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Good practice for plotting



How not to use MATLAB to visualise data

Type data into

Excel…
…copy-

paste

into 

Matlab…

…type in

command 

line

instructions 

to

plot…

…fiddle with plot using

interactive plotting

interface until 

satisfied.

What’s wrong with this?



Good practice: help your future self

• Assume you will forget everything!

• Comment
• Intro: %this script was made to…
• Brief note on each line or chunk: %load the data, %reformat the plot…

• Structure the code
• clear your workspace
• set parameters
• load data
• then make plots…

• Move from concrete to flexible
• function [out] = makeMePlots(dataDirectory,plotDirectory,includePValues)



Good practice: make your process 
transparent
• What is Open Science?

• Reporting what you’ve done
• Sharing every step

• Why share scripts?
• Limited room for explanation in a Methods section
• Scripts hold all the detail you need!

• Reproduceable plotting
• Script everything – including loading the data
• Comment everything

• Name and contact details
• Background on the data at the top of the script, or in a ‘README’ in the script’s folder



Good practice: some resources

‘Good enough practices in scientific computing’, Wilson et al. 2017

‘Everything is f-ed’ open science syllabus, Sanjay Srivastava (@hardsci)



Starting a script



Starting a script: exercise

• open a new script

• save it 
• meaningful location, meaningful name…

• avoid clashing with built-in function names (mean, max, plot…)

• intro
• % for comments (things MATLAB won’t try to run)

• your info

• what will this script do?



Starting a script: tips

• some safety checks
• clean up your working 

environment to prevent clashes

• prepare for errors

clc; close all; clear; %clear the command window, 
figures, and workspace

dbstop if error; %if there’s an error, pause at that line



Starting a script: example



Scatter plots



Scatter plot: exercise

• make (or load) the data
• make y relative to x

• “figure” 
• add to your script and run it!

• explore the scatter function
• “help scatter” or “doc scatter” in 

the command window

• plot
• “scatter(x,y)”

• “lsline”

x = linspace(0,1,100); %go from 0 to 1 in 100 steps

y = x + 0.1*rand(1,100); %copy x, then modify it by 
some random values between 0 and .1



Scatter plot: example



Line plots



Line plot: exercise

• make (or load) the data
• we’ll use the sine and cosine of 

the same data vector

• ‘figure’

• explore the ‘plot’ function
• “help plot”

• plot 
• plot(x,y)

x = linspace(0,360,100); %0:360 in 100 steps

y = sind(x);

z = cosd(x);



Line plot: tips

• store the figure information
• look inside the handle. what are 

its properties?

• make variables for different 
colours

• make black

• define your own three colours…

h = figure; %open a figure, and store a ‘handle’ to it in 
a variable

red=[1 0 0];  

green=[0 1 0]; 

blue=[0 0 1]; 

black=[0 0 0]; 



Line plot: tips

• store the figure information
• look inside the handle. what are its 

properties?

• make variables for different colours
• make black

• define your own three colours…

• plot(x,y) again, specifying the 
colour

• Name-Value pairs

• go back to “help plot” if you need to!

h = figure; %open a figure, and store a ‘handle’ to it in a 
variable

red=[1 0 0];  

green=[0 1 0]; 

blue=[0 0 1]; 

black=[0 0 0]; 



Line plot: example



Line plot: exercise

• add another plot
• “hold on” under first plotting command

• use x and z data variables to make another line

• give this line a different colour

• add labels
• try out “xlabel”, “ylabel”, and “title”

• explore “box”, “axis”, and “legend” commands to make plot look 
‘publishable’…

• save with “saveas” and the figure handle
• see if you can work out how to save it as a jpeg!



Line plot: example



Bar plots



Bar plots: basics (exercise)

• make (or load) some data

• get the group means of x and y 
for each task

• store the group means in a 
variable

• 2 conditions (rows), 3 tasks 
(columns)

• estimate the standard error of 
each mean (standard 
deviation/square root of n)

• “std” and “sqrt”

x = randi(10,[10,3]); %x = easy. get random integers 
between 0 and 10, for 10 subjects (rows) and 3 tasks 
(columns)

y = x + randi(3,[10,3]); %y = hard. assume this evoked 
slightly larger responses than the easy condition.



Bar plots: basics (example)



Bar plots: plot properties (exercise)

• h = figure;

• explore the “bar” function

• plot

• create a handle for the plot
• explore the plot’s properties 

• hold on

• modify the bar colours with the 
plot handle and “set”

• add a title and axis labels

b = bar(data); 



Bar plots: plot properties (example)



Bar plot: axis properties (exercise)

• get the axis handle
• compare the properties in the 

figure, plot, and axis handles

• change the x-axis ticks and labels
• hint: use ‘set’ and the axis handle

ax = gca; %get current axis



Bar plot: axis properties (example)



Bar plots: error bars (exercise)

• find the location of each bar on 
the x-axis and store it in a 
variable

• use “errorbar” to plot the 
standard error of the means

• hint: use the errors you calculated 
earlier

X = [1-(2/9) 1 1+(2/9); 2-(2/9) 2 2+(2/9)];



Bar plots: error bars (example)



Bar plots: reporting stats (exercise)

• find the highest value on the plot
• without looking at the plot!

• “line” and “text”
• plot a line from the easy to the hard condition along the top of the plot

• put text in the centre showing a p-value
• make a handle to the text

• modify the text size and vertical alignment

• “ylim”
• adjust the y-axis limits to give the p-value more space



Bar plots: reporting stats (example)



Subplots



Subplots (exercise)

• explore the “subplot” function

• make a figure with subplots
• 1 per person in our bar plot dataset

• 2 rows, 5 columns

• loop through the subjects

• for each person, plot their 3 tasks and 2 conditions as you did for the 
group average bar plots

• give each subplot a title

• calculate the group range and use it to set the y-axis limits



Subplots (example)



Just for fun


