Introduction to Matlab workshop
November 2019

Structuring & «debugging
Matlab code

Danny Mitchell

Please download and unzip &g
: 6§2RI&Qa SEI Y '
http:/iImaging.mrecbu.cam.ac. uk/methodMatIabLecturesScheduIe
and open them in the Matlab editor

http://imaging.mrc-cbu.cam.ac.uk/methods/MatlabLecturesSchedule

Outline- goals

A Writing code that works (debugging)
A Writing clear code

A Writing fast code

A Writing code fast

In the following red outlines highlight things that could be improved.
(Although this can be subjective!)

Why wriite clear-code?

A9 & A SNX
Xto follow while writing and debugging
Aless likely to make mistakes
Abugs are easier to spot
Xto understand when you come back to it later
Xto modify
Xfor othersto understand and modify

AEasier for them to help you
ALess likely they will need your help

Making codemoredeadable (example A)

Ep—— X w Structure your code
== E=10;
i - §=[1df]1 w Leave sSpaces
5 — c=c (randperm|(B)) ; w Indent (Ctr4|)
B — fprintf({'sd' . n',d): . .
17 Hror eum : w Use meaningful variable names
- printf({'sd sd\.n',e,cie)):
20 [w Add comments
w Be consistent
o | ., A myVariable
w What is this script for” A MyVariable
w Try running It A myvariable
w How might it be improved? A my variable

A MYVARIABLE
w Modularise(use sub functions)
Cells to demarcate regions{s)
Ellipsigo continueline (X)

> g

A Print helpful comments to the
command line

Making code moredeadable (example G NA i <Shord K AA.

Repeated (especialty non=independent)mformation

1 % Number of trials

2- |pumtrials=i0; “ js hard to change, and allows odd inconsistencies

4 % 4 conditions, 10 reps, change for randomized trial order

5- |trialtype=[2 3 3 2 1 4 2 4 4 4 3 3 2 2 4 1
6 1 1 4 1 2 3 3 2 4 1 2 2 3 1 3 1 1 1

7 4 4 3 4 3 271;

ﬂ N

9

10~ [fprintf(Experiment beginsin’)i| | ong manually entered lists are easy to

12 : : get wrong, hard to check, and hard to change
13 —Main—+trial loop

14 — | for trialind=1l:num trials

15 — i i ialind)==1)

16 ondition 1

17 — intf('Trial %d, this is an example of stimulus 1l... AAAA\n',trialind);
18 - erun(trialind)=toc; - — T
19 — pause(0.1);

20 - Lf L{trialtype{trialind)==2)

21 | %t dondition 2 |

22 - fpriintf('Trial %d, this is an example of stimulus 2... BBEBB\n',trialind):;
23 - timerun(trialind)=toc;

24 — pause(0.1);

25 - elseif |[(trialtype(trialind)==3)

26 $ Qondition 3

27 - fpgintf(Trial %d, this is an example of stimulus 3... CCCC\n',trialind):
28 — timerun{trialind)=toc;

29 — pause(0.1);

30 — elseif (tri rialind)==4)

31 $ Qondition 4

a2 - fprintf('Trial %d, this is an example of stimulus 4... DDDD\n',trialind):;
33 - timerun(trialind)=toc;

34 - pause(0.1);

35 — en
36— | end; Repeats of similar code are tedious to write, read and maintain.
37

Easy way to introduce bugs!

Making codemoredeadable (example D): \Maybe youw did-better’

% These important parameters can be easily adjusted independently of
% everything else. They're at the top for convenience.
stimuli={'AAAA', 'BBBB', 'CCCC','DDDD'};

num reps=10;

% Calculate how many conditions, trials
num_conds=length(stimuli);

num_trials=num_conds*num_reps; Occasionally syntax changes between versions:

% Reset random seed so that you get differept trial orders every time (even
% when Matlab has Jjust been started) . ~
rand(state',sum(100*clock)); mg(oshuffl ed) ;

% num reps trials of each condition, in randomized order

trialtype=kron(l:num conds,ones(l,num reps)); : .
trialtype=trialtype(randperm(num trials)); MrsleaiseieanEn; i ysloe e e

fprintf('Experiment begins\n'); trialtype ~ =repmat (1:num_conds,[1

num_reps J);
tic - -

% Main trial loop
for trialind=1:num_ trials
fprintf('Trial %d, this is an example of stimulus %d... %s\n',trialind,
trialtype(trialind),stimuli{trialtype(trialind)});
timerun(trialind)=toc;
pause(0.1);
end;

Structuringccoderinto functions

A As scripts become larger, they can become cumbersome

| F NR (02 FAYR 2ySTF2fQaNVAY FARAKdAKS
| F NR (G2 Nd¥zy 2dzad 2yS LI NI ol ftdKz2d
Hard to reuse one pag need to find it, remember what variables it needs,
what variables are in the workspace, etc.

A Functions are usually better:

Encapsulate jojwith well defined input and outputnterface

Flexible, e.g. rerun same code on different inputs

No need to worry about what might or might not be in the workspace
Easier foMlint to spot more potential problems

Usually faster

A Another good chance to make things clear and tidy:

Choose descriptive function names

Structure them intadirectories
I make sure they are on the path; chemrect version is being usedth:
which <functionname > - all

Document each function: What does it do? What are input and output
variables? Who wrote it and when? Was it based on previous code?
Keywords fotookfor In first comment line

Tiny examples (Example E)
1. Circumference of unit circle is
C=2r
r c PHY X

'Y
(cost,sint)

ey
N

Will the example script always give the right answer?

2. The second part of the script prints a statement.
La A0 O2NNBOUKMinte? Jitime.T A0 Q&

Keeping thenworkspace-iidy,
and eptimizing-memory

A Good:

I Initialise variables prior to usélargestfirst)
I Use the appropriate data typ&onsider sparse variables)

I Group related variables into structures?
(good for organisation; not for memory use; example below)

I Prefer functions ovescripts

A Last resorts?

I Launch without Java Virtual Machine? (matlab.erejvm)

I Save to file (slow).

AIf loading/saving via .mat file, use structure, and specify required variables.

Eg. load handel versus wav=load (' handel 0);
or wav=Iload (' handel 6, 0¥ 0

Advertising Programmes Business Solutions About G

& 2011 - Privacy

Integrated development environments (IDES)

Integrated design/debugging environments

A Typically consist of:
I Source code editor
I Compiler/interpreter
i Debugger
A Makes coding much easier
i ¢KS 020fS 2mrucSESNVRAYO2R820 LJdzi ¢ A a |
long a program takes to write.
i 65S0dzZAISNEE S-bylireadexdding wiaRishSppdnihg/ S
i dal Ayidé oAt X
A spot errors,
A potential errors,
A opportunities for optimization,
A suggests improvements and fix things automatically!

A Calculate McCabe complexity metric :
I checkcode filename.m Tcyc XFAY FT2NJf wmMno
A Shut up if you tell it to%#bk, or set in preferences

I useful to fix own code, or to work out what another program (e.g. SPM) does.

K>> | Using the«debugger

A Breakpoints

I Adding breakpoints manually

I Triggering debug mode on an errdbstop if error)

I conditional breakpointsdpstop in MFILE at LINENO if EXPRESSION)
A Moving in the stackdbstack)

I dbup, dbdown
At NRPINBPaaAy3d GKNRdIzZAK GKS O2RSX

i dbcont (F5)

i dbstep (F10)

i dbstep in (F11)

i dbstep out (shift+F11)

i dbquit (shift+F5)
A Catching an error without the debugger
T try éé

%e t o run some code that you think n
catch anError é é

%é in which case jump to du&ssEyl

end Re%ord the exception
om er ee

%éo0t her wi s e, continue fr

K>>MPractice using ¢he debugger

A Example G. Try to get it to run to the end!
A Some tips:

Read the error message!

Are brackets of the right type and do they match up?

Are matrices of the right dimension? Should they be transposed?
Have variables been misspelled, or deleted when still needed?
Do functions have the correct inputs and outputs?...

X dz&ep < functionnname > if unsure what a function does

Are multiplication/divisions matrixise or elementwise?

Suo

Writing fastcode:/NMectorization & Redlocationexampie)

A Matlab has been designed fonaths
A For some things (e.g., matmxaths) it is very fast:

»>> plear z: ticy ind=1:50000: z=sin(ind): toc:
Elapsed time is 0.006758 seconds.

fx >>
A Some things, e.g. loops, can be slow:

>> plear z: tic; for ind=1:50000; z(ind)=sin{ind): end:; toc
Elapsed time is 11.B848116 seconds.

fx >> U 1700 times slower!
I Ui Some of this can be recovered by
A - ¢ X pre-allocation¢ see demo

I Sometimes loops are necessary, or more intuitive.

I If you are going to use a slow loop, try to:
A pre-allocate variables,
A indicate progress (e.gprintf ; drawnow, perhaps everythiteration)
A Put slowest steps (e.g. file access) outside loop if possible

A Surprising: matrix orientation can also make a small difference
(generally better to operate down columns)

A2 NARGS 2dzi | 02 a0 FRMNEY

Vectotization:zadealflife:caseample J) *verrices ¢

"HMode 1™

"Hode 3"
"Hode 4" .
"Hode 5" !
"Hode 6"
*AYCS
2

1
2
3
4
5
6

- haat ‘
gt e

~140,000,000
connections

(N T ¥ BT - SR WL I % R
[" T T ¥ Y - R S ¥

(Sl L N % N % Y T % I % R 8
ocooooooo o

A If matrix is symmetrical, only
need to save half of it

A Looping through each cell to add
each line to output file takes
hours; preparing output variable
then writing to file in one go takes
seconds

"Hode 2™ |)

