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Cohen, MX. Analyzing Neural Time Series Data. MIT Press. 
Hansen et al. MEG: An Introduction to Methods. Oxford U Press. 
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http://www.ncbi.nlm.nih.gov/pubmed/23046981
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“Brain Rhythms” and “Oscillations” 

Time course and topography may differ 
among different frequency bands 

(and may depend on task, environment, subject group etc.) 



Periodic Signals 

A periodic signal repeats itself with a period T. 

This is the case, for example, for sine and cosine functions: 

In radians (𝟐𝟐𝝅𝝅 ~ 360 degrees): 
𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙 + 𝟐𝟐𝝅𝝅 = 𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙  
𝒄𝒄𝒔𝒔𝒔𝒔 𝒙𝒙 + 𝟐𝟐𝝅𝝅 = 𝒄𝒄𝒔𝒔𝒔𝒔 𝒙𝒙  

In degrees : 
𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙 + 𝟑𝟑𝟑𝟑𝟑𝟑 = 𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙  
𝒄𝒄𝒔𝒔𝒔𝒔 𝒙𝒙 + 𝟑𝟑𝟑𝟑𝟑𝟑 = 𝒄𝒄𝒔𝒔𝒔𝒔 𝒙𝒙  

3600  ~  2𝝅𝝅 On a unit circle, a 3600 angle 
corresponds to a circumference 

of 2*pi 



Sine and Cosine 

Inverse of sine and cosine: arcsine and arccosine 

https://www.youtube.com/watch?v=z82I6u4DFTo 

s(𝑡𝑡) = 𝑎𝑎 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠 (2𝜋𝜋𝑓𝑓 ∗ 𝑡𝑡 + 𝜃𝜃) 
a: amplitude 
f: frequency 
𝜃𝜃 : phase 

cos(𝑥𝑥)= sin (𝑥𝑥 + 𝜋𝜋
2

) or cos(𝑥𝑥)= sin (𝑥𝑥 + 90) 

https://www.youtube.com/watch?v=z82I6u4DFTo


Sine and Cosine Are Orthogonal to Each Other 
(at a given frequency) 
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� sin (𝑓𝑓 ∗ 𝑥𝑥) 𝑐𝑐𝑐𝑐𝑠𝑠 𝑓𝑓 ∗ 𝑥𝑥 𝑑𝑑𝑥𝑥 = 0  



Sine/Cosine At Integer Frequency Intervals Are Orthogonal 
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∫ sin (𝑚𝑚 ∗ 𝑓𝑓 ∗ 𝑥𝑥) 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠 ∗ 𝑓𝑓 ∗ 𝑥𝑥 𝑑𝑑𝑥𝑥 = 0 for integer m, n 



More “Complex” Than Necessary? Euler’s Formula 

𝑒𝑒−𝑖𝑖𝜃𝜃 = 𝒄𝒄𝒄𝒄𝒄𝒄 𝜃𝜃 + 𝒔𝒔 ∗ 𝒄𝒄𝒔𝒔𝒔𝒔 𝜃𝜃     i= −𝟏𝟏 
Therefore: 

𝑐𝑐𝑐𝑐𝑠𝑠 (𝜃𝜃)  =  𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟(𝑒𝑒−𝑖𝑖𝜃𝜃) 
𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃)  = 𝑠𝑠𝑚𝑚𝑎𝑎𝑖𝑖(𝑒𝑒−𝑖𝑖𝜃𝜃) 
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This is mathematically very convenient, but not very intuitive… 
 

Important to remember:  
An oscillation at a particular frequency can be described in a “polar representation”: 



Entering the Frequency Domain: Fourier Transform in Words 

What you want: 
 

You’ve got a signal consisting of N sample points (equidistant). 
You want to know which frequencies contribute to the signal, and how much. 

 
In other words: 

You want to describe your signal as a linear combination of sines and 
cosines, 

ideally of orthogonal basis functions made up of sines and cosines. 
 
 

What you’ve got: 
 

With N samples, you can estimate at most N independent parameters. 
 

You cannot estimate frequencies above half of the sampling frequency SF 
(Nyquist). 

 
For a given frequency, sine and cosine are orthogonal,  

i.e. 2 basis functions per frequency. 
 



Entering the Frequency Domain: Fourier Transform in Words 
 

Divide the frequency range 0 to SF/2 evenly into N/2 
frequencies.  

 
For every frequency, create a sine and a cosine. 

 
Use these (orthogonal) sines and cosines as your basis 

functions. 
 

Project these basis functions onto your data, get the 
amplitudes for individual basis functions.  

 
– done! 

 
Fast Fourier Transform (FFT): A fast algorithm to do this. 

 
(I’m cheating a bit, assuming an appropriate N and ignoring the mean. But the principle is ok.) 



Thinking About The Fourier Transform 

1 term 
4 terms 
16 terms 

Approximating a function  
with Fourier terms 

Decomposing signals  
into sine/cosine terms 

Frequency Spectrum 



Practical Example: Band-pass filtering 



Motivation for Time-Frequency Analysis 

Fourier Transform assumes sines and cosines with constant 
amplitudes across the whole time series. 

 
But what does an FFT mean for a signal like this? 
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You could run separate FFTs for different (sliding) time 
windows: 
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Motivation for Time-Frequency Analysis 

But different window sizes are more or less optimal for different frequencies. 
Run different FFTs with different window sizes for different frequency ranges? Ouff. 

 



Wavelets provide an optimal trade-off between frequency and time resolution. 

Wavelets are convolved with the data to give instantaneous amplitude and 
phase estimates for different frequency ranges. 

Time-Frequency Analysis: Wavelets 

Time resolution decreases as 
frequency decreases 

(wavelets are getting “broader”)  



Tallon-Baudry & Bertrand, TICS 1999 

evoked induced 

Evoked and Induced Activity 



One needs at least 2 cycles of a frequency to get a meaningful estimate 
(of amplitude, phase, etc.) 
 
Duration (in ms) of 2 cycles at frequency f (in Hz): 2*1000/f 
 
1 Hz: 2000 ms = 2 s 
 
10 Hz: 200 ms = 1/5 s 
 
40 Hz: 50 ms = 1/20 s 
 
100 Hz: 20 ms = 1/50 s 

A Very Rough Rule of Thumb 

The lower the frequency, the longer the time window required to estimate the signal 



Effect of Number of Cycles 

1 cycle 2 cycles 

3 cycles Freq/3 cycles 





Single-Trial Analysis and Source Estimation 

Computing the power of a signal is a non-linear transformation. 
 
Linear transformations are associative: 

T(a+b) = T(a)+T(b) 
 
Therefore, the result is the same whether you apply a linear 
transformation before or after averaging your epochs. 
 
Spectral power is non-linear!  
If you want the average power, you have to compute power for 
individual epochs first, then average. 
 
The noise level and a priori knowledge about sources will be 
very different for single trials compared to the average. 
For example, a single/multiple dipole model may be justified for the average (e.g. auditory P1 
etc.), but not for single trials. 
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Power Estimation Changes the Time Course 

sine(x) 
sine2(x) 

For example, the frequency spectrum for sine(x) and sine2(x) are very different. 
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High Noise Levels May Mean Instable Solutions 
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Stable Instable 

Similar topographies are difficult 
to distinguish, especially in the 
presence of noise. 



Noise covariance 

Some channels are noisier than others 
⇒They should get different weights in your analysis 

Sensors are not independent 
=> Sensors that carry the same information should be downweighted relative to more 
independent sensors 

(Full) Noise Covariance Matrix 
(Diagonal) Noise Covariance Matrix 

(contains only variance for sensors) 





Direction of Current Flow 

“signed” 

or 

or 

Intensity 





“Brain Connectivity” 

Structural/Anatomical Connectivity:  
Hardware links between brain regions 

(e.g. DWI/DTI) 
 

Functional Connectivity: 
Statistical dependencies of activation between brain regions 

(e.g. correlation, or spectral measures such as phase-locking and coherence) 
 

Effective Connectivity 
Causal interactions of activation between brain regions 

(Granger Causality, Dynamic Causal Modelling) 

For example: 
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full 
http://www.sciencedirect.com/science/article/pii/S0165027012000817 
http://www.ncbi.nlm.nih.gov/pubmed/21477655 
http://online.liebertpub.com/doi/abs/10.1089/brain.2011.0008 

http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full
http://www.sciencedirect.com/science/article/pii/S0165027012000817
http://www.ncbi.nlm.nih.gov/pubmed/21477655
http://online.liebertpub.com/doi/abs/10.1089/brain.2011.0008


Bivariate vs Multivariate Connectivity 

Bivariate measures test one pair or regions at a time 

Multivariate measures test multiple regions simultaneously 



Spatial Resolution:  

Point-Spread and Cross-Talk/Leakage 

Cross-Talk Function  
(CTF) 

Point-Spread Function 
(PSF) 

Liu et al., HBM 2002 

How other sources may affect the      
estimate for this source 

How this source affects 
estimates for other sources 

For implications on source estimation for connectivity, see e.g. 
Schöffelen & Gross, HBM 2009: http://www.ncbi.nlm.nih.gov/pubmed/19235884 
Hauk & Stenroos, HBM 2014: http://www.ncbi.nlm.nih.gov/pubmed/23616402 

http://www.ncbi.nlm.nih.gov/pubmed/19235884
http://www.ncbi.nlm.nih.gov/pubmed/19235884
http://www.ncbi.nlm.nih.gov/pubmed/23616402


Cross-Talk/Leakage Matters For Connectivity 

Hauk, Wakeman, Henson. Neuroimage 2011.  

Cross-talk determines how independent source estimates for different locations are 
 

For some methods (e.g. MNE, dSPM and sLORETA) cross-talk is the same, and 
connectivity results won’t differ 

http://www.ncbi.nlm.nih.gov/pubmed/20884360


Quantifying “Resolution” 
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PSFs and CTFs for Some ROIs 
For MNE, PSFs and CTFs turn out to be the same 

Good 



Localisation for Some ROIs 

Less good 



Field Spread / Point Spread 

Connectivity between two 
regions may reflect point 

spread from one of the regions 

Connectivity between two 
regions may reflect point 

spread from a third region 

Some connectivity measures can rule out “zero-lag” connectivity 
(but they are then also insensitive to real zero-lag connectivity) 



Field Spread / Point Spread 

Connectivity between two regions 
may reflect point spread from 

several other  regions 

This is bad, and there is not much you can do – 
except getting your model right in the first place 





(Magnitude Squared) Coherence 

For two signals x(t) and y(t) at frequency f: 
 

𝐶𝐶𝑥𝑥𝑥𝑥(f) = 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) 2

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)
 

 
𝐺𝐺𝑥𝑥𝑥𝑥 𝑓𝑓  𝑠𝑠𝑠𝑠 𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒𝑟𝑟 𝑎𝑎𝑡𝑡 𝑓𝑓 𝑐𝑐𝑓𝑓 x(t) 

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) 2 𝑠𝑠𝑠𝑠 𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑎𝑎𝑟𝑟 𝑑𝑑𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑑𝑑 𝑐𝑐𝑓𝑓 𝑥𝑥 𝑡𝑡  and y(t) 
 

Yields the shared variance of two signals at a given frequency. 
 

𝐶𝐶𝑥𝑥𝑥𝑥(f)=1: Signals perfectly coherent at frequency f. 
𝐶𝐶𝑥𝑥𝑥𝑥(f)=0: Signals not coherent at all at frequency f. 

 
This looks a bit like a correlation – but in this case it depends on 

amplitude and phase of the signals at frequency f 
 
 





Phase-Locking 

s(𝑡𝑡) = 𝑎𝑎 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠 (2𝜋𝜋𝑓𝑓𝑡𝑡 + 𝜃𝜃) 
a: amplitude 
f: frequency 
𝜃𝜃 : phase 

-2*pi -pi -pi/2 0 pi/2 pi 2*pi
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lachaux et al., HBM 1999: http://www.ncbi.nlm.nih.gov/pubmed/10619414  

http://www.ncbi.nlm.nih.gov/pubmed/10619414
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Different Types of Phase-Locking 

-2*pi -pi -pi/2 0 pi/2 pi 2*pi
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Inter-Trial Phase-Locking 
Trial 1 
Trial 2 

Does the phase at a particular frequency  
remain stable across trials with one region? 

(not connectivity) 

Inter-Regional Phase-Locking 
Region 1 
Region 2 

Does the phase difference between two regions 
 at a particular frequency  

remain stable across trials with one region? 
(not connectivity) 

We ignore amplitudes, and are only interested in phase-
relationships between two signal at a frequency f 



Phase-Locking 
Low Phase-Locking High Phase-Locking 

Every vector represents the 
amplitude and phase of one 

signal 
(e.g. phase difference between 

two regions across trials). 

We are not interested in 
amplitude, and normalise all 

vectors to unit length. 
The average vectors measure 
the phase-consistency across 

signals 
(phase-locking value, PLV). 

 

Phase-locking values (PLVs) are sensitive to the number of trials: 
low number of trials => larger absolute PLVs 



Cross-Frequency Coupling 

Jensen & Colgin, TICS 2007 



For Example: Theta-Gamma Coupling 

Figure 2. Models proposing computational roles for cross-frequency interactions between theta and gamma oscillations by means of phase 
coding. (a) In a model for working memory, individual memory representations are activated repeatedly in every theta cycle [10] (reviewed in 
Ref. [11]). Each memory representation is represented by a subset of neurons in the network firing synchronously. Because different 
representations are activated in different gamma cycles, the gamma rhythm serves to keep the individual memories segmented in time. The 
number of gamma cycles per theta cycle determines the span of the working memory. (b) A model accounting for theta phase precession in rats. 
As a rat advances through an environment, positional information is passed to the hippocampus. This activates the respective place cell 
representations, which provokes the prospective recall of upcoming positions. In each theta cycle, time-compressed sequences are recalled: one 
representation per gamma cycle. Consider the firing of a cell participating in representation E. As the rat advances, this cell fires earlier in the 
theta cycle, thus accounting for phase precession. According to this scheme, the number of gamma cycles per theta cycle is related 
quantitatively to the phase precession [13]. 

Jensen & Colgin, TICS 2007 



Spectral connectivity measures can be computed for separate time windows, 
or they can be computed continuously using wavelets or Hilbert transform 

(subject to general trade-off between frequency and time resolution) 

Time-Resolved Connectivity 

Time resolution decreases as 
frequency decreases 

(wavelets are getting “broader”)  





And Beyond… 

The previously introduced measures are spectral measures, 
i.e. they are computed for specific frequencies (or frequency bands). 
  
They rely on the assumption that brain signals can meaningfully be 
decomposed into “oscillations” or “frequency bands”. 
 
This is a big assumption, and may not be the case for all modalities, 
stimuli, tasks etc., or may not even be true in general. 
 
Therefore… 



Non-Spectral and Effective Connectivity 

Granger Causality: Is one time series useful to predict another? 
x(t) Granger-causes y(t) if past values of x(t) add information to past values 
of y(t) for predicting future values of y(t). 
http://www.scholarpedia.org/article/Granger_causality  
Multivariate Granger Toolbox: http://www.sussex.ac.uk/sackler/mvgc/ 
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full 
 
 

Structural Equation Modelling (SEM): 
Models covariance structure of brain activation across brain regions (e.g. 
“path analysis”). 

Dynamic Causal Modelling (DCM): 
Models brain dynamics across regions as differential equations, in 
combination with Bayesian parameter/model estimation. 
http://www.scholarpedia.org/article/Dynamic_causal_modeling  

http://www.sussex.ac.uk/sackler/mvgc/
http://www.sussex.ac.uk/sackler/mvgc/
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00175/full
http://www.scholarpedia.org/article/Dynamic_causal_modeling
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