
01/11/2017

1

Matlab Basics

Yaara Erez
yaara.erez@mrc-cbu.cam.ac.uk

MRC Cognition and Brain Sciences Unit
November 2017

Some good news

Focus on the concepts, not the details… and
google everything else

Some more good news

01/11/2017

2

Talk outline

• Code files (scripts, functions)

• Data files

• Flow control

– Conditioning – if, switch

– Repetitions: for loop, while loop

• More examples are in the scripts on the wiki.

These will be
demonstrated in
the extra scripts
only

Code files

• Instead of writing commands in the prompt, we can write
them in a code file and then execute (run) them as many
times as we want.

• Code files are files with extension ‘.m’.

• Code files can be either (batch) scripts or functions.

• Can be opened and edited in the Matlab editor (or other
editors).

Script basics

A script is a list of commands that are executed
almost as if you were typing them into the
command window, line by line

Action:
• Open a new script

• Create a variable, x, which
is a list of 5 numbers

• Save it as matlab_basics

• Run script

01/11/2017

3

Script basics

• ‘%’ for bits you don’t want to be run
(titles, notes etc.)

Use these liberally!

Add me

• ‘;’ To stop line printing (echo) in
command window

• save(‘filename’,’variables’)
save(‘test.mat’, ‘x’)

• F5-run script, F9-run highlighted bit

Add me

Add me

Run save

Data files

• Any Matlab variable(s) can be saved in a data file.

• Matlab data files have ‘.mat’ extension.

• ‘save’: save variables into a mat-file.
– save(‘file_name’) save all variables to file_name

– save(‘file_name’, ‘var1_name’, ‘var2_name’)

save only some of the variables into file_name.

• Note: var1_name, var2_name, etc. should be strings.

• ‘load’: load variables from a mat-file into the workspace.
– load(‘file_name’) load all variables in file_name

– Can also specify the names of the variables that needs to be loaded.

Flow control

• Generally, in a script/function, commands are executed
line by line, from start to end.

• But there are several special commands that change that
order.

– Conditioning: only execute something under certain
conditions (if, switch)

– Repetition: repeat a command or a series of commands
(for, while loops).

01/11/2017

4

If

if this is true

%Do whatever is in the middle

elseif this is true

%Do whatever is in the middle

else

%Do whatever is in the middle if

neither above are true

end

If

a = 33;

if a < 30

disp('small')

elseif a < 80

disp('medium')

else

disp('large')

end

Comparison operators

• Operators that tell us how two
variables relate

Type 2>3 and run

• 1= true, 0 = false

Type and run:
a = randi(100, 10)
a>= 50

• Can run on lists, 2D data and…
any dimension of data

Operator Meaning

== equal to

~= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

01/11/2017

5

Combining Operators

Operator Meaning

== equal to

~= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Operator Meaning

~ NOT/OPPOSITE

& AND (need true AND true)

| OR (need true OR true)

y = 5

y > 3| y ~= 5

True or False

= 1

What would be the answer to:

x = 8

y = 9

~(~(x < 3))&~(y >14 | y>10)
Operator Meaning

& (or && for logical scalars) AND

| (or || for logical scalars) OR

Create an If statement

• x = 10, minVal = 2, maxVal = 6

• Write a script to print out (using ‘disp’):

a) ‘Value within range’ if x is within or equal to
the range parameters

b) ‘Value exceeds maximum value’ if it’s larger
than maxVal

c) ‘Value is below minimum value’ if it’s smaller
than minVal

d) Test different x to check it’s working

Answer

x = 10;

minVal = 2;

maxVal = 6;

if (x >= minVal) && (x <= maxVal)

disp('Value within specified range.')

elseif (x > maxVal)

disp('Value exceeds maximum value.')

else

disp('Value is below minimum value.')

end

01/11/2017

6

Repetitions: For loops
%General structure:

for index = values

%Do whatever is in the middle

end

%Example:

data = [1 : 100];

n = length(data);

result = 0;

for k = 1 : n

result = result + data(k);

end

result_2 = result/n

Use variable names
that describe what it is

• Define an array with 5 numbers between 0 to 10
as you like. Each number represents the score of a
subject in a test.

• For each subject, apply a correcting factor on the
grades. Create a new variable which will contain
the revised grades. The factor should be:

x = x*1.2

• If the revised grade is larger than 10, set it to 10.

• In the workspace, make sure you can see the two
variables and that their values make sense.

Create a for loop

Answer
score = [1, 5, 7, 9, 8];

n = length(score);

for ind = 1:n

revised_score(ind) = score(ind)*1.2;

if revised_score(ind) > 10

revised_score(ind) = 10;

end

end

Initialize arrays rather than growing with each loop
E.g. use revised_scores= zeros(size(score))

Use ‘size’ function instead of ‘length’ so you can
make sure your loop runs on the correct dimension

01/11/2017

7

Another answer

score = [1, 5, 7, 9, 8];

revised_score = score *1.2;

revised_score (revised_score > 10) = 10;

Use arithmetic operations instead of loops
wherever possible – it’s faster!

Other more efficient solutions instead of loops:
• ‘find’ + length’ or ‘sum
• ‘isequal’, ‘isempty’, ‘all’, ‘any’

Functions

• You can run a script from the command line or
from another script

• Put your for loop in a new script and save as my_for_loop
• Run your script by typing my_for_loop into the command

window

• Want more flexibility and more
encapsulation? Functions…

• Similar to a script but you pass input values
and return output values

Functions

function [outputs] = function_name(inputs)

%Put your script in here

end

Save the script as ‘function_name’

01/11/2017

8

Scripts vs. functions

Script

• Exactly the same as running
commands in the prompt

• Variables are recognized in
the global workspace

• No input/output arguments

• Execute: F5 for all, or
highlight and F9

Function

• An encapsulated piece of code
with a local workspace (scope)

• Variables are not recognized in
the global workspace

• Input/output arguments

• Can be general (applies on any
data, project)

• First line of code MUST BE:
Function [<out_arg>] = <function_name>(<in_arg>)

• You may start writing a batch script, then later convert
section of it into functions

Better to use functions whenever you can

(in my opinion)

To avoid any confusion of variable names
and content

• Want to revise score with any given factor
(variable called ‘correct_factor’), not just *1.2

• Turn your for loop script into a function that
takes inputs: ‘scores’ and ‘correct_factor’ and
returns the revised scores as an output

• Run from the command line with a few
different inputs to test

Create a function

