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Volume Conductor/
Head Model

Source Space

MEG data

Noise/Covariance Matrix

Coordinate
Transformation

Ingredients for Source Estimation



Our Goal: Spatio-Temporal Brain Dynamics
“Brain Movies”



Forward And Inverse Problem
(and some solutions)



primary 
current,
“dipole”

volume 
currents

The EEG/MEG Forward Problem

EEG/MEG measure the 
primary sources indirectly

Sensors are differently sensitive to 
different sources

“Leadfield”

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”
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We Have To First State The Forward Problem 
In Order To Solve The Inverse Problem



v11 v12

v21 v22

d3 = V11+V21 d4 = V12+V22

d1 =V11+V12

d2 = V21+V22

d1= V11+V12
d2= V21+V22
d3= V11+V21
d4= V12+V22

EEG/MEG

d1= V11+V12+V13+V14 ...

d2= V21+V22+V23+V24 ...

Tomography (CT, fMRI…)

Information is lost during 
measurement

Cannot be retrieved by 
mathematics

Inherently limits spatial resolution

d1

d2

d3

d4
d5 d6

d7

d8

d9

EEG/MEG “Scanning” is not “Tomography”

“x-ray”



source s1

so
ur

ce
s 2

In “signal space”, we see a faint shadow of activity in “source space”.

If you are not shocked by the EEG/MEG inverse problem…
… then you haven’t understood it yet.

(freely adapted from Niels Bohr)

M.C. Escher

Why Inverse “Problem”?



What is the solution to

x1 + x2 = 1
Maybe

x1 = 0 ; x2 = 1 ?

x1 = 1 ; x2 = 0 ?

x1 = 1000 ; x2 = -999 ?

x1 = π ; x2 = (1-π) ?

The minimum norm solution is:

x1 = 0.5 ; x2 = 0.5

with (0.52 + 0.52)=0.5 the minimum norm among all possible solutions.

Non-Uniquely Solvable Problem
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The Goal:
Once We Have Stated the Forward Problem,
We Are Ready Address the Inverse Problem

MNE produces solution with minimal power or “norm”:

( )2
3

2
2

2
1 jjj ++



Examples for Non-Uniqueness

Jensen & Hesse, chap. 7 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)
See also Krishnaswamy et al. PNAS 2017 for approaches for deep sources,
https://www.pnas.org/content/114/48/E10465

A distributed superficial distribution may be indistinguishable from a focal deep source.

https://www.pnas.org/content/114/48/E10465


Examples for Non-Uniqueness

Hämäläinen & Hari, in Brain Mapping: The Methods (2nd), Elsevier 2002

Different Sources

Field Patterns

Dipole Model

Minimum Norm Estimates

Original Sources

Same Field Patterns

Same Source Estimates



Magnetometers Gradiometers EEG

Minimum Norm Estimate

Example: Visually Evoked Activity ~100 ms



Minimum Norm Estimate

Example: Auditorily Evoked Activity



The Forward Problem and Head Modelling



http://www.cogsci.ucsd.edu/~sereno/movies.html

Sometimes “standard head models” are used, when no individual MRIs available.

SPM uses the same “canonical mesh” as source space for every subjects, but adjusts it 

individually.

Volume Conductor/Head Model
How we model conductivities/currents/potentials/fields in the head

e.g. sphere, 1- or 3-compartments from MRI

Source Space
Which sources are modelled
e.g. grey matter, 3D volume

Source Space and Head Model



Normalising (Morphing) Cortical Surfaces

Gramfort et al., NI 2014



Source Spaces: Cortical Surface Segmentation

Gramfort et al., NI 2014



Spatial Sampling of Cortical Surfaces

10.034 vertices, 20.026 triangles of 10 mm2 surface area

79.124 vertices, 158.456 triangles of 1.3 mm2 surface area

Baillet, chap. 5 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)



Volumetric Source Spaces

Pascqual-Marqui, PTRS-A 2011



Coordinate
Transformation

Coregistration of EEG/MEG and MRI Spaces



Coregistration of EEG/MEG and MRI Spaces

Hari & Puce, “MEG-EEG Primer”, OUP 2017



Accurate Coregistration Is Important
Coregistration errors affect the forward model, and therefore everything that follows.

For example, connectivity analysis:

Chella et al., NI 2019

3 levels of coregistration error
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Head Modelling – Tissue Compartments

Ilmoniemi and Sarvas, “Brain Signals”, MIT 2019

Goldenholz et al., HBM 2009

Ingredients for a head model



Head Models With Different Levels of Detail

Baillet, chap. 5 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)

Spheres Boundary Element Model
(BEM)

Finite Element Model
(FEM)



More Complex Head Models

The use of 3-layer (brain, skull, scalp) BEM models based on individual MRI images is 
recommended for accurate EEG/MEG source reconstruction.
For MEG-only, single shell BEMs and local/corrected sphere models can provide 
reasonable approximations.
These approaches are available in all major EEG/MEG software packages.

But heads are more complex:

Vorwerk et al., NI 2014

White Matter
Gray Matter
CSF
Skull Compacta
Skull Spongiosa
Skin

Fractional Anisotropy

It is not obvious how to translate this into more accurate estimate for conductivity distributions. 



Conductivities Of Tissues Can Only Be Approximated

Haueisen & Knösche, Chapter of “Magnetoencephalography” by Supek & Aine (edts.)



Boundary Element Models Are Relatively Robust Against 
Conductivity Errors

Stenroos & Hauk, NI 2013
https://pubmed.ncbi.nlm.nih.gov/23639259/

Relative Error Correlation Coefficient

underestimated
conductivity

overestimated
conductivity

underestimated
conductivity

overestimated
conductivity

https://pubmed.ncbi.nlm.nih.gov/23639259/


Infant Skulls – Fontanelles and Sutures

Relative error between models with and without fontanelles/sutures

Lew et al., NI 2013



Conclusion – Head Modelling

3-compartment BEM models are currently state-of-
the-art for EEG/MEG source estimation.

Single-shell approximations are still common for MEG.

More detailed head models may increase accuracy, 
but require more accurate data and information, such 
as accurate MRI segmentations and conductivity 
values. (see e.g. Vorwerk et al., BioMeg Eng Online 2018) for Fieldtrip FEM pipeline)

There is no right or wrong, there are only different 
approximations – know your limits.



The Forward Problem Is Linear – Superposition Principle

Superposition In Sensor Space

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”



Sensitivity of EEG and MEG

Goldenholz et al., HBM 2009



MEG Is Less Sensitive To Spatially Extended Sources Than EEG

Goldenholz et al., HBM 2009
https://pubmed.ncbi.nlm.nih.gov/18465745/

https://pubmed.ncbi.nlm.nih.gov/18465745/


Solutions To The Inverse Problem –
Source Estimation



Hypothesis Testing - Dipole Fitting

Explicit assumptions about the number of focal sources (dipoles) are tested by fitting 
dipole models to the data. 
The common criterion for the selection of models is the goodness-of-fit.

It can be hard to choose the appropriate number of dipoles – a priori knowledge is 
required.
Solutions for several/many dipoles can get stuck in local minima, and may not be robust 
to noise.



Assumptions Cannot Completely Remove Uncertainty

95% CIs for single dipole source

Hari et al., Electroencephalogr Clin Nph 1988



Dipole Scanning

We may have reasonable assumptions about possible locations for 
isolated dipole sources, e.g. on the cortical surface.

Dipole scan: Fit dipoles vertex-by-vertex and plot the goodness-of-fit as a distribution.
The maxima in this distribution point to possible dipole locations.
The locations are reliable if there is only one dipole, or if multiple dipole topographies are 
mutually orthogonal (e.g. far apart).
This is not a “distributed source solution” (more on that later).

http://www.cogsci.ucsd.edu/~sereno/movies.html

http://www.cogsci.ucsd.edu/%7Esereno/movies.html





Multi-Dipole Scan: MUSIC
(Multiple Source Signal Classification)

Ilmoniemi & Sarvas, “Brain Signals”, MIT 2019

Mosher & Leahy, IEEE-TBME 1998

Data and Noise Subspaces Classical MUSIC Recursively Applied
(RAP) MUSIC

1) Estimate number of dipoles, e.g. 
using PCA/SVD.

2) Run MUSIC for one dipole.
3) Run MUSIC for 2nd dipole, 

partialling out dipole 1.
4) Repeat for estimated number of 

dipoles.

See e.g. for overview and recent updates of MUSIC algorithms: Ilmoniemi & Sarvas, “Brain 
Signals”, MIT 2019;   Mäkelä et al., NI 2018 (“TRAP MUSIC”, https://pubmed.ncbi.nlm.nih.gov/29128542/)

One problem with MUSIC algorithms: They don’t give you source time courses.

https://pubmed.ncbi.nlm.nih.gov/29128542/


Project on source of interest:

Suppress noise:

Assumptions:
• All sources captured in data covariance matrix C (signal and noise)
• We are interested in one source i in many sources

Aim:
Design a spatial filter wi which projects maximally on the source of interest and 
minimally on noise sources.

e.g. Hauk&Stenroos, HBM 2013, https://pubmed.ncbi.nlm.nih.gov/23616402/ ,
Hauk et al., bioRxiv 2019, https://www.biorxiv.org/content/10.1101/672956v1

Linearly-Constrained 
Minimum-Variance 

(LCMV) Beamformer

“Spatial Filters”: Beamformers

𝐰𝐰𝑖𝑖
𝑇𝑇𝐟𝐟𝑖𝑖

𝒎𝒎𝒎𝒎𝒎𝒎(𝐰𝐰𝑖𝑖
𝑇𝑇𝐂𝐂𝐰𝐰𝑖𝑖 )

𝐰𝐰𝑖𝑖 =
𝐟𝐟𝑖𝑖𝑇𝑇𝐂𝐂−1

𝐟𝐟𝑖𝑖𝑇𝑇𝐂𝐂−1𝐟𝐟𝑖𝑖

Create and apply these spatial filters vertex-by-vertex (dipole-by-dipole) and plot the distribution 
(possibly normalised by noise variance).

Spatial filters can also produce time courses for every source.

Van Veen et al., 1997, https://pubmed.ncbi.nlm.nih.gov/9282479/

https://pubmed.ncbi.nlm.nih.gov/23616402/
https://www.biorxiv.org/content/10.1101/672956v1
https://pubmed.ncbi.nlm.nih.gov/9282479/


Beamformers

𝐒𝐒𝐒𝐒𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 i =
�̃�𝐋.𝑖𝑖
𝑇𝑇𝐂𝐂𝑑𝑑−1

�̃�𝐋.𝑖𝑖
𝑇𝑇𝐂𝐂𝑑𝑑−1�̃�𝐋.𝑖𝑖

The “linearly-constrained maximum-variance” (LCMV) beamformer

depends on the data covariance matrix (“adaptive”).

Beamformers result in linear transformations of the data (“spatial filters”),
but those transformations strongly depend on the data of interest.

=> Beamformers are not linear with respect to the sources of interest.



Beamforming Is Problematic For Highly Synchronous Sources

Ilmoniemi and Sarvas, “Brain Signals”, MIT 2019

4 non-synchronous sources 2 non-synchronous,
2 synchronous sources



Beamformers Are Popular for Rhythmic 
Brain Activity and Resting State Activity

Singh, NI 2012

Visual Gamma Band 
Response

Resting State
Networks

Motor Fronto-Parietal Visual

Brookes et al. PNAS 2011



Beamformers Are Popular for Rhythmic 
Brain Activity and Resting State Activity…

…but the choice of source estimation method should be based on 
knowledge (or its absence) about the source distribution.

Is there anything in rhythmic/oscillatory or resting state activity that 
favours some source distributions more than others
(e.g. number of sources, focality/sparsity, location)?

For example, visual gamma band sources may be focal, but resting 
state networks may be distributed.



Minimum Norm Estimation Of Distributed Sources



Minimum Norm Estimation Of Distributed Sources

But this is the result of mathematical desperation, and not based on 
physiology or what we want to know (e.g. localisation of sources).

𝐋𝐋𝐋𝐋 = 𝐝𝐝 ⇒ 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 = 0 
(ignore noise for now)

subject to constraint

𝐋𝐋 𝟐𝟐 = min

yields the Minimum-Norm Least-Squares solution (“L2”)

�𝒔𝒔 = 𝑮𝑮𝑳𝑳𝑴𝑴𝐝𝐝

with

𝑮𝑮𝑳𝑳𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1



There Are Many Norms, e.g. L1 vs L2 -
Sparseness

Minimising the L2 norm, 𝐋𝐋 𝟐𝟐 = s𝟏𝟏 𝟐𝟐+ s𝟐𝟐 𝟐𝟐+…+ s𝑴𝑴 𝟐𝟐 penalizes large values in s
=> “smooth”

Minimising the L1 norm, 𝐋𝐋 𝟏𝟏 = s𝟏𝟏 + s𝟏𝟏 +…+ s𝑴𝑴 prefers large values in s
⇒ “sparse”

For example:

x1 + 2x2=1

L2 solution: (0.2, 0.4)
L2-norm 0.22+0.42~0.45, L1-norm 0.2+0.4=0.6

L1 solution: (0, 0.5)
L2-norm 0.5, L1-norm 0.5



There Are Different Optimisation Criteria:
Bayesian Approach

Bayes’ rule:

𝑝𝑝 𝐋𝐋 𝐝𝐝 ~ 𝑝𝑝 𝐝𝐝 𝐋𝐋 ∗ 𝑝𝑝 𝐋𝐋
posterior  ~  likelihood * prior

Assume normal distribution for noise:

𝑝𝑝 𝐝𝐝 𝐋𝐋 =
𝛽𝛽

2𝜋𝜋

𝑳𝑳/𝟐𝟐

𝑒𝑒𝑒𝑒𝑝𝑝 −
𝛽𝛽
2

𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐

Thus, minimise

−2𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 𝐋𝐋 𝐝𝐝 = −2log 𝑝𝑝 𝐝𝐝 𝐋𝐋 − 2log 𝑝𝑝 𝐋𝐋 = 𝛽𝛽 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 -2log 𝑝𝑝 𝐋𝐋

“Most likely” is still not what we want to know –
Does the method do what we want it to do?

e.g. Henson et al., 2011, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/


Let’s Start Again:
The “Blurry Image” Analogy



The Superposition Principle
A “Constraint-Free” Interpretation of Linear Methods

Object

PSF

Image
convolution

Microscopy Astronomy

https://en.wikipedia.org/wiki/Point_spread_function



If you know the behaviour  for point sources, 
you can predict the behaviour for complex sources
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Linear Methods Can Easily Tell Us If They Do What We Want
Superposition Principle



Linear Methods – Superposition Principle

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”

Superposition In Source Space

Example Point-Spread Functions

Great! Good. :-(



Spatial resolution depends on:

modelling assumptions
number of sensors (EEG/MEG or both)

source location
source orientation

signal-to-noise ratio
head modeling

=> difficult to make general statement

Spatial Resolution of Source Estimation Is Complex



With n sensors: 
-> n independent measurements
-> n independent parameters estimable 
-> at best separate activity from n brain regions

Sensors are not independent, data are noisy: ~ 50 degrees of freedom

Volume of source space:
Sphere 8cm minus sphere 4 cm: volume ~1877 cm3

“Resel”: 38 cm3 -> 3.43 cm3

Spatial Resolution – A Naïve Estimate

SVD of Leadfields

EEGMEG
MEG
EEG



Resolution Matrix

1

1
2

23

Forward Problem

𝐝𝐝 = 𝐋𝐋𝐋𝐋

1

1
2

23

Linear Inverse Problem

�̂�𝐣 = 𝐆𝐆𝐝𝐝

�̂�𝐣 = 𝐆𝐆𝐋𝐋𝐋𝐋 ≝ 𝐑𝐑𝐋𝐋
Relationship between estimated and true source distribution.

e.g. Hauk/Stenroos/Treder, bioRxiv 2019
https://www.biorxiv.org/content/10.1101/672956v1

https://www.biorxiv.org/content/10.1101/672956v1


𝑹𝑹 − 𝑰𝑰 𝟐𝟐 = min

MNE Has An Optimal Resolution Matrix

�𝐋𝐋 = 𝐑𝐑𝐋𝐋

The closer R is to the identity matrix, the closer our estimate is to the true source.

Therefore, let us minimise the difference between R and the identity matrix in the 
least-squares sense:

This leads to the Minimum Norm Estimator (MNE):

𝑮𝑮𝑳𝑳𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1

Its resolution matrix 𝑹𝑹𝑳𝑳𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1𝐋𝐋 is symmetric.



Cross-Talk Function 
(CTF)

Point-Spread Function
(PSF)

How other sources may affect the      
estimate for this source

How this source affects 
estimates for other sources

Spatial Resolution: 
Point-Spread and Cross-Talk/Leakage

+1

-1

0

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”



Good

PSFs and CTFs for Some ROIs
For MNE, PSFs and CTFs turn out to be the same



Less good

PSFs and CTFs for Some ROIs
For MNE, PSFs and CTFs turn out to be the same



?

?

Desikan-Killiany Atlas parcellation

Localisation Bias Has Consequences for ROI analysis
PSFs/CTFs Can Tell You How It Looks Like
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“localisation error”

“spatial dispersion”

PSF or CTF

It’s not just peak localisation that counts, 
but also spatial extent of the distribution.

Quantifying Resolution From PSFs and CTFs
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Resolution Metrics For PSFs/CTFs

• MEG+EEG: Elekta Vectorview (360+70 channels), Wakeman & Henson open data set

• Whitened leadfields and data to combine sensor types

• Methods Comparison: 

• L2-MNE

• depth-weighted L2-MNE

• dSPM

• sLORETA

• 2 LCMV beamformers (pre- and post-stimulus covariance matrices)

• Resolution Metrics: 

• Peak Localisation Error

• Spatial Dispersion (extent)



Sensitivity Maps
RMS of Leadfield Columns

EEG
70 electrodes

MEG
102 mags + 204 grads

EEG+MEG
102 mags + 204 grads



Combining EEG And MEG Improves Spatial Resolution

Hauk/Stenroos/Treder, bioRxiv 2019 | see also Molins et al., NI 2008



Comparing Estimators: Localisation Error

Hauk/Stenroos/Treder, bioRxiv 2019, https://www.biorxiv.org/content/10.1101/672956v1,
see also Hauk/Wakeman/Henson, NI 2011

https://www.biorxiv.org/content/10.1101/672956v1


Comparing Estimators: Spatial Extent

Hauk/Stenroos/Treder, bioRxiv 2019, https://www.biorxiv.org/content/10.1101/672956v1,
see also Hauk/Wakeman/Henson, NI 2011

https://www.biorxiv.org/content/10.1101/672956v1


Anatomical Parcellations May Not Be Optimal For 
EEG/MEG

Farahibozorg, Henson, Hauk, NI 2018



Adaptive Parcellations For EEG/MEG

Farahibozorg, Henson, Hauk, NI 2018



Noise and Regularisation



1

1

2

2

1

1

2

2

Stable Instable

(In)Stability – Sensitivity to Noise

Similar topographies 
are difficult to 
distinguish, especially 
in the presence of noise.

Thanks to Matti Stenroos.



Noise and Regularization
Over- And Under-Fitting

Explaining the data 100% may not be desirable – some of the 
measured activity is not produced by sources in the model.

Explaining noise may require larger amplitudes in source 
space than the signal of interest: 

Overfitting may seriously distort the solution (“variance 
amplification” in statistics/regression).

“Regularisation” results in a spatially smoother solution that 
is less affected by noise. The degree of smoothing depends 
on the “regularisation parameter” (also called “lambda”).

Underfitting (over-smoothing) may waste spatial resolution.



Some channels are noisier than others
⇒They should get different weights in your analysis

Sensors are not independent
=> Sensors that carry the same information should be downweighted relative to more 

independent sensors

(Full) Noise Covariance Matrix
(Diagonal) Noise Covariance Matrix
(contains only variance for sensors)

Regularisation Can Take Into Account Noise covariance



Leaving Variance Unexplained

𝐋𝐋𝐋𝐋 = 𝐝𝐝 + 𝛆𝛆 ⇒ 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 <= e, s.t. 𝐋𝐋 𝟐𝟐 = min

This is equivalent to minimising the cost function

𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 + λ 𝐋𝐋 𝟐𝟐, λ>0

We can give sensors different weightings, 

e.g. based on their noise covariance matrix C:

𝐂𝐂−1 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 = 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝑳𝑳
𝟐𝟐 = e

𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝑳𝑳
𝟐𝟐+ λ 𝐋𝐋 𝟐𝟐, λ>0

𝑮𝑮𝑳𝑳𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 + 𝜆𝜆𝐂𝐂−1 −1

𝜆𝜆 (Lambda) is the regularisation parameter that determines how much variance 
we want to leave unexplained.



Whitening and Choice of Regularisation Parameter

𝑮𝑮𝑳𝑳𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 + 𝜆𝜆𝐂𝐂−1 −1

can also be written as

𝑮𝑮 �𝑳𝑳𝑴𝑴 = �̃�𝐋𝑇𝑇 �̃�𝐋�̃�𝐋𝑇𝑇 + 𝜆𝜆𝐈𝐈 −1

where �̃�𝐋 is the “whitened” leadfield 𝐂𝐂−1/2𝐋𝐋, 
and scaled such that trace(�̃�𝐋�̃�𝐋𝑇𝑇)=trace(𝐈𝐈).

�̃�𝐋 and λ can now be interpreted in terms of 
signal-to-noise ratios.

A reasonable choice for λ is then the 
approximate SNR of the data.



Trade-off norm-variance, smoothness
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Fuchs et al., J Clin Neurophys 1999 

Source at fixed excentricity 71% (60mm)



Regularisation: Bayesian L2

Minimise cost function

𝐹𝐹 𝐋𝐋 = 𝛽𝛽 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝑳𝑳
𝟐𝟐-2log 𝑝𝑝 𝐋𝐋

If we assume 𝑝𝑝 𝐋𝐋 is Gaussian

𝑝𝑝 𝐋𝐋 =
𝛼𝛼

2𝜋𝜋

𝑴𝑴/𝟐𝟐
𝑒𝑒𝑒𝑒𝑝𝑝 −

𝛼𝛼
2

𝐋𝐋 𝟐𝟐

This leads to the cost function

⇒ 𝐹𝐹 𝐋𝐋 = 𝛽𝛽 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝑳𝑳
𝟐𝟐+𝛼𝛼 𝐋𝐋 𝟐𝟐 ~ 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝑳𝑳

𝟐𝟐+
𝛼𝛼
𝛽𝛽

𝐋𝐋 𝟐𝟐

=> Equivalent to cost function for the L2 minimum-norm solution.
e.g. Henson et al., 2011, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/
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