PYTHON:

BATTERIES INCLUDED

Analysis of Functional Magnetic
Resonance Imaging in Python

The authors describe a package for analyzing magnetic resonance imaging (MRI) and
functional MRI (fMRI) data, which is part of the Neuroimaging in Python (NIPY) project.
An international group of leading statisticians, physicists, programmers, and
neuroimaging methodologists are developing NIPY for wider use.

agnetic resonance imaging (MRI)

measures induced magnetic prop-

erties of tissue. It has long been the

chosen technique for creating
high-resolution anatomical images of the human
brain. Over the past decade, a new technique called
functional MRI (fMRI) has become a powerful and
widely used method for studying human brain
function. fMRI measures regional blood flow
changes in the brain, which can help researchers
identify the most active brain areas during mental
tasks such as memory and language.

Functional MRI Analysis

The first step of an fMRI analysis—image recon-
structon—takes raw data from the scanner and per-
forms a highly customized inverse Fourier transform
to create a time series of 3D functional images. A typ-
ical next step is to estimate the movement between
scans via an automated image-matching algorithm
and then use that estimate to remove artifacts due to

1521-9615/07/$25.00 © 2007 IEEE
Copublished by the IEEE CS and the AIP

K. JARROD MILLMAN

University of California, Berkeley

MATTHEW BRETT

MRC Cognitive Brain Science Unit, Cambridge, UK

motion. Researchers commonly relate the activity
detected in the low-resolution functional images to
a high-resolution structural image of the same sub-
ject. However, to compare between subjects, the
functional or structural data must be warped to
match some standard brain, a process that requires
sophisticated models of brain anatomy. Finally, sta-
tistical techniques are used to determine which brain
regions are related to certain tasks or activities.

Clearly, fMRI data analysis comes with several
challenges. First, it has a wide variety of computa-
tionally intensive spatial and statistical processing
steps. Thus, an analysis software package must
cover the range from file system and network in-
teraction through complex image processing to ad-
vanced statistical inference and 3D visualization.
Second, such analysis involves a massive volume of
data, often reaching several hundred gigabytes.

The most common software package in use today
is SPM (www.fil.ion.ucl.ac.uk/spm/), which is writ-
ten in Matlab. Other common packages include
FSL (www.fmrib.ox.ac.uk/fsl/) and AFNI (http://
afni.nimh.nih.gov/afni/), written in C and C++, re-
spectively. Although these packages are well-
designed and supported, an increasing number of
imaging scientists have found that Matlab is not
powerful enough to support the industrial level of
code size and complexity that neuroimaging re-
quires, and that C and C++ are too low-level for
rapid development.

52

THIS ARTICLE HAS BEEN PEER-REVIEWED.

COMPUTING IN SCIENCE & ENGINEERING

(b)

Figure 1. Python visualization widgets. Images from PBrain showing, (a) the position of the electrode arrays on the
surface of the brain superimposed with a surface reconstruction of the skull from a CT scan and (b) measures of

frequency and coherence of electrical activity overlaid on an image of the electrode positions.

Neuroimaging and Python
Python has become a natural choice for neuro-
imaging because it is high level, object-oriented,
and interactive. All these features make it particu-
larly well suited to scientific programming. It also
has robust libraries for system interaction, image
processing, matrix algebra, and visualization.
Moreover, Python has very good tools for provid-
ing scripting support to software written in other
languages. Finally, because of Python’s strong in-
tegration with C and C++, it is often used as a type
of high-level language glue for calling routines in
a huge array of high-quality C/C++ libraries.
Accordingly, several significant neuroimaging
packages have already been written in Python. Led
by Daniel Sheltraw at Berkeley, researchers re-
cently developed a set of Python tools for MRI re-
construction (https://cirl.berkeley.edu/view/BIC/
ReconTools). John Hunter, the author of the mat-
plotlib Python plotting library, developed PBrain,
a sophisticated application for analyzing and visu-
alizing the data from electrical recordings on the
brain surface of epileptic patients (see Figure 1 and
p. 90)." Finally, BrainVISA is a comprehensive
pipeline-analysis tool for anatomical data, devel-
oped by a team of researchers in France (www.
brainvisa.info).

Integrating Python

Development in Neuroimaging

In this article, our main focus is on NIPY (http://
neuroimaging.scipy.org), a new initiative to create
a unified, open source, and open development en-
vironment for the analysis of neuroimaging data.”

In particular, we focus on the fMRI component of
NIPY, which is based on the BrainSTAT package
that Jonathan Taylor wrote at Stanford University.®
We are also working with Hunter and researchers
at the University of Chicago to better integrate
PBrain into the NIPY framework.

Image Model

An MRI scanner produces images that represent
slices of brain tissue, and several of these slices to-
gether constitute a 3D whole-brain scan. The val-
ues in each voxel (volume element) in a 3D image
slice represent measurements from a small volume
of the brain.

A major problem in neuroimaging is that differ-
ent analysis packages and scanners use different out-
put image formats that are not readily compatible.
To address this, NIPY provides read and write ca-
pabilities for all the popular image formats in neu-
roimaging, as well as access to binary data images
and Python arrays in memory. Images can be com-
pressed upon read or write, loaded from an arbitrary
URL (with local caching), and managed by memory
mapping where possible. Images also have iterators
for reading data in slices and other subsets; Python
iterators offer an elegant mechanism for construct-
ing lazily instantiated sequential data structures—a
perfect abstraction for intuitively representing se-
quential data (such as time series, spatial slices, or
generally (n — 1) — d data bricks from an » — d data
set) without sacrificing memory efficiency.

Spatial transforms on images are fundamental to
neuroimaging—for movement correction, warping
to templates, and many other analysis steps. NIPY

May/JuNe 2007

53

30

40

50

60

70

80

90

100

110

30 40 50 60 70 80 90

Figure 2. Image of standard deviation across time
points. By summarizing data, the standard
deviation image can highlight problems of
background noise and artifacts that vary over time.

i /A N VTN = f\\ T M4
3D b ey \JWVW'W]\/\/J W

20 20 60 80 100 120
Difference image number

ws5SRY

Slice by slice variance

= 142

€138
£ 136) L

BB~ N —————
s

31 20 0 60 80 100 120
Image number

6
Slice number

Figure 3. Time-series diagnostics. Researchers
can use these four plots to diagnose potential
problems in the time-series data.

offers a general model of image spatial transforms
that allow arbitrary combinations of linear and
nonlinear transforms, volume-to-surface mappings,
and flexible levels of image interpolation. A com-
mon analysis technique is to examine the signal
from a restricted region of the brain, or region of in-
terest (ROI). NIPY has several ROI objects and
functions, including discrete (point-level) and con-

tinuous (sphere, ellipse) region definitions, region
combination algebra, and region data extraction.

Data Diagnostics

Because the scanner’ signal quality can vary from
day to day, special attention is needed to ensure
good data. Currently, NIPY offers several diag-
nostic tools to let researchers discover problems
with their data before they analyze it.

Images that summarize data across a time series
provide a straightforward way to examine f MRI data.
Taking an image of the standard deviation of signal
intensity across time, for example, can highlight
problems in the time series acquisition that occur
with subject movement or instabilities of the data ac-
quisition over time (see Figure 2).

Figure 3 shows four plots that can help diagnose
potential problems in the time series. The top plot
displays the scaled variance from image to image; the
second plot shows the scaled variance per slice; the
third plot shows the scaled mean voxel intensity for
each image; and the bottom one plots the maximum,
mean, and minimum scaled slice variances per slice.

Another powerful technique for data diagnosis is
principal components analysis (PCA), which is par-
ticularly useful for detecting outlying time points
or unexpected sources of spatially coherent noise.
PCA on an image time series takes the time points
as rows and voxels as columns, and decomposes the
data into components that can efficiently express
the source of variance in the data. Each component
consists of a characteristic time series and the voxel
weights contributing to that component, and these
weights are viewable as an image. Figure 4 shows
images of the weights for the first four principal
components of a functional data set.

Statistical Processing
Subjects in a typical IMRI experiment perform some
task or receive stimuli while being scanned; thus, ar-
eas activated by the task or stimulus exhibit voxel
time series correlated with the experimental design.
Unfortunately, noise in fMRI analysis can come
from multiple sources, and the signal is relatively
low. This problem with signal detection has led to
several standard and more complex statistical meth-
ods.* Partly for historical reasons, current analysis
packages use nonstandard or low-level statistical ter-
minology and interfaces, making them less accessi-
ble to scientists with general training in statistics.
At Stanford, Taylor developed a general set of
statistical model objects in Python that use stan-
dard statistical terminology and allow flexible high-
level statistical designs. Similar to the R statistical
language, these objects implement a general series

54

COMPUTING IN SCIENCE & ENGINEERING

Figure 4. Principal components analysis (PCA). This type of analysis is particularly useful for detecting
outlying time points or unexpected sources of spatially coherent noise.

of statistical models and contrasts for data, includ-
ing functional images. These models form the basis
of NIPY statistical analysis and are now maintained
as part of the SciPy distribution; we hope these will
attract further development from researchers out-
side brain imaging.

ython’s power and generality mean that

we have many fruitful directions in

which to take NIPY. At the most basic,

its high-level language features make it
much easier to refactor the code into a well-
patterned, high-level interface that scientific de-
velopers can quickly pick up. Because Python has
such good integration with C/C++, we also have
ready access to very powerful visualization and
image-processing libraries. Two very important ex-
amples are the Visualization Toolkit (VTK) and the
Insight Toolkit (ITK). VI'K provides high-quality
3D graphical display and includes Python wrappers
as part of its standard distribution, whereas I'TK is
a library of image registration and segmentation
routines originally developed for the Visible Hu-
man Project. Like VTK, Python wrappers are part
of the standard I'TK distribution.

We intend NIPY to become the standard analysis
library in neuroimaging in the medium term, which
means we will need to provide the ability to call rou-
tines in other packages that are more familiar to re-
searchers. Thankfully, this is a much easier task in
Python than in many other languages because of its
ability to interact with languages such as C.

Python’s language features can also help us tackle
the problem of provenance tracking. Because imag-
ing analyses and data sets are very diverse, researchers
use a variety of analysis packages and rarely record all
their data and analysis parameters, making it very dif-
ficult for other people to reproduce published analy-

ses. Fortunately, Python has excellent support for
metaprogramming techniques (including metaclasses
and function decorators) that can transparently
change object behavior. We can thus use these tech-
niques with Python’s object introspection to capture
the data’s nature and processing in a way that can be
closely wedded to the analysis.” Ultimately, this
means that the analysis can become self-document-

ing, making it far easier to reproduce. S

References

1.).D. Hunter et al., “Locating chronically implanted subdural elec-
trodes using surface reconstruction,” Clinical Neurophysiology,
vol. 116, no.8, 2005, pp. 1984-7.

2.).E. Taylor et al., “BrainPy: An Open Source Environment for the
Analysis and Visualization of Human Brain Data,” Neuroimage,
vol. 26, no. 763, 2005, pp. T-AM.

3.).E. Taylor and K.]. Worsley, “Inference for Magnitudes and De-
lays of Responses in the FIAC Data Using BRAINSTAT/FMRISTAT,”
Human Brain Mapping, vol. 27, no. 5, 2006, pp. 434-441.

4. AW.Toga and).C. Mazziotta, eds., Brain Mapping: The Methods,
2nd ed., Elsevier Science, 2002.

5. K. Millman and M. D’Esposito, “Data and Analysis Management
for Functional Magnetic Resonance Imaging Studies,” Proc. Int’l
Advanced Database Conf., M. Amin et al., eds., US Education Ser-
vice, 2006, pp. 24-28.

K. Jarrod Millman is the director of computing for the He-
len Wills Neuroscience Institute at the University of Cali-
fornia, Berkeley. His research interests include functional
brain imaging, informatics, configuration management,
and computer security. Millman has a BA in mathematics
and computer science from Cornell University. Contact
him at millman@berkeley.edu.

Matthew Brett is a senior investigator scientist at the
Medical Research Council (MRC) Cognition and Brain Sci-
ence Unit in Cambridge, UK. His research interests include
functional brain imaging and localization of brain func-
tion. Brett has an MD from Cambridge University. Con-
tact him at matthew.brett@gmail.com.

MAY/JuNE 2007

55

