Introduction to Matrix Algebra: Matrices, vectors, and what you can do with them.

Alessandro Tomassini

MRC Cognition and Brain Sciences Unit Alessandro.Tomassini@mrc-cbu.cam.ac.uk

Why Matrix Algebra?

Matrix notation originally invented to express linear algebra relations (Cayley \& Sylvester, Cambridge 1858)

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{1}+a_{13} x_{1} & =y_{1} \\
a_{21} x_{2}+a_{22} x_{2}+a_{23} x_{2} & =y_{2}
\end{aligned}
$$

- Compact notation for describing sets of data \& sets of linear equations.
- Enhances visualisation and understanding of essentials.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{y_{1}}{y_{2}}
$$

- Efficient for manipulating sets of data \& solving sets of linear equations.

$$
\begin{gathered}
\mathrm{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) ; \mathrm{x}=\binom{x_{1}}{x_{2}} ; \mathrm{y}=\binom{y_{1}}{y_{2}} ; \\
\mathbf{A x}=\mathbf{y}
\end{gathered}
$$

- Translates directly to the implementation of linear algebra processes in languages that offer array data structures (e.g. MAT(rix)LAB(oratory)).

$$
\begin{aligned}
& \mathrm{A}=[24 ; 17] ; \mathrm{x}=[3 ; 2] ; \\
& \mathrm{Y}=\mathrm{A}^{*} \mathrm{x} ;
\end{aligned}
$$

Basics: Taxonomy

$$
\left. \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right)
$$

Matrix: A collection of numbers ordered by rows and columns.
Example: a 2 rows by 3 columns matrix.

Square matrix	Symmetric matrix	Identity matrix	Diagonal matrix	Zero matrix	All-ones matrix
$\left(\begin{array}{lll}9 & 1 & 1 \\ 1 & 3 & 7 \\ 5 & 7 & 2\end{array}\right)$	$\left(\begin{array}{lll}9 & 1 & 5 \\ 1 & 3 & 7 \\ 5 & 7 & 2\end{array}\right)$	$\mathbf{I}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$		

0 \& 0 \& 0

0 \& 0 \& 0\end{array}\right)\left($$
\begin{array}{lll}1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1\end{array}
$$\right)\)

Vector: In most cases a vector can be defined as a one-dimensional matrix (Matlab always does!).

Column Vector	Row Vector
$\binom{x_{1}}{x_{2}}$	$\left(x_{1} x_{2}\right)$
$\mathrm{c}=[1 ; 2] ;$	$\mathrm{V}=[12] ;$

Basics

The dimension (order) of a matrix is given by the number of its rows and columns. Example: 2 rows x 3colums

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \quad \begin{aligned}
& \operatorname{Order}=\operatorname{size}(\mathrm{A}) \\
& \text { Nrows }=\operatorname{size}(\mathrm{A}, 1) \\
& \text { Ncols }=\operatorname{size}(\mathrm{A}, 2)
\end{aligned}
$$

NOTE: Matlab uses multidimensional arrays which are an extension of the normal 2dimensional matrix

$$
\left(\begin{array}{lll}
a_{111} & a_{121} & a_{131} \\
a_{211} & a_{221} & a_{231}
\end{array}\right) \quad\left(\begin{array}{lll}
a_{112} & a_{122} & a_{132} \\
a_{212} & a_{222} & a_{232}
\end{array}\right)
$$

Example: colour images in Matlab are 3-D arrays. The $3^{\text {rd }}$ dimension encodes the primary colours (i.e. Red, Green, Blue).

```
RGB = imread('ngc6543a.jpg');
```

image(RGB); axis image;
$\operatorname{size}(R G B)$

Try it out

$$
G B=R G B ; G B(:,:, 1)=0 ;
$$

$$
R B=R G B ; R B(:,:, 2)=0 ;
$$

Etc...
image(....); axis image;

Operations

Transposition:
$a_{i j} \rightarrow a_{j i}$

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 3 & 8 \\
0 & 4 & 2
\end{array}\right) ; \mathbf{A}^{T}=\left(\begin{array}{ll}
1 & 0 \\
3 & 4 \\
8 & 2
\end{array}\right)
$$

$$
\text { At }=A^{\prime}
$$

Addition/Subtraction:

Matrices/vectors need to have the same dimensions (i.e. nrows \& ncols).

Properties of addition:

- Commutative: $A+B=B+A$
- Associative: $A+(B+C)=(A+B)+C$;

Geometric interpretation (parallelogram law)

$$
\boldsymbol{x}=\binom{x_{1}}{x_{2}} ; \boldsymbol{y}=\binom{y_{1}}{y_{2}} ; \mathbf{x}+\mathbf{y}
$$


```
x=[5;2];y=[2;5]
plot([0,x(1)],[0,x(2)],'b');hold on;
plot([0,y,(1)],[0,y(2)],'r');
xy = x+y;
    plot([0,xy(1)],[0,xy(2)],'- - k');
```


Operations: Multiplication (\& Division)

Multiplication by scalar:

\square

$$
3^{*} A=3^{*}\left(\begin{array}{lll}
1 & 3 & 8 \\
0 & 4 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & 9 & 24 \\
0 & 12 & 6
\end{array}\right)
$$

NOTE: Division is equivalent to multiplication by 1/c (e.g. 1/3).

Geometric interpretation

This operation is also called scaling of a vector: the scaled vector points the same way, but its magnitude is multiplied by c.

```
V = [2 5];
C=2; sV = C*V;
plot([0 V (1)],[0 V(2)],'r');
hold on;
plot([0 sV(1)],[0 sV(2)],'b');
```

If $\mathbf{c}<\mathbf{0}$ the direction of the vector is reversed (reflexion about the origin).

Operations: Multiplication (\& Division)

Inner product (or scalar product) of two column vectors (of same order)

$$
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{Y}=\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{X}=\sum_{i=1}^{n} x_{i} y_{i}
$$

$$
X=\binom{2}{3} ; Y=\binom{1}{5} ; X^{\top} Y=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{1}{5}=2 \times 1+3 \times 5=17
$$

Properties: Commutative

NOTE: Matlab's ".*" is an Array operator that
multiplies two vectors of the same order element by
element. $\boldsymbol{X Y}=\mathbf{Z}->\operatorname{size}(\mathbf{Z})=\operatorname{size}(\boldsymbol{X})=\operatorname{size}(\mathbf{Y})$;

$$
\begin{aligned}
& X=[2 ; 5] ; Y=V ; \\
& V^{\prime *} ; \\
& v^{*}{ }^{*}
\end{aligned}
$$

Geometric interpretation

The angle in radians between two arbitrary vectors is defined as

$$
\cos \theta=\frac{(x, y)}{|x||y|} \quad \uparrow \cos \theta=0 \quad \uparrow \quad \cos \theta=1
$$

The cosine function is closely related to covariance

Example

\% generate 3 sinusoids of different phases
Phi $=[0, \mathrm{pi} / 4, \mathrm{pi} / 2]$;
$x=[-5: 0.1: 5]^{\prime} ; \%$ NOTE: transposition
$S 1=\sin (x+\operatorname{Phi}(1)) ; S 2=\sin (x+\operatorname{Phi}(2)) ; S 3=\sin (x+\operatorname{Phi}(3)) ; \%$ NOTE: we should have 3 column vectors, check! \%Plot them
plot(S1,'b');hold on; plot(S2,'r');plot(S3,'k');

\% Create an anonymous function to calculate the Euclidean norm
Enorm = @(x) sqrt(sum(x.^2))
\%Calculate the cosine between vectors
$\mathrm{C} 1=\left(\mathrm{S} 1^{\prime} * \mathrm{~S} 2\right) /\left(\right.$ Enorm(S1) ${ }^{*}$ Enorm(S2));
C2 =

$$
\cos \theta=\frac{(x, y)}{|x||y|}
$$

C3 $=\ldots$.

Operations: Multiplication

Multiplication of matrix with vector:

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} ; \boldsymbol{y}_{\boldsymbol{i}}=\sum_{j=1}^{n} a_{i j} x_{j} i=1 . . m
$$

$$
3 \text { Columns } 3 \text { Rows }
$$

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)=\binom{1 * 3+1 * 4+1 * 5}{2 * 3+2 * 4+2 * 5}=\binom{12}{24}
$$

Remember that earlier we multiplied row vectors with column vectors?
This makes sense now, because vectors are special cases of matrices.
Multiplication of matrix with matrix:
$\boldsymbol{C}=\boldsymbol{A B} ; \boldsymbol{c}_{\boldsymbol{i k}}=\sum_{j=1}^{n} a_{i j} b_{j k} i=1 . . m, k=1, . . p$.
Every element ik of C is the scalar product of the i-th row of A with the k-th column of B

Properties:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{lll}
3 & 3 & 5 \\
4 & 4 & 5 \\
5 & 4 & 5
\end{array}\right)=\left(\begin{array}{lll}
12 & 11 & 15 \\
24 & 22 & 30
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)=\binom{12}{24} \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
4
\end{array}\right)=\binom{11}{22} \\
& =(\boldsymbol{A B} \boldsymbol{C} \\
& =\boldsymbol{A B}+\boldsymbol{A C}
\end{aligned}
$$

Operations:

Inverse of a (square) matrix

In scalar algebra, the inverse of a number x is x^{-1} so that $x^{*} x^{-1}=1$.
In matrix algebra the inverse of a matrix is that matrix that multiplied by the original matrix gives an identity matrix: $A A^{-1}=A^{-1} A=I$

A matrix must be square, but not all square matrices have an inverse (e.g. singular matrices).

$$
\begin{gathered}
I A=\operatorname{inv}(A) \\
A * I A
\end{gathered}
$$

Example: simple linear regression

... the end, thanks!

