express this dependence mathematically by the quantities Z, and Z , ,  
defined as the values of standardized normal deviates corresponding to a and p, where 1 - /3 is the 
trial power. Table I provides values of Z ,  and Z, corresponding to commonly used levels of 
significance and power, separately for one- and two-sided tests. Most authors (e.g. Friedman, 
Furberg and DeMets6) recommend the exclusive use of two-sided tests unless one has strong 
justification for expecting a difference in only one direction. 

The number of patients required for a trial comparing twoT-year event rates is a function of Z,, 
Z,, a measure of the anticipated effect of intervention, and estimates of various other parameters 
whose impact is under consideration. One usually measures the anticipated effect of intervention 
with either the difference or the ratio of the expected event rates. Other parameters whose impact 
one may wish to consider include factors such as pre-stratification in the study design, the effect of 
randomizing groups of patients rather than individuals, and the effect of patient dropout or non- 
adherence. 

Table I. Values of Z,  and Z ,  corresponding to specified values 
of significance level and power 

Two-sided tests One-sided Tests 

Level 0.0 1 2576 2.326 
0.05 1.960 1.645 
0.10 1.645 1.282 

Power 0.80 0.840 
0.90 1.282 
0.95 1.645 
0.99 2.326 

BASIC APPROACHES TO SAMPLE SIZE ESTIMATION 

All formulae for sample size estimation correspond to a specified null hypothesis (H,) and one or 
more test statistics. For each approach, therefore, we will present Ho, a reference to the appropriate 
analytic methods, one or more remarks concerning practical application, and, finally, an example. 
Unless otherwise specified, the alternative hypothesis HI may be either one- or two-sided. For each 
approach discussed, we present the sample size requirements in terms of the number of patients n to 
be randomized to each of the two groups. 

1. Sample size requirements in terms of risk difference 

This approach, by far the most frequently used in the design of clinical trials, is a straightforward 
application of traditional sample size formulae for comparing two proportions. I et 
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Pc = anticipated T-year event rate among control group patients 
PE = anticipated T-year event rate among experimental group patients 

6 = P, - Pc = the difference in event rates regarded as scientifically or clinically important to 
detect. 

Formula 1. (Ho: PE = Pc) 

n = (z,J[2P(1-~]+z,J[PE(1 -PE)+pC(l-Pc)]}2/62 

where P =  (P,  + Pc)/2 (Reference 4 pp. 38-42) 

Test statistic. Chi-square contingency test (Reference 4, pp. 21-27) 

Remarks 
(1.1) In practice, one usually has an estimate of Pc available from past experience. One may then 

estimate PE by Pc + 6. 
(1.2) Several other sample size formulae in terms of the risk difference address the problem of 

comparing two proportions (Reference 7, p. 318; Reference 8, p. 180; Reference 9, p. 129). All 
of these formulae, including formula 1, give sample size estimates that are close to the exact 
values required to produce the desired power with use of the chi-square test without 
correction for continuity. lo  Fleiss, Tytun and Ury” have shown that theincorporation of the 
continuity correction implies, to a high degree of accuracy, that the value of n in formula 1 
should be increased by an amount 2/1 PE - Pc I. 

The basic similarity among the various sample size formulae expressed in terms of the risk 
difference results from the fact that each is a variation of the basic formula, n = (aoZa  
+ n1 2 , ) ’ /S2 ,  where no and u1 are the standard deviations of an observation under Ho and 
H1,  respectively. Different methods of estimating no and n1 lead to the different formulae. 

(1.3) Formula 1 is well-approximated5 by the even simpler formula n = (2, +Zs)’[2F(1 --P)]/d2. 
For example at a = 0.05, (one sided), B = 0.10, this formula will yield total sample sizes within 
six units of the total sample size yielded by formula 1. 

(1.4) Fleiss, Tytun and Ury” have extended formula 1 to the case of randomization of unequal 
numbers of patients to the two groups. Suppose we wish to randomize n patients to the 
experimental group and sn to the control group, where 0 < s < 00. Then the required sample 
size is 

n = { Z a  J [ ( s  + 1 (1 - )I + Z ,  J[sPE (1  - pE + pc (1 - pc )I 2 / ( ~ ~ 2 ) ,  

where 

(1.5) Clinical trials in which patients are individually matched occur only infrequently. However, 
use of formula 1 for matched designs will tend to give conservative (somewhat too large) 
sample size requirements. We note that many authors (e.g. Schlesselman”) recommend that 
one ignore matching in the determination of sample size, since, prior to the study, the 
assessment of its impact will be difficult to estimate. For the same reason, the reduction in n 
which may be obtained by taking into account factors which produce variability, such as age 
and sex, is also usually ignored in sample size planning. 

= ( P ,  + sPc) / ( s  + 1). 

Example 1 
Investigators anticipate a 3-year death rate among control patients of about 60 per cent. They view 
a reduction of this mortality rate to 40 per cent among experimentally treated patients as clinically 
important. They would like to detect such a reduction with 80 per cent power and with a two-tailed 
test at the 5 per cent significance level. Thus Pc = 0.60, P,  = 0.40, P = (0.60 + 0.40)/2 = 0-50, 
2, = 1.96, Z, = 084. Substitution into formula 1 yields n = 96.8 or 97 as the number of patients 
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required in each group. With employment of a correction for continuity, remark 1.2 implies an 
increase in patient intake to n + 2/IPE - Pc I = 97 + 2/0.2 = 107 per group. 

Suppose that the investigators prefer to study only half as many experimental as control group 
subjects. Then, (ignoring the continuity correction) the required number of patients in the 
experimental group is 

n =  {1.96J[(2 + 1)(0*53)(0.47)] +0*84J[2(0*40)(1 -0.40) + (0.60)(1 - 0.60)]}2 = 72.4 
2(0.40 - 0.60)* 

Thus the number of patients required in the control group is 2(73) = 146, and the total size of the 
trial should be 73 + 146 = 219 patients. Note that this is greater than the total number of patients 
(194) needed to achieve the same precision with assignment of equal number of patients to the two 
groups. This illustrates the general result that, for a given total number of patients, the most 
information is obtained under equal patient allocation. 

2. Sample size requirements in terms of relative risk 

Let R = PE/Pc = relative risk regarded as clinically or scientifically important to detect. 

Formula 2. (Ho: R = 1) 
n = ( Z ,  ,/[2FR (1 -93 + 2, J [ P c  { 1 + R - P ,  (1 + R 2 ) ) ] } 2 / [ P ,  (1 - R)]’ 

where FR = )P,(l+ R )  (Reference 12) 

Test statistic. Chi-square contingency test (Reference 4, pp. 21-27) 
Remarks 
(2.1) Formula 2 is algebraically equivalent to formula 1. It pertains to the situation where one can 

more easily specify the anticipated effect of intervention in terms of R and Pc rather than in 
terms of PE and Pc. 

(2.2) One may adjust formula 2 for use of a continuity correction by adding 2/[Pc 11 - R I] to the 
calculated value of n. 

Example 2 
Suppose in example 1 the investigators had specified detection of a relative risk of 2/3 among 
experimental group subjects. Then, substitution of Pc = 060, R = 2/3, Z ,  = 1.96 and Z,  = 084 
into formula 2 yields n = 97 patients required in each group. Note that this is identical to the 
solution obtained with formula 1. 

3. Sample size requirements for clinical trials designed to show equivalence 

An increasing number of clinical trials seek to show that an experimental therapy is equivalent in 
efficacy to a control therapy, rather than (necessarily) superior. This often occurs when the 
experimental therapy is ‘conservative’ and the standard control therapy is invasive or toxic. In this 
case the null hypothesis may specify that the success rate Pc on the control therapy is higher than 
the success rate P, on the experimental therapy by at least some amount 8. The alternative 
hypothesis specifies that Pc - PE < 8, which implies that the two therapies are equivalent. Formula 
3 provides the required number of patients for such a trial. 

Formula 3. (H,,: Pc 2 PE + 8 vs. HI : Pc < P,  + 8)  

n = { z , J [ ~ F ( ~  -F)] +zflJ[PE(l -P , )+P~( I  - P , ) - J ) ~ / ( P , - P ~ - ~ ) ~  

where P ,  < PE+O and 0 > 0. 
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Test statistic. Critical ratio test for difference between two proportions (Reference 13, 
pp. 296-298). 

Remarks 
(3.1) Makuch and SimonI4 and Blackwelder” argue that in the planning of equivalence trials 

formula 3 is more appropriate than formula 1, which reflects the standard significance-testing 
approach. This is because, while equivalence trials seek, under the standard approach, 
to accept the null hypothesis, the reporting of the test does not explicitly account for 
the associated type I1 error. Thus a ‘non-significant result’ may invite false confidence in the 
equivalence of the two treatments. With the above approach, on the other hand, the 
equivalence trial seeks to reject Ho with an accompanying error rate of at most a. 

(3.2) The most convenient method of using formula 3 in practice is to set PE = Pc, regarding 0 as 
the difference in treatment efficacy that the investigator wishes to rule out with probability 
(1 - p). In this case we may also regard formula 3 as yielding the number of patients required 
to ensure with probability (1 - p )  that the upper lOO(1 - a )  per cent confidence limit for the 
true difference does not exceed 8 when P ,  = Pc. Makuch and Simon14 recommend a = 0.10, 

(3.3) Suppose that an investigator wishes to randomize n patients to the experimental group and sn 
= 0.20 and 0 = 010 as useful values in practice for this approach. 

to the control group, where s > 0. Formula 3 generalizes to give 

where 

Example 3 
The control regimen for a planned trial of treatment for hypertension consists of standard drug 
treatment, whereas the experimental intervention consists of a ‘lifestyle modification package’, 
including relaxation therapy and diet. The investigators anticipate that the proportion of patients 
whose blood pressure is under control is about 80 per cent in each group. However, because of the 
potential for harmful pharmacological side-effects, they regard the treatments as equivalent if the 
proportion of experimental patients under control is no more than ten percentage points less than 
the corresponding percentage for control patients. Thus the required number of patients in the trial 
at a = 0.10 (one-sided) and p = 0.20 is, from formula 3, 

= (Pc + sPE)/(s + 1). 

n = { 1.282J[2(0.80)(0.20)] + 0.84,/[(0.80)(0*20) + (0~80)(0~20)]~2/(0~10)2 

= 145 

If the anticipated proportion of patients under control in the experimental group is only 75 per 
cent, then the required number of patients is 

n = { 1.282J[2(0.78)(0.22)] + 0.84J[ (0.80)(0.20) + (0.75)(0.25)]}2/(0-05)2 

= 624 

The required number of patients is larger in this second case because one would like to rule out a 
difference of 0-10 when the true difference is 0.05. It is intuitively clear that one requires fewer 
patients to rule out a given value of 8 when the true difference is zero. 

Note also that rejection of H, under this approach (and the consequent conclusion of 
equivalence) will be associated with a 10 per cent error rate, explicitly stated in terms of a. 
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4. Sample size requirements that account for stratification of subjects 

This approach assumes stratification of subjects into K risk categories (e.g. based on age) with nj 
subjects randomly assigned to each of an experimental and control group within thejth stratum, 
j = 1,2, . . . , K .  One wishes to compare event rates within each of the resulting 2 x 2 tables, and to 
obtain an overall comparison to test whether the (assumed) common relative odds equals unity. Let 
Pc, and PE,,j = 1,2, . . . , K ,  denote the event rate among control and experimental group patients 
in thejthstratum.Then thecommonrelativeoddsisOR = P,(1 - Pc,)/Pc,(l -P,,),forallj.Define 

A = log, (OR) 

, j = l , 2  , . . . ,  K 
A2 

1 

f, = fraction of observations contained in the j th table, j = 1, 2 , .  . . , K .  

Formula 4. (H,: OR = 1). 
K K 

n =  ( z :+zp)2,  where n = 1 n j  = C f , n  (Reference 16) 
c s;h 

Test statistic. Unconditional large sample test (Reference 17, pp. 76-87). Mantel-Haenszel chi- 
square test (Reference 4, pp. 173-178). 

Remarhs 
(4.1) We can write the term P ,  as P ,  = Pc,/[P + (1 - P,,) exp (-A)]. Thus we can regard the 

term g, as a function of A and Pc, alone. Gail provides a table of g, in terms of OR and Pc,. 
(4.2) Formula 4 assumes that the relative odds OR (rather than the relative risk) is constant over 

strata, since this is an empirically reasonable and frequently adopted model for the analysis of 
independent 2 x 2 tables. Although in a single 2 x 2 table a test of H,: OR = 1 is equivalent to 
a test of H,: R = 1 the two parameters will in general have quite different values unless the 
underlying event rate is very small (Reference 4, p. 81). 

(4.3) Formula 4 depends on the assumption that the marginal totals of the 2 x 2 tables are random 
variables. Thus it most strictly corresponds to the unconditional analysis proposed by Cox 
(Reference 17, pp. 76-87) rather than the conditional analysis implied by the 
Mantel-Haenszel test (which assumes the marginal totals are fixed). However, Gail" 
suggests that formula 4 yields sample sizes appropriate to conditional testing provided all n, 
exceed 15 and all Pc, and P ,  lie in the interval (0.1, 09). 

(4.4) The multiple-table approach to sample size planning i s  feasible only with information 
available from previous studies to provide estimates of the P ,  and&. This might be the case, 
for example, in planning drug trials with previous incidence data available by stratum. The 
use of this information, when accurate, leads to more precise estimates of sample size, 
especially if the Pc, vary widely. However, reliable prior information on stratum-specific rates 
and relative stratum sizes often remains difficult to obtain. In this case one should use 
formulae 1 or 2 with P ,  or PE representing 'average' incidence rates. 

C',, 

Example 4 
Suppose there are two strata of increasing risk such that the anticipated control group rates are 
P,, = 0.30 and Pcz = 0.60, with previous studies suggesting fl = 2/3 and f2 = 1 - 213 = 1 /3. It is of 
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interest to detect OR = 2.5 as statistically significant, with a = 005 (1-tailed) and B = 010. Thus A 
= 0.92, g1 = 0.0958, g2 = 0.0824, and 

(1.645 + 1.282)’ 
2/3 (0.0958) + 1/3 (0.0824) 

n =  = 93.79. 

Thus one should enter 94 patients into the trial (per group), 63 in stratum 1 and 31 in stratum 2. 
Disregarding stratification in this example, one would apply formula 1 with Pc = 0-30(2/3) 

+ 060(1/3) = 040, for which g = 0.0996 and n = (1-645 + 1.282)2/00996 = 87, an underestimate 
of 7 patients per group. 

5. Sample size requirements in terms of time to some critical event 

This approach, originally due to Pasternack and Gilbert,18 assumes that greater interest attaches to 
the time to some critical event, such as death or the recurrence of disease, rather than the occurrence 
or non-occurrence of the event. Thus the approach pertains particularly to studies that aim to 
compare length of survival on different treatments. 

We assume, as in Reference 19, that the time-to-event (survival time) has an exponential 
distribution with means pc and pE in the control and experimental groups, respectively. This is 
equivalent to the assumption that the ‘hazard function’ or instantaneous probability of death 
(recurrence of disease, etc.) is constant within each group. We also assume that patients enter the 
trial according to a Poisson process. 

Let 8 = pE/pc = ratio of mean survival times regarded as important to detect. If all patients are 
followed-up in each group until the occurrence of the critical event, i.e. there are no censored 
observations, then formula 5 gives the required number of patients. 

Formula 5. (Ho: 8 = 1) 

n = 2 ( Z ,  + Zp)z/[log, (@I2 (Reference 19) 

Test statistic. Cox’s F-test (Reference 20, pp. 133-135) 

Remarks 
(5.1) Formula 5 derives from an approximation to the exact sample size solution. However George 

and Desu” showed that the formula is accurate to within two sample units. A generalization 
of formula 5 to comparative trials involving more than two treatment groups is given by 
Makuch and Simon.21 

(5.2) The exponential distribution is the simplest and most widely used distribution for describing 
survival data: Gross and Clarkz2 discuss it in detail. Under the assumption of exponential 
time-to-event, the median survival time is a constant multiple of the mean survival time. Thus 
we may assess the parameter 8 in formula 5 as either a ratio of mean times-to-event of interest 
or of median times-to-event. Freedmanz3 has generalized formula 5 to the situation with no 
distributional assumptions made concerning survival times. 

(5.3) The F-test developed by Coxzo provides the most powerful test of Ho: 8 = 1 when the times- 
to-event are exponentially distributed, and is the procedure which analytically corresponds to 
formula 5. However one may also use non-parametric procedures for testing Ho, such as the 
Wilcoxon rank-sum test.24 That is, we do not require the assumption of exponential survival 
for analysis. 

(5.4) There is a close relationship between this approach and the T-year event rate approach 
reflected by formula 1. Under the assumption of exponential survival time, the T-year event 
rates among control and experimental group patients become, respectively, P, = 1 - exp 
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( -T/pc)  and PE = 1 - exp ( -T/pE). Thus if the event in question is death, for example, the 
proportion of survivors at  any time T is exp( -T/pi), i = C, E. It follows that 8 = pE/pLc 

(5.5) The approach described above assumes follow-up of all patients in each group until failure, 
i.e. until the occurrence of the event in question. This will not frequently occur in practice, 
both because of loss to follow-up and because of an excessive required duration of the trial. If 
we assume instead that patients enter the trial at a uniform rate over a T-year period, Gross 
and Clark” developed a further approximation, which depends on the separate median 
survival times pE and p c .  If the trial terminates at a time T, the required number of patients in 
each group is 

= log, (1 - Pc)/log, (1 - PE). 

where 

Lachin’ presented a further generalization of this formula. He assumed recruitment of 
patients over the interval (0, To), but with a follow-up until time T, where the interval (To, 7‘) 
may be called a ‘continuation period’. We obtain the desired sample size under these 
conditions from the formula given in the previous paragraph, setting 

I ’  {ex~C-(t - G ) / ~ i l  - e x ~ ( - T / ~ i ) )  Pi 

To 
+(Pi) = 7 1 - .’[ Pi 

Test procedures for comparing survival distributions that can handlecensored data include 
Gehan’s generalization of the Wilcoxson test” and the Mantel-Haenszel testz6 for 
comparing survival distributions. 
An alternative approach to estimating the number of patients required for a clinical trial 
comparing survival distributions is to determine the required duration of the trial as a 
function of 8 and the yearly entry rate. Pasternack and Gilbert,’* George and Desulg and 
Rubenstein, Gail and Santner2’ all pursue this approach. Pasternak and Gilbert assume that 
all patients are followed until the time of the critical event, have exponentially distributed 
survival times, and a uniform accrual into the trial. George and Desu generalize this 
approach, allowing for Poisson rather than uniform accrual. Rubenstein, Gail and Santner 
generalize both approaches by allowing for a continuation period, during which patient 
follow-up persists but accrual has terminated. These approaches also take into account loss to 
follow-up. 

Example 5 

Consider a trial to evaluate a new chemotherapeutic agent for the treatment of childhood 
leukaemia. The investigators anticipate that mean survival time for patients on this drug might 
increase by a factor of 1.5, with follow-up of all patients until death. The required number of 
patients for the trial (per group) is, from formula 5, 

n = 2(1645+ 1.282)*/10g2(1.5) = 105 

Suppose now that patients will enter the study over a five-year time period, and that average 
survival in the control group is 3 years. This implies interest in detection of an increase in this figure 
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to 4.5 years. Then the required sample size per group is obtained from the formula in remark 5.5, 
where 

4 ( p c )  = (5/33)[(5/3)- 1 +e-5’3]-1 = 0.217 

4(pE) = (5/4~5~)[(5/45)- 1 +e-5’4’5]-1 = 0125 

n = (1.645 + 1~282)2(0217+0125)/(4~5-1 -3-I)’ = 238 

This calculation assumes that patients enter the study throughout a five-year period. Suppose 
instead that they are recruited over a four-year period, but followed-up for an additional twelve 
months, so that the total study duration remains five years. Then we may use the formula given in 
the last line of remark 5 5  to obtain # ( p c )  = 0.184, +(pE) = 0.105, yielding n = 207. Note therefore 
that fewer patients need enter a 5-year trial in which recruitment terminates within 4 years than a 
trial of similar duration in which patient accrual continues throughout. 

6. Sample size requirements that account for patient dropout 

Commonly during the course of a clinical trial some patients assigned to the experimental regimen 
‘drop out’ or fail to adhere to the prescribed protocol, although their outcomes are still recorded. 
Since one must count such individuals against the experimental group in the statistical analysis 
(Reference 6, Chapter 13), the effect of patient drop-out is to dilute the effective treatment 
difference. Several approaches have evolved for taking this problem into account in the calculation 
of sample size requirements. We summarize three such approaches here, all of which model the 
effect of drop-outs through the ultimate effect on the proportions under comparison. 

6.1. An approach based on characterization of drop-outs by the control group event rate 
Lachin5 has proposed a very simple method of adjusting sample size requirements for an 
anticipated drop-out rate d among patients in an experimental group. This approach characterizes 
drop-outs by the control event rate Pc, rather than the event rate P,corresponding to their original 
group assignment. It follows that the effective value Pzof theT-year event rate PE is P ;  = PE (1 - d )  
+ Pcd, and the effective treatment difference 6* by P2 - Pc = (1 - d ) ( P ,  - Pc). Substitution of 6* 
for 6 in formula 1 implies division of the usual formula for sample size requirements by the factor 
(1 -d)’  to inflate appropriately the number of patients entered into the trial. 

6.2. An approach that accounts for specijic patterns of drop out 
Schork and Remington28 proposed an approach which takes into account yearly ‘shifts’ of subjects 
from the experimental group to the control group. (They also deal with shifts in the reverse 
direction, which may occur, for example, in life-style intervention trials, where control group 
subjects may voluntarily seek out the benefits of treatment. For simplicity of discussion, we do not 
consider the effect of such ‘drop-ins’ in this paper.) Under Schork and Remington’s approach, 
subjects who drop-out effectively become characterized by the control group event rate Pc from 
that point onward. For convenience, we assume that a subject’s shift occurs mid-year. 

To apply this approach, one must anticipate, on the basis of past experience, a particular pattern 
of shift, i.e. the percentage of subjects anticipated to shift from the experimental to control group 
per unit time (say, year) of the trial. For example, we might assume for a 5-year trial that 20 per cent 
of experimental patients will discontinue therapy during the first year, and that an additional 10 per 
cent will do so in each of the remaining four years of the study. For any given pattern of shift, 
Schork and Remington provide a formula for the effective T-year experimental group event rate P z  
for use in formula 1. PE will in general be closer to Pc than PE, thus inflating the number of subjects 
required for the trial. 



208 ALLAN DONNER 

Suppose that the anticipated yearly event rates in the experimental and control groups are P,, 
and Pcy , respectively, and the yearly drop-out rate in the experimental group is di , i = 1,2, . . . , L, 
where L is the study duration in years. Then the effective T-year event rate in the experimental 
group is 

L 
p ;  = C d i [ l  - ( I  -pEy)i-1/2(1 - p  CY )L-i+1/2 1 + ‘[l - ( l  - p E Y ) 2 ]  

where C = 1 - Cdi  is the proportion of experimental group subjects anticipated to complete the 
study. One may easily evaluate this formula for any given values of P,,, Pcy and d i ,  i = 1,2, . . . , L 
and then substitute P r  for P ,  in formula 1.  

i =  1 

6.3. An approach based on modelling the distribution of time to drop-out 
Halperin et developed a theoretical model to account for patient drop-outs in a clinical trial. 
They assumed that time-to-event among control group subjects and time-to-drop-out among 
experimental group subjects each follow an exponential distribution, equivalent to the assumption 
that the corresponding instantaneous risks (hazards) of event and drop-out in these two groups, 
respectively, are constant. In their simplest model, they also assume that the instantaneous event 
rate among drop-outs returns immediately to the control group rate. With these assumptions, they 
derived the effective T-year experimental group event rate PE in terms of P,, the anticipated 
maximum reduction in Pc (specified as a proportion k of Pc), and the anticipated T-year drop-out 
rate d. Formula 1 then applies as before, with PE replacing P,. 

The calculation of the effective P ,  with the above assumptions requires numerical integration; 
thus no simple formula for this quantity exists. However, the authors provide extensive tables of PT 
in terms of the assessed values Pc, d and k .  

Remarks 
(6.1) We should not confuse the issue of patient drop-out with the related issue of patient loss to 

follow-up. The approaches described above assume that drop-outs remain under surveillance 
for the duration of the study, and are thus not lost to follow-up. The term loss to follow-up 
refers instead to those patients whose end-point status does not become available, in spite of 
(possibly extensive) surveillance efforts. If the reason for loss to follow-up is related to group 
assignment, serious problems of interpretation can arise. If, on the other hand, one expects 
loss to follow-up rates, I ,  to be identical in the two groups, and one can further assume that the 
character of the drop-outs is no different between groups, an appropriate adjustment consists 
of multiplying the estimated value of n by the factor 1/(1 - 1). 

(6.2) As mentioned above, the assumption of exponential time to event is equivalent to the 
assumption that the instantaneous event rate (the probability of having an event within any 
unit time interval, given that the event has not already occurred) is constant throughout theT- 
year study period. Wu, Fisher and DeMets3’ have generalized this assumption by dividing the 
time dimension into intervals and allowing for different instantaneous event rates in the 
different intervals. They present a similar generalization for the drop-out model, allowing as 
well for a time-dependent instantaneous drop-out rate. The authors present an equation for 
the effective value of PE under their generalized model, and provide an example of its 
application. 

(6.3) Lachin’s approach is the most conservative of the three described, since it characterizes drop- 
outs completely by the control group event rate. The other two approaches characterize drop- 
outs by the experimental group rate up until the time they drop out. Schork and Remington’s 
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approach most suits trials in which evidence from previous studies provides a characteriz- 
ation of the drop-out pattern that is likely to emerge from year to year. 

Example 6 
Consider a clinical trial to compare groups of myocardial infarction patients with respect to the 
five-year recurrence of myocardial infarction. Suppose that the experimental intervention consists 
of enrolling patients in a mild-activity exercise programme, whereas control group subjects receive 
no intervention. Past experience and the chosen eligibility criteria for the trial suggest that 80 per 
cent of the participants will adhere to the exercise programme. Assume further a 5-year recurrence 
rate among control group subjects of about 025, and interest in detection of a reduction in this rate 
to 0.15 among experimental group subjects. 

Ignoring drop-outs and setting a = 0.05 (one-sided) and B = 020, formula 1 yields 213 as the 
required number of subjects per group. Using Lachin’s adjustment factor to account for the 
anticipated drop-out rate, the required number of subjects in each group increases to 21 3/( 1 

Using the approach developed by Schork and Remington, one must specify the anticipated yearly 
drop-out rate in the experimental group. If we set dl = 0.10, d2 = 0-05, d3 = d4 = 0.025, d, = 0, 
then Schork and Remington’s solution for the effective value of PE is 

-0*20)2 = 333. 

5 

P ; =  C di[l-(1 -0*03)’-”2(1 -0~05)5-i+1’2]+0~80[1-(1-0~03)5] 
i = l  

= 0.154 

where PEy = 0.03 and Pcy = 0.05 are the approximate yearly event rates anticipated in the two 
groups. Substitution of this value of PE in formula 1, with Pc = 0.25, shows the required number of 
subjects for the trial is n = 298. 

Using the approach developed by Halperin et al., one must also calculate the effective value of PE, 
which, under their model, depends only on Pc,  the overall anticipated drop-out rate d, and the 
expected reduction in Pc,  expressed as a proportion k. For our example, Pc = 0.25, d = 0.20 and k 
= (0.25 - 0.15)/0.25 = 0.40, yielding, from the author’s tables, P z  = 0.128. Applying formula 1, the 
required number of subjects for the trial is n = 326, only slightly less than the result obtained with 
Lachin’s much simpler approach. 

7. Sample size requirements that account for the length of time required to achieve maximum 
benefit of treatment 

In trials of long-term therapy, the realization of full benefit may not be immediate, and may, in fact, 
require a fairly lengthy period of treatment. To account for this possibility in sample size planning, 
Halperin et aL2’ assumed achievement of the full effect of treatment among non-drop-outs in the 
exposed group in a linear fashion in f years. This assumption allows the development of an 
expression for the effective T-year event rate in the experimental group, denoted by P z ,  as a 
function of Pc (the anticipated T-year event rate in the control group), the anticipated maximum 
reduction in Pc (as a proportion, k, of Pc), andf(as a fraction ofT). One can then apply formula 1 as 
usual. As a further refinement, one may also extend this model to account for an anticipated T-year 
drop-out rate d, as discussed in 6.3. In this case, we assume further that the time until drop-out has 
an exponential distribution, and that the underlying instantaneous event rate for drop-outs in the 
experimental group returns to the control group level in a linear fashion, and at the same rate as 
incidence declined before drop-out. This is a generalization of the development given in 6.3, where 
the assumption was that drop-outs returned immediately to the control group level ( f =  0). 
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The calculation of PE under the above assumptions requires numerical integration. However, 
Halperin et al. provided tables for the quantity in terms of P,, d and k forf = (0, T/2 and T}. Clearly 
PE will approach P, as d and f increase, thus inflating the eventual sample size requirements. 

Example 7 
Continuing example 6, suppose we now assume that the full benefit of treatment required at least 
eighteen months for achievement. Setting P, = 020, k = 0.40, d = 020, and f =  T/2, tables 
provided by Halperin et al. give PE = 0.146 as the effective value of P,.  Applying formula 1, the 
required number of subjects for the trial is n = 599. Assuming total adherence (d = 0), the required 
number is n = 581. 

8. Sample size requirements that account for patient accrual by cohorts 

The model developed by Halperin et aLZ9 assumes follow-up of at least T years for each patient 
entered into the trial so that fixed sample-size formulae (such as formula 1) will apply. Suppose, 
however, that patients enter the study at essentially a uniform rate over a T-year period, at which 
time patient accrual terminates, but with patient follow-up continuing for an additional r years. 
Thus not all patients will have experienced Tyears of follow-up, although the purpose of the trial is 
to compare T-year event rates (using life-table methods). 

Extending the assumptions of Halperin et al., Pasternack" assumed an exponential survivor- 
ship function in both the experimental and control groups. With this assumption, and using an 
analytic approach similar to that of Halperin et d., Pasternack derived sample size requirements in 
terms of the expected T-year event rate in the control group and its anticipated decrease in the 
experimental group. He presented tables for T = 5 and r = 1, with the assumption of a one-tailed 
significance test. Palta32 has pointed out that these tables are generally conservative when survival 
in the control group is 50 per cent or higher, and recommends they not be used for control group 
survival probabilities greater than 60 per cent. She also suggested caution with accrual rates less 
than 30 per year. In this case, the five-year survival rate may not be estimable because of small 
numbers, and Palta therefore recommended an increase in the trial size beyond the level indicated 
by Pasternack's tables. 

Example 8 

Suppose, as in example 7, patients enter the trial at approximately a uniform rate over a five-year 
period, with patient follow-up continuin'g for one additional year. Then, without adjusting for 
subject drop-out or the length of time required to achieve full treatment benefit, the size of the 
annual cohort per group is, from Pasternack's tables (with P, = 0.25 and Pc = 0.1 5), 11 5. Thus the 
total number of subjects per group over the five years of entry is n = 5(115) = 575. This is 
considerably more than the 249 subjects per group as calculated for a fixed sample trial with five- 
year follow-up for each patient. 

One could also use Pasternack's tables to incorporate an anticipated dropout rate d and the timef 
required to achieve maximum benefit of treatment, with assumptions similar to those adopted by 
Halperin et al. 

9. Sample size requirements for group randomization 

The clinical therapeutic trial involves randomization of individual subjects to experimental and 
control groups. Controlled trials of preventive measures and innovations in health care, however, 
necessitate randomization of groups of people rather than  individual^.^^ Since one cannot regard 
the individuals within such groups as statistically independent, standard sample size formulae 
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underestimate the total number of subjects required for the trial. Cornfield34 addressed this 
problem in the context of community studies with randomization of equal-sized groups to each of 
two interventions. Donnerj extended his results to the case of unequal-sized groups. 

Consider a sample of m groups with the size of the ith group denoted by gi ,  i = 1,2, . . . , m. One 
may view each of these groups as having its own proportion of successes P i ,  i = 1, 2, . . . , m. 
Suppose we randomly allocate m/2 of the groups to each of two interventions. Then the relative 
efficiency of group randomization to individual randomization is R = F( 1 - F)/go2, where g 
= Cgi/m, F =  Z g i P i / Z g i  and o2 = Cgi (P i  - P)’/(mg2). This expression implies that one should 
multiply the usual estimate of the required number of individuals in the trial by an inflation factor 
IF = 1/R to provide the same statistical power under group randomization as would be obtained 
under individual randomization. has shown that IF may be written as IF = 1 + (g - 1)C, 
where 2 measures the degree of within-group dependence and corresponds to the version of the 
kappa statistic presented by F l e i ~ s . ~  For small relatively homogeneous groups (clusters) of fixed 
size g, Donner, Birkett and have shown that one can interpret lc directly in terms of the 
underlying concordancy rate, where a concordant cluster is defined as one in which the responses of 
all members are identical. Specifically in this case 

- 

where PCr is an advance estimate of the proportion of concordant clusters in the control 
population, and Pc is the anticipated success rate among control patients. One may also interpret K 
as an intraclass correlation coefficient. 

Group randomization requires modification in standard analytic methods since these assume 
statistical independence among individuals. The essential feature of any valid analytic approach is 
the development of a variance expression for the difference between the two proportions which 
accounts for between-group variation.34 The application of standard inference techniques to data 
arising from group randomization may result in spurious statistical significance, since they ignore 
this source of variation. 

Example 9.1 
Consider a study of cardiovascular mortality with randomization of either a control condition or a 
life-style intervention designed to modify coronary risk factors. Data from 15 cities show that the 
mean and standard deviation of cardiovascular mortality rates among these communities are 
250 x and 19 x respectively. Assuming randomization of equal-sized cities of 
approximately 50,000 individuals, the appropriate inflation factor is 

= 7.22 
go2 - (50,000)(0*00019)2 

P( 1 - F) - (0*00024)(0-99975) 
IF =- 

Thus the result of standard sample calculations, as provided by formula 1, for example, must have 
an inflation factor of 7.22 to allow for the reduced efficiency of group randomization. 

Example 9.2 
Consider a study with randomization of spouse pairs to either a control group or a group receiving 
a reduced amount of dietary sodium, where the interest is hypertensive status ( < 140/90 mmHg vs. 
2 140/90 mmHg). Previous data indicate that the proportion of couples concordant with respect 
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to hypertensive status is 0.85, whereas the anticipated rate of hypertension in the control 
population is 0.15. Thus 

PCT-[PgC+(l - P c f g ]  0*85-[10.152+0*852] 
= 0.41 - K =  - 

1 - [Pt + (1 - P,)’] 1 - [ O W  + 085’1 
Consequently, one must multiply the value of n as obtained from standard sample size 

calculations by a factor 1 + (2 - 1)(041) = 1.41 to allow for the clustering effect within spouses. 

10. Sample size requirements for cross-over designs 

The two-period cross-over design involves a single group of patients, each of whom serves as his 
own control in the comparison of two treatments. One randomizes patients to one of two treatment 
sequences-half the patients receive the treatments in the order EC, the other half in the order CE. 
The advantage of this design over a parallel group or completely randomized design is that it allows 
the effects of the treatments to be compared within the same patients. 

For quantitative responses, the total number of subjects N required in a cross-over experiment 
to provide the same statistical power as would be obtained in a parallel group experiment is 
N = n (1 - p),  where n derives from formula 1 and p in the correlation between two responses in a 
single subject. This result shows that the advantage of the cross-over trial is greatest when variation 
of responses within subjects is small compared to variation between subjects. 

As applied to a dichotomous response, the correlation p between responses in a single subject is 
not, in a strict sense, meaningfully defined. However, Schwartz, Flamant and Lellouch’ show that 
one may still obtain approximate sample size requirements in this case by estimating p from 
previous data, with observations scored as 0 or 1. 

Remarks 
(10.1) 

(10.2) 

Although use of the cross-over design always requires fewer patients than the completely 
randomized design (even at p = 0, where half as many patients are required), the cross-over 
design, in practice, has severe limitations. The most important is that there must be no ‘carry- 
over’ effect of the first treatment into the period in which the second treatment is applied.37 
A second limitation is that the cross-over design does not apply with responses such as death 
or total cure, since each patient must receive both treatments. Cross-overs are most suited to 
the comparison of treatments for chronic conditions, such as insomnia, pain and asthma.’ 
The structure of this design implies that the eventual test of Ho:PE = Pc will employ 
methods for comparing dichotomous outcomes in matched pairs, where each pair consists 
of the binary observations produced by a subject in periods 1 and 2, respectively. The most 
well-known such method is McNemar’s test for correlated proportions (Reference 24, pp. 
177-179). 

Exumple 10 
We focus on the estimation of p from previous data, since this is the only new feature. Consider a 
cross-over study to compare the preference of patients for two drugs A and B, where a score of 0 
denotes a preference for A and a score of 1 a preference for B. To extract an estimate of p from past 
data, a fourfold table may be constructed whose entries provide the frequencies of Oand 1 in each of 
the two periods of the previous trial. It is well-known that the square of the correlation between the 
responses in periods 1 and 2 is given by the vaIue of x2 for this table divided by the number of 
observations. Thus for a prior study of 20 patients yielding x2 = 4.5, the estimate of p is given by 
0-47, which could equivalently be obtained by applying the usual formula for a correlation 
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coefficient to the (91)  observations. Use of this estimate in the planning of a cross-over trial implies 
that the total number of subjects required is slightly more than half the number of subjects required 
in each group of a completely randomized trial. 
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