Introduction to Matrix Algebra: Matrices, vectors, and what you can do with them.

Alessandro Tomassini

MRC Cognition and Brain Sciences Unit Alessandro.Tomassini@mrc-cbu.cam.ac.uk

Why Matrix Algebra?

Matrix notation originally invented to express linear algebra relations (Cayley \& Sylvester, Cambridge 1858)

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=y_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{13} x_{3}=y_{2}
\end{aligned}
$$

- Compact notation for describing sets of data \& sets of linear equations.
- Enhances visualisation and understanding of essentials.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{y_{1}}{y_{2}}
$$

- Efficient for manipulating sets of data \& solving sets of linear equations.

$$
\begin{gathered}
\mathrm{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) ; \mathrm{x}=\binom{x_{1}}{x_{2}} ; \mathrm{y}=\binom{y_{1}}{y_{2}} ; \\
\mathbf{A x}=\mathbf{y}
\end{gathered}
$$

- Translates directly to the implementation of linear algebra processes in languages that offer array data structures (e.g. MATLAB).

$$
\begin{aligned}
& \mathrm{A}=[24 ; 17] ; \mathrm{x}=[3 ; 2] ; \\
& \mathrm{Y}=\mathrm{A}^{*} \mathrm{x} ;
\end{aligned}
$$

Basics: Taxonomy

$$
\left. \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right)
$$

Matrix : A collection of numbers ordered by rows and columns.
Example: a 2 rows by 3 columns matrix.

Square matrix	Symmetric matrix	Identity matrix	Diagonal matrix	Zero matrix	All-ones matrix
$\left(\begin{array}{lll}9 & 1 & 1 \\ 1 & 3 & 7 \\ 5 & 7 & 2\end{array}\right)$	$\left(\begin{array}{lll}9 & 1 & 5 \\ 1 & 3 & 7 \\ 5 & 7 & 2\end{array}\right)$	$\mathbf{I}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$		

0 \& 0 \& 0

0 \& 0 \& 0\end{array}\right)\left($$
\begin{array}{ccc}1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1\end{array}
$$\right)\)

Vector: In most cases a vector can be defined as a one-dimensional matrix (Matlab always does!).

Column Vector	Row Vector
$\binom{x_{1}}{x_{2}}$	$\left(x_{1} x_{2}\right)$
$\mathrm{C}=[1 ; 2] ;$	$\mathrm{V}=[12] ;$

Basics

The dimension (order) of a matrix is given by the number of its rows and columns. Example: 2 rows x 3colums

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \quad \begin{aligned}
& \text { Order }=\operatorname{size}(\mathrm{A}) \\
& \text { Nrows }=\operatorname{size}(\mathrm{A}, 1) \\
& \text { Ncols }=\operatorname{size}(\mathrm{A}, 2)
\end{aligned}
$$

NOTE: Matlab uses multidimensional arrays which are an extension of the normal 2dimensional matrix

$$
\left(\begin{array}{lll}
a_{111} & a_{121} & a_{131} \\
a_{211} & a_{221} & a_{231}
\end{array}\right) \quad\left(\begin{array}{lll}
a_{112} & a_{122} & a_{132} \\
a_{212} & a_{222} & a_{232}
\end{array}\right)
$$

Example: colour images in Matlab are 3-D arrays. The $3^{\text {rd }}$ dimension encodes the primary colours (i.e. Red, Green, Blue).

```
RGB = imread('ngc6543a.jpg');
image(RGB); axis image;
size(RGB)

Try it out
```

GB = RGB; GB(:,:,1)=0;

```
GB = RGB; GB(:,:,1)=0;
RB = RGB; RB(:,:,2)=0;
RB = RGB; RB(:,:,2)=0;
Etc...
Etc...
image(....); axis image;
```

```
image(....); axis image;
```

```

\section*{Operations}

Transposition:
\(\boldsymbol{a}_{i j} \rightarrow a_{j i}\)
\[
\mathbf{A}=\left(\begin{array}{lll}
1 & 3 & 8 \\
0 & 4 & 2
\end{array}\right) ; \mathbf{A}^{T}=\left(\begin{array}{ll}
1 & 0 \\
3 & 4 \\
8 & 2
\end{array}\right)
\]
\[
\text { At }=A^{\prime}
\]

\section*{Addition/Subtraction:}

Matrices/vectors need to have the same dimensions (i.e. nrows \& ncols).

Properties of addition:
- Commutative: \(A+B=B+A\)
- Associative: \(A+(B+C)=(A+B)+C\);

Geometric interpretation (parallelogram law)
\[
\boldsymbol{x}=\binom{x_{1}}{x_{2}} ; \boldsymbol{y}=\binom{y_{1}}{y_{2}} ; \mathbf{x}+\mathbf{y}
\]

```

x=[5;2];y=[2;5]
plot([0,x(1)],[0,x(2)],'b');hold on;
plot([0,y,(1)],[0,y(2)],'r');
xy = x+y;
plot([0,xy(1)],[0,xy(2)],'- - k');

```

\section*{Operations: Multiplication (\& Division)}

\section*{Multiplication by scalar:}
\[
c * \boldsymbol{A}=c * a_{11} \ldots c * a_{n n}
\]
\[
3^{*} A=3^{*}\left(\begin{array}{lll}
1 & 3 & 8 \\
0 & 4 & 2
\end{array}\right)=\left(\begin{array}{ccc}
3 & 9 & 24 \\
0 & 12 & 6
\end{array}\right)
\]

NOTE: Division is equivalent to multiplication by \(1 / c\) (e.g. 1/3).

\section*{Geometric interpretation}

This operation is also called scaling of a vector: the scaled vector points the same way, but its magnitude is multiplied by c.
```

V = [2 5];
C=2; sV = C*V;
plot([0 V (1)],[0 V(2)],'r');
hold on;
plot([0 sV(1)],[0 sV(2)],'b');

```

If \(\boldsymbol{c}<\mathbf{0}\) the direction of the vector is reversed (reflexion about the origin).

\section*{Operations: Multiplication (\& Division)}

Inner product (or scalar product) of two column vectors (of same order)
\[
\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{Y}=\boldsymbol{Y}^{\boldsymbol{T}} \boldsymbol{X}=\sum_{i=1}^{n} x_{i} y_{i}
\]
\[
X=\binom{2}{3} ; Y=\binom{1}{5} ; X^{\top} Y=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{1}{5}=2 \times 1+3 \times 5=17
\]

Properties: Commutative

NOTE: Matlab's ". * " is an Array operator that
multiplies two vectors of the same order element by element. \(\mathbf{X Y}=\mathbf{Z}->\operatorname{size}(\mathbf{Z})=\operatorname{size}(\mathbf{X})=\operatorname{size}(\mathbf{Y})\);
\[
\begin{aligned}
& \mathrm{X}=[2 ; 5] ; \mathrm{Y}=\mathrm{V} ; \\
& \mathrm{V}^{\prime *} \mathrm{Y} \\
& \mathrm{~V}^{*} \mathrm{Y}
\end{aligned}
\]

\section*{Geometric interpretation}

The angle in radians between two arbitrary vectors is defined as
\[
\cos \theta=\frac{(x, y)}{|x||y|} \cos \theta=0
\]

The cosine function is closely related to covariance

\section*{Example}
\% generate 3 sinusoids of different phases
Phi \(=[0, \mathrm{pi} / 4, \mathrm{pi} / 2]\);
X \(=\) [-5:0.1:5]'; \%NOTE: transposition
S1 \(=\sin (x+\operatorname{Phi}(1)) ; S 2=\sin (x+\operatorname{Phi}(2)) ; S 3=\sin (x+\operatorname{Phi}(3)) ; \%\) NOTE: we should have 3 column vectors, check! \%Plot them
plot(S1,'b');hold on; plot(S2,'r');plot(S3,'k');

\% Create an anonymous function to calculate the Euclidean norm
Enorm = @(x) sqrt(sum(x.^2))
\%Calculate the cosine between vectors
\(\mathrm{C} 1=\left(\mathrm{S} 1^{\prime} * \mathrm{~S} 2\right) /\left(\right.\) Enorm(S1) \({ }^{*}\) Enorm(S2));
C2 =
\[
\cos \theta=\frac{(x, y)}{|x||y|}
\]

C3 \(=\)...

\section*{Operations: Multiplication}

Multiplication of matrix with vector:
\[
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} ; \boldsymbol{y}_{\boldsymbol{i}}=\sum_{j=1}^{n} a_{i j} x_{j} i=1 . . m
\]
\[
3 \text { Columns } 3 \text { Rows }
\]
\[
\left(\begin{array}{ccc}
3 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)=\binom{1 * 3+1 * 4+1 * 5}{2 * 3+2 * 4+2 * 5}=\binom{12}{24}
\]

Remember that earlier we multiplied row vectors with column vectors?
This makes sense now, because vectors are special cases of matrices.
Multiplication of matrix with matrix:
\(\boldsymbol{C}=\boldsymbol{A B} ; \boldsymbol{c}_{\boldsymbol{i k}}=\sum_{j=1}^{n} a_{i j} b_{j k} i=1 . . m, k=1, . . p\).
Every element ik of \(C\) is the scalar product of the \(i\)-th row of \(A\) with the \(k\)-th column of \(B\)

Properties:
\[
\begin{aligned}
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{lll}
3 & 3 & 5 \\
4 & 4 & 5 \\
5 & 4 & 5
\end{array}\right)=\left(\begin{array}{lll}
12 & 11 & 15 \\
24 & 22 & 30
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)=\binom{12}{24} \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
4
\end{array}\right)=\binom{11}{22} \\
& =(A B) C \\
& =\boldsymbol{A B}+\boldsymbol{A C}
\end{aligned}
\]

\section*{Operations:}

Inverse of a (square) matrix

In scalar algebra, the inverse of a number \(x\) is \(x^{-1}\) so that \(x^{*} x^{-1}=1\).
In matrix algebra the inverse of a matrix is that matrix that multiplied by the original matrix gives an identity matrix: \(A A^{-1}=A^{-1} A=I\)

A matrix must be square, but not all square matrices have an inverse (e.g. singular matrices).
\[
\begin{gathered}
I A=\operatorname{inv}(A) \\
A * I A
\end{gathered}
\]

\section*{Example: simple linear regression}

load accidents
\(x=\) hwydata(:,14); \%Population of states
\(X=[\) ones(length \((x), 1) x] ; \%\) add a column of 1 s to calculate intercept
\(\mathrm{Y}=\) hwydata(:,4); \%Accidents per state
format long
" | " operator mldivide : solve systems of linear equations \(Y=B X\) for \(B\) (similar to \(X^{-1} Y\) )
\(B=X \backslash Y\)
\(\mathrm{yCalc}=\mathrm{X} * \mathrm{~b}\); \%NOTE: vector by matrix product
scatter(x,y)
hold on;
plot(x,yCalc,'-')
legend('Data','Fitted function','Location','best');
xlabel('Population of state')
ylabel('Fatal traffic accidents per state')
... the end, thanks!```

