
Visualising data using
MATLAB

Lydia Barnes

MRC Cognition and Brain Sciences Unit

8th November 2019

(slides from Sneha Shashidhara and Kate Storrs!)

Good practice for plotting

How not to use MATLAB to visualise data

Type data into

Excel…
…copy-

paste

into

Matlab…

…type in

command

line

instructions

to

plot…

…fiddle with plot using

interactive plotting

interface until

satisfied.

What’s wrong with this?

Good practice: help your future self

• Assume you will forget everything!

• Comment
• Intro: %this script was made to…
• Brief note on each line or chunk: %load the data, %reformat the plot…

• Structure the code
• clear your workspace
• set parameters
• load data
• then make plots…

• Move from concrete to flexible
• function [out] = makeMePlots(dataDirectory,plotDirectory,includePValues)

Good practice: make your process
transparent
• What is Open Science?

• Reporting what you’ve done
• Sharing every step

• Why share scripts?
• Limited room for explanation in a Methods section
• Scripts hold all the detail you need!

• Reproduceable plotting
• Script everything – including loading the data
• Comment everything

• Name and contact details
• Background on the data at the top of the script, or in a ‘README’ in the script’s folder

Good practice: some resources

‘Good enough practices in scientific computing’, Wilson et al. 2017

‘Everything is f-ed’ open science syllabus, Sanjay Srivastava (@hardsci)

Starting a script

Starting a script: exercise

• open a new script

• save it
• meaningful location, meaningful name…

• avoid clashing with built-in function names (mean, max, plot…)

• intro
• % for comments (things MATLAB won’t try to run)

• your info

• what will this script do?

Starting a script: tips

• some safety checks
• clean up your working

environment to prevent clashes

• prepare for errors

clc; close all; clear; %clear the command window,
figures, and workspace

dbstop if error; %if there’s an error, pause at that line

Starting a script: example

Scatter plots

Scatter plot: exercise

• make (or load) the data
• make y relative to x

• “figure”
• add to your script and run it!

• explore the scatter function
• “help scatter” or “doc scatter” in

the command window

• plot
• “scatter(x,y)”

• “lsline”

x = linspace(0,1,100); %go from 0 to 1 in 100 steps

y = x + 0.1*rand(1,100); %copy x, then modify it by
some random values between 0 and .1

Scatter plot: example

Line plots

Line plot: exercise

• make (or load) the data
• we’ll use the sine and cosine of

the same data vector

• ‘figure’

• explore the ‘plot’ function
• “help plot”

• plot
• plot(x,y)

x = linspace(0,360,100); %0:360 in 100 steps

y = sind(x);

z = cosd(x);

Line plot: tips

• store the figure information
• look inside the handle. what are

its properties?

• make variables for different
colours

• make black

• define your own three colours…

h = figure; %open a figure, and store a ‘handle’ to it in
a variable

red=[1 0 0];

green=[0 1 0];

blue=[0 0 1];

black=[0 0 0];

Line plot: tips

• store the figure information
• look inside the handle. what are its

properties?

• make variables for different colours
• make black

• define your own three colours…

• plot(x,y) again, specifying the
colour

• Name-Value pairs

• go back to “help plot” if you need to!

h = figure; %open a figure, and store a ‘handle’ to it in a
variable

red=[1 0 0];

green=[0 1 0];

blue=[0 0 1];

black=[0 0 0];

Line plot: example

Line plot: exercise

• add another plot
• “hold on” under first plotting command

• use x and z data variables to make another line

• give this line a different colour

• add labels
• try out “xlabel”, “ylabel”, and “title”

• explore “box”, “axis”, and “legend” commands to make plot look
‘publishable’…

• save with “saveas” and the figure handle
• see if you can work out how to save it as a jpeg!

Line plot: example

Bar plots

Bar plots: basics (exercise)

• make (or load) some data

• get the group means of x and y
for each task

• store the group means in a
variable

• 2 conditions (rows), 3 tasks
(columns)

• estimate the standard error of
each mean (standard
deviation/square root of n)

• “std” and “sqrt”

x = randi(10,[10,3]); %x = easy. get random integers
between 0 and 10, for 10 subjects (rows) and 3 tasks
(columns)

y = x + randi(3,[10,3]); %y = hard. assume this evoked
slightly larger responses than the easy condition.

Bar plots: basics (example)

Bar plots: plot properties (exercise)

• h = figure;

• explore the “bar” function

• plot

• create a handle for the plot
• explore the plot’s properties

• hold on

• modify the bar colours with the
plot handle and “set”

• add a title and axis labels

b = bar(data);

Bar plots: plot properties (example)

Bar plot: axis properties (exercise)

• get the axis handle
• compare the properties in the

figure, plot, and axis handles

• change the x-axis ticks and labels
• hint: use ‘set’ and the axis handle

ax = gca; %get current axis

Bar plot: axis properties (example)

Bar plots: error bars (exercise)

• find the location of each bar on
the x-axis and store it in a
variable

• use “errorbar” to plot the
standard error of the means

• hint: use the errors you calculated
earlier

X = [1-(2/9) 1 1+(2/9); 2-(2/9) 2 2+(2/9)];

Bar plots: error bars (example)

Bar plots: reporting stats (exercise)

• find the highest value on the plot
• without looking at the plot!

• “line” and “text”
• plot a line from the easy to the hard condition along the top of the plot

• put text in the centre showing a p-value
• make a handle to the text

• modify the text size and vertical alignment

• “ylim”
• adjust the y-axis limits to give the p-value more space

Bar plots: reporting stats (example)

Subplots

Subplots (exercise)

• explore the “subplot” function

• make a figure with subplots
• 1 per person in our bar plot dataset

• 2 rows, 5 columns

• loop through the subjects

• for each person, plot their 3 tasks and 2 conditions as you did for the
group average bar plots

• give each subplot a title

• calculate the group range and use it to set the y-axis limits

Subplots (example)

Just for fun

