
Introduction to Matlab workshop
November 2019

Structuring & debugging
Matlab code

Danny Mitchell
(originally adapted from Rhodri Cusack)

Please download and unzip
ǘƻŘŀȅΩǎ ŜȄŀƳǇƭŜǎ ŦǊƻƳΥ

http:/ imaging.mrc-cbu.cam.ac.uk/methods/MatlabLecturesSchedule
and open them in the Matlab editor

http://imaging.mrc-cbu.cam.ac.uk/methods/MatlabLecturesSchedule

ÅWriting code that works (debugging)

ÅWriting clear code

ÅWriting fast code

ÅWriting code fast

In the following, red outlines highlight things that could be improved.
(Although this can be subjective!) X

Outline - goals

Why write clear code?

Å9ŀǎƛŜǊΧ

Χto follow while writing and debugging

Åless likely to make mistakes

Åbugs are easier to spot

Χto understand when you come back to it later

Χto modify

Χfor othersto understand and modify

ÅEasier for them to help you

ÅLess likely they will need your help

Making code more readable (example A)

X ω Structure your code

ω Leave spaces

ω Indent (Ctrl-I)

ω Use meaningful variable names

ω Add comments

ω Be consistent

ÅmyVariable

ÅMyVariable

Åmyvariable

Åmy_variable

ÅMYVARIABLE

ω Modularise(use sub functions)

ω Cells to demarcate regions (%%)

Å Ellipsis to continue line (Χ)

Å Print helpful comments to the
command line

ω What is this script for?

ω Try running it

ω How might it be improved?

Making code more readable (example C):

X

Repeats of similar code are tedious to write, read and maintain.

Easy way to introduce bugs!

Long manually entered lists are easy to

get wrong, hard to check, and hard to change

Repeated (especially non-independent) information

is hard to change, and allows odd inconsistencies

²ǊƛǘŜ ǘƘƛǎ ƳƻǊŜ ŎƭŜŀǊƭȅΧ

Making code more readable (example D): Maybe you did better?

Occasionally syntax changes between versions:

rng (óshuffleô);

There are often many ways to skin a cat:

trialtype =repmat (1:num_conds,[1 num_reps]);

Structuring code into functions
Å As scripts become larger, they can become cumbersome
ïIŀǊŘ ǘƻ ŦƛƴŘ ƻƴŜ ǎŜŎǘƛƻƴ όǘƘƻǳƎƘ άŎƻŘŜ-ŦƻƭŘƛƴƎέ ƳƛƎƘǘ ƘŜƭǇύ
ïIŀǊŘ ǘƻ Ǌǳƴ Ƨǳǎǘ ƻƴŜ ǇŀǊǘ όŀƭǘƘƻǳƎƘ άŎŜƭƭ ŜȄŜŎǳǘƛƻƴέ ƳƛƎƘǘ ƘŜƭǇύ
ïHard to reuse one part ςneed to find it, remember what variables it needs,

what variables are in the workspace, etc.

Å Functions are usually better:
ïEncapsulate job, with well defined input and output interface
ï Flexible, e.g. rerun same code on different inputs
ïNo need to worry about what might or might not be in the workspace
ïEasier for Mlint to spot more potential problems
ïUsually faster

Å Another good chance to make things clear and tidy:
ïChoose descriptive function names
ïStructure them into directories

ïmake sure they are on the path; check correct version is being used with:
which <functionname > - all

ïDocument each function: What does it do? What are input and output
variables? Who wrote it and when? Was it based on previous code?
Keywords for lookfor in first comment line

Tiny examples (Example E)

1. Circumference of unit circle is

C= 2 ̄ r
Ґ сΦнуΧ

Will the example script always give the right answer?

2. The second part of the script prints a statement.

Lǎ ƛǘ ŎƻǊǊŜŎǘΚ ²Ƙŀǘ ƛŦ ƛǘΩǎ Ǌǳƴ ŦƻǊ ŀ нnd time? 3rd time...

Keeping the workspace tidy,
and optimizing memory

ÅGood:
ï Initialise variables prior to use (largest first)

ïUse the appropriate data type (Consider sparse variables)

ïGroup related variables into structures?

(good for organisation; not for memory use; example below)

ïPrefer functions over scripts

ÅLess good:
ïClear unwanted variables (but be careful!)

ïPack (command-line only)

ÅLast resorts?
ïLaunch without Java Virtual Machine? (matlab.exe ςnojvm)

ïSave to file (slow).

ÅIf loading/saving via .mat file, use structure, and specify required variables.

E.g. load handel versus wav=load (' handel ó);

or wav=load (' handel ó,ôyô);

* Arthur C. Clarke said Douglas Adams' use of "Don't panicòwas perhaps the best advice that could be given to humanity.

Debugging

Å It is rare for anyone to write a piece of code that works first time

ÅWhen you identify a problem:
(1) 5ƻƴΩǘ tŀƴƛŎΗϝΧ όƛǘΩǎ ƴƻǊƳŀƭύ

(2) Read the error message! (and the function help)

(3) Stare at the code for a little while to try to work out what is wrong

(4) LŦ ǘƘƛǎ ŘƻŜǎƴΩǘ ǿƻǊƪΣ ǘŜǎǘ ǘƘŜ ŎƻŘŜ ƛƴ ŘƛŦŦŜǊŜƴǘ ǿŀȅǎ ǘƻ ƴŀǊǊƻǿ Řƻǿƴ ǘƘŜ
problem. USE THE DEBUGGER. At each step, does anything look odd?
Å value of variables in workspace
Å data type of variables
Å shape and size of matrices
Å functions on path
Å Plot data (See upcoming talk)

(5) ! ǇǊƻƎǊŀƳƳŜǊΩǎ ǎŜŎǊŜǘΧ

(6) Phone a friend

ÅAnticipate bugs
ïExpect that you will make mistakes

ïLook for them & try to make them easy to spot (e.g. assert ())
ïBetter for code to break, than to look like it worked when it ŘƛŘƴΩǘΗ

Google

www.mathworks.co.uk/matlabcentral/fileexchange/

Integrated development environments (IDEs)
Integrated design/debugging environments

Å Typically consist of:
ï Source code editor

ï Compiler/interpreter

ï Debugger

Å Makes coding much easier

ï¢ƘŜ ŎȅŎƭŜ ƻŦ άǘǿŜŀƪ ŎƻŘŜ - rerun ςŜȄŀƳƛƴŜ ƻǳǘǇǳǘέ ƛǎ ŀ ƳŀƧƻǊ ŦŀŎǘƻǊ ƛƴ Ƙƻǿ
long a program takes to write.

ïά5ŜōǳƎƎŜǊǎέ ƭŜǘ ȅƻǳ Ǌǳƴ ŎƻŘŜ ƭƛƴŜ-by-line and examine what is happening

ïάa-[ƛƴǘέ ǿƛƭƭΧ

Åspot errors,

Åpotential errors,

Åopportunities for optimization,

Åsuggests improvements and fix things automatically!

ÅCalculate McCabe complexity metric :

ïcheckcode filename.m ïcyc (ΧŀƛƳ ŦƻǊ ғ млύ

ÅShut up if you tell it to: %#ok , or set in preferences

ï useful to fix own code, or to work out what another program (e.g. SPM) does.

K>> Using the debugger
Å Breakpoints

ï Adding breakpoints manually

ï Triggering debug mode on an error (dbstop if error)

ï conditional breakpoints (dbstop in MFILE at LINENO if EXPRESSION)

Å Moving in the stack (dbstack)

ï dbup , dbdown

Å tǊƻƎǊŜǎǎƛƴƎ ǘƘǊƻǳƎƘ ǘƘŜ ŎƻŘŜΧ

ï dbcont (F5)

ï dbstep (F10)

ï dbstep in (F11)

ï dbstep out (shift+F11)

ï dbquit (shift+F5)

Å Catching an error without the debugger
ï try éé

%é to run some code that you think might failé

catch anError éé

%é in which case jump to here.

end

%é otherwise, continue from hereé

Be careful!

Record the exception

K>> Practice using the debugger

Å Example G. Try to get it to run to the end!

Å Some tips:

ïRead the error message!

ïAre brackets of the right type and do they match up?

ïAre matrices of the right dimension? Should they be transposed?

ïHave variables been misspelled, or deleted when still needed?

ïDo functions have the correct inputs and outputs?...

ïΧǳǎŜ help < functionnname > if unsure what a function does

ïAre multiplication/divisions matrix-wise or element-wise?

ïŜǘŎΧ

Writing fast code: Vectorization & Pre-allocation (example I)

ÅMatlabhas been designed for maths

ÅFor some things (e.g., matrix maths) it is very fast:

ÅSome things, e.g. loops, can be slow:

Å.¦¢Χ
ïSometimes loops are necessary, or more intuitive.

ï If you are going to use a slow loop, try to:

Åpre-allocate variables,

Åindicate progress (e.g. fprintf ; drawnow , perhaps every nth iteration)

ÅPut slowest steps (e.g. file access) outside loop if possible

ÅSurprising: matrix orientation can also make a small difference!
(generally better to operate down columns)

ü 1700 times slower!
ü Some of this can be recovered by

pre-allocation ςsee demo

Vectorization: a real life case (Example J)

Å²ǊƛǘŜ ƻǳǘ ŀ ŎƻƴƴŜŎǘƛǾƛǘȅ ƳŀǘǊƛȄ ǘƻ ΨPajekΩ ŦƻǊƳŀǘΥ

~11,000 nodes

~140,000,000

connections

Å If matrix is symmetrical, only

need to save half of it

Å Looping through each cell to add

each line to output file takes

hours; preparing output variable

then writing to file in one go takes

seconds

Vectorization exercises (Example K)

