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1.  INTRODUCTION 

One of the commonest problems in statistics is the analysis of a 2 × 2 contingency table, 

i.e. a table of the form of Table I(a).  The results of observational and interventional 

studies are often summarised in this way, with one binary variable represented by the 

two rows and the other by the two columns.  For example, Yates [1] discussed the data 

on malocclusion of teeth in infants shown in Table I(b).   

 Barnard [2] was the first to observe that such 2 × 2 tables can arise through at 

least three distinct research designs.  In one, usually termed a comparative trial, there are 

two populations (denoted here by A and not-A), and we take a sample of size m from the 

first population, and a sample of size n from the second population.  We observe the 

numbers of B and not-B in the two samples, and the research question is whether the 

proportions of B in the two populations are the same (the common proportion being 

denoted here by π).  In the second research design, termed cross-sectional or naturalistic 

[3], or the double dichotomy [2], a single sample of total size N is drawn from one 

population, and each member of the sample is classified according to two binary 

variables, A and B. Like comparative trials, the results can be displayed in the form of 

Table I(a), but the row totals, m and n are not determined by the investigator.  The 

research question is whether there is an association between the two binary variables.  

The proportions in the population of A and B will be denoted here by π1 and π2

respectively.  

 In the third research design, sometimes termed the 2 × 2 independence trial [2, 

4], both sets of marginal totals are fixed by the investigator.  Here there is no dispute that 

the Fisher-Irwin test (or Yates’s approximation to it) should be used.  This last research 

design is rarely used and will not be discussed in detail.   

 Statistical tests of 2 × 2 tables from comparative trials and cross-sectional studies 
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have been under discussion for a hundred years and dozens of research papers have been 

devoted to them.  However, there is still a lack of consensus on the optimum method - 

most texts recommend the use of the chi squared test for large sample sizes and the 

Fisher-Irwin test for small sample sizes, but there is disagreement on the boundary 

between ‘large’ and ‘small’ sample sizes, and also on which versions of the chi squared 

and Fisher-Irwin tests should be used.  An informal survey of fourteen medical and 

general statistics textbooks in print at the time of writing found only two agreeing in 

their recommendations.  This makes life difficult for experienced statisticians.  But most 

statistical calculations are carried out by non-statisticians, and for them the current lack 

of a consensus is confusing.  

 

1.1.  Versions of the chi squared test 

In the original version of the chi squared test, due to K. Pearson [5] and Fisher [6], the 

value of the expression (ad - bc)2N / mnrs (nomenclature as Table 1a) is compared with 

the chi squared distribution with one degree of freedom.  Yates [1] recommended an 

adjustment to the original formula such that (ad - bc) is replaced by (|ad - bc| - ½N).  His 

basis was that the P value from the chi squared test then closely matches that from the 

Fisher-Irwin test.  He termed the adjustment a ‘continuity correction’, but his theoretical 

justification for it is disputed (see Discussion), and so it will be termed here an 

‘adjustment’ instead.  Fleiss [3] recommends that Yates’s adjustment is always used, 

whereas Armitage et al. [7] recommends that it is never used - a change from previous 

editions of the same textbook.  

 E. Pearson [8] recommended a third version of the chi squared test, where the 

expression (ad - bc)2(N - 1) / mnrs is compared with the chi squared distribution with 

one degree of freedom, i.e. differing from the original by the factor (N - 1) / N. The 
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theoretical advantages have been discussed by K. Pearson [8], Barnard [9], Schouten et 

al. [10] and Richardson [11, 12].  A crucial point in its derivation is that, while an 

unbiased estimate of π is r / N, an unbiased estimate of π(1 - π) is not (r / N)(1 - r / N) (as 

has appeared in some books and research papers), but is instead (r / N)(1 - r / N) N / (N -

1) [13].  The difference from the original version is small for large sample sizes, but 

becomes crucial in analyses with small sample sizes, which is the subject of this paper.  

 Criteria for when the chi squared tests become invalid at small sample sizes are 

generally based on the smallest expected cell number under the null hypothesis, which is 

equal to (the smaller of m and n) times (the smaller of r and s) / N. Most 

recommendations are that a chi squared test should not be used if the smallest expected 

number is less than 5.  This rule is often attributed to Cochran [14, 15], but Yates [1] 

referred to it as customary practice, and Cochran [16] gave Fisher as the source.  

Cochran [14] noted that the number 5 appeared to have been arbitrarily chosen, and that 

the recommendations ‘may require modification when new evidence becomes available.’  

A second recommendation by Cochran [14, 15] that the chi squared test should not be 

used where N < 20 is in fact redundant, as the smallest expected number will always be 

less than 5 whenever N < 20.

1.2.  Versions of the Fisher-Irwin test 

This test appears in the literature under various names including ‘Fisher’s exact test’.  

Because the test was developed independently by Fisher [1, 17] and Irwin [18], and 

because it is controversial whether the P values obtained are‘exact’ in all 2 × 2 tables, 

the test will be referred to here as the ‘Fisher-Irwin test’.  The procedure adopted in a 

one-sided test, as originally described by Fisher and Irwin, is to add the probabilities of 

the observed table and all tables with the same row and column totals that give a more 
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extreme difference than the table observed (calculated on the assumption that the 

marginal totals in the table are fixed).  Fisher did not publish a procedure for a two-sided 

test, but in a private letter, favoured doubling the one-sided P value [19].  Irwin [18] 

described a different two-sided method: calculating the total probability of tables in 

either tail that are as likely as, or less likely than the one observed.  This will always give 

a P value less than or equal to that of the first method.  In this paper, this method will be 

referred to as ‘Irwin’s rule’,  following Cormack and Mantel [20].  More recently, a 

further version, the mid-P probability has gained some support [7, 22 - 25].  For a one-

sided mid-P test, only half the probability of the observed table is included in the sum.  

This is based on the observation that the expectation of a one-sided P value under a null 

hypothesis is 0.5 for a continuous distribution (and a perfect test), but is greater than 0.5 

when the distribution is discrete (as in the Fisher-Irwin test).  However, if only half the 

probability of the observed data is included in the cumulative sum, the expectation for a 

one-sided test is then 0.5 [26].  Even though this theoretical justification does not hold 

for a two-sided test, the mid-P version of the Fisher-Irwin test can still be used as a two-

sided test by doubling the one-sided mid-P value and this is the method recommended 

by Armitage et al. [7].  An alternative mid-P two-sided method is to take half the 

probability of the observed table plus the probabilities of tables in either tail that are less 

than that of the observed table [25].  This will be referred to here as the mid-P test by 

Irwin’s rule.  

 

1.3.  Comparison of methods 

As well as the above tests, other versions of the chi squared and Fisher-Irwin tests have 

been proposed, and there are also many alternative tests [4, 19, 21, 27].  Two-by-two 

tables can also be analysed via a comparison of two proportions together with a 
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confidence interval for the difference in proportions, but this is outside the scope of this 

paper.   

 The different tests will give similar P values for large sample sizes, but can give 

markedly different P values with even moderate sample sizes.  A choice can be made 

between the competing tests by comparing, under the null hypothesis, the actual Type I 

error with the specified significance level α (also referred to as the nominal value).  For 

an ideal test, under any null hypothesis, the actual Type I error (i.e. the total probability 

of sample tables significant by the test) at a specified significance level α will in fact be 

equal to α. A test that gives a Type I error appreciably lower than α is sub-optimal 

because of a loss of power in detecting alternatives to the null hypothesis.  Such a test is 

often said to be conservative. A test that has a Type I error appreciably higher than α

will be misleading in that it exaggerates the rarity of a table, and consequently is 

misleading as to the strength of evidence against the null hypothesis.  Cochran [16] 

suggested that a 20% error be permitted in the actual Type I error, e.g. an error up to 1% 

at the 5% level, and up to 0.2% at the 1% level.  Cochran noted that the criterion is 

arbitrary, but other authors, e.g. Upton [4], have generally followed this or a similar 

criterion.  

 Many published studies have evaluated a variety of statistical tests in this way, 

and the findings can be summarised as follows.  For comparative trials:

1.  Yates’s chi squared test has Type I error rates less than the nominal, often less than 

half the nominal [4, 8, 11,  25, 28 - 33]; 

2.  The Fisher-Irwin test has Type I error rates less than the nominal [4, 25, 28, 29, 32, 

34]; 

3.  K. Pearson’s (‘N’) version of the chi squared test has Type I error rates closer to the  

nominal than Yates’s chi squared test and the Fisher-Irwin test [4, 28 - 30, 32, 33, 35, 
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36], but in some situations gives Type I errors appreciably larger than the nominal value; 

4.  The ‘N - 1’ chi squared test, behaves like K. Pearson’s  ‘N ’ version, but the tendency 

for higher than nominal values is reduced [4, 8, 10, 25, 34, 37, 38]; 

5.  The two-sided Fisher-Irwin test using Irwin’s rule is less conservative than the 

method doubling the one-sided probability [25];  

6.  The mid-P Fisher-Irwin test by doubling the one-sided probability performs better 

than standard versions of the Fisher-Irwin test, and the mid-P method by Irwin’s rule 

performs better still in having actual Type I errors closer to nominal levels [25, 39].   

For cross-sectional studies, fewer investigations have been carried out, but the limited 

findings are similar to those for comparative trials [11, 30, 33, 35, 40].  

 Despite all these studies, no consensus on the optimum test has emerged.  The 

main reason for this is the number of calculations needed for a comprehensive approach 

to the problem.  For example, to compare the performance of statistical tests in analysing 

a cross-sectional study with sample size of 40, we need to consider the 12341 different 

sample tables, and calculate the probability of each table together with the P value for 

each table by each test.  The number of calculations means that detailed study has not 

previously been possible - and previous investigations have studied just a subset of the 

possible combinations of sample size and population proportions.  A major difficulty is 

that normally a null hypothesis is specified only in general terms; for example, in a 

comparative trial, the null hypothesis is specified as no difference between the two 

groups in the population proportions, without specifying the value of the common 

proportion, π. But the probability of a table in a comparative trial is given by [2, 8] 

 π r(1 - π)s m! n! / (a! b! c! d!) (1) 

and it clearly depends on π. In assessing the performance of a statistical test, we 

therefore need to consider how it performs over the full range of values of π, and there 
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should be no region where the Type I error is so high as to render the test invalid.  So for 

a comparative trial we need to consider the maximum Type I error over all values of π,

and for a cross-sectional study, we need to find the maximum Type I error over the two 

population parameters π1 and π2. Previous studies of the K. Pearson chi squared test in 

analysing comparative trials have found the maximum Type I error  to occur when m and 

n are very unequal, for values of π far away from 0.5; in these circumstances Type I 

errors may be more than twice the nominal.   

 Hence there is a need for comprehensive information on the performance of 

statistical tests in analysing comparative trials and cross-sectional studies, particularly 

when the tests are subject to restrictions such as Cochran’s recommendations.  These 

recommendations, which Cochran himself noted were arbitrary and provisional, date 

back over 50 years and have never been tested.  This study addresses that need using the 

recent advances in computing power.  The tests considered are the commonly 

recommended versions of the chi squared and Fisher-Irwin tests and their close variants.  

Only two-sided tests are considered in detail because in practice there is rarely 

justification for a one-sided test; conclusions for one-sided tests will be broadly similar.   

 

1.4.  Power and ordering of the sample space 

As Storer and Kim [41] pointed out, the finding of one test being conservative compared 

to another would be of little interest unless it translates into a difference in power.  

Calculations [28, 41] and Monte Carlo simulations [11] in a limited number of situations 

have shown that both the Fisher-Irwin test and Yates’s chi squared test are less powerful 

than K. Pearson’s chi squared test.  However, these kinds of investigations of particular 

situations are limited by the large number of different null and alternative hypotheses 

possible.  But there is a general principle [4] that if the rejection region for one test (the 
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set of significant sample tables) is a subset of that for a second test, then the power of the 

second test will be greater than that of the first for all alternative hypotheses.  This can 

enormously simplify the question of which test is the more powerful to detect real 

differences; if it so happens that all sample tables that are significant by one test are also 

significant by a second test, and there are also further sample tables significant by the 

second test, then the power of the second test will be greater than that of the first for all 

null and alternative hypotheses, i.e. whatever population proportions are specified, and 

there is no need to consider which of these are the most likely to occur in practice.  This 

study includes a systematic comparison of the sets of sample tables significant by the 

tests under scrutiny, which seems not to have been previously performed.   

 

2.  METHODS 

 

The study focussed on seven two-sided tests: three versions of the chi squared test and 

four versions of the Fisher-Irwin test.  The tests were: 

1.  K. Pearson’s chi squared test, comparing (ad - bc)2N / mnrs with the chi squared 

distribution with one degree of freedom;  

2.  Yates’s chi squared test, comparing (|ad - bc| - ½N)2N / mnrs with the chi squared 

distribution [1].  The adjustment by ½N was not taken beyond zero, as is standard.   

3.  The ‘N - 1’ chi squared test, comparing (ad - bc)2(N - 1) / mnrs with the chi squared 

distribution with one degree of freedom.  

4.  The Fisher-Irwin test, by doubling the one-sided P value.  In obtaining the one-sided 

value, Fisher [17] described adding the probabilities of tables with the same marginal 

totals that have ‘a discrepancy from proportionality as great or greater than that 

observed’.  Many textbooks give the procedure as progressively decrementing the 
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smallest cell of the table, but this can give misleading P values, for example from the 

table: a = 2, b = 3, c = 4, d = 21; and a better approach, which was adopted here, is to 

take the tail of the distribution of possible tables with the smaller total probability [19, 

42].  If both directions give totals greater than 0.5, the table can be regarded as a central 

table, not belonging to either tail, with a two-sided probability of 1 [19].  

5.  The Fisher-Irwin test, taking tables from either tail as likely, or less, as that observed 

(Irwin’s rule);  

6.  The mid-P Fisher-Irwin test, by doubling the one-sided mid-P level;  

7.  The mid-P Fisher-Irwin test, using Irwin’s rule.   

 

2.1.  Calculation of maximum Type I errors in a comparative trial over all values of π

In outline, the method involved dividing the range of possible values of π into a number 

of intervals, and calculating the Type I error at the boundaries of the intervals together 

with upper bounds to the Type I error over each interval.  By making the intervals 

sufficiently narrow the upper bounds could be made close to the actual values within any 

specified accuracy δ.

The Type I error at any value of π is just the sum of the probabilities of those 

sample tables that are significant at the chosen α. These individual probabilities are 

given by expression (1), and so the sum of them is a sum of polynomials in π and is 

therefore a smooth but possibly multimodal function of π. The maximum value of this 

sum of polynomials cannot be determined analytically, but can be obtained by the 

following numerical method to an accuracy of δ. Except for tables with zero marginal 

totals (see below), the probability (1) of any particular table increases from a value of 

zero, at π = 0, to a maximum at π = r/N, and then decreases again to zero at π = 1.  We 

first consider an interval in π from πL to πU. Over this interval, the maximum value of 
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the probability (1) of a particular table will be at πL if r/N ≤ πL, at πU if r/N ≥ πU , and 

otherwise will be at r/N. By summing these maximum values of the probabilities of all 

the significant tables, we can obtain an upper bound to the Type I error over the interval.  

This upper bound will in general be larger than the actual maximum because the 

maximum probabilities for the significant tables will generally occur at different values 

of π. However, the narrower the interval, the smaller will be the difference between the 

upper bound and the actual maximum, and by making the interval sufficiently narrow, 

the difference (and therefore the inaccuracy in the estimate) can be made small.  By 

repeating this process for the whole range of values of π divided into contiguous 

intervals, and taking the overall maximum, we can obtain a maximum value of the Type 

I error to an accuracy δ. Values of π can lie between 0 and 1, but for a two-sided test, 

there is symmetry around 0.5 and only the range 0 to 0.5 need be considered.  This 

method has some similarities to that of Suissa and Shuster [43], although developed 

independently.   

 The method used in practice was an iterative technique.  The range of 0 to 0.5 in 

π was divided into ten intervals, and the upper bound of the Type I error was calculated 

for each interval, together with the actual Type I error at the boundaries of the intervals.  

Any interval where the upper bound was smaller than the overall maximum plus δ was 

discarded from further study.  Subsequent iterations divided the range in π formed by the 

residual intervals into smaller intervals, and the process continued until all interval upper 

bounds were less than the overall maximum plus δ. This overall maximum then gave the 

maximum Type I error to an accuracy of δ. Further details and the program itself are 

freely available online [44].  

 

2.2.  Calculation of maximum Type I errors in a cross-sectional study 
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For a cross-sectional study, the maximum Type I error must be found over every 

possible pair of values of π1 and π2. The method used was an extension of the method 

for comparative trials described above, where instead of one-dimensional intervals in π,

the method studied two-dimensional areas of the combined space of π1 and π2 [44].   

 For both research designs, tables where one of the marginal totals was zero 

(where no statistical test would be applicable) were treated as non-significant, on the 

basis that if a scientist finds, for example, no cases at all of a particular side-effect in a 

comparison of two treatments, this is clear evidence against there being a large 

difference in the rates of that side-effect between the two groups; it is not just an 

inconclusive result.  This treatment of invalid tables as non-significant is in line with 

previous studies [4, 35].   

 

2.3.  Power and sets of significant sample tables 

Tests were compared in pairs in the analysis of cross-sectional studies of size equal to all 

values from 4 to 80, to determine the number of significant sample tables and whether 

the set of significant sample tables at P < 5% for one test is a subset of that for the other.  

 

3.  RESULTS 

 

3.1.  Comparative trials 

Figure 1 gives the maximum Type I error across all values of π and all possible m, n

pairs at an α of 0.05 for the seven two-sided tests, as a function of N. The findings 

replicate those of previous studies, with rates considerably higher than the nominal for 

the K. Pearson and the ‘N - 1’ chi squared tests. The mid-P Fisher-Irwin test by Irwin’s 

rule also has rates that are too high, but to a lesser extent.  Of the remaining four tests 
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studied, the mid-P Fisher-Irwin test by doubling the one-sided value performs closest to 

the nominal, with a good match at N over 30.  As in previous studies, Yates’s chi 

squared and the standard Fisher-Irwin tests have rates much lower than the nominal.  

Several of the lines show a sawtooth effect, especially those for the K. Pearson and ‘N -

1’ chi squared tests.  This is due to firstly the small number of sample tables that form 

the bulk of the Type I error under the conditions that make it a maximum, and secondly 

the arbitrary nature of the 5% cutoff for α. Further details are given online [44].   

 

3.1.1.  Policies based on a minimum expected number 

This section and the following section show the effect on maximum Type I errors of 

limiting tests according to expected cell numbers.  In these two sections, tables that do 

not meet the criteria are counted with the non-significant tables.  Section 3.4 describes 

the effect on the Type I error of analysing these excluded tables by the Fisher-Irwin test.  

Figure 2 (upper) compares Type I errors for four policies relating to K. Pearson’s chi 

squared test.  The top line shows no restriction and so repeats the corresponding line in 

Figure 1.  The bottom line shows the effect of restricting use of the test to tables where 

all expected numbers are at least 5, i.e. to Cochran’s recommendations.  This is effective 

in abolishing the excessively high rate of Type I errors, so that the maximum rate lies 

between 0.05 and 0.06 for most values of N greater than 25.   The middle two lines 

(showing restriction to tables with expected numbers of at least 1 and at least 3, 

respectively) show that there is limited scope for relaxing the limit of 5, since the 

maximum Type I error has peaks above 0.07, which would seem unacceptable.   

 Figure 2 (lower) repeats this analysis for the ‘N - 1’ chi squared test.  The 

maximum Type I error is generally slightly lower than that for K. Pearson’s chi squared 

test, and even with a restriction of a minimum expected number of 1, the peak rates are 
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generally in the range of 0.04 to 0.06, even with very small values of N.

A similar analysis for the mid-P Fisher-Irwin test by Irwin’s rule (chart not 

shown) found that no restriction according to minimum expected numbers could remove 

the peak Type I error rates well above 0.05.  These findings at an α of 0.05 also apply at 

an α of 0.02, 0.01 and 0.1.  In particular: (1) maximum Type I error rates are generally 

no more than 20% above the nominal (but in a few cases can be up to 40% above the 

nominal) for K. Pearson’s chi squared test when restricted to tables with expected 

numbers of at least 5; (2) the same applies to the ‘N - 1’ chi squared test when restricted 

to tables with expected numbers of at least 1; and (3) the latter test has an acceptable 

match to the nominal significance level for lower values of N than the former.  This can 

be confirmed by downloading and running the software used [44].  It is concluded that, 

in the case of comparative trials, the ‘N - 1’ chi squared test used at a minimum expected 

number of 1 is preferable to the K. Pearson chi squared test used with a minimum 

expected number of 5, in having Type I errors that are a good match to the nominal over 

a wider range of values of N.

3.2.  Cross-sectional studies 

In general, the findings for cross-sectional studies were a repeat of those for comparative 

trials.  This is not surprising since the frequency of any sample table in a cross-sectional 

study is the weighted mean of the frequencies of that table under all the possible m, n

pairs that might occur with the total sample size N, with the weightings being governed 

by the value of π for the binary row variable.  Three tests (the same three as in 

comparative trials) had maximum Type I error rates that can be considerably above the 

nominal 0.05 (Figure 3), while four tests (the same four as in comparative trials) had 

Type I error rates considerably below the nominal until N = 30, or more.   
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The effect of policies of limiting the tests to sample tables with particular 

minimum expected numbers was similar to that for comparative trials: K. Pearson’s chi 

squared test restricted to a minimum expected number of 5 and the ‘N - 1’ chi squared 

test restricted to a minimum expected number of 1 both give a good match to the 

nominal Type I error when α is 0.01, 0.02, 0.05 and 0.1, but the latter test gives a good 

match to the nominal down to a smaller value of N. The mid-P Fisher-Irwin test by 

Irwin’s rule did not give a good match to the nominal under any limitation of the 

minimum expected number.  The results for the K. Pearson and the ‘N - 1’ chi squared 

test at an  α of 0.05 are given in Figure 4.   

 This good performance of the ‘N - 1’ chi squared test, when restricted to tables 

with expected numbers of at least 1 is not limited to the maximum Type I error.  For 

example, in cross-sectional studies when α is 0.05, the Type I error is generally at least 

0.04 for ‘central’ pairs of values of π1 and π2 (e.g. π1 > 0.3 and π2 > 0.3) for N of 14 or

more.   

 

3.3.  The power of the tests  

Of the seven tests whose Type I errors were studied (above), six were compared in terms 

of the number of different sample tables in a cross-sectional study that are significant at 

5%.  The mid-P Fisher-Irwin test by Irwin’s rule was excluded because of the high Type 

I error rates that cannot be prevented by restriction to sample tables with a minimum 

expected number.  

 For each value of N investigated (all values from 4 to 80), the number of 

significant sample tables was highest for the K. Pearson chi squared test, followed by (in 

order) the ‘N - 1’ chi squared test, the Mid-P Fisher-Irwin test by doubling the one-sided 

value, the Fisher-Irwin test by Irwin’s rule, and finally Yates's chi squared test and the 
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Fisher-Irwin test by doubling the one-sided value had approximately equal numbers.  

Furthermore, for all N up to 43, the sets of tables significant by these last four tests were 

each a subset of the set of tables significant by the ‘N - 1’ chi squared test (which was a 

subset of the set of tables significant by the K. Pearson chi squared test).  From this, it 

can be concluded that the higher Type I errors of the K. Pearson and ‘N - 1’ chi squared 

tests in cross-sectional studies  do translate into higher power for all alternative 

hypotheses for all N up to 43.  Since the sample tables that occur in a comparative trial 

are a subset of those that occur in a cross-sectional study, this result also applies to 

comparative trials.   

 

3.4.  Summary of results and consideration of test policies 

The results presented here give strong support to the use of the ‘N - 1’ chi squared test, 

provided it is restricted to tables where all expected numbers are at least 1.  In those 

relatively few cases where the smallest expected number is less than 1, it seems 

reasonable to perform an analysis by the Fisher-Irwin test by Irwin’s rule, as this has the 

advantages of being well known, and of having Type I errors close to the nominal.  

Further calculations in this study found that such a test policy results in small increases 

in the maximum Type I error rates for both comparative trials and cross-sectional 

studies, but not to an unacceptable level.   

 An alternative approach to 2 × 2 tables is to test the value of Z from the ratio of 

the difference in two proportions to the standard error of the difference (which is exactly 

equivalent to the chi squared test).  To adjust this technique in line with the ‘N - 1' chi 

squared test, the current standard formula for Z [7] can be modified by the factor {(N -

1)/N}½ prior to the comparison with the N(0,1) distribution.   
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4.  DISCUSSION 

 

The results of this study have confirmed and extended the findings of previous studies of 

the advantages of the ‘N - 1’ chi squared test over the alternatives studied.  But 

calculation of Type I error is not the only consideration in the choice of test - some 

theoretical arguments have been central to the controversies concerning the analysis of 2 

× 2 tables that have continued over many decades.  The more important theoretical 

arguments are summarised here; more detailed material is available online [44].   

 

4.1.  Whether the row and column totals carry useful information 

The Fisher-Irwin test and the ‘N - 1’ chi squared test can give very different P values for 

the same set of data, even when the total sample size is quite large e.g. 50.  Why should 

this be, if both are based on valid statistical principles?  In fact it can be argued that there 

is a flaw in the basis of the Fisher-Irwin test, as follows.  When putting forward the 

Fisher-Irwin test, Fisher [17] argued as if the marginal totals (the row and column totals) 

in a 2 × 2 table carry no useful information:  

‘Let us blot out the contents of the table, leaving only the marginal frequencies.  

If it be admitted that these marginal frequencies by themselves supply no 

information on the point at issue, namely, as to the proportionality of the 

frequencies in the body of the table, we may recognize the information they 

supply as wholly ancillary; and therefore recognize that we are concerned only 

with the relative probabilities of occurrence of the different ways in which the 

table can be filled in, subject to these marginal frequencies’.  

This point is crucial to the theory of the Fisher-Irwin test and one might expect Fisher to 

discuss whether or not it is correct.  But Fisher says nothing at all on this question, but 
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proceeds as if it has been proved.  However, it can be shown that the marginal totals do

carry information on the elements of the table.  For example, Berkson [45] pointed out 

that in the case of a comparative trial with m = n = 5 (N = 10), information on the 

observed proportions is contained within the column totals.  For example, when r = 0

(and s = 10), the cells of the table, denoted by (a, b, c, d) must be (0, 5, 0, 5), so there is 

no difference between the two groups in the sample proportion with value A; and when r

= 1, the cells of the table must be either (1, 4, 0, 5) or (0, 5, 1, 4), and the difference 

between the sample proportions must be +20% or -20%; when r = 2, the cells must be (2, 

3, 0, 5) or (1, 4, 1, 4) or (0, 5, 2, 3), and the difference between the sample proportions is 

+40%, 0%, or -40%; and so on.  So once we know the column totals, we do have some 

information on the sample proportions, which is presumably what Fisher meant by ‘the 

proportionality of the frequencies in the body of the table’.   

 

4.2.  Whether Yates’s continuity adjustment should be applied 

The question of a continuity correction to a chi squared test arises because we are trying 

to determine the probability of discrete values of the test statistic by reference to a 

continuous distribution.  Generally when this situation arises, and we have, for example, 

three successive discrete values of a test statistic at x1, x2 and x3, then the probability of 

the outcome x2 is best approximated by the probability of the continuous distribution 

over the interval {½(x1 + x2), ½(x2 + x3)}, and in determining a P value, the cumulative 

probability of outcomes up to and including x2 is best approximated at the point ½(x2 +

x3) of the continuous distribution (see e.g. Plackett, [46]).   

 Following Yates’s proposal of his continuity adjustment [1], subsequent authors 

(e.g. [11, 12, 46]) have confirmed that when both pairs of marginal totals are fixed 

(which rarely occurs in practice), successive possible values of the cross product (ad -
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bc) differ by N and so Yates’s adjustment for continuity of N/2 is appropriate.  However, 

in comparative trials and cross-sectional studies, one or both sets of marginal totals are 

free to vary and successive possible values of (ad - bc) differ by considerably less than 

N. So Yates’s continuity adjustment of N/2 is in fact a large overcorrection, and is 

inappropriate.  

 

4.3  Should randomised trials be analysed differently to other comparative trials 

Several authors [e.g. 8, 19] have advocated that randomised trials are analysed on the 

basis of the hypergeometric distribution and the Fisher-Irwin test, but there are counter-

arguments to this, and the present author believes that no distinction should be made.  

This point is debated in the additional material online [44].   

 

5.  CONCLUSIONS AND RECOMMENDATIONS 

 

In 1979, Kempthorne [47] wrote about the analysis of 2 × 2 tables: ‘The importance of 

the topic cannot be stressed too heavily ... 2 × 2 contingency tables are the most 

elemental structures leading to ideas of association. ... The comparison of two binomial 

parameters runs through all sciences. ... It is remarkable that a consensus has not been 

reached.’  Over two decades later, these remarks are still applicable, perhaps more so 

with the increasing use of statistical software by non-statisticians.  

 The current recommendations on the restriction of the chi squared test to tables 

with a minimum expected number of at least 5 date back to Cochran [14, 15] and before, 

but Cochran [14] noted that the number 5 appeared to have been arbitrarily chosen, and 

could require modification once new evidence became available.  This paper provides 

such new evidence and allows Cochran’s guidelines to be updated.  The data and 
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arguments presented here provide a compelling body of evidence that the best policy in 

the analysis of 2 × 2 tables from either comparative trials or cross-sectional studies is:  

(1) Where all expected numbers are at least 1, analyse by the ‘N - 1’ chi squared test (the 

K. Pearson chi squared test but with N replaced by N - 1), 

(2) Otherwise, analyse by the Fisher-Irwin test, with two-sided tests carried out by 

Irwin’s rule (taking tables from either tail as likely, or less, as that observed).   

 This policy extends the use of the chi squared test to smaller samples (where the 

current practice is to use the Fisher-Irwin test), with a resultant increase in the power to 

detect real differences.  
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Table I.  Two-by-two tables. 
 _________________________________________________ 
 

(a)  Nomenclature 
_________________________________________________ 

 
B not-B Total 

 _________________________________________________ 
 

A a b m
not-A c d n
Total r s N
_________________________________________________ 

 

(b)  Example data 
_________________________________________________ 

 
Normal teeth Malocclusion Total 

 _________________________________________________ 
 

Breast-fed 4 16 20 
 Bottle-fed 1 21 22 
 Total 5 37 42 
 _________________________________________________ 
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Figure 1. Comparative trials: the maximum Type I error over all values of and all 
possible m, n pairs at a nominal of 0.05 for seven tests, with an inaccuracy of less than 

0.001. 
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Figure 2. Comparative trials analysed by K. Pearson's and the 'N - 1' chi squared tests: 
The maximum Type I error at a nominal of 0.05 is shown when there is no restriction 

(labelled '0' ), and when the test is restricted to sample tables with expected numbers of 
at least 1, 3 or 5, with an inaccuracy of less than 0.001.  
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Figure 3. Cross-sectional studies: The maximum Type I error over all values of 1 and 

2 at a nominal of 0.05 for seven tests, with an inaccuracy of less than 0.001. 
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Figure 4. Cross-sectional studies analysed by K. Pearson's and the 'N - 1' chi squared 
tests: The maximum Type I error at a nominal of 0.05 is shown when there is no 

restriction (labelled '0'), and when the test is restricted to sample tables with expected 
numbers of at least 1, 3 or 5, with an inaccuracy of less than 0.001.  

Page 28 of 28Statistics in Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


