
General Linear Models:
Linear equations and matrix inversion

Saskia Helbling

Introduction to Signal Analysis in Matlab - MRC CBSU

Saskia.Helbling@mrc-cbu.cam.ac.uk

GLMs = multivariate linear regression

• Simple linear regression: y = x * β + ε, for example 34 = β0 + 4 * β1 + ε

• Multiple linear regression: y = X * β + ε, for example 34 = β0 + 4 * β1 + 2 * β2 + ε































































































R

j

R

j

RCRjR

iCiji

Cj

R

j

XXX

XXX

XXX

y

y

y















...

...

...

...

......

...............

......

...............

......

...

...

11

1

1

11111

Xy

Error or noise
Design matrix with regressors

(independent variables)

Data (dependent variable)

regression coefficients

GLMs = multivariate linear regression

• Multivariate linear regression: Y = X * β + E (Y, β and E are now matrices)

• GLMs can be used to quantify the effect of different experimental variables on our
BOLD signal or reaction times or oscillatory activity or …

• GLMs incorporate a number of different statistical models (e.g. ANOVA,
ANCOVA,MANOVA, t-tests…)

Linear equations

2*a=10
What’s a?

2*a + 5=10
What’s a?

2*a + 5 = b
b=10
What are a and b?

[2]*a=[10]
[2]*a=[5]
What’s a?

[2 -1; 0 1]*[a b]’ = [-5 10]’

Simple linear regression Multiple linear regression

























 

10

5

10

12

b

a

Problem:
• We have an equation of the form Mx=y
• We know M and y
• We want to know x

In Matlab:

Inverse Matrices

If only we had a matrix M-1 with the property

because then we could solve an linear equation:

by multiplying both sides of the equation with M-1

M-1 is the “inverse matrix” of M. In Matlab: inv

IMM 1

(just like (1/3)*3 = 1)

10000

01000

00...00

00010

00001

I











1

1
*xM


















 

1

1

1

1
* 111 MxMxMM 

identity

Linear equations

2*a + 5 = b
b=10
What are a and b?

Solve the following linear equation!

a+2*y = 1
a-b = 2
What are a and b?

[2 -1; 0 1]*[a b]’ = [-5 10]’

[a b]’ = inv([2 -1; 0 1])[-5 10]’

Multiple linear regression

% define your matrix M
M = [2 -1;0 1];

% and your dependent variable
x = [-5 10]’
% solve the GLM
sol = inv(M)*x

% check if it’s really a solution
M*sol

% check the inverse
inv(M)*M

% Back slash operator
solBs = M\x; % faster and more robust computation

% Matrix inversion is not element-wise division!
inv(M)
M.^-1

% A singular matrix is not invertible
singM = [2 -1; -4 2];
inv(singM)

Basis functions

In our last example we were solving the equation

In general, we have our data y and a set of basis functions (columns of M) and we want to
know how much do the different basis functions contribute to our measured data

This may mean:

• y: measured fMRI time course per voxel

• basis functions ([1 -1 0] etc.): your predicted fMRI time courses for different conditions

• a/b/c: the “betas” for different conditions => see next week’s Introduction to
Neuroimaging lecture

• y: measured reaction times for all stimuli

• basis functions: predictor variables, one value per stimulus (length, frequency…)

• a/b/c: regression coefficients for different conditions

























 

10

5

10

12

b

a



























10

5

1

1

0

2
baor














































































































































C

j

jj

Rj

ij

j

C

j

j

C

j

Rjj

C

j

ijj

C

j

jj

R

j

RCRjR

iCiji

Cj

R

j x

M

M

M

x

Mx

Mx

Mx

x

x

x

MMM

MMM

MMM

y

y

y

1

.

1

1

1

1

1

1

1

1

1

11111

...

...

*

*

...

*

...

*

...

...

......

...............

......

...............

......

...

...

MMxy

Each column of M is weighted by the corresponding element in x.











































































































3

2

1

*

110

111

101

1

1

1

*

1

1

0

*

0

1

1

*

c

b

a

cba

. ofcolumn th -j for the stands . MM j

You could call M the “design matrix”.

y is a linear combination of the columns of M.

Orthonormal: Orthogonal and of unit norm/length

For example:
[1 0] and [0 1] are orthonormal basis functions













































1

1

10

01

1

0

0

1






 

  1
1

1
10

1
1

1
01

























No “inversion” necessary – just multiply basis functions to your data.

Basis functions

Often basis functions are not orthonormal and for correlated basis

functions, the whole system of equations needs to be taken into account

 Matrix inversion is necessary

(“partialling out” variables)

“Linearly independent”: vectors are not perfectly correlated

“Orthogonal”: correlation of vectors is exactly zero

Problem of multiple linear regression

% A matrix with linearly independent vectors
x= [2 0]’; y = [-1 1]’;
M = [x,y]
det(M)
% with linearly dependent vectors:
y = x*-2;
M = [x,y];
det(M)

% try to invert the matrix with dependent vectors
inv(M)
% “fix” the collinearity
y = x*-2+ 1e-12;
M = [x,y];
inv(M) % the inverse matrix has huge values

% - this may amplify errors in the data!

Examples in Neuroscience: fMRI

BOLD time course in
one voxel

Predicted time course
for event type 1

Predicted time course
for event type 2

Predicted time course
for event type 3

Measured time series

Design matrix of predictor variables

regression coefficients

εXβy 
errors

The choice of the right basis functions
depends on the problem and what you

know about it

– it’s not about the math

stimulus presentation

5.2*3*3

5.1*2*3

 0*1*3

 2*2*2

 1*1*2

 1*1 *1

21

21

21

21

21

21













xx

xx

xx

xx

xx

xx

?

?

2

1





x

x

5.2

5.1

0

2

1

1

33

23

13

22

12

11

*

3

2

1

2

1

1

*

3

3

3

2

2

1

2

1

21 dMx 
























































































































x

x
xx

M d

0.3474 0.0316- 0.4105- 0.2316 0.1474- 0.1158

0.1579- 0.1053 0.3684 0.1053- 0.1579 0.0526-

We can find the x that minimises the least-squares error:

The matrix that provides this least-squares solution is the “pseudoinverse” of M: M-

(in Matlab: “pinv”)

min
2
dMx

 -
M

“Overdetermined Problem” (e.g. Regression)

M is not invertible, there is no unique solution for x.

Generalisation of inverse matrix: M*M-*M = M and M-*M*M- = M-

TT
MMMM

1)( 

“Overdetermined Problem” (e.g. Regression)

Is the unique (minimum norm) least squares solution

If Mx = d is an overdetermined problem (more data than unknowns), then

M = [1 1;2 3;-3 1];
size(M)% more rows than columns
% compute the inverse of the design matrix with pinv
inv_pinv = pinv(M);
% compute the pseudo inverse yourself
inv_ls = inv(M'*M)*M';
% compute the solution
sol_pinv = pinv(M)*[1 -1 3]';
sol_ls = inv_ls*[1 -1 3]';

815 ms
850 ms

527 ms

302 ms

461 ms

810 ms 808 ms

299 ms

Repetition

Word length?

55

4 letters

3
4

5 5

2

Which variables can
explain these data?

“1”

“2”

RTs

Design matrix of predictor variables

regression coefficients

εXβy 

Trial: 1 2 3 …

errors

Behavioral RT experiment

Example
% Generate data for a behavioural experiment (forward model)

w_length = [3 2 5 4 4 4 5 2 5 3 4 6]';

rep = [1 2 1 2 1 2 1 2 1 2 1 2]';

offset = ones(size(rep));

RTs = offset*480 + w_length*10 + rep*30 + randn(size(rep))*8;

% plot your data

figure; plot(RTs,'*')

% Create the design matrix

M = [offset, w_length, rep];

% get the solution

b = pinv(M)*RTs

% Check how solution predicts the data

figure; RTs_pred = b(1)*offset + b(2)*w_length + b(3)*rep;

plot(RTs_pred,'*')

% compare with “ground truth”

hold on; RTs_real = offset*480 + w_length*10 + rep*30;

plot(RTs_real,'r*')

% plot difference between measured and predicted data

figure; plot(RTs - RTs_pred)

 1*3*2*1

 1*1*1 *1

321

321





xxx

xxx

?

?

?

3

2

1







x

x

x

1

1

321

111
*

3

1
*

2

1
*

1

1

3

2

1

321 dMx 































































x

x

x

xxx

M is not invertible, there is no unique solution for x.

We can find the x that minimises the “norm” of the solution:

Again, the solution is given by the “pseudoinverse” of M: M- (in Matlab: “pinv”)

2

3

2

2

2

1

2
xxx 



x

dMx

Underdetermined Problem (e.g. EEG/MEG
inverse problem)

Example: M/EEG source reconstruction

Example: M/EEG source reconstruction

• y: measured topography at a particular latency
• basis functions: EEG/MEG topographies for point sources of unit strength (dipoles),

also known as leadfields
• a/b/c: source strengths for those point sources

m1

m2

m3

with L1 = [0.8 0.4 0.1]
s1

. 0.1

0.4

0.8

Example: M/EEG source reconstruction

We want to solve the m = Ls
(1) construct the leadfield matrix L
(2) use pinv to solve the GLM for m = [1 2 3]
(3) use the backslash operator to solve the GLM
(4) calculate the norm for both solutions

You just computed your very own Minimum Norm
inverse solution!

m1

m2

m3 Let’s assume we have four cortical sources s1, s2,
s3 and s4 with L1 = [0.8 0.4 0.1], L2 = [0.3 0.9 0.2],
L3 = [0.1 0.3 0.7] and L4 = [0.2 0.1 0.1]

s1

.

s4

.
s3

.s2

.

Example: M/EEG source reconstruction

L_1 = [0.8 0.4 0.1];
L_2 = [0.3 0.9 0.2];
L_3 = [0.1 0.3 0.7];
L_4 = [0.2 0.1 0.1];

% Construct design matrix
M = [L_1',L_2',L_3',L_4'];
size(M)
m = [1 2 3];
s = pinv(M)*m'
s_ml = M\m'

m1

m2

m3 Let’s assume we have four cortical sources s1, s2,
s3 and s4 with L1 = [0.8 0.4 0.1], L2 = [0.3 0.9 0.2],
L3 = [0.1 0.3 0.7] and L4 = [0.2 0.1 0.1]

s1

.

s4

.
s3

.s2

.

Thank you!

