The equations shown below assume a 2×2 as follows:

	$B=$	$B=1$	Total
$A=0$	a	b	m
$A=1$	c	d	n
Total	r	s	N

The SPSS CROSSTABS procedure computes a chi-square test that it labels Linear-by-Linear Association. The SPSS algorithms page for CROSSTABS describes it as the Mantel-Haenszel Test of Linear Association, and gives the formula shown in Equation 1, where $r=$ Pearson's correlation. ${ }^{1}$

$$
\begin{equation*}
\chi_{M H}^{2}=(N-1) r^{2} \tag{1}
\end{equation*}
$$

For a 2×2 table, Pearson's chi-square can be computed using the formula shown in Equation 2.

$$
\begin{equation*}
\text { Pearson } \chi^{2}=\frac{N(a d-b c)^{2}}{m n r s} \tag{2}
\end{equation*}
$$

The $N-1$ chi-square is computed using that same formula, but with ($N-1$) in place of N in the numerator-see Equation 3.

$$
\begin{equation*}
(N-1) \text { chi-square }=\frac{(N-1)(a d-b c)^{2}}{m n r s} \tag{3}
\end{equation*}
$$

When Pearson's correlation is computed for two dichotomous variables, such as one has for a 2×2 table, it is often described as the Phi coefficient $\left(r_{\phi}\right)$. Before desktop computers and statistical software packages were readily available, r_{ϕ} and r_{ϕ}^{2} were typically computed using the shortcuts shown in Equations 4 and 5.

$$
\begin{gather*}
r_{\phi}=\frac{a d-b c}{\sqrt{m n r s}} \tag{4}\\
r_{\phi}^{2}=\frac{(a d-b c)^{2}}{m n r s} \tag{5}
\end{gather*}
$$

Finally, multiplying the right side of Equation 5 by ($N-1$) yields Equation 3, which is the most common formula for the $\mathrm{N}-1$ chi-square.

[^0]Putting it all together in a single equation, we get the following:

$$
\begin{equation*}
\chi_{M H}^{2}=(N-1) r^{2}=\frac{(N-1)(a d-b c)^{2}}{m n r s}=\text { the } N-1 \text { chi-square } \tag{6}
\end{equation*}
$$

Thus, for 2×2 tables, the Linear-by-Linear Association test computed by the SPSS CROSSTABS procedure is equivalent to the $N-1$ chi-square.

Acknowledgements

I thank Sacha Dubois for raising the question of whether the Linear-by-Linear Association chi-square was equivalent to the $N-1$ chi-square after noticing that they were the same for some data he was analyzing. His question prompted me to examine the formulae for the two measures. I also thank Ray Koopman for checking my work.

[^0]: ${ }^{1}$ It actually uses W in place of N, but the W stands for the total number of observations in the contingency table.

