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Evaluating Univariate, Bivariate, and Multivariate Normality 
Using Graphical and Statistical Procedures 

 

Tom Burdenski, Texas A & M University 
This paper reviews graphical and statistical procedures for evaluating multivariate normality by guiding the reader 
through univariate and bivariate procedures that are necessary, but insufficient, indications of a multivariate normal 
distribution. A data set utilizing three dependent variables for two groups provided by George and Mallery (1999) is 
used to analyze kurtosis and skewness coefficients, Q-Q plots, the Shapiro-Wilk or Kolmogorov-Smirnov statistic, 
and bivariate scatterplots. A procedure programmed by Thompson (1990) is used to explore multivariate normality 
by plotting Mahalanobis distances against derived chi-square values in a scatterplot. 
 

eality is complex. Over time, researchers in the 
social sciences have become increasingly aware 
that simple univariate methods comparing an 

experimental group with a control group on a single 
dependent variable are inadequate to meet the needs of 
the complex phenomena that dominate educational and 
psychological research. In the majority of social 
science research, two or more dependent variables are 
necessary, because nearly every effect has multiple 
causes and nearly every cause has multiple effects. 
Even when studying a single construct, such as self-
concept, it is often helpful to use multiple tools to 
measure elusive constructs (called "multi-
operationalizing").  
 In a methodological shift that increasingly 
emphasizes honoring the complexity of reality, Grimm 
and Yarnold (1995) reported that the use of 
multivariate statistics in research has accelerated in the 
last 20 years and that it is difficult to find empirically 
based research articles that do not employ one or more 
multivariate analyses. In a comparison of the 1976 and 
1992 volumes of the Journal of Consulting and Clinical 
Psychology (JCCP) Grimm and Yarnold found that the 
use of multivariate statistics in JCCP increased from 
9% to 67% in that 16 year period.   
 Daniel (1990) noted that multivariate methods 
usually best honor the reality about which the 
researcher wishes to generalize. McMillan and 
Schumacher (1984) compellingly argued against the 
limitations of viewing the world through an overly-
simplified univariate lens: 

Social scientists have realized for many years 
that human behavior can be understood only 
be examining many variables at the same 
time, not by dealing with one variable in one 
study, another variable in a second study, and 
so forth. These [univariate] procedures have 
failed to reflect our current emphasis on the 
multiplicity of factors in human behavior. In 
the reality of complex social  situations the 
researcher needs to examine many variables 
simultaneously. (pp. 269-270) 

 Thompson (1986, p. 9), stated that the reality about 
which most researchers strive to generalize is usually 
one “in which the researcher cares about multiple 
outcomes, in which most outcomes have multiple 

causes, and in which most causes have multiple 
effects.” Given this conception of reality, only 
multivariate methods honor the full constellation of 
inter-relating variables simultaneously. 
 

 

Experimentwise Error Rates 
 Whereas "testwise" error rates refer to the 
probability of making a Type I error for a given 
hypothesis test, "experimentwise" error rates refer to 
the probability of having made a Type I error anywhere 
within the study.  Inflation of "experimentwise" error 
rates can be attributed to two factors: (a) the number of 
dependent variables in the study; and (b) the amount of 
correlation between the factors--if two factors are 
perfectly correlated there is no inflation. On the other 
extreme, very low correlations produce highly inflated 
"experimentwise" error rates. The Bonferroni 
inequality can be used to calculate the 
"experimentwise" error rate when the hypotheses or 
variables tested using a single sample are perfectly 
uncorrelated: 
 

        αEW  = 1 - (1 - αTW)K  
 As noted by Thompson (1994): 

... if three perfectly uncorrelated hypotheses 
(or dependent variables) are tested using a 
single sample, each at the αTW=.05 level of 
statistical significance, the "experiment-
wise" Type I error rate will be: 

 

        αEW  = 1 -  (1 - αTW)K 
      = 1 -  (1 - .05)3  
      = 1 -  (.95)3 
      = 1 -  (.95) (.95) (.95) 
      = 1 - ( .9025 (.95)) 
      = 1 -  .857375 
        αEW  = 0.142625 
  Thus, for a study testing three perfectly 
uncorrelated dependent variables, each at the αTW = .05 
level of statistical significance, the probability is 
.142625 (or 14.265%) that one or more null hypotheses 
will be incorrectly rejected within the study. Most 
unfortunately, knowing this will not inform the 
researcher as to which one or more of the statistically 
significant hypotheses is, in fact, a Type I error.

R 
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 As illustrated by Fish (1988) and Maxwell (1992) 
using heuristic examples, invoking multiple univariate 
tests instead of multivariate tests can also lead unwary 
researchers to fail to identify statistically significant 
results. The wrong-headed use of the so-called 
"Bonferroni correction" coupled with use of univariate 
tests is also inappropriate, because the application (a) 
severely attenuates power and (b) still does not honor a 
multivariate reality. Multivariate analyses can detect 
interaction effects between independent variables that 
would go undetected if multiple univariate measures 
were used in place of multivariate measures. 
Independent variables may have small, but noteworthy 
effects on multiple dependent variables that add up to 
an important pattern when examined as a composite, 
but otherwise appear meaningless in a univariate test 
(or series of tests) of a single dependent variable. 

 
Assumptions of Multivariate Statistics 

 Because use of multivariate statistics has become 
commonplace, it is imperative that researchers 
understand and honor the central assumptions that 
guide their use. The first assumption of most 
multivariate statistics is that the variance/covariance 
matrices across the k groups must be homogeneous 
(equal); and the second assumption, which is the focus 
of this paper, is that the interval response variables 
across the k groups must be multivariate normally 
distributed. The test for homogeneity of variance in 
multivariate statistics is Box’s M (Box, 1949; 1954), 
which is a statistically powerful test of bivariate 
correlations (unstandardized r) that is analogous to the 
Levene test in univariate analyses. If Box’s M is 
favorable, you do not reject the homogeneity of 
variance assumption, which means that you have met 
the first assumption of multivariate analyses. Box’s M 
tests the first assumption, but it is also sensitive to the 
second assumption of multivariate normality. In other 
words, if you don’t reject the homogeneity of variance 
assumption, you may have a problem with multivariate 
normality (see Tabachnick & Fidell, 1983; 1989; 1996 
for a detailed elaboration of the homogeneity of 
covariance assumption). 
 

Univariate Normality 
 Determining univariate normality is helpful when 
assessing multivariate normality, because one can do 
so even with a small sample size (n < 25) and because 
univariate normality is a necessary precondition for 
multivariate normality (Gnanadesikan, 1977; Johnson 
& Wichern, 1992). The advantage of proceeding from 
a univariate to bivariate to multivariate examination of 
the data is that such a procedure provides useful 
information on which dependent variables to use before 
conducting a multivariate analysis. In order to build a 
foundation for a complete understanding of 
multivariate normality, a brief review of univariate 
normality is in order.  

 Parametric tests require that the sample data be 
drawn from a population with a known form, most 
typically the normal distribution, so that at least one 
population parameter can be estimated from the sample 
(Munro & Page, 1993). As noted by Bump (1991), the 
normal curve is determined by a mathematical equation 
that uses the mean and standard deviation values to 
determine two additional statistics--skewness and 
kurtosis. Both statistics are used to assess the normality 
of a univariate distribution. Skewness refers to the 
degree of symmetry of the distribution. Kurtosis refers 
to the shape of the distribution against the normal 
distribution, by comparing relative height to width. The 
mean and standard deviation are used to convert the 
measured scores to z-scores, which are then used to 
compute the skewness, as explained by Glass and 
Stanley (1970, p. 91): Kx = ((ΣZi

4)/n), most researchers 
and statistical packages, however, apply an additive 
constant of (-3) so that the skewness will be equal to 0 
in a univariate normal distribution." 
 However, Glass and Stanley (1970) noted that in a 
univariate distribution, skewness has a very minor 
effect on alpha or power in ANOVA if the design is 
balanced (i.e. there are an equal number of 
observations in each cell) and kurtosis also has a very 
slight effect on alpha levels and only effects the power 
of a test when the distribution is platykurtic (flattened 
as compared to the normal distribution). The severity 
of the effect of kurtosis on power increases 
proportionately with the presence of kurtosis in more 
than one variable.  
 

Graphical and Statistical Tests 
of Univariate Normality 

 According to Stevens (1996), one of the most 
popular graphical methods for testing univariate 
normality is the normal probability plot or Q-Q Plot 
(quantile-versus-quantile) in which observations are 
ordered in increasing degree of magnitude and then 
plotted against expected normal distribution values. 
Three additional graphical tests are the box-and-
whisker plot, stem-and-leaf plot, and a histogram of the 
dependent variables. These tests allow a quick and 
simple means of evaluating the shape of the univariate 
distribution for each dependent variable. Stevens 
(1996) recommends that with samples of less than 50 
cases,  prudent researchers use non-graphical tests such 
as the chi-square goodness of fit, Kolmogorov-Smirnov 
test, the Shapiro-Wilk test, and an evaluation of the 
skewness and kurtosis of the distribution to make an 
evaluation about univariate normality. The Shapiro-
Wilk test (Wilk, Shapiro, & Chen, 1968) was 
developed to detect a wide variety of variations from a 
normal univariate distribution. The smaller the W 
value, the greater the departure from normality. As a 
guideline, Gnandesikan (1977) stated that for pcalculated 
values of 0.1 or higher, normality is a reasonable 
assumption.
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 Wilk, Shapiro, and Chen (1968) concluded that for 
sample sizes under 20, the combination of the 
skewness and kurtosis coefficients or the Shapiro-Wilk 
method were most sensitive to detecting extreme non-
normality. Stevens (1996) recommended that 
researchers evaluate unvariate normality by examining 
the Shapiro-Wilk statistic and examining the kurtosis 
and skewness coefficients (along with their standard 
errors) because Shapiro-Wilk has the most power and a 
review of the skewness and kurtosis can help determine 
the cause of non-normality whenever it is present. The 
Shapiro-Wilk test is recommended for samples of less 
than 25 and the Kolmogorov-Smirnov test is 
recommended for samples greater than 25. Both the 
Shapiro-Wilk and the Kolmogorov-Smirnov tests 
perform an aggregate test of skewness and kurtosis in 
the univariate case.  You do not want to find statistical 
significance because the null says the distribution is 
normal and you do not want to reject the assumption of 
normality. 
 

Bivariate Normality 
 As noted by Stevens (1996), in addition to 
establishing univariate normality, two additional 
characteristics of a normal multivariate distribution are 
that the linear relationship of any combination of 
variables is distributed normally, and that all possible 
subsets of the sets of variables are normally distributed. 
The relationship between bivariate and multivariate 
normality is complex. Statistical significance tests like 
those used in MANOVA require that the distribution of 
each dependent variable are normally distributed about 
each of the other dependent variables in any “X1 and 
X2” comparison.  
 Two distributions that are univariate normal might 
also be bivariate normal, but just because two 
distributions are univariate normal does not mean that 
they will be bivariate normal. In a bivariate 
comparison, we compare each person's score on two 
measures, so we are thinking in three dimensions--the 
X-axis, Y-axis and a third axis to demonstrate 
frequency of scores. This requirement means that a 
circular or elliptical pattern will emerge in a scatterplot 
when examining the correlation of any two dependent 
variables in a bivariate normal distribution. The 
narrower the ellipse in the bivariate scatterplot, the 
greater the correlation between the dependent 
variables,and subsequently, the greater the likelihood 
hat the assumption of multivariate normality will hold.   
 Figure 1 is a graphical representation of a bivariate 
frequency distribution in two-dimensional form. In this 
drawing, the viewer is looking down at the distribution 
from above. The largest concentric circle is the 
footprint or floor of the bell or mound. The footprint of 
the bell is not a circle in this example, because the 
standard deviation for each person on the X-axis is 
roughly twice as large as the standard deviation on the 
Y-axis. A series of contour lines is used to demonstrate 
a series of ellipses with varying amounts of distance 
from the common center, called the centroid.  

 
Figure 1. Contour Diagram for a  

Bivariate Normal Surface 
 

The advantage of drawing the centroid with contour 
lines is that you can graphically demonstrate the 
probability that a random bivariate observation (plotted 
on the X1X2 plane) will lie within the elliptical region, 
which is equivalent to the area under a portion of the 
normal curve in a univariate distribution of scores 
(Neter, Kutner, Nachtsheim, & Wasserman, 1996).  
 Statistical significance testing applies to the 
bivariate case in terms of the distance from the centroid 
or Cartesian coordinate for each person on the X and Y 
axes. The closer the scores aggregate toward the 
centroid, the greater the chance of being included in the 
sample because of nearness to the Cartesian coordinate. 
The first contoured line shows a value of .8 meaning 
there is an 80% chance of being included in the sample. 
The last contoured line has a value of .2 meaning that 
there is only a 20% chance of being included in the 
sample. 
 If a group of 400 people is measured in two ways--
for example, each person's composite (Verbal + 
Quantitative) GRE score (X) and self-esteem (Y)--the 
data can be represented in a bivariate frequency 
relationship as shown in Figure 2. If we had bivariate 
normality, the circles would be concentric in a sense. 
We are comparing two variables, but have three axes. 
The third axis is height, which graphically shows the 
frequency of the bivariate scores. In this example, 
height is a measure of frequency and not a third 
variable. For each person, there is a pair of scores, a 
score on X and a score on Y. A bivariate frequency 
distribution is a picture of the frequency with which 
different pairs of X and Y scores occur in a group of 
persons. In Figure 2, a bivariate frequency distribution 
is displayed for about 400 people on GRE Composite 
(Verbal + Quantitative) Score (X- axis) and self-esteem 
(Y-axis).  In this example, the highest frequency of 
scores is a GRE Composite Score of 1000 and a self- 
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Figure 2. Bivariate Frequency distribution for Persons Measured on Total GRE (X) and Self-Esteem (Y). 
 
esteem score of 30. This point is the Cartesian 
coordinate for the two sets of scores and also forms the 
highest point of the distribution of scores. When the 
height of the line is compared to the vertical scale of 
frequency, we can determine that approximately 20 
persons had a composite GRE score of 1000 and a self-
esteem score of 30 
 A surface or "roof" drawn on the top of a large 
number of scores in a bivariate frequency distribution 
takes the shape of a three-dimensional bell or hat as 
demonstrated in Figure 3. The shape is formed by 
conceptualizing the one-dimensional bell-shaped 
normal distribution and stretching it in the X and Y 
directions and rotating it around its center (i.e. the 
Cartesian coordinate) in the XY plane. All bivariate 
normal distributions have the following characteristics: 

 (a) For each value of X, the distribution of 
its associated Y value is a normal 
distribution and vice-versa. 
  (b) The Y means for each value of X are 
linear (i.e., they fall on a straight line) and 
the same is true for the X means for each 
value of Y. 
 (c) The scatterplots demonstrate homo-
scedasticity--the variance in the Y values is 
uniform across all values of X and the 
variance in X values is constant for all 
values of Y.  

 If you were to multiply all of the z-scores on the X 
axis by 2 in Figure 3 and place those scores on the Y 
axis, the base of the three-dimensional bell will be an 
ellipse instead of a circle because the Y scores will be 
twice as spread out as the X scores. However, a non-
circular base can still be normal because a 

multiplicative constant of two will not change the 
skewness, kurtosis, or mean of zero.  
 The shape of the mound or hat is determined by the 
amount of correlation between the two variables. If 
both dependent variables are expressed in standard 
deviation units, the more correlated the variables, the 
narrower the mound or hat because correlation causes 
the probability to concentrate along a line (see Figure 
4; r = .8). In the extreme case that dependent variable 
X1 is completely correlated with dependent variable X2, 
all points would be exactly on the regression equation, 
the standard deviation for X1 and X2 would be equal to 
zero and the "contour" would all be straight lines with 
no areas.  
 Furthermore, if the distribution is bivariate normal, 
any plane perpendicular to the X1X2 plane will cut the 
surface into a normal curve and a plane parallel to the 
X1X2 plane will cut in an ellipse. The bivariate normal 
distribution has the property that the regression of X1 
on X2 is linear. Therefore, if we have a bivariate normal 
distribution, we know that if we trace the means of X2 
for each X1, the result will be a straight line. It does not 
necessarily follow, however, that if the regression is 
linear, the joint distribution is bivariate normal. 

 
Multivariate Normality 

 For a data set of two or more dependent variables, 
all of the variables must be univariate normal and all 
possible pairs of the variables must also be normal as  
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necessary but insufficient conditions for multivariate 
normality. The mathematical model that serves as the 
basis for MANOVA and other multivariate techniques 
is based on the multivariate normal distribution. This 
means that both the sampling distributions of the 
means of dependent variables in each cell are normally 
distributed as are the linear combinations of dependent 
variables. The central limit theorem states that for large 
samples, the sampling distribution of means in the 
univariate case will approach normality. Mardia (1971) 
demonstrated that MANOVA is robust to modest 
violation of normality if the violation is caused by 
skewness rather than outliers.  
 In some instances, researchers can examine 
multivariate outliers by simply examining z-scores and 
looking for extreme scores on each dependent variable. 
However, this technique does not identify a set of 
scores for a person that are slightly deviant on several 
variables. Fortunately, a statistic called Mahalanobis 
distance (D2) can be used to detect scores that deviate 
from the mean (above or below) for a group of 
dependent variables as a set. Detecting multivariate 
outliers from a set of dependent variables is a much 
subtler process than detecting univariate or bivariate 
outliers.  
 The Mahalanobis distance is the distance of a case 
from the centroid where the centroid is the point 
defined by the means of all the variables taken as a 
whole. The Mahalanobis distance demonstrates how far 
an individual case is from the centroid of all the cases 
for the predictor variables. When the distance is great, 
the observation is an outlier. According to Krzanowski 
(1988) and Stevens (1996), the Mahalabonis distance is 
accepted by researchers as the measure of distance 
between two multivariate populations and it is 
independent of sample size. The Mahalanobis distance 
can be written in terms of the covariance matrix S as:      
    Di

2 = (Xi - x)' S -1 (Xi - x), 
 

Figure 3. Bivariate Normal Distribution 
 
where Di

2 is the Mahalanobis distance for a given 
individual, S is covariance matrix with variances on the 
diagonal and covariances off the diagonal. The rank for 
S is the number of rows and columns for the 
covariance matrix, which is 3 x 3, if there are three 
dependent variables.  
 The assumption of MANOVA, for example, is that 
in each group, multivariate normality holds regarding 
the dependent variables, so if there are a total of 105 
cases (as in the heuristic example below) with 64 cases 
in the female group and 41 cases in the male, both have 
to have multivariate normality. In group 1, there are 
three interval variables and the rank of the correlation 
matrix is 3 x 3. Xi is the composite of three scores of a 
given individual with a rank of 3 x 1. Person #1 has 
three scores with one column.  The matrix of means 
also has a rank of 3 X 1 (three means with one column) 
which yields a product of 3 X 1 and is not conformable 
to 3 x 3.  The transpose (') notation means you flip the 

 

     
         Mean for X1 = 30, SD1 = 2. Mean for X2 = 15, SD2 = 1. r = 0.8 
Figure 4. Elliptical Bivariate Normal Distribution for 2 Variables with Dissimilar Standard Deviations and Means 
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Figure 5. Scatterplot of Chi-Square with Mahalanobis 
   Distance for 64 females without  
   transforming or deleting scores.  
 

3 x 1 and it becomes 1 x 3. The right most part of the 
matrix is also a 3 x 1 but it does not have a transpose 
symbol, so it is not flipped on its side.  
 From the formula, the Mahalanobis distance is 
descriptive of how far each case's set of scores is from 
the group means adjusting for correlation of the 
variables (in the example, a measure of the distance of 
the each person from the group means adjusted by how 
correlated the three variables are). In Figure 5, the 
smallest Mahalanobis distance is for participant #32 
because each of the three scores (3.0, 6.1, and 9.8, 
respectively) is closest to the mean for each variable 
(2.89; 6.23; and 10.3, respectively).  
 Having correlated dependent variables is 
commonplace in social science research. The 
correlation of dependent variables must be taken into 
account when calculating the Mahalanobis distance 
because deviations from the means of two highly 
correlated dependent variables are partially redundant 
whereas the deviations from the mean for two highly 
uncorrelated dependent variables are not redundant. 
More concretely, say in a set of three dependent 
variables all with a standard deviation of 5, that the 
mean of X1 is 10, the mean of X2 is 11 and the mean of 
X3 is 2, X1 is highly correlated with X2 but X1 is highly 
uncorrelated with X3 and X2 is highly uncorrelated with 
X3. If person #1 has a score one standard deviation 
above the mean on X1 (X1=15) and X2 (X2=16) and 
scores at the mean of X3 (X3=7), that person will have a 
smaller D2 than person #2 who scores at the mean on 
X1 (X1=7) and one standard deviation above the mean 
on X2 (X2=16) and X3 (X3=7). The D2 for person #1 
includes redundant distance from the means because 
the scores on X1 of 15 and X2 of 16 are very similar. In 
a sense, X1 and X2 are measuring the same thing, so the 
deviation from the means is due in part to similarity in 
the variables. Person #1 will have a lower D2 because 
the deviation from the means is redundant whereas the 
D2 for person #2 will be much greater because the 

Mahalanobis distance is not due to distance from 
similar means of the variables but rather to substantial 
distance from dissimilar means (X1=10; X2=16; X3=7). 
 There are two evaluations to be done when 
examining the Mahalanobis distance by chi-square 
scatterplot--the first is whether or not the points form a 
straight line or not. If the points on the scatterplot form 
a straight line, you have multivariate normality. The 
second consideration is whether or not there are 
anomalous persons with scores on the scatterplot that 
are a noteworthy distance from the centroids. You can 
have a perfectly straight line and still have outliers in 
the data set, but it is rare to have a person whose scores 
are outlying on all of the dependent variables in a data 
set. Before eliminating outliers, a prudent researcher 
will examine whether or not the extreme score on the 
multivariate scatterplot is due to an anomalous score on 
one dependent variable by examining each univariate 
distribution before eliminating the person from the data 
set. If only one score is anomalous, it is more prudent 
to transform the score on that variable rather than 
eliminate valuable information from the analysis, or to 
eliminate that variable from the data set. 

 
Evaluating Univariate Normality:  

A Heuristic Example 
 To make the discussion about testing  bivariate and 
multivariate normality more concrete, a data set 
developed by George and Mallery (1999) will be 
analyzed using SPSS version 8.0 to test the distribution 
of scores for 64 female and 41 male students taught by 
the same professor in three sections of a course. The 
three dependent variables in this analysis are each 
student’s GPA previous to taking the course 
(PREVGPA), final exam grade (FINAL) and total 
points for the course (TOTAL). In such a data set, it 
might be interesting to examine the differences 
between males and females (an independent variable 
with two levels) on all three dependent variables--
previous GPA, final exam grade, and total points in the 
course. The SPSS syntax for the female group (n = 64) 
appears in Appendix A and the syntax for the male 
group (n = 41) appears in Appendix B. For the sake of 
brevity and clarity, univariate normality will be 
assumed and only the bivariate and multivariate output 
from the female group will be analyzed in detail in this 
paper.  
 As noted by Marascuilo and Levin (1983), 
multivariate normality is a requirement for utilizing the 
statistical inference procedure that is the basis of all 
“OVA” designs. The test for univariate normality for 
the grades data for the female group was done by using 
the MULTINOR program developed by Thompson 
(1990) on SPSS 8.0 (Appendix A). The MULTINOR 
program generates graphical and non-graphical 
analyses of the distribution of each dependent variable 
separately.  
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Bivariate Normality 
 If the three dependent variables displayed 
univariate normality (bearing in mind that univariate 
normality is a necessary, but insufficient foundation for 
multivariate normality), the next step would be to 
examine the bivariate correlations between each of the 
dependent variables. You can attain univariate 
normality, but fail to demonstrate bivariate normality, 
which examines each pair of variables--PREVGPA 
with FINAL, PREVGPA with TOTAL and FINAL 
with TOTAL.  This was done in this example by using 
the MULTINOR program (Appendix B) by requesting 
scatterplots and noting elliptical patterns for the three 
possible combinations of variables. In Figure 6, the 
scatterplot for each possible pair reveals a clear 
ellipitical pattern between FINAL and TOTAL, but the 
scores in the scatterplots for PREVGPA with FINAL 
and PREVGPA with TOTAL are widely scattered and 
are thus not bivariate normal. When the pattern of the 
scores in a bivariate plot are less clear, researchers can 
examine the percentage of scores that converge around 
the centroid (e.g., 80%, 60%, 40%, 20%, 10%) as a 
guide to deciding whether or not an elliptical pattern is 
displayed. 
 At this stage of the analysis, a prudent researcher 
might stop and consider replacing PREVGPA with 
another dependent variable or go back and transform 
the scores in each of the univariate distributions to 
make them more normal. As noted earlier, Tabachnick 
and Fidell (1996) recommended that researchers start 
by taking the square root of the scores, but the scores 
can also be squared, or the natural log or log-ten 
(LG10) can be used: 

...transformations may improve the analysis, 
and may have the further advantage of 
reducing the impact of outliers. Our 
recommendation, then, is to consider 
transformation of variables in all situations 
unless there is some reason not to. If you 
decide to transform, it is important to check 
that the variable is normally or near-
normally distributed after transformation. 
Often you need to try one transformation 
and then another until you find the 
transformation that produces the skewness 
and kurtosis values nearest zero, the prettiest 
picture, and/or the fewest outliers. (p. 82) 

  After transforming the univariate distributions, the 
bivariate distributions could be examined again to 
determine if the three pairs of variables have become 
bivariate normal due to the univariate transformation of 
scores. For this set of scores, four data transformations  
were conducted: (a) square root of scores (Figure 7), 
(b) squared scores (Figure 8) (c) natural log (Figure 9), 
and (d) log 10 (Figure 10). In none of these 
transformations did the bivariate relationships between 
PREVGPA and TOTAL or PREVGPA and FINAL 
become bivariate normal. Because PREVGPA appear- 

 
 

Figure 6. Bivariate Scatterplots of PREVGPA, 
   TOTAL, and FINAL. 
 

ed to be the problematic DV, a decision was made to 
create a new DV that was comprised of the sum of the 
quiz grades in the course. This new DV was named 
QUIZTOT and a new evaluation of univariate, 
bivariate, and multivariate normality was conducted as 
before. The syntax commands for the new variable are 
shown in Appendix D.  Figure 11 shows that the 
variable QUIZTOT has a bivariate normal relationship 
with both FINAL and TOTAL and is a big 
improvement over the variable PREVGPA. 
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Figure 7. Bivariate Scatterplots of PREVGPA with 
 TOTAL and FINAL (square-root transformation). 
 

Multivariate Normality 
 Assuming that both univariate and bivariate 
normality are attained after transforming the univariate 
scores or replacing a dependent variable (as done in 
this example), the third level of assessment is to 
examine the Mahalanobis distance by chi-square 
scatterplot to assess multivariate normality. As noted 
earlier, the Mahalabonis distance is accepted by 
researchers as the measure of distance between two 
multivariate populations and it is independent of 
sample size (Krzanowski, 1988; Stevens, 1996). If we 
examine the scatterplot of Mahalanobis distance (D2) 
values with chi-squares (Thompson, 1990) for this data 
set in Figure 12 we can see that we have a fairly 
straight line, which suggests multivariate normality. 
The second issue is the presence of outliers.  This 
scatterplot has one extreme score in the upper right 
hand corner that is well off the line with an 
approximate D2 score of 62 and a chi-square score of 
about 12. If we look at the listing of Mahalanobis 
distances which are ranked from lowest to highest in 
Figure 16, we can determine that the outlier is case #61 
and the D2 is more than four times larger than the next  

 
 

Figure 8. Bivariate Scatterplots of PREVGPA with 
    TOTAL and FINAL (squared-score transformation). 
 

 
largest D2 (case #36). Because case #36 in turn is twice 
as large as the next largest D2 (case #45), both case #61 
and #36 can be considered outliers. Again, assuming 
univariate and bivariate normality has been 
demonstrated, because we have multivariate normality 
except for two outliers, we can remove or transform the 
outliers and then look at the univariate and bivariate 
relationships again because removal of the extreme 
scores will change the means for both variable X and 
variable Y, which means that the Mahalanobis distance 
for each variable will change. If after examining the 
raw data for case #36 and #42, we discover that they 
both had very high quiz scores (QUIZTOT) and very 
low scores on the FINAL, we might call these two 
students and ask why they did so poorly on the final 
exam. If we learn that they both had the flu the day of 
the exam, but took the exam anyway, we might delete 
their scores from the data set because their illness 
likely produced "fluky" or abnormal scores (i.e. high 
quiz scores and low final exam scores). Figure 13 
shows the Mahalanobis distance and chi-square values 
for this data set after the outliers are re- 
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Figure 9. Bivariate Scatterplots of PREVGPA with 
 TOTAL and FINAL (natural log transformation). 
 

moved. Note that while the line appears to become less 
straight, in actuality the scale for the Mahalanobis 
distance is being reduced from 70 units to 12 units, 
thus showing more precisely the linear relationships 
between the two variables. 
 An alternative to the stair-step approach of 
examining the univariate, bivariate, and multivariate 
normality of the proposed dependent variables in 
sequence for the multivariate analysis is to plot the 
Mahalanobis distance against the chi-square values 
straight away--if you get a straight line, you can stop 
there because multivariate normality subsumes 
univariate and bivariate normality. However, plotting 
Mahalanobis distance against chi-square is only useful 
with samples greater than 25. If you fail to obtain a 
straight line, you can remove scores when you can 
justify doing so, or transform an individual's scores or a 
set of scores. 

 
 
Figure 10. Bivariate Scatterplots of PREVGPA with 
 TOTAL and FINAL (log-10 transformation). 
 

References 
Box, G.E.P. (1949). A general distribution theory for a 

class of likelihood criteria, Biometrika, 36, 317-346. 
Box, G.E.P. (1954). Some theorems on quadratic forms 

applied in analysis of variance problems: II. Effect 
of inequality of variance and of correlation between 
errors in the two-way classification. Annals of 
Mathematical Statistics, 25, 484-498. 

Bump, W. (1991, January). The normal curve takes 
many forms: A review of skewness and kurtosis. 
Paper presented at the annual meeting of the 
Southwest Educational Research Association, San 
Antonio. (ERIC Document Reproduction Service 
No. ED 342 790) 

Daniel, L.G. (1990, January). Use of structure 
coefficients in multivariate educational research: A 
heuristic example. Annual Meeting of the Southwest 
Educational Research Association, Austin, TX. 
(ERIC Document Reproduction Service No. ED 315 
451) 



Burdenski 

Multiple Linear Regression Viewpoints, 2000, Vol. 26(2) 
 

24

 
 

Figure 11. Bivariate Scatterplots of QUIZTOT with 
      TOTAL and FINAL. 
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Appendix A 
SPSS Commands for Female Group (n=64) 

 

SET BLANKS=SYSMIS UNDEFINED=WARN printback=list. 
TITLE 'MULTINOR.SPS   tests multivar normality graphically****'. 
COMMENT The original MULTINOR computer program was presented, with examples, in: 
COMMENT  Thompson, B. (1990). MULTINOR: A FORTRAN program that assists in 
COMMENT  evaluating multivariate normality. Educational and Psychological Measurement, 50, 845-848. 
COMMENT  The data source for the example are from:  George, D. J., and Mallery, P. (1999). SPSS for 
COMMENT  Windows step by step. Boston: Allyn & Bacon.  
COMMENT  Here there are 3 variables for which multivariate normality is being confirmed. 
DATA LIST 
  FILE='a:normgrad.dat' FIXED RECORDS=1 TABLE 
  /1 gender 1 ethnicit 3 year 5 lowup 7 section 9 prevgpa 11-14  (1) final 16-17 (1)  total 19-21 (1)  . 
list variables=all/cases=9999/format=numbered . 
COMMENT  'y' is a variable automatically created by the program, and does not have to modified for different data sets. 
select if (gender eq 1) . 
compute y=$casenum . 
print formats y(F5) . 
regression variables=y prevgpa to total/ 
  descriptive=mean stddev corr/ 
  dependent=y/enter prevgpa to total/ 
  save=mahal(mahal) . 
sort cases by mahal(a) . 
execute . 
list variables=y prevgpa to total mahal/cases=9999/format=numbered . 
COMMENT  In the next TWO lines, for a given data put the actual n in place of the number '64' used for the example data set. 
loop #i=1 to 64 . 
compute p=($casenum - .5) / 64.  
COMMENT  In the next line, change '3' to whatever is the number of variables. The p critical value of  
COMMENT chi square for a given case is set as [the case number (after sorting) - .5] / the sample size]. 
if (gender eq 1) chisq=idf.chisq(p,3) . 
end loop . 
print formats p chisq (F8.5) . 
list variables=y p mahal chisq/cases=9999/format=numbered . 
plot 
  vertical='chi square'/ 
  horizontal='Mahalanobis distance'/ 
  plot=chisq with mahal . 
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 Appendix B 
SPSS Commands for Male Group 

 
SET BLANKS=SYSMIS UNDEFINED=WARN printback=list. 
TITLE 'MULTINOR.SPS   tests multivar normality graphically****'. 
COMMENT *******************************************************. 
COMMENT The original MULTINOR computer program was presented, with examples, in: 
COMMENT     Thompson, B. (1990). MULTINOR: A FORTRAN program that assists 
COMMENT      in evaluating multivariate normality. Educational and Psychological Measurement, 50, 845-848. 
COMMENT     The data source for the example are from: 
COMMENT     George, D. J., and Mallery, P. (1999). SPSS for Windows step by step. Boston: Allyn & Bacon.  
COMMENT  Here there are 3 variables for which multivariate normality is being confirmed. 
DATA LIST 
  FILE='a:normgrad.dat' FIXED RECORDS=1 TABLE 

  /1 gender 1 ethnicit 3 year 5 lowup 7 section 9 prevgpa 11-14  (1)    final 16-17 (1)  
  total 19-21 (1)  . 
list variables=all/cases=9999/format=numbered . 
COMMENT  'y' is a variable automatically created by the program, 
COMMENT  and does not have to modified for different data sets. 
select if (gender eq 2) . 
compute y=$casenum . 
print formats y(F5) . 
regression variables=y prevgpa to total/ 
  descriptive=mean stddev corr/ 
  dependent=y/enter prevgpa to total/ 
  save=mahal(mahal) . 
sort cases by mahal(a) . 
execute . 
list variables=y prevgpa to total mahal/cases=9999/format=numbered . 
COMMENT  In the next TWO lines, for a given data set put the 
COMMENT  actual n in place of the number '41' used for the 
COMMENT  example data set. 
loop #i=1 to 41 . 
compute p=($casenum - .5) / 41.  
COMMENT  In the next line, change '3' to whatever is the number 
COMMENT  of variables. 
COMMENT       The p critical value of chi square for a given case 
COMMENT  is set as [the case number (after sorting) - .5] / the 
COMMENT  sample size]. 
if (gender eq 2) chisq=idf.chisq(p,3) . 
end loop . 
print formats p chisq (F8.5) . 
list variables=y p mahal chisq/cases=9999/format=numbered . 
plot 
  vertical='chi square'/ 
  horizontal='Mahalanobis distance'/ 
  plot=chisq with mahal . 
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Appendix C 

SPSS Syntax for Evaluating Univariate and Bivariate Normality 
 
PPLOT 
  /VARIABLES=prevgpa 
  /NOLOG 
  /NOSTANDARDIZE 
  /TYPE=Q-Q 
  /TIES=MEAN 
  /DIST=NORMAL . 
GRAPH 
  /HISTOGRAM=prevgpa . 
EXAMINE 
  VARIABLES=prevgpa final total 
  /PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT 
  /COMPARE GROUP 
  /STATISTICS DESCRIPTIVES 
  /CINTERVAL 95 
  /MISSING LISTWISE 
  /NOTOTAL . 
GRAPH 
  /SCATTERPLOT (BIVAR)=prevgpa WITH total 
  /MISSING=LISTWISE . 
PLOT 
  /VERTICAL='prevgpa' REFERENCE (6,4) 
  /HORIZONTAL='total' REFERENCE (6,7) 
  /PLOT=prevgpa WITH total . 
GRAPH 
  /SCATTERPLOT (BIVAR)=prevgpa with final 
  /MISSING=LISTWISE . 
PLOT 
  /VERTICAL='prevgpa' REFERENCE (6,4) 
  /HORIZONTAL='final' REFERENCE (6,9) 
  /PLOT=prevgpa WITH final . 
GRAPH 
  /SCATTERPLOT (BIVAR)=final with total 
  /MISSING=LISTWISE . 
PLOT 
  /VERTICAL='final' REFERENCE (6,9) 
  /HORIZONTAL='total' REFERENCE (6,7) 
  /PLOT=final WITH total . 

COMMENT  is set as [the case number (after sorting) - .5] / the 
COMMENT  sample size]. 
compute p=($casenum - .5)/62 .  
compute chisq=idf.chisq(p,3) . 
end loop . 
print formats p chisq (F8.5) . 
list variables=y p mahal chisq/cases=9999/format=numbered . 
plot 
  vertical='chi square'/ 
  horizontal='Mahalanobis distance'/ 
  plot=chisq with mahal . 
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Appendix D 
SPSS Commands for New Dependent Variable 

 
SET BLANKS=SYSMIS UNDEFINED=WARN printback=list. 
TITLE 'MULTINOR.SPS   tests multivar normality graphically****'. 
COMMENT *******************************************************. 
COMMENT   The original MULTINOR computer program was presented, 
COMMENT   with examples, in: Thompson, B. (1990). MULTINOR: A FORTRAN program that assists 
COMMENT    in evaluating multivariate normality. Educational and Psychological Measurement, 50, 845-848. 
COMMENT     The data source for the example are from: 
COMMENT     George, D. J., and Mallery, P. (1999). SPSS for Windows step by step. Boston: Allyn & Bacon.  
COMMENT ***********************************************************. 
COMMENT  Here there are 3 variables for which multivariate normality is being confirmed. 
DATA LIST 
  FILE='a:norgrades.txt' FIXED RECORDS=1 TABLE 
  /1 quiztot 1-2 (1) final 4-5 (1) total 7-9 (1) . 
list variables=all/cases=9999/format=numbered . 
COMMENT  'y' is a variable automatically created by the program, 
COMMENT  and does not have to modified for different data sets . 
compute y=$casenum . 
execute . 
print formats y(F5) . 
regression variables=y quiztot to total/ 
  descriptive=mean stddev corr/ 
  dependent=y/enter quiztot to total/ 
  save=mahal (mahal) . 
sort cases by mahal(a) . 
execute . 
list variables=y quiztot to total mahal/cases=9999/format=numbered . 
COMMENT  In the next TWO lines, for a given data set put the 
COMMENT  actual n in place of the number '62' used for the 
COMMENT  example data set. 
loop #i=1 to 62 . 
COMMENT  In the next line, change '3' to whatever is the number of variables. 
COMMENT       The p critical value of chi square for a given case  




