

Basic MATLAB commands II

Moataz Assem

MRC Cognition and Brain Sciences Unit

With some snapshots from Olaf Hauk's previous slides

MATLAB = Matrix Laboratory

 All your data in MATLAB will be in the format of a matrix

Column 1 Column 2 Column 3 Column 4

	IQ	RT	accuracy	gender
subj 1	110	0.41	90	1
subj 2	90	0.53	80	1
subj 3	150	0.38	92	2
subj 4	100	0.40	85	2

	Time point	Time point	Time point	Time point
	1	2	3	4
Brain region 1	1.11336	1.46548	1.7325	1.96574
Brain region 2	0.36547	0.58962	0.12547	0.35478
Brain region 3	2.36987	1.25896	1.32569	0.85421

Column vector 4 rows x 1 column

IQ

A scalar 1 row x 1 column

- To analyse your data, you will need to be able to handle matrices
- To handle matrices, you need to follow some mathematical rules

Results = data * matrix

Scalars

> a = 10
> b = 2
> a + b = 12
> a - b = 8
> a * b = 20
> a / b = 5
> a + a + b = 22

Scalars & Vectors

> a = 2

- > b = [1 2] %row 1x2 vector
- > a + b $2 + [1 \ 2] = [3 \ 4]$
- > a * b 2 * [1 2] = [2 4]
- > a / b = Matrix dimensions must agree. what about b / a a./b $2 \cdot \frac{1}{2} = \begin{bmatrix} 2 & 1 \end{bmatrix}$

Vectors & vectors

In addition/subtractions: dimensions <u>must</u> match!

> b = [1 2] %row 1x2 vector

> b + [1 0]

$\begin{bmatrix} 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \end{bmatrix}$

Vectors multiplication

- > b = [1 2] %row 1x2 vector
- > c = [1; 2] %column 2x1 vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- b * b or c * c = Inner matrix dimensions must agree.
 dot (scalar) product: b * c ≠ c * b

$$\begin{bmatrix} 1 & 2 \end{bmatrix} * \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 * 1 + 2 * 2 \end{bmatrix} = 5$$
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} * \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 * 1 & 1 * 2 \\ 2 * 1 & 2 * 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Vectors in geometric space

EXERCISE 1

MRC Cognition and Brain Sciences Unit

Output = function(input) Y = mean(x)

Matrices operations

- Addition/subtraction
 - Both matrices <u>must</u> be the same size
 - The result has the same dimensions

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Matrix dimensions must agree.

Matrices operations

- Multiplication/division
 - Inner dimensions must be the same
 - The result dimensions are the outward dimensions

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \text{Inner matrix dimensions must agree.}$$
$$\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Matrix/vector transpose

 $\mathbf{M} \rightarrow \mathbf{M}^{T} (\mathbf{M} \rightarrow \mathbf{M}' \text{ in Matlab})$

Rows of **M** become columns of **M**

Dimension changes from RxC to CxR

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

$$(2x3) \qquad (3x2)$$

Special matrices

A "square" matrix has the same number of rows and columns (C=R)

MORE EXERCISES!

MRC Cognition and Brain Sciences Unit