

The General Linear Model I

Olaf Hauk
olaf.hauk@mrc-cbu.cam.ac.uk

19 November 2019

Linear Regression

fMRI General Linear Model

Predicted time course for event type 2
Predicted time course for event type 3

II
time
measured time series

The EEG/MEG Inverse Problem Can Be Linear

Forward Problem

Linear Inverse Problem

Let's start with a simple problem

$$
\begin{gathered}
y=x^{*} \beta \\
\Rightarrow \\
\beta=y / x \\
(y, x, \beta: \text { scalar numbers })
\end{gathered}
$$

$$
\begin{gathered}
9=3 * \beta \\
\Rightarrow \\
\beta=(1 / 3) * 9=3
\end{gathered}
$$

This is the simplest form of the GLM

$$
\mathbf{y}=\mathbf{X} * \boldsymbol{\beta}
$$

$$
\boldsymbol{\beta}=\mathbf{G} * \mathbf{y}
$$

Note:
I write scalar numbers as non-bold italics, e.g. x, vectors as bold small letters, e.g. x, and matrices as bold capital letters, e.g. X.

There may be more than one

$$
\begin{aligned}
& y_{1}=x_{1} * \beta_{1} \\
& y_{2}=x_{2} * \beta_{2}
\end{aligned}
$$

This can be written as

$$
\mathbf{y}=\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right) *\binom{\beta_{1}}{\beta_{2}}=\mathbf{X} * \boldsymbol{\beta}
$$

Solution:

$$
\boldsymbol{\beta}=\left(\begin{array}{cc}
1 / x_{1} & 0 \\
0 & 1 / x_{2}
\end{array}\right) *\binom{y_{1}}{y_{2}}=\mathbf{X}^{-1} * \mathbf{y}
$$

Interpretation in terms of "basis functions"

$$
\mathbf{y}=\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right) *\binom{\beta_{1}}{\beta_{2}}=\mathbf{X} * \boldsymbol{\beta}
$$

can be interpreted as

$$
\mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{x_{1}}{0} * \beta_{1}+\binom{0}{x_{2}} * \beta_{2}
$$

Orthogonal "basis functions"

Choosing the right basis functions
These are your data:

Choosing the right basis functions
These are your data:

Geometric interpretation of basis functions

MRC

What if basis functions are not orthogonal?

Linearly dependent equations

$$
\begin{gathered}
y_{1}=x_{11} * \beta_{1}+x_{12} * \beta_{2} \\
y_{2}=x_{21} * \beta_{1}+x_{22} * \beta_{2} \\
\mathbf{y}=\binom{y_{1}}{y_{2}}=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right) *\binom{\beta_{1}}{\beta_{2}}=\mathbf{X} * \boldsymbol{\beta}
\end{gathered}
$$

can be interpreted as

$$
\mathbf{y}=\binom{y_{1}}{y_{2}}=\binom{x_{11}}{x_{12}} * \beta_{1}+\binom{x_{21}}{x_{22}} * \beta_{2}
$$

Solving Linear Equations

Problem:

- We have an equation $\mathbf{M x}=\mathbf{y}$
- We know M and y
- We want to know x

We need a matrix \mathbf{M}^{-1} with the property

$$
\mathbf{M}^{-1 *} \mathbf{M}=\mathbf{I}
$$

(I is the identity matrix)
because then:

$$
M^{-1} \mathbf{1}^{*} \mathbf{x}=I^{*} \mathbf{x}=\mathbf{x}=\mathbf{M}^{-1} \mathbf{y}
$$

\mathbf{M}^{-1} is the "inverse matrix" of \mathbf{M}

M only has an inverse matrix (is "invertible") when there are no pairs of columns and pairs of rows that are perfectly correlated (i.e. they are "linearly independent").

Linear Regression - fewer unknowns than data points ("overdetermined problem")

The β that minimises the least-squares error in this equation can be computed using the "pseudoinverse":

$$
\begin{gathered}
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
\ldots \\
y_{10}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{10}
\end{array}\right) * \beta=\mathbf{x}^{*} \beta \\
\beta=\operatorname{pinv}(\mathbf{x})^{*} \mathbf{y}
\end{gathered}
$$

Multiple Linear Regression

2 parameters, 10 data points:

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
\ldots \\
y_{10}
\end{array}\right)=\left(\begin{array}{c}
X_{1,1} \\
\ldots \\
X_{10,1}
\end{array}\right) * \beta_{1}+\left(\begin{array}{c}
X_{1,2} \\
\ldots \\
X_{10,2}
\end{array}\right) * \beta_{2}=\left(\begin{array}{cc}
X_{1,1} & X_{1,2} \\
\ldots & \ldots \\
X_{10,1} & X_{10,2}
\end{array}\right) *\binom{\beta_{1}}{\beta_{2}}=\mathbf{X} * \boldsymbol{\beta}
$$

where the design matrix \mathbf{X} has dimension $(10,2)$ and the parameter vector beta has dimension (2).

$$
\boldsymbol{\beta}=\operatorname{pinv}(\mathbf{X}) * \mathbf{y}
$$

where $\operatorname{pinv}(\mathbf{X})$ has dimension $(2,10)$.

fMRI General Linear Model

Predicted time course for event type 1

Predicted time course for event type 2

Predicted time course for event type 3

BOLD time course

in one voxel

II

measured time series

```
y = X\beta
design matrix
```


More unknowns than data points

 ("underdetermined problem")$$
\begin{gathered}
y_{1}=x_{1}{ }^{*} \beta_{1}+x_{2} * \beta_{2} \\
\text { e.g.: } \\
1=1^{*} \beta_{1}+1 * \beta_{2} \\
\text { i.e. } \\
1=\left(\begin{array}{ll}
1 & 1
\end{array}\right) *\binom{\beta_{1}}{\beta_{2}}
\end{gathered}
$$

More unknowns than data points

 ("underdetermined problem")$$
1=\left(\begin{array}{ll}
1 & 1
\end{array}\right) *\binom{\beta_{1}}{\beta_{2}}
$$

The unique solution that minimises the "L2-norm", i.e.

$$
\begin{gathered}
\beta_{1}^{2}+\beta_{2}^{2} \rightarrow \text { minimal } \\
\text { is }
\end{gathered}
$$

$$
\binom{\beta_{1}}{\beta_{2}}=\binom{0.5}{0.5}
$$

"Minimum-norm solution"

The EEG/MEG Inverse Problem Is Underdetermined

Forward Problem

Linear Inverse Problem

More unknowns than data points

 ("underdetermined problem")The β that minimises the sum of least-squares for $\boldsymbol{\beta}$ in this equation can be computed using the pseudoinverse ("minimum-norm solution"):

$$
\begin{gathered}
\mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{ll}
X_{1,1} & X_{1,2} \\
X_{2,1} & X_{2,2} \\
X_{3,1} & X_{3,2}
\end{array}\right) *\binom{\beta_{1}}{\beta_{2}}=\mathbf{X} * \boldsymbol{\beta} \\
\beta=\operatorname{pinv}(\mathbf{X})^{*} \mathbf{y}
\end{gathered}
$$

