Filtering & Oscillations

Tallie Adams

What is an oscillation

• Oscillations are periodic signals. For an oscillation with period 'T':

$$f(t+T) = f(t)$$

'f' is the function that describes our oscillation 't' is the dependent variable (time).

For sine and cosine functions:

$$\sin(t + 360) = \sin(t)$$

$$\cos(t + 360) = \cos(t)$$

 To convert between radians and degrees in MATLAB:

360° is equivalent to $2*\pi$

$$x(rads) = x * \frac{360}{2\pi} = x * \frac{180}{\pi}$$

• MATLAB works in radians by default, so...

$$\sin(t + 2\pi) = \sin(t)$$

$$\cos(t + 2\pi) = \cos(t)$$

$$f(x) = a*sin(b*x + c)$$

$$f(x) = a*cos(b*x + c)$$

$$tan(x) = sin(x)/cos(x)$$

a = amplitude

b = frequency

c = phase


```
%% creating signals
% anonymous function:
% f(x) = a*cos((b*x)+c); a = 4; b = .2; c = pi/2;
f1 = @(x) 4*cos((.2*x)+(pi/2));
f2 = @(x,a,b,c) a*cos((b*x)+c);
% inputs to the function:
x = .1:.1:30;
a = 4;
b = .2;
c = pi/2;
% using the function:
y = f2(x,a,b,c);
% plotting the result:
figure, plot(x,y)
```

```
%% Comparing sin & cos:

% create traces:
x = .1:.1:30;
y1 = sin(x);
y2 = cos(x);

% plot traces:
figure, hold on, plot(x,y1), plot(x,y2)
legend({'sin(x)' 'cos(x)'})
```

```
%% orthogonality:

x = .1:.1:30;
y1 = sin(x);
y2 = sin(x/180*pi);

figure, hold on, plot(x,y1), plot(x,y2)
legend({'sin(x)' 'sin(x*2)'})
```

(Fast) Fourier Transform in Words

- You've got a signal consisting of N sample points (equidistant).
- You want to know which frequencies contribute to the signal, and how much.
- With N samples, you can estimate at most N independent parameters.
- You cannot estimate frequencies above half of the sampling frequency (the Nyquist limit).
- To do this you will want to describe your signal as a linear combination of sines and cosines
- For a given frequency, sine and cosine are orthogonal, i.e. 2 basis functions per frequency.


```
%% Frequency decomposition of signals:
Fs = 1/0.0001;
t = 0:1/Fs:5;
y puls = pulstran(t,[0:5;0.8.^(0:5)]',@gauspuls,10,.5);
y linc = chirp(t, 0, 5, 45);
Y = awgn(y puls+y linc,0);
plot(t,y linc,'g'), plot(t,y puls,'r')
xyt('Time (s)','Amplitude',''), set(gca,'Visible','off')
plot(t,Y,'k')
xyt('Time (s)','Amplitude','')
subplot(3,2,[3 5]), hold on
p = abs(fft(Y)/length(Y));
p = p(1: (end/2) + 1) *2;
f = Fs*(0:(length(Y)/2))/length(Y);
plot(f,p/max(p),'b'), xlim([0 100])
[p,f] = pmtm(Y,5,Fs,Fs);
plot(f,p/max(p),'k'), xlim([0 100])
[p,f] = pwelch(Y,Fs/5,[],Fs,Fs);
plot(f,p/max(p),'r'), xlim([0 100])
xlabel('Frequency (Hz)'), ylabel('Normalized Power')
```



```
subplot(3,2,[4 6])
[p, f, t2] = spectrogram(Y, Fs/5, (Fs/5) - (Fs/50), 0:.5:100, Fs);
contourf(t2,f,abs(p),10), axis xy, colorbar, caxis([0 500])
```


Filtering – the basic idea

- Transform your data into the frequency domain
- Remove the frequency data you don't want by lowering their weightings
- Reconstruct your data back into the time domain with the new weightings


```
%% filtering:
% manually test filter parameters:
fdatool
% load example data:
FreqBand = {[.1 1] [1.1 5] [40 49]};
clr = { 'r' 'b' 'c' };
load kobe
kobe_Fs = 100;
kobe_t = [1:length(kobe)]/kobe_Fs;
figure, hold on, plot(kobe_t,kobe,'k'), axis tight

For i = 1:length(FreqBand)
% create filter parameters:
[b,a] = ellip(2,1,80,FreqBand{i}*2/kobe_Fs);
% filter data:
kobe_f = filtfilt(b,a,kobe);
plot(kobe_t,kobe_f,clr{i}), axis tight
end
```


Google Search

I'm Feeling Lucky

Example electrophysiological data is provided to try out the below. It consists of an LFP and simultaneous intracellular recordings of IPSPs from a pyramidal cell. Have some fun!

- Try plotting the LFP vs the time vector, labelling the x and y axis appropriately.
- You can play with the properties of this figure in the GUI (e.g. edit/axis properties), but I'd very much recommend playing with changing the color of the trace or the x axis limits etc via the command line.
- Plot the IPSPs and the LFP in two separate subplots on the same figure.
- Find the sampling frequency of the data using only the time vector.
- Band-pass filter (between 1 and 80 Hz) the LFP and display the result to check it has worked effectively by putting the unfiltered
 and filtered signals overlaid on the same plot.
- Find the frequency power spectrum of the LFP and plot the results, perhaps using different methods to see if there is a
 difference (lots of ways; hint: fft, pwelch, pmtm).
- Do a spectrogram to understand the dynamics of your spectral power.
- What frequencies of oscillations do you find, are they happening together, and are the pyramidal cells involved in both oscillations?
- How well correlated is the intracellular and field activity? (Hint: ask google)
- Write a matlab function that does this all for you