Basic Ingredients For Your Matrix Laboratory Vectors and Matrices In Matlab

Olaf Hauk

MRC Cognition and Brain Sciences Unit olaf.hauk@mrc-cbu.cam.ac.uk

A Sound File Contains a Vector

An Image File Contains a Matrix

Data Come In Matrices

=> Almost all data come in matrices!

EEG Data Matrix

Lots of data manipulations will take a form like this:

Result $=$ Matrix*Data

EEG/MEG Inverse Problem

Many models are described using matrices!

fMRI General Linear Model

General Linear Model...

- f MRI time series: $Y_{1}, \ldots, Y_{s}, \ldots, Y_{N}$
- acquired at times $t_{1}, \ldots, t_{s}, \ldots, t_{\mathrm{N}}$
- Model: Linear combination of basis functions
$Y_{s}=\beta_{1} f^{1}\left(t_{L_{2}}\right)+\ldots+\beta_{l} f^{l}\left(t_{L_{2}}\right)+\ldots+\beta_{L} f^{L}\left(t_{L_{2}}\right)+\varepsilon_{s}$
- $f^{l}():$. basis functions
- "reference waveforms"
- dummy variables
- β_{l} : parameters (fixed effects)
- amplitudes of basis functions (regression slopes)
- ε_{s} : residual errors: $\varepsilon_{s} \sim N\left(0, \sigma^{2}\right)$
- identically distributed
- independent, or serially correlated (Generalised Linear Model \rightarrow GLM)

Example

2D Visualisation of Vectors

A "vector" is a list of numbers, e.g.: $\mathbf{x}=[1,1]$

Multiplication with a scalar:
$2^{\star} x=\left[\begin{array}{ll}2 & 2\end{array}\right]$

Vector Multiplication

Some conventions:

Numbers/scalars are usually in normal/italic font: $12, q, \lambda$

Vectors are usually bold: \mathbf{x}, their elements are not: $\mathbf{x}=\left(\begin{array}{c}x_{i} \\ \ldots \\ x_{N}\end{array}\right)$

Vector Multiplication

Parallel Vectors:
same concept as scalar multiplication, the "lengths multiply"

Orthogonal Vectors:

nothing "covaries" -> 0

When vectors not parallel:
"correction" according to angle (cosine)

[1 1]• [2 2] = 1*2 + 1*2 $=4$
$\sqrt{ } 2 \cdot \sqrt{ } 8=\sqrt{ } 16=4$
$\left[\begin{array}{ll}1 & 1\end{array} \bullet\left[\begin{array}{ll}-1 & 1\end{array}\right]=1 * 1+1^{*}(-1)=0\right.$

$\mathbf{A}_{B}=\|\mathbf{A}\| \cos \theta$ is the scalar projection of $\mathbf{A}^{\text {º }}$ Since $\mathbf{A} \cdot \mathbf{B}=\|\mathbf{A}\|\|\mathbf{B}\| \cos \theta$, then $\mathbf{A}_{B}=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{B}\|}$.
$\mathbf{A} \bullet \mathbf{B}=\|\mathbf{A}\| \cdot\|\mathbf{B}\| \cos \theta$
$\Rightarrow \cos \theta=\frac{\mathbf{A} \bullet \mathbf{B}}{\|\mathbf{A}\| \bullet\|\mathbf{B}\|}$
Correlation
between two vectors!

Row and Column Vectors

(Relevant for Matlab)
Column vector (2×1 "matrix"): $\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad$ Row vector (1x2 "matrix"): $\left[\begin{array}{ll}1 & 2\end{array}\right]$
$\left[\begin{array}{ll}1 & 2\end{array}\right] *\left[\begin{array}{l}1 \\ 2\end{array}\right]=1 * 1+2 * 2=5$
is the same as the scalar product

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 2
\end{array}\right] *\left[\begin{array}{ll}
1 & 2
\end{array}\right]} & {\left[\begin{array}{l}
1 \\
2
\end{array}\right] *\left[\begin{array}{l}
1 \\
2
\end{array}\right]}
\end{array} \quad \text { don't work (dimensions don't agree) }
$$

$$
\text { In Matlab: }\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

Example

Matrices

$$
\begin{aligned}
& 2 \text { rows } 3 \text { columns }
\end{aligned}\left(\begin{array}{lll}
1_{11} & 2_{12} & 3_{1} \\
4_{21} & 5_{22} & 6_{23}
\end{array}\right) \quad\left[\begin{array}{lll}
1_{11} & 4_{12} \\
2_{21} & 5_{22} & 3 \text { rows } \\
3_{31} & 6_{32}
\end{array} 3^{3 \text { columns }} .\right.
$$

Matrices Are "Stacked Vectors"

row vector $\left(\begin{array}{c|cccc}M_{11} & \ldots & M_{1 j} & \ldots & M_{1 C} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ M_{i 1} & \ldots & M_{i j} & \ldots & M_{i C} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \hline M_{R 1} & \ldots & M_{R j} & \ldots & M_{R C}\end{array}\right)$
C : number of columns
R : number of rows

Matrix has dimension $R \times C$

A matrix consists of...
... C vertically concatenated columns vectors
... R horizontally concatenated row vectors

A "square" matrix has the same number of rows and columns ($C=R$)

Matrix Transpose

$$
\left.\mathbf{M} \rightarrow \mathbf{M}^{T}{ }_{(\mathbf{M}} \rightarrow \mathbf{M}^{\prime} \text { in Matab }\right)
$$

Rows of \mathbf{M} become columns of \mathbf{M}

Dimension changes from $R \times C$ to $C x R$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \\
& (2 \times 3)
\end{aligned} \rightarrow\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

$$
\left(\begin{array}{ccccc}
\hline M_{11} & \ldots & M_{1 j} & \ldots & M_{1 C} \\
\hline \ldots & \ldots & \ldots & \ldots & \ldots \\
M_{i 1} & \ldots & M_{i j} & \ldots & M_{i C} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\hline M_{R 1} & \ldots & M_{R j} & \ldots & M_{R C}
\end{array}\right) \rightarrow\left(\begin{array}{c|ccc|c}
M_{11} & \ldots & M_{i 1} & \ldots & M_{R 1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{1 j} & \ldots & M_{i j} & \ldots & M_{R j} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{1 C} & \ldots & M_{i C} & \ldots & M_{R C}
\end{array}\right)
$$

C : number of columns
R : number of columns
R : number of rows
C : number of rows
For a "symmetric" matrix: $\mathbf{M}=\mathbf{M}^{T}$

Matrix Addition/Subtraction

$$
\mathbf{A}-\mathbf{B}=\left(\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & A_{i j} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)-\left(\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & B_{i j} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)=\left(\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & A_{i j}-B_{i j} & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right)
$$

\mathbf{A} and \mathbf{B} must have equal dimensions The result has the same dimension as \mathbf{A} and \mathbf{B}

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)-\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 2 \\
2 & 3 & 4
\end{array}\right)
$$

Basic applications: Subtract/Average data sets, contrasts etc.

Special Matrices

$$
\begin{array}{ccc}
\text { Identity Matrix } & \text { Diagonal Matrix } & \begin{array}{ccc}
\text { Uper Triagonal } \\
\text { Matrix }
\end{array} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
a & 0 & 0 \\
0 & c & 0 \\
0 & 0 & b
\end{array}\right) & \left(\begin{array}{lll}
a & d & f \\
0 & c & e \\
0 & 0 & b
\end{array}\right)
\end{array}\left(\begin{array}{lll}
a & d & e \\
d & b & f \\
e & f & c
\end{array}\right)
$$

Example

Multiplying Matrices with Vectors

Every element of \mathbf{y} is the scalar product between a row of \mathbf{M} and \mathbf{x}.

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)=\binom{1 * 3+1 * 4+1 * 5}{2 * 3+2 * 4+2 * 5} & =\binom{12}{24} \\
\mathbf{M} * \mathbf{x} & =\mathbf{y}
\end{aligned}
$$

Matrix*Vector or Vector*Matrix always yields a Vector.

Remember that earlier we multiplied row vectors with column vectors?
This makes sense now, because vectors are special cases of matrices.

Multiplying Matrices with Vectors

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
\ldots \\
y_{j} \\
\ldots \\
y_{C}
\end{array}\right)=\mathbf{M x}=\left(\begin{array}{ccccc}
M_{11} & \ldots & M_{1 j} & \ldots & M_{1 C} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{i 1} & \ldots & M_{i j} & \ldots & M_{i C} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{R 1} & \ldots & M_{R j} & \ldots & M_{R C}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{j} \\
\ldots \\
x_{C}
\end{array}\right)=\left(\begin{array}{l}
\sum_{j=1}^{C} x_{j} * M_{1 j} \\
\ldots \\
\sum_{j=1}^{C} x_{j} * M_{i j} \\
\ldots \\
\sum_{j=1}^{C} x_{j} * M_{R j}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{M}_{1 .} \bullet \mathbf{x} \\
\ldots \\
\mathbf{M}_{i .} \bullet \mathbf{x} \\
\ldots \\
\mathbf{M}_{R .} \bullet \mathbf{x}
\end{array}\right)
$$

Every element of \mathbf{y} is the scalar product between a row of \mathbf{M} and \mathbf{x}.

 $\operatorname{sinct}^{\text {snce }} \mathbf{A} \cdot \mathbf{B}=\|\mathbf{A}\|\|\mathbf{B}\| \cos \theta$.men
$\mathbf{A}_{B}=\mathbf{A} \cdot \mathbf{B}$ $\mathbf{A}_{\boldsymbol{B}}=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathrm{B}\|}$

$$
\begin{aligned}
&\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)=\binom{1 * 3+1 * 4+1 * 5}{2 * 3+2 * 4+2 * 5}=\binom{12}{24} \\
& \mathbf{M} * \mathbf{x} \quad=\mathbf{y}
\end{aligned}
$$

Row and Column Vectors II

$$
\text { Column vector (2x1 "matrix"): }\binom{1}{2} \quad \text { Row vector (1x2 "matrix"): }\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

$\left(\begin{array}{ll}1 & 2\end{array}\right) *\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)=(1 * 1+2 * 31 * 2+2 * 4)=\left(\begin{array}{ll}7 & 10\end{array}\right) \quad$ matrix multiplication

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) *\left(\begin{array}{ll}
1 & 2
\end{array}\right)
$$

doesn't work (dimension don't agree)
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\binom{1}{2}=\left(\begin{array}{ll}1 * 1+2 * 2 & 3 * 1+2 * 4\end{array}\right)=\binom{5}{11}$
uses transpose -
is different from above in values and dimensions

Multiplying Matrices with Vectors

matrix*vector is not the same as vector*matrix:

$$
\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right) *\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) \text { does not work! }
$$

$$
\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)^{T} *\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
3 & 4 & 5
\end{array}\right) *\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) \text { does not work either! }
$$

Diagonal Matrices

Diagonal Matrix
$\mathbf{D} * \mathbf{M}=\left(\begin{array}{ccccc}D_{11} & \ldots & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & D_{i i} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 0 & \ldots & D_{C C}\end{array}\right)\left(\begin{array}{ccccc}M_{11} & \ldots & M_{1 j} & \ldots & M_{1 D} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ M_{i 1} & \ldots & M_{i j} & \ldots & M_{i D} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ M_{R 1} & \ldots & M_{R j} & \ldots & M_{R D}\end{array}\right)=\left(\begin{array}{ccccc}D_{11} M_{11} & \ldots & D_{11} M_{1 j} & \ldots & D_{11} M_{1 D} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ D_{i i} M_{i 1} & \ldots & D_{i i} M_{i j} & \ldots & D_{i i} M_{i D} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ D_{C C} M_{R 1} & \ldots & D_{C C} M_{R j} & \ldots & D_{C C} M_{R D}\end{array}\right)$

Identity Matrix

$$
\mathbf{I} * \mathbf{M}=\left(\begin{array}{ccccc}
1 & \ldots & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots . & \ldots & \ldots \\
0 & \ldots & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & \ldots & 1
\end{array}\right)\left(\begin{array}{ccccc}
M_{11} & \ldots & M_{1 j} & \ldots & M_{1 D} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{i 1} & \ldots & M_{i j} & \ldots & M_{i D} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{R 1} & \ldots & M_{R j} & \ldots & M_{R D}
\end{array}\right)=\mathbf{M}
$$

Multiplying Matrices with Vectors

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
\ldots \\
y_{j} \\
\ldots \\
y_{C}
\end{array}\right)=\mathbf{M x}=\left(\begin{array}{ccccc}
M_{11} & \ldots & M_{1 j} & \ldots & M_{1 C} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{i 1} & \ldots & M_{i j} & \ldots & M_{i C} \\
\ldots & \ldots & \ldots & \ldots & M_{i C} \\
\ldots \\
M_{R 1} & \ldots & M_{R j} & \ldots & M_{R C}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{X}_{1} \\
\ldots \\
\boldsymbol{X}_{j} \\
\ldots \\
\boldsymbol{X}_{C}
\end{array}\right)=\left(\begin{array}{c}
\sum_{j=1}^{C} x_{j} * M_{1 j} \\
\sum_{j=1}^{C} x_{j} * M_{i j} \\
\sum_{j=1}^{C} x_{j} * M_{R j}
\end{array}\right)=\sum_{j=1}^{C} x_{j} *\left(\begin{array}{c}
M_{1 j} \\
\ldots \\
M_{i j} \\
\ldots \\
M_{R j}
\end{array}\right)=\sum_{j=1}^{C} x_{j} \mathbf{M}_{. j}
$$

Each column of \mathbf{M} is weighted by the corresponding element in \mathbf{x}.
\mathbf{y} is a "linear combination" of the columns of \mathbf{M}.

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{l}
30 \\
40 \\
50
\end{array}\right)=3 *\binom{1}{2}+4 *\binom{1}{2}+50 *\binom{1}{2}=\binom{3}{6}+\binom{4}{8}+\binom{5}{10}=\binom{12}{24}
$$

Multiplying Matrices with Vectors

The famous GLM equation:

$$
y=X^{\star} \mathbf{b}
$$

General Linear Model...

- f MRI time series: $Y_{1}, \ldots, Y_{s}, \ldots, Y_{N}$
- acquired at times $t_{1}, \ldots, t_{0}, \ldots, t_{N}$
- Model: Linear combination of basis functions

$$
Y_{s}=\beta_{1} f^{1}\left(t_{\Sigma_{\Sigma}}\right)+\ldots+\beta_{l} f^{l}\left(t_{L_{2}}\right)+\ldots+\beta_{L} f^{L}\left(t_{L_{\Sigma}}\right)+\varepsilon_{s}
$$

- $f^{l}():$. basis functions
- "reference waveforms"
- dummy variables
- $\beta_{l}:$ parameters (fixed effects)
- amplitudes of basis functions (regression slopes)
- ε_{s} : residual errors: $\varepsilon_{s} \sim N\left(0, \sigma^{2}\right)$
- identically distributed
- independent, or serially correlated (Generalised Linear Model \rightarrow GLM)

Example

Matrix Multiplication

Multiplication of Matrices with Matrices

$$
\begin{array}{rl}
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{lll}
3 & 4 & 5 \\
3 & 4 & 5 \\
3 & 4 & 5
\end{array}\right) & =\left(\begin{array}{ccc}
9 & 12 & 15 \\
18 & 24 & 30
\end{array}\right) \\
\mathbf{M} & * \mathbf{N}
\end{array}
$$

Every element $i j$ of \mathbf{Y} is the scalar product of the i-th row of \mathbf{M} with the j-th column of \mathbf{N}

M must have as many columns as \mathbf{N} has rows.
\mathbf{Y} has the number of rows of \mathbf{M} and number of columns of \mathbf{N} (i.e. dimension $R \times C$).
Multiplying a Matrix with a Matrix always yields a Matrix.

Multiplication of Matrices with Matrices

$$
\mathbf{Y}=\left(\begin{array}{ccccc}
Y_{11} & \ldots & Y_{1 j} & \ldots & Y_{1 C} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
Y_{i 1} & \ldots & Y_{i j} & \ldots & Y_{i C} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
Y_{R 1} & \ldots & Y_{R j} & \ldots & Y_{R C}
\end{array}\right)=\mathbf{M} * \mathbf{N}=\left(\begin{array}{ccccc}
M_{11} & \ldots & M_{1 j} & \ldots & M_{1 D} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{i 1} & \ldots & M_{i j} & \ldots & M_{i D} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
M_{R 1} & \ldots & M_{R j} & \ldots & M_{R D}
\end{array}\right)\left(\begin{array}{cccc}
N_{11} & \ldots & N_{1 j} & \ldots \\
N_{1 C} & N_{1 C} \\
\ldots & \ldots & . . & \ldots \\
N_{i 1} & \ldots & N_{i j} & \ldots \\
N_{i C} & N_{i C} \\
N_{D 1} & \ldots & N_{D j} & \ldots \\
N_{D C}
\end{array}\right)
$$

\mathbf{M} must have as many columns as \mathbf{N} has rows.
\mathbf{Y} has the number of rows of \mathbf{M} and number of columns of \mathbf{N} (i.e. dimension $R \times C$).

Every element $i j$ of \mathbf{Y} is the scalar product of the i-th row of \mathbf{M} with the j-th column of \mathbf{N}

$$
\begin{array}{rl}
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) *\left(\begin{array}{lll}
3 & 4 & 5 \\
3 & 4 & 5 \\
3 & 4 & 5
\end{array}\right) & =\left(\begin{array}{ccc}
9 & 12 & 15 \\
18 & 24 & 30
\end{array}\right) \\
\mathbf{M} & * \quad \mathbf{X}
\end{array}
$$

Multiplication of Matrices with Matrices

For matrix multiplication, some matrix dimensions must agree:
Number of columns of $1^{\text {st }}$, number of rows of $2^{\text {nd }}$, sometimes called "inner dimensions")

$$
\left(\begin{array}{lll}
3 & 4 & 5 \\
3 & 4 & 5 \\
3 & 4 & 5
\end{array}\right) *\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right) \text { doesn't work. }
$$

For scalars, multiplication is commutative, i.e. $a^{*} b=b^{\star} a$.
But for matrices it is not!
Even if it works, $\mathbf{A}^{\star} \mathbf{B}$ is usually not the same as $\mathbf{B}^{\star} \mathbf{A}$:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) *\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right), \quad \text { but : }\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) *\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Multiplication of Matrices with Matrices

EEG/MEG "inverse problem":
For a single time point, a solution can be obtained by multiplying the data vector with an inverse matrix:

For multiple time points, data and sources turn into matrices, with one column per time point:

Example

Exercise I

You've got a matrix M.

You want to compute the sum for each row.
How can you do this with matrix algebra?

$$
\begin{gathered}
\mathbf{M}=\left(\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right) *\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\binom{1 * 1+1 * 3+1 * 5}{1 * 2+1 * 4+1 * 6}=\binom{9}{12}
\end{gathered}
$$

How to compute the sum for each column?

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right) *\binom{1}{1}=\left(\begin{array}{l}
1 * 1+1 * 2 \\
1 * 3+1 * 4 \\
1 * 5+1 * 6
\end{array}\right)=\left(\begin{array}{c}
3 \\
7 \\
11
\end{array}\right)
$$

How to compute the averages?

Exercise II

You've got a matrix M (e.g. EEG data).
You want to make sure the average of each column is zero ("average reference").

Possibility 1: Nested for-loops (complicated, inefficient and error-prone)

for $\mathbf{c c}=1: n r$ _columns, $\%$ column-by-column...
MeanOfColumn = mean($\mathbf{M}(:, \mathbf{c c})$); \% compute mean of column for $\mathrm{rr}=1: \mathrm{nr}$ _rows, \quad \% row-by-row $\mathbf{M} _$new(rr,cc) $=\mathbf{M}(\mathbf{r r}, \mathbf{c c})$ - MeanOfColumn; \% subtract mean from each element end;
end;
mean(M_new) \% check results

Exercise II: Average reference

You've got a matrix M (e.g. EEG data).
You want to make sure the average of each column is zero ("average reference").

Possibility 2: Use some matrix algebra

\% create matrix "operator" that subtracts means from columns MatrixOperator = eye(nr_rows) - ones(nr_rows)/nr_rows;

M_new = MatrixOperator*M;
Mean(M_new) \% check result

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 \\
2 & 3 & 5 \\
2 & 6
\end{array}\right)=\left[\left(\begin{array}{cc}
\left.\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
\text { ones } 0
\end{array}\right)
\end{array}\right]\left(\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right)\right.
$$

The nice thing is: Any time a new matrix \mathbf{M} comes along, you just need to multiply it with MatrixOperator (no additional for-loops required)

Exercise III: Baseline Correction

You've got a matrix M (e.g. EEG data).
The average of the "baseline interval" should be zero for each channel.
Each channel is one row of the matrix.

The baseline interval comprises the first 50 elements of the matrix.
\% compute mean baseline values for each channel
MeanBaseline = mean(M(:,1:50), 2);
\% repeat vertically to fit the dimensions of \mathbf{M} RepMeanBaseline = repmat(MeanBaseline, 1, nr_columns);
\% subtract baseline values from each element in \mathbf{M}
M_new = M - RepMeanBaseline;
mean(M_new(:,1:50), 2) \% check result

$$
\operatorname{repmat}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right], 1,3\right)=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]
$$

Baseline interval

Exercise IV: Signal-to-Noise Ratio (SNR)

You've got a matrix M (e.g. EEG data).
You want to know the SNR at each sample in each channel.
SNR: Ratio of amplitude and standard deviation in baseline interval for each channel.
Each channel is one row of the matrix. The baseline interval comprises the first 50 elements of the matrix.
\% compute standard deviations of baseline intervals for each channel StdBaseline = std(M(:,1:50), 0, 2);
\% repeat vertically to fit the dimensions of \mathbf{M}
RepStdBaseline = repmat(StdBaseline, 1, nr_columns);
\% divide each element of \mathbf{M} by baseline standard deviations M_new = M ./ RepStdBaseline;
plot(M_new'); \% check result

Reading and Writing Data in Matlab

There are convenient Matlab commands as long as you keep your data in Matlab format:

In order to save and load the complete workspace:

> save <filename.mat>
> load <filename.mat>

In order to save/load only specific variables:
save <filename.mat> <myvariable1> <myvariable2> ...
load <filename.mat> <myvariable1> <myvariable2> ...

Reading and Writing Data in Matlab I

Reading/writing matrices in text format is easy, too:
\% writes mymatrix to filename.txt, elements separated by commas:
dlmwrite(filename, mymatrix, ', ');
\% ...or separated by spaces:
dlmwrite(filename, mymatrix, ' ');
\% Read the data into Matlab:
newmatrix = dlmread(filename, ' ');
\% You can write data to Excel files (only Windows, not Linux):
\% write my matrix to Excel worksheet 2:
xlswrite(filename, mymatrix, 2);

Reading and Writing Data in Matlab II

Reading/Writing formatted text is a bit trickier:

You first need to initialise a file, and create a file identifier (FID)
MyFile_id = fopen('TestFile.txt', 'w'); \% This file is for writing, hence ' w '
Later, whenever you use MyFile_id, Matlab will read or write to 'TestFile.txt':
fprintf(MyFile_id, '\%s : \%d \%f', 'Test', 1, 1.2); \% "format print file"
will write 'Test : 11.2 to the file 'TestFile.txt'
You can use 'In' for line breaks, 'It' for tabs, etc.
When you are done, close the file (it will not be deleted):
fclose(MyFile_id);
You can read formatted text using fscanf or textread:
[a,b,c,d] = textread('TestFile.txt', , '\%s\%c\%\%d\%f');

Enough for now?

