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Linear Regression
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The EEG/MEG Inverse Problem Can Be Linear
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Forward Problem Linear Inverse Problem

𝐝 = 𝐋𝐣 Ƹ𝐣 = 𝐆𝐝



Let’s start with a simple problem

y = x * 𝛽
֜

𝛽 = y / x 
(y, x, 𝛽: scalar numbers)

This is the simplest form of the GLM

𝐲 = 𝐗 ∗ 𝛃

Note:

I write scalar numbers as non-bold italics, e.g. x, vectors as bold small letters, e.g. x,
and matrices as bold capital letters, e.g. X.

9 = 3 ∗ 𝛽
֜

𝛽 = (1 / 3 ) * 9 = 3

We are looking for an “estimator”/”operator”

𝛃 = 𝐆 ∗ y





There may be more than one

𝑦1 = 𝑥1* 𝛽1

𝑦2 = 𝑥2* 𝛽2

This can be written as

𝐲 =
𝑦1

𝑦2
=

𝑥1 0
0 𝑥2

∗
𝛽1

𝛽2
= 𝐗 ∗ 𝛃

Solution:

𝛃 =
1/𝑥1 0

0 1/𝑥2
∗

𝑦1

𝑦2
= 𝐗−𝟏 ∗ 𝐲





Interpretation in terms of “basis functions”

𝑦1 = 𝑥1* 𝛽1

𝑦2 = 𝑥2* 𝛽2

𝐲 =
𝑦1

𝑦2
=

𝑥1 0
0 𝑥2

∗
𝛽1

𝛽2
= 𝐗 ∗ 𝛃

can be interpreted as

𝐲 =
𝑦1

𝑦2
=

𝑥1

0
∗ 𝛽1 + 

0
𝑥2

∗ 𝛽2

Orthogonal “basis functions”
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Choosing the right basis functions
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These are your data:
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These are your data:

Choosing the right basis functions



𝒙𝟏

𝒙𝟐

+
y=(𝛽1𝑥1, 𝛽2𝑥2)

Geometric interpretation of basis functions



𝒙𝟏

𝒙𝟐

+
y=(𝛽1𝑥1, 𝛽2𝑥2)

What if basis functions are not orthogonal?



𝑦1 = 𝑥11* 𝛽1 + 𝑥12* 𝛽2

𝑦2 = 𝑥21* 𝛽1 + 𝑥22* 𝛽2

𝐲 =
𝑦1

𝑦2
=

𝑥11 𝑥12

𝑥12 𝑥22
∗

𝛽1

𝛽2
= 𝐗 ∗ 𝛃

can be interpreted as

𝐲 =
𝑦1

𝑦2
=

𝑥11

𝑥12
∗ 𝛽1 + 

𝑥21

𝑥22
∗ 𝛽2

Linearly dependent equations



Solving Linear Equations

Problem:

• We have an equation Mx=y

• We know M and y

• We want to know x

We need a matrix M-1 with the property 

M-1*M = I  
(I is the identity matrix)

because then: 

M-1*Mx = I*x = x = M-1y

M-1 is the “inverse matrix” of M

M only has an inverse matrix (is “invertible”) when there are no pairs of columns and pairs of rows that are 

perfectly correlated (i.e. they are “linearly independent”).





Linear Regression – fewer unknowns than data points

(“overdetermined problem”)
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One variable, multiple data points:

𝐲 =

𝑦1

…
𝑦10

=

𝑥1

…
𝑥10

∗ 𝛽 = x * 𝛽

Cheating alert: 

We assume the intercept has been subtracted from the 

data.



The 𝛽 that minimises the least-squares error in this equation can be 
computed using the “pseudoinverse”:

𝐲 =

𝑦1

…
𝑦10

=

𝑥1

…
𝑥10

∗ 𝛽 = x * 𝛽

𝛽 = pinv(𝐱) * y

Linear Regression – fewer unknowns than data points



2 parameters, 10 data points:

𝐲 =

𝑦1

…
𝑦10

=

𝑋1,1

…
𝑋10,1

∗ 𝛽1 + 

𝑋1,2

…
𝑋10,2

∗ 𝛽2 = 

𝑋1,1 𝑋1,2

… …
𝑋10,1 𝑋10,2

*
𝛽1

𝛽2
= X * 𝛃

where the design matrix X has dimension (10,2) and

the parameter vector beta has dimension (2).

𝛃 = 𝐩𝐢𝐧𝐯 𝐗 ∗ 𝐲

where pinv(X) has dimension (2,10).

Multiple Linear Regression
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fMRI General Linear Model





𝑦1 = 𝑥1*𝛽1 + 𝑥2 ∗𝛽2

e.g.:

1 = 1*𝛽1+1∗𝛽2

i.e.

1 = 1 1 * 
𝛽1

𝛽2

More unknowns than data points

(“underdetermined problem”)



1 = 1 1 * 
𝛽1

𝛽2

The unique solution that minimises the “L2-norm”, i.e.
𝛽1

2+𝛽2
2 → 𝑚𝑖𝑛𝑖𝑚𝑎𝑙

is

𝛽1

𝛽2
=

0.5
0.5

“Minimum-norm solution”

More unknowns than data points

(“underdetermined problem”)
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The EEG/MEG Inverse Problem Is Underdetermined
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Forward Problem Linear Inverse Problem

𝐝 = 𝐋𝐣 Ƹ𝐣 = 𝐆𝐝



The 𝛽 that minimises the sum of least-squares for 𝜷 in this equation can 
be computed using the pseudoinverse

(“minimum-norm solution”):

𝐲 =

𝑦1

𝑦2

𝑦3

=

𝑋1,1 𝑋1,2

𝑋2,1 𝑋2,2

𝑋3,1 𝑋3,2

∗
𝛽1

𝛽2
= X * 𝜷

𝛽 = pinv(𝐗) * y

More unknowns than data points

(“underdetermined problem”)




