CONTINGENCY COEFFICIENT

Timo Törmäkangas, 2014

Procedure

The contingency coefficient can be calculated in the following way (see e.g. Blaikie).

1) Obtain a cross-table of the variables X and Y, where X has r categories and Y has c categories.
2) Calculate the value of the chi-square statistic.
3) The observed contingency coefficient is calculated as:

$$
C_{o b s}=\sqrt{\frac{\chi^{2}}{\chi^{2}+n^{\prime}}}
$$

which varies between 0 and $C_{\max }$. Note that $C_{\max }$ varies depending on the number of categories for X and Y.
4) If X and Y have the same number of categories (i.e. $r=c$), then the maximum value for the contingency coefficient is calculated as:

$$
C_{\max }=\sqrt{\frac{r-1}{r}}
$$

where r is the number of rows (see step 1).
If X and Y have a differing number of categories (i.e. $r \neq c$), then the maximum value for the the contingency coefficient is calculated as:

$$
C_{\max }=\sqrt[4]{\frac{r-1}{r} \times \frac{c-1}{c}}=\left(\frac{r-1}{r} \times \frac{c-1}{c}\right)^{1 / 4} .
$$

5) The standardized contingency coefficient is calculated as the ratio:

$$
C_{\text {stand }}=\frac{C_{o b s}}{C_{\max }},
$$

which varies between 0 and 1 with 0 indicating independence and 1 dependence.

Example

Here is a cross-table for gender (sex) and self-assessed economic situation (nc1049).

> sex Sex * nc1049 ECON.SIT. Crosstabulation

Count

		nc1049 ECON.SIT.			Total
		1 GOOD	2 SATISFACTO RY	3 BAD	
sexSex	1 MALE	33	76	6	115
	2 FEMALE	47	153	25	225
Total		80	229	31	340

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$4,912^{\mathrm{a}}$	2	, 086
Likelihood Ratio	5,141	2	, 076
Linear-by-Linear	4,659	1	, 031
Association	340		
N of Valid Cases			

a. 0 cells $(0,0 \%)$ have expected count less than 5 . The minimum expected count is 10,49 .

From the above table we find $\chi^{2}=4.912$ and sample size $n=340$. Although the chi-square statistic is not statistically significant ($p=0.086$), we calculate the observed contingency coefficient as:
$C_{o b s}=\sqrt{\frac{\chi^{2}}{\chi^{2}+n}}=\sqrt{\frac{4.912}{4.912+340}}=0.1193$.
The table has two rows ($r=2$) and three columns ($c=3$), hence the maximum of contingency coefficient for this table is:
$C_{\max }=\left(\frac{r-1}{r} \times \frac{c-1}{c}\right)^{\frac{1}{4}}\left(\frac{2-1}{2} \times \frac{3-1}{3}\right)^{\frac{1}{4}}=0.7598$.
The standardized contingency coefficient is:
$C_{\text {stand }}=\frac{C_{\text {obs }}}{C_{\max }}=\frac{0.1193}{0.7598}=0.157$.
This indicates that the relationship is weak between the variables. We can report the result as showing no statistically significant dependence between gender and self-assessed economic situation (standardized $C=0.157, p=0.086$).

References

Blaikie, N. 2003. Analyzing Quantative Data. London: SAGE.

