Basic MATLAB commands II

Moataz Assem
MRC Cognition and Brain Sciences Unit

With some snapshots from Olaf Hauk's previous slides

MATLAB = Matrix Laboratory

- All your data in MATLAB will be in the format of a matrix

Column 1 Column 2 Column 3 Column 4

IQ RT accuracy gender

subj 1	110	0.41	90	1
subj 2	90	0.53	80	1
subj 3	150	0.38	92	2
subj 4	100	0.40	85	2

Time point Time point Time point Time point 1 2 3 4

	Brain region 1	1.11336	1.46548	1.7325
Brain region 2	0.36547	0.58962	0.12547	0.35478
Brain region 3	2.36987	1.25896	1.32569	0.85421

Time point Time point Time point Time point 12 3 4

Brain region 1 1	1.11336	1.46548	1.7325	1.96574

A row vector $=1$ row $\times 4$ columns

Column vector

4 rows $\times 1$ column
IQ

A scalar
1 row $\times 1$ column

- To analyse your data, you will need to be able to handle matrices
- To handle matrices, you need to follow some mathematical rules

Results = data * matrix

fMRI GLM analysis

Scalars

$>a=10$
$>b=2$
$>a+b=12$
$>a-b=8$
$>a * b=20$
$>a / b=5$
$>a+a+b=22$

Scalars \& Vectors

$>a=2$
$>b=\left[\begin{array}{ll}1 & 2\end{array}\right]$ \%row 1×2 vector
$>a+b$

$$
2+\left[\begin{array}{ll}
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & 4
\end{array}\right]
$$

$>a * b$
$2 *\left[\begin{array}{ll}1 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4\end{array}\right]$
$>\mathrm{a} / \mathrm{b}=$ Matrix dimensions must agree.
what about
b/a
a./b $2 . /\left[\begin{array}{ll}1 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 1\end{array}\right]$

Vectors \& vectors

In addition/subtractions: dimensions must match!
$>\mathrm{b}=\left[\begin{array}{ll}1 & 2\end{array}\right]$ \%row 1x2 vector
$>b+\left[\begin{array}{ll}1 & 0\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right]+\left[\begin{array}{ll}
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3
\end{array}\right]
$$

Vectors multiplication

$>\mathrm{b}=\left[\begin{array}{ll}1 & 2\end{array}\right]$ \%row 1×2 vector
$>c=[1 ; 2]$ \%column 2×1 vector
$\left[\begin{array}{l}1 \\ 2\end{array}\right]$
$>\mathrm{b}^{*} \mathrm{~b}$ or $\mathrm{c} * \mathrm{c}=$ Inner matrix dimensions must agree.
$>\operatorname{dot}$ (scalar) product: $\mathrm{b}^{*} \mathrm{c} \neq \mathrm{c}$ * b

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2
\end{array}\right] *\left[\begin{array}{l}
1 \\
2
\end{array}\right] } & =\left[\begin{array}{ll}
1 * 1+2 * 2
\end{array}\right]=5 \\
{\left[\begin{array}{l}
1 \\
2
\end{array}\right] * \quad\left[\begin{array}{ll}
1 & 2
\end{array}\right] } & =\left[\begin{array}{ll}
1 * 1 & 1 * 2 \\
2 * 1 & 2 * 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
\end{aligned}
$$

Vectors in geometric space

EXERCISE 1

$$
\begin{gathered}
\text { Output }=\text { function(input }) \\
Y=\operatorname{mean}(x)
\end{gathered}
$$

Matrices operations

- Addition/subtraction
- Both matrices must be the same size
- The result has the same dimensions

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]} \\
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]}
\end{gathered}
$$

Matrix dimensions must agree.

Matrices operations

- Multiplication/division
- Inner dimensions must be the same
- The result dimensions are the outward dimensions
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] *\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \cdot *\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\left[\begin{array}{l}1 \\ 1\end{array}\right] *\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=$ Inner matrix dimensions must agree
Mec convionand $\left.1 \begin{array}{ll}1 & 1]\end{array}\right] *\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Matrix/vector transpose

$$
\mathbf{M} \rightarrow \mathbf{M}^{T}\left(\mathbf{M} \rightarrow \mathbf{M}^{\prime} \text { in Matlab }\right)
$$

Rows of \mathbf{M} become columns of \mathbf{M}
Dimension changes from $R x C$ to $C x R$

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
\end{aligned} \rightarrow\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

Special matrices

Identity Matrix	Diagonal Matrix	Upper Triagonal Matrix
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}a & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & b\end{array}\right)$	$\left(\begin{array}{lll}a & d & f \\ 0 & c & e \\ 0 & 0 & b\end{array}\right)$

d \& b \& f

e \& f \& c\end{array}\right)\).

A "square" matrix has the same number of rows and columns ($C=R$)

MORE EXERCISES!

