Representational similarity analysis (RSA)

Marieke Mur CBU, april 2016

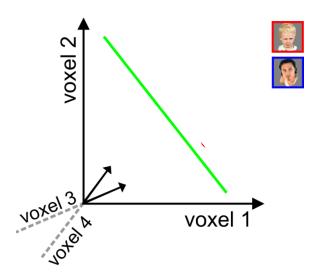
Overview

- Why representational similarity analysis?
- Distance measures
- Inference
 - Descriptive visualisations
 - Goodness of model fit
 - Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

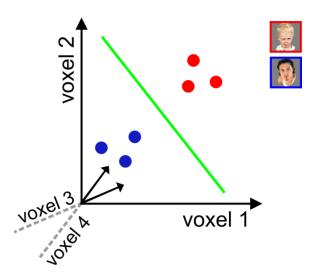
Overview

- Why representational similarity analysis?
- Distance measures
- Inference
 - Descriptive visualisations
 - Goodness of model fit
 - Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

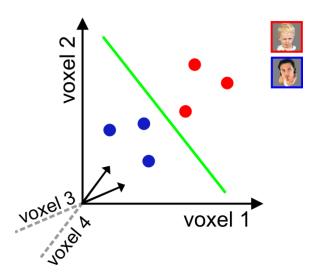
Linear classification: anything missing?



Linear classification: anything missing?

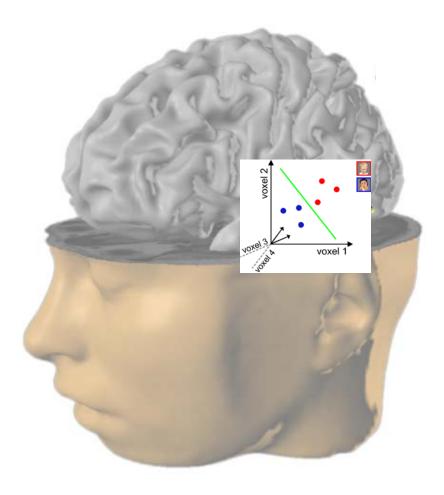


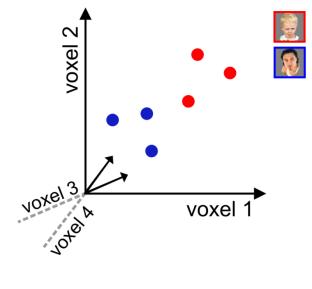
Linear classification: anything missing?



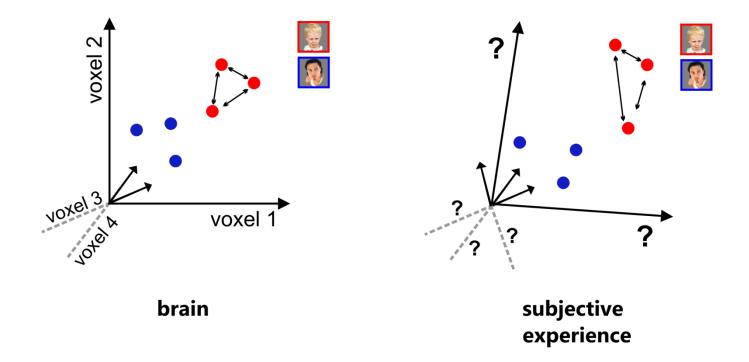
Need a richer characterisation of the stimulus representations.

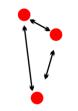
One step further: how to relate brain representations to subjective experience?





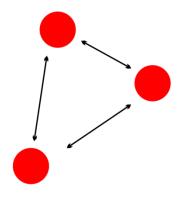
brain

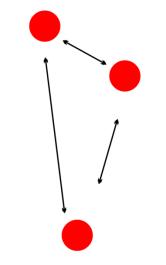




brain

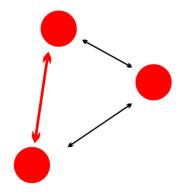
subjective experience

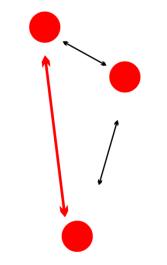




brain

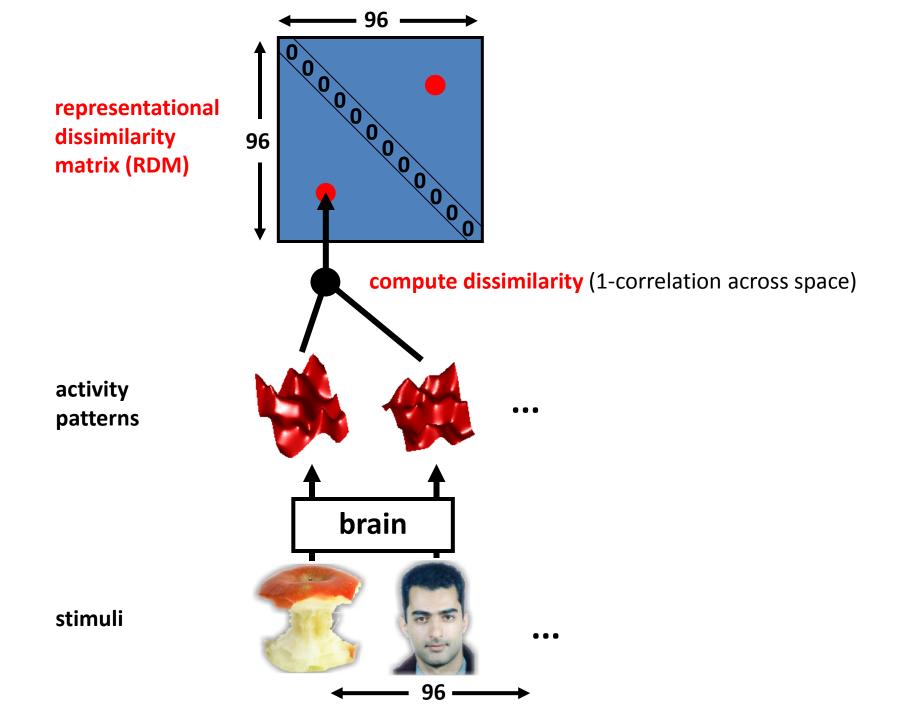
subjective experience

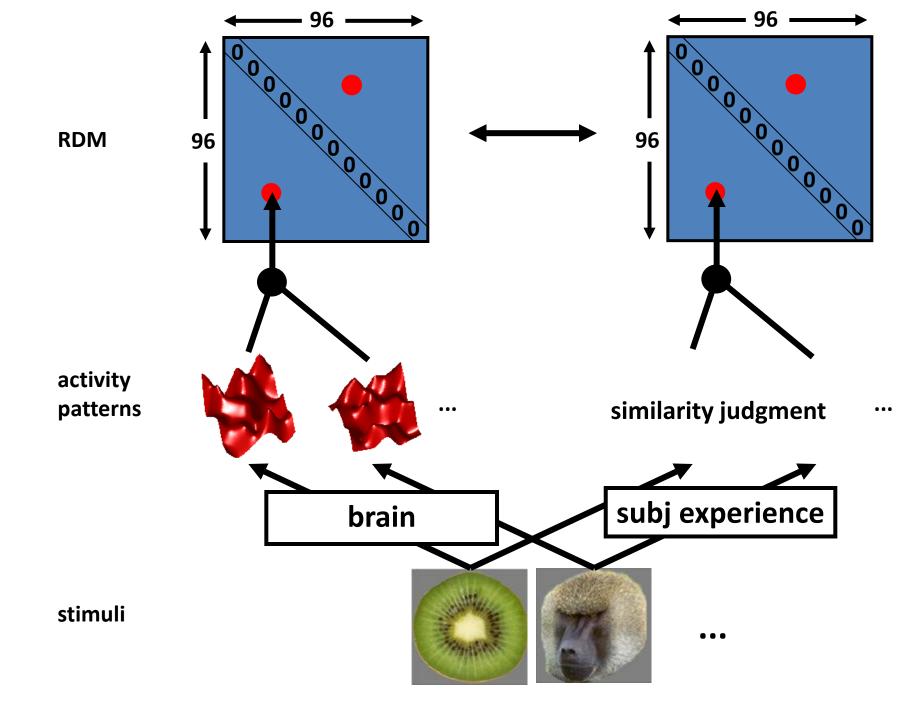


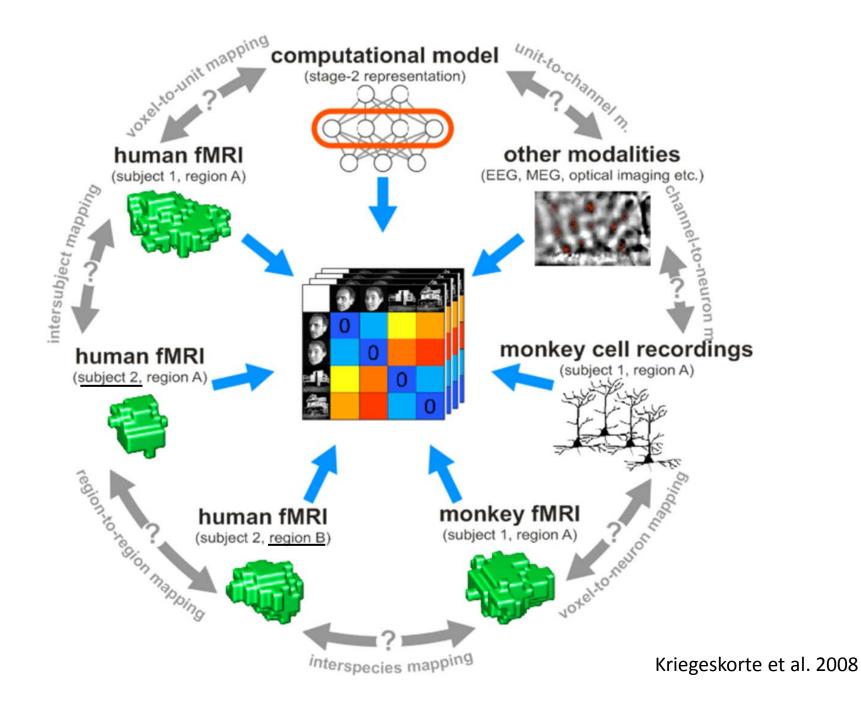


brain

subjective experience







Overview

- Why representational similarity analysis?
- Distance measures
- Inference
 - Descriptive visualisations
 - Goodness of model fit
 - Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

Euclidean distance

Straight-line distance between two patterns in Euclidean space

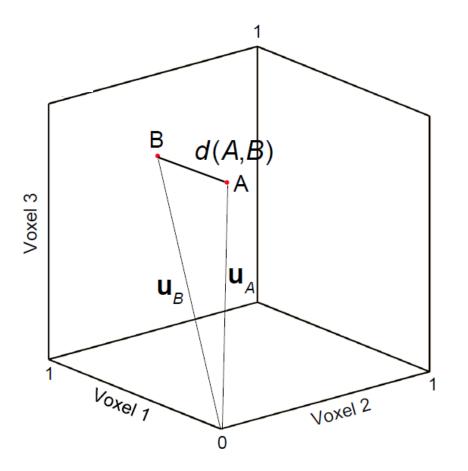


Image from Alex Walther RSA workshop 2015

Correlation distance

1 – correlation

Correlation = cosine of the angle between normalised patterns

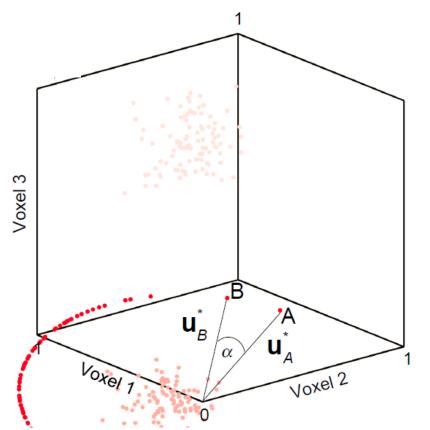


Image from Alex Walther RSA workshop 2015

Linear discriminant t value (LDt)

The default distance measure used in the RSA toolbox.

It has two desired properties:

- 1. Multivariately noise normalised
- 2. Cross-validated

Noise normalisation

Noise normalisation of the fMRI response patterns increases the reliability of the estimated pattern distances.

Univariate:

Divide each voxel's beta weight by its standard deviation \rightarrow t value

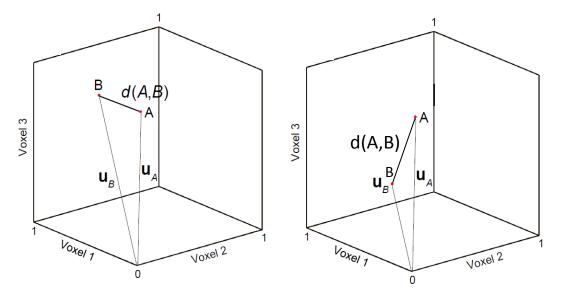
Multivariate:

Multiply each pattern with the inverse of the (square-rooted) covariance matrix \rightarrow Mahalanobis distance

Cross-validated distance measures

Noise \rightarrow distance measures are positively biased.

Cross-validated distance measures are unbiased and have an interpretable zero point.

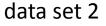


LDt

The cross-validated Mahalanobis distance divided by its standard error

Images (adopted) from Alex Walther RSA workshop 2015

data set 1



Overview

- Why representational similarity analysis?
- Distance measures

• Inference

- Descriptive visualisations
- Goodness of model fit
- Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

96 object images

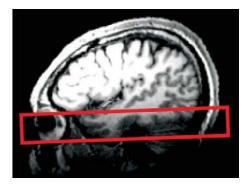
Stimuli from Kiani et al. 2007, Kriegeskorte et al. 2008

96-object-image fMRI experiment

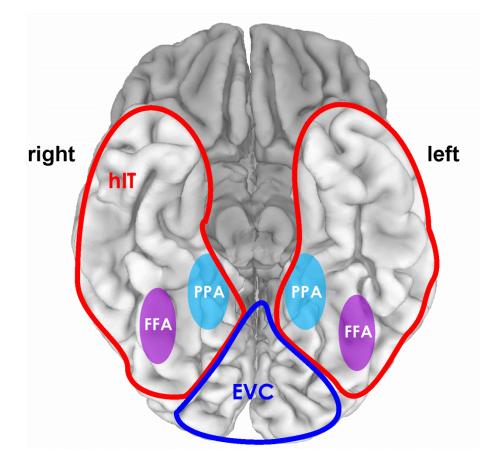
- 4 healthy human subjects
- rapid event-related design (minimum SOA: 4 s)
- stimulus duration: 300 ms
- object images spanned a visual angle of 2.9°
- fixation-cross color-discrimination task
- 12 runs/subject, each object image presented once per run

96-object-image fMRI experiment

- 25 axial slices covering ventral occipital and inferior temporal cortex (no gap)
- voxel size: 1.95*1.95*2 mm³
- TR: 2 s



Region of interest: hIT

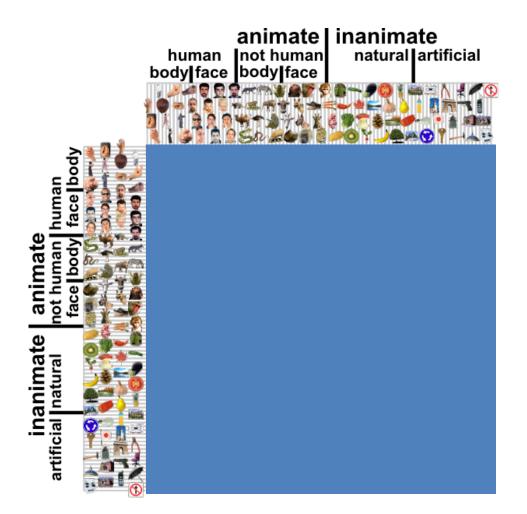


- independent data
- bilateral
- most visuallyresponsive voxels within "red" region
 - results same if FFA and PPA excluded from hIT

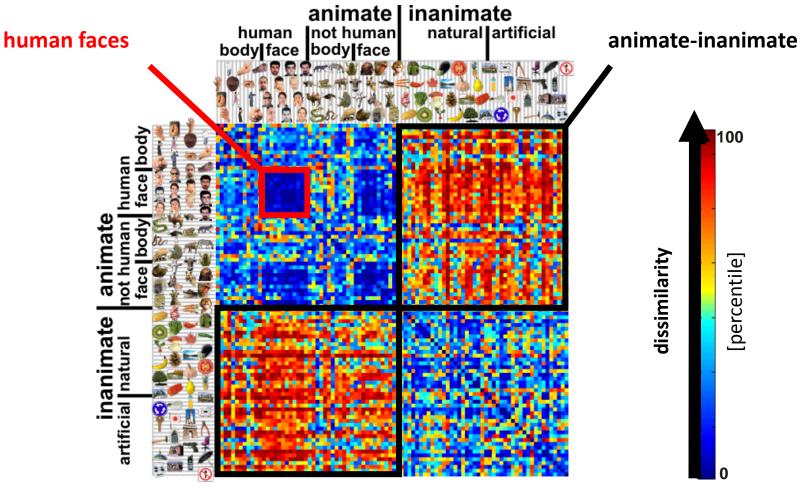
Overview

- Why representational similarity analysis?
- Distance measures
- Inference
 - \circ Descriptive visualisations
 - Goodness of model fit
 - Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

RDM of IT activity patterns

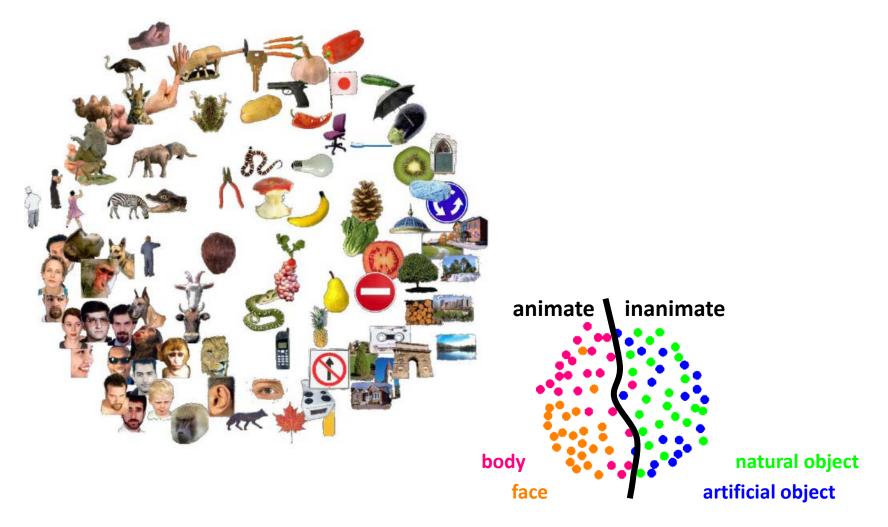


RDM of IT activity patterns



4 subjects' average

Multidimensional scaling of IT dissimilarities

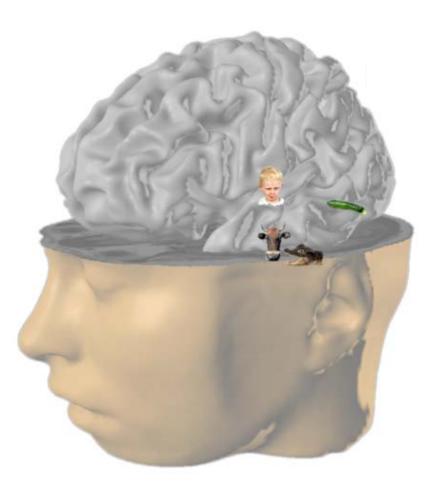


Overview

- Why representational similarity analysis?
- Distance measures

• Inference

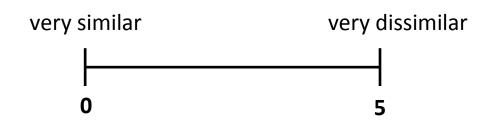
- Descriptive visualisations
- Goodness of model fit
- Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature



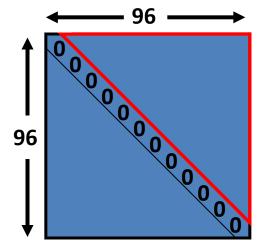
How well do brain representations and subjective experience match?

Conventional method: Pairwise similarity ratings

How similar are these objects?



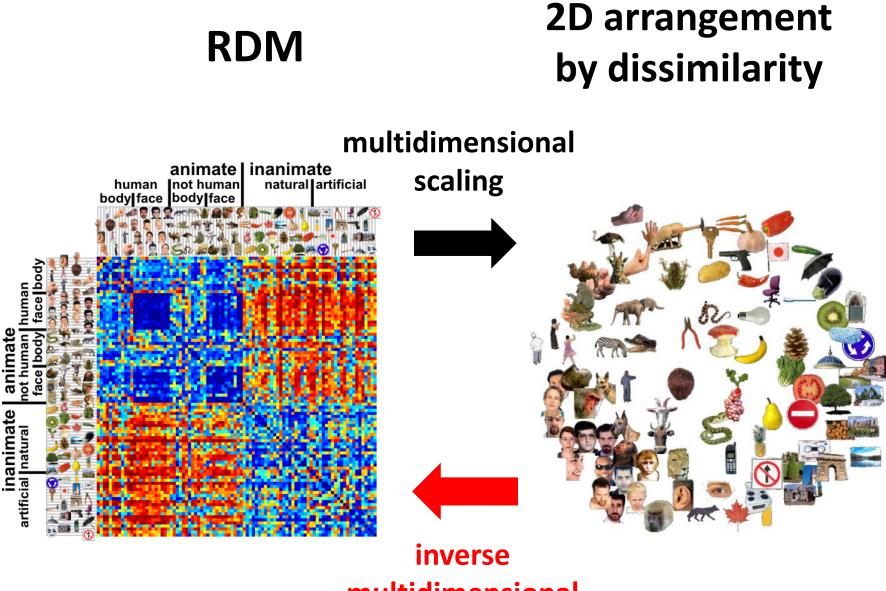
Many pairwise dissimilarities



96 x 95 / 2 = 4560 pairs

4560 * 4 s = 5 hours per subject

similarity-judgment RDM



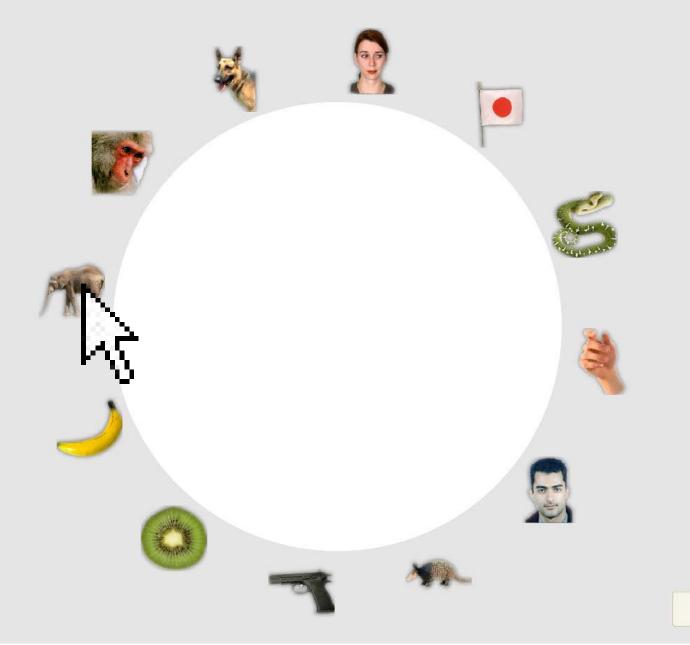
multidimensional

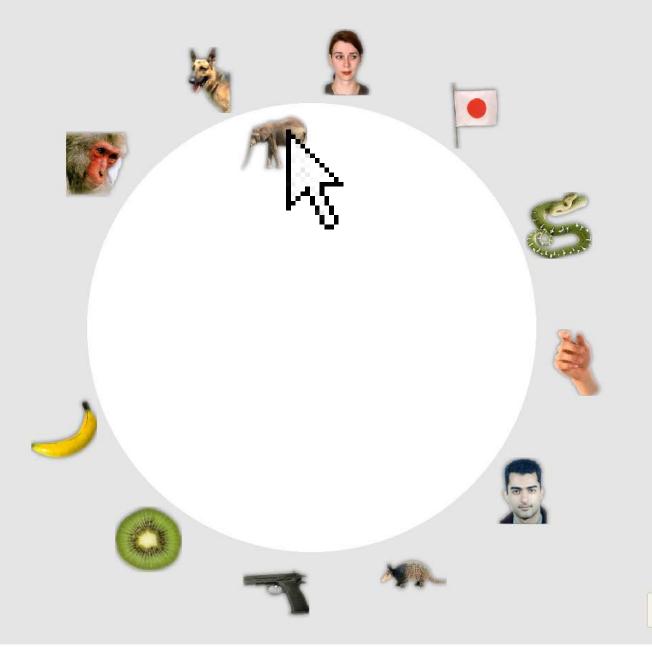
scaling

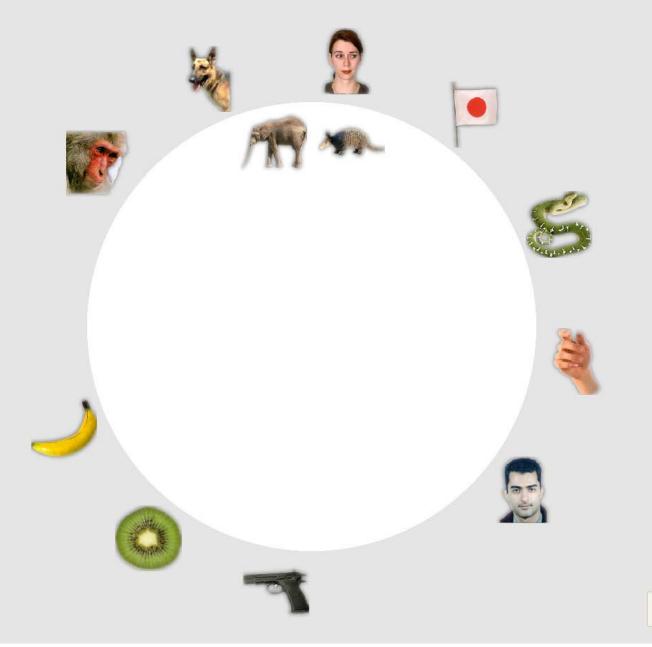
Goldstone, 1994; Risvik et al., 1994

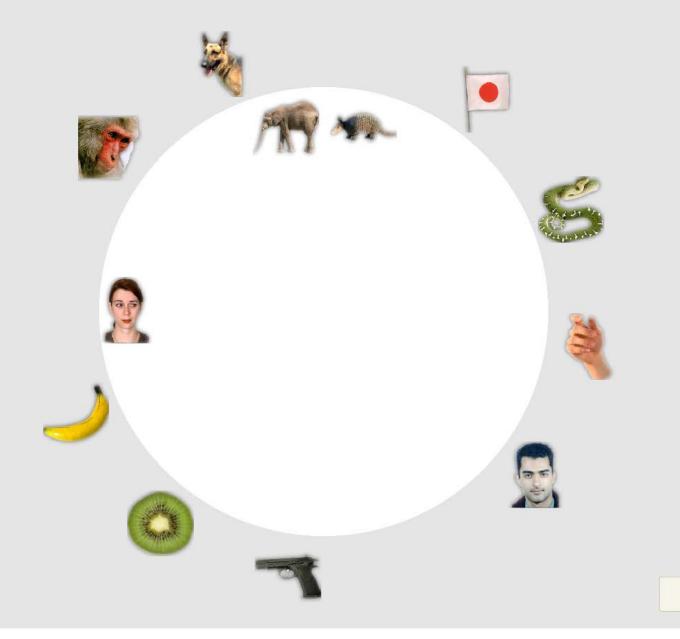
Multi-object arrangement (MA) method

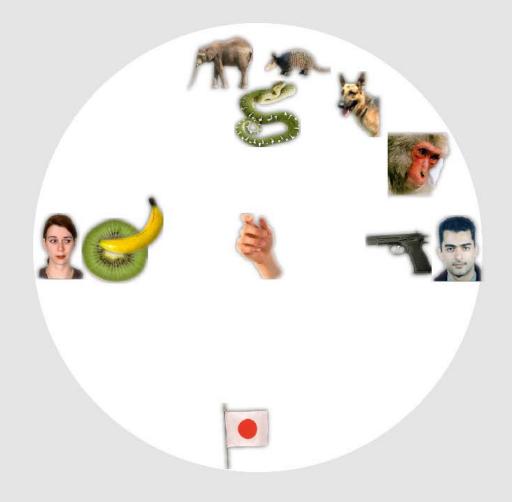
- Subjects arrange objects in 2D by mouse drag-anddrop.
- More efficient than pairwise similarity ratings.
- Subjects arrange objects in the context of the other objects in the set.

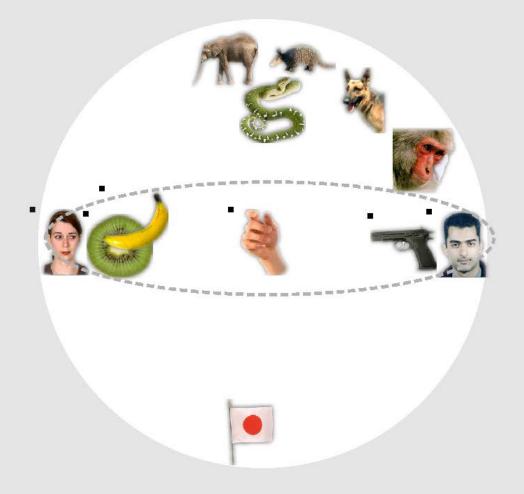




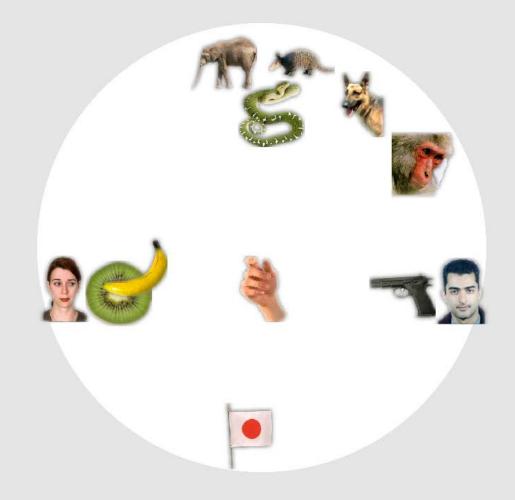


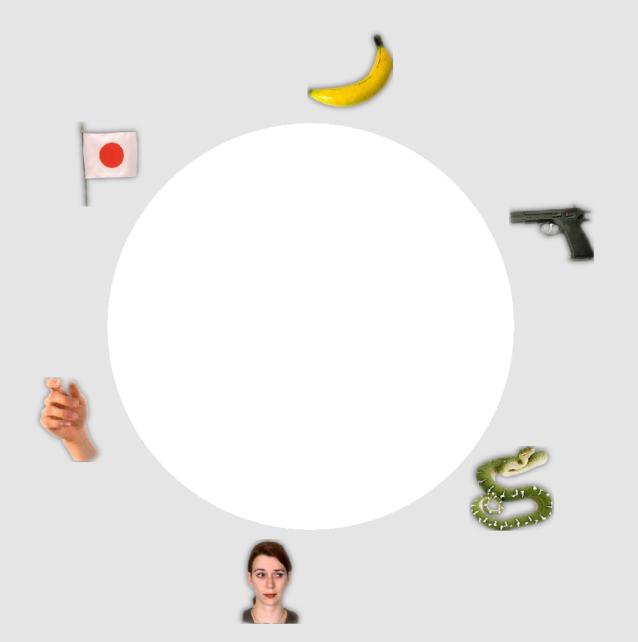


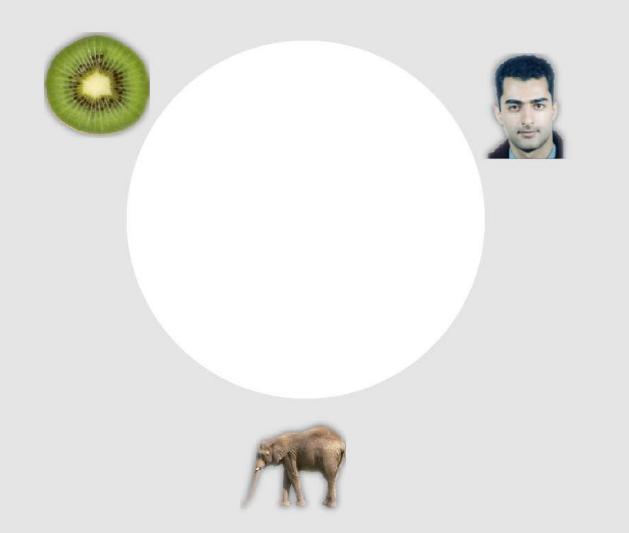






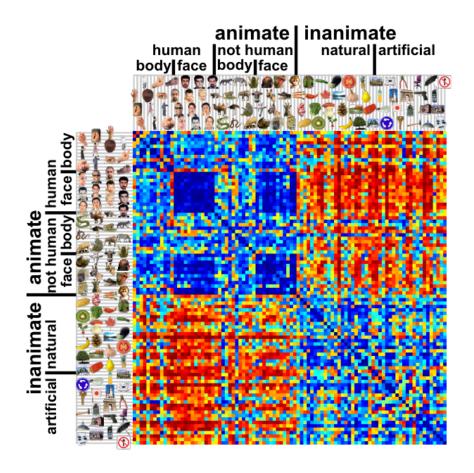






96-object-image MA experiment

- 16 healthy human subjects
- each subject performed one 1-hour session (outside the scanner)

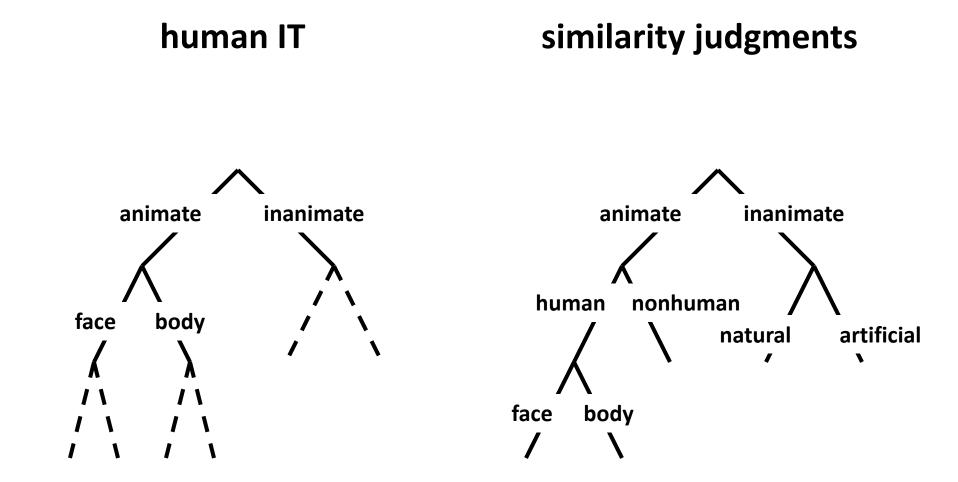


human IT

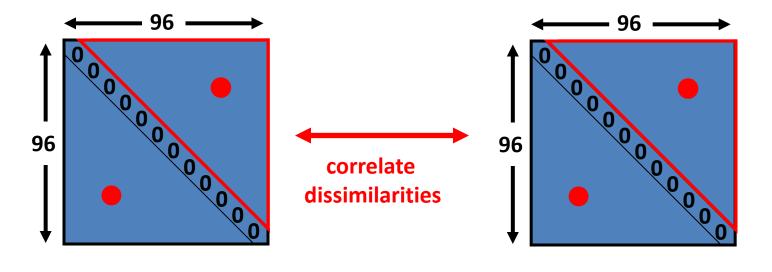
2D arrangements by dissimilarity

human IT

similarity judgments



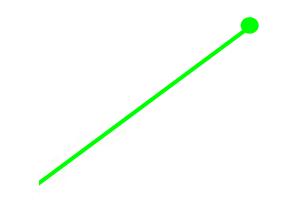
Model fit: correlation



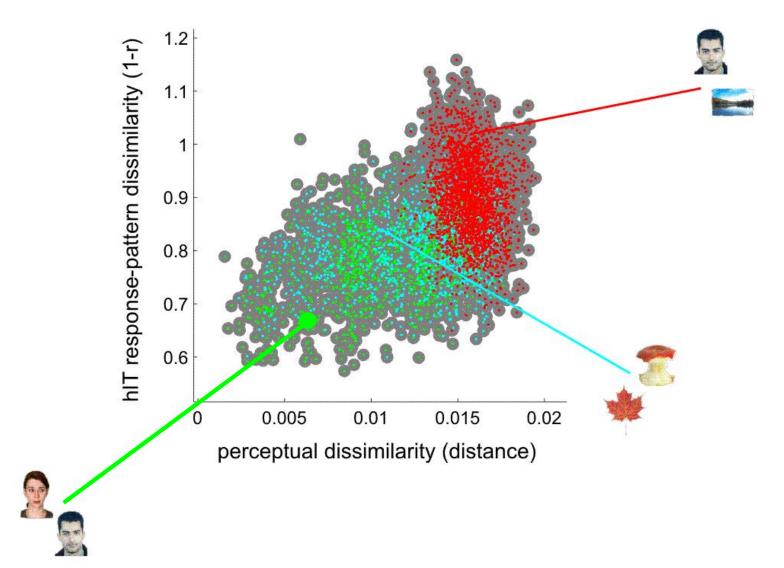
brain

judgments

Are hIT and perceptual dissimilarities correlated?

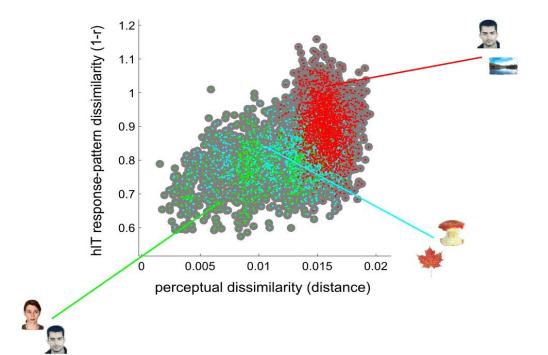


Are hIT and perceptual dissimilarities correlated?



Are hIT and perceptual dissimilarities correlated?

within all images: r=0.39, p<0.0001*** within animates: r=0.34, p<0.0001*** within inanimates: r=0.19, p<0.0001*** between animates and inanimates: r=-0.16, ns



Overview

- Why representational similarity analysis?
- Distance measures

• Inference

- Descriptive visualisations
- Goodness of model fit
- Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

Which model can best explain IT?

To what extent do features and categories explain the **IT representation**?

visual features

parts, shape, color, and texture

"elongated"

"brown"

"tail"

"scales"

semantic categories

basic and superordinate levels

"reptile"

"lizard"

"living"

Jozwik et al. 2016

Which model can best explain IT?

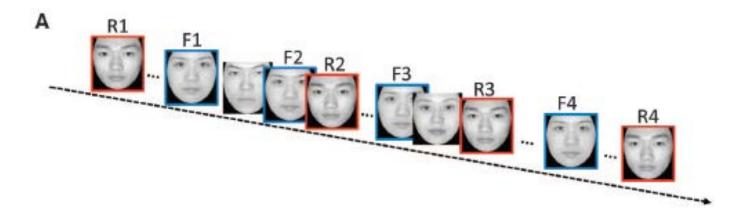
Overview

- Why representational similarity analysis?
- Distance measures
- Inference
 - Descriptive visualisations
 - Goodness of model fit
 - Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

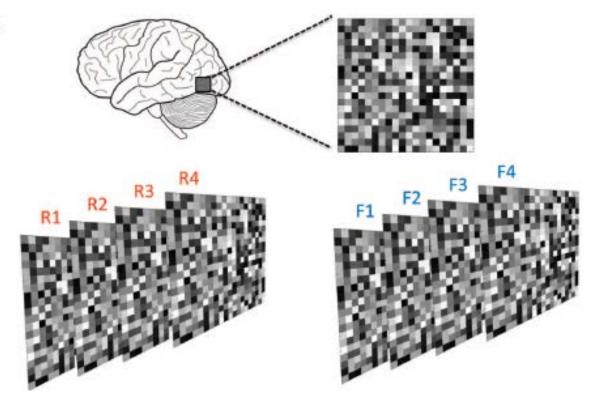
Applications: memory

Greater Neural Pattern Similarity Across Repetitions Is Associated with Better Memory

Gui Xue,^{1,2} Qi Dong,^{1*} Chuansheng Chen,³ Zhonglin Lu,² Jeanette A. Mumford,⁴ Russell A. Poldrack^{5,4,6*}



Applications: memory



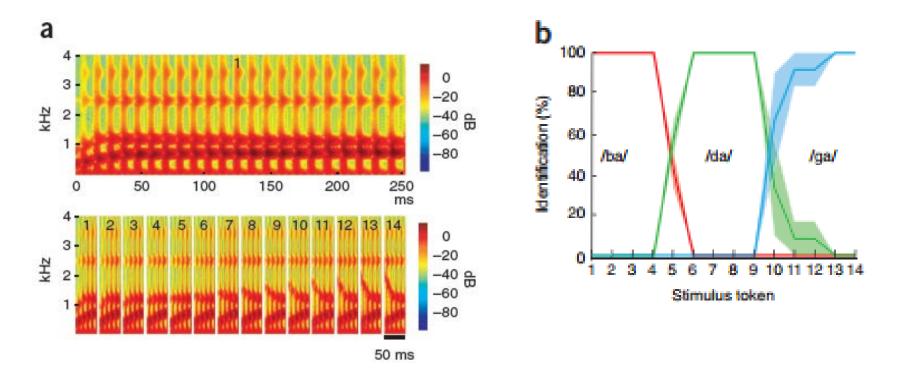
Applications: memory

2012/02/2012 02:00

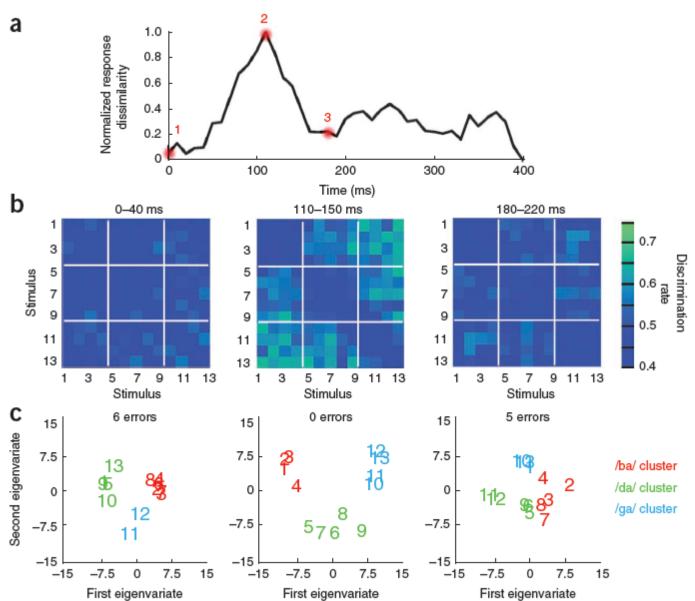
Applications: speech

Categorical speech representation in human superior temporal gyrus

Edward F Chang^{1,2,6}, Jochem W Rieger^{2,3,6}, Keith Johnson⁴, Mitchel S Berger¹, Nicholas M Barbaro¹ & Robert T Knight^{1,2,5}



Applications: speech



Overview

- Why representational similarity analysis?
- Distance measures
- Inference
 - Descriptive visualisations
 - Goodness of model fit
 - Model comparisons
- RSA applications in other areas of neuroscience

• Toolbox

• Literature

Toolbox

The RSA toolbox can be downloaded here:

http://www.mrc-cbu.cam.ac.uk/methods-andresources/toolboxes/

The toolbox runs in Matlab and does not have a GUI, but contains good documentation and multiple demos to familiarise you with the analyses. You can use the demo scripts as a starting point for your own analyses.

Overview

- Why representational similarity analysis?
- Distance measures
- Inference
 - Descriptive visualisations
 - Goodness of model fit
 - Model comparisons
- RSA applications in other areas of neuroscience
- Toolbox
- Literature

Literature

RSA

Kriegeskorte N et al. (2008) *Front Syst Neurosci* 2(4): 1-28. [original methods paper] Kriegeskorte N, Kievit R (2013) *Trends Cogn Sci* 17(8): 401-412. [recent review]

RSA applications in neuroscience

Kriegeskorte N et al. (2008) Neuron 60: 1126-1141. [object vision: human - monkey]
Mur M et al. (2013) Front Psychol 4(128): 1-22. [object vision: brain - behaviour]
Xue G et al. (2010) Science 330: 97-101. [memory: forgotten vs remembered items]
Ward EJ et al. (2013) J Neurosci 33(37): 14749-14757. [memory: implicit vs explicit]
Ritchey M et al. (2013) Cereb Cortex doi:10.1093/cercor/bhs258. [memory]

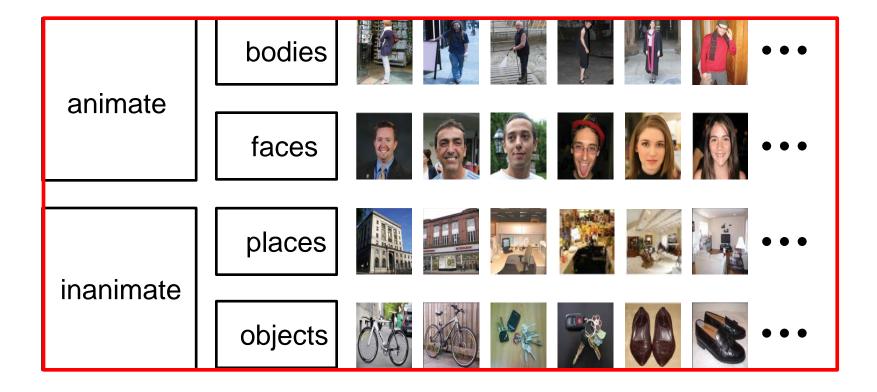
RSA toolbox/workshop

Nili et al. 2014 (in press) *PLoS Comput Biol* RSA workshop 2015: http://www.mrc-cbu.cam.ac.uk/rsa2015/rsa2015media/

PRACTICAL

Unique semantic space in the brain of each beholder predicts perceived similarity

Ian Charest^{a,1}, Rogier A. Kievit^a, Taylor W. Schmitz^a, Diana Deca^b, and Nikolaus Kriegeskorte^{a,1}



Set up your laptop

XX = laptop number

Log in

- Username: trainXXuser
- Password: *****

- Double-click on desktop shortcut
- VNCserver: loginXX:51
- Click connect

Set up your laptop

Matlab

- Right-click to open terminal
- Type matlab_r2009a, hit enter
- Set matlab current directory to /imaging/trainXXlinux/Workshop/Material
- Open tutorial.m