

EEG/MEG 2: Head Modelling and Source Estimation Olaf Hauk

olaf.hauk@mrc-cbu.cam.ac.uk

Introduction to Neuroimaging Methods, 20.2.2018

Ingredients for Source Estimation

The Path to the Source

See also: http://www.mrc-cbu.cam.ac.uk/methods-and-resources/imaginganalysis/

Practice

Why Inverse "Problem"?

 $\mathbf{d}_2 = \mathbf{V}_{21} + \mathbf{V}_{22} + \mathbf{V}_{23} + \mathbf{V}_{24} \dots$

Information is lost during measurement

Cannot be retrieved by mathematics

Inherently limits spatial resolution

Why Inverse "Problem"?

In "signal space", we see a faint shadow of activity in "source space".

If you are not shocked by the EEG/MEG inverse problem... ... then you haven't understood it yet.

(freely adapted from Niels Bohr)

Non-Uniquely Solvable Problem

What is the solution to

 $x_1 + x_2 = 1$ Maybe

 $x_1 = 0; x_2 = 1$? $x_1 = 1; x_2 = 0$? $x_1 = 1000; x_2 = -999$? $x_1 = 1000; x_2 = -999$?

$$x_1 = \pi ; x_2 = (1 - \pi)$$
 ?

The minimum norm solution is:

$$x_1 = 0.5$$
; $x_2 = 0.5$

with $(0.5^2 + 0.5^2) = 0.5$ the minimum norm among all possible solutions

Non-Uniquely Solvable Problem

MNE produces solution with minimal power or "norm":

 $\left(j_1^2 + j_2^2 + j_3^2\right)$

Practice

MRI Preprocessing: Source Space and Head Model

Source Space, e.g. grey matter, 3D volume

http://www.cogsci.ucsd.edu/~sereno/movies.html

Volume Conductor/Head Model e.g. sphere, 1- or 3-compartments from MRI

Sometimes "standard head models" are used, when no individual MRIs available. SPM uses the same "canonical mesh" as source space for every subjects, but adjusts it individually.

Coregistration of EEG/MEG and MRI Spaces

Coordinate Transformation

Practice

Source Estimation Approaches

"Dipole Fitting"

- 1. Assume there are only a few distinct sources
- 2. Iteratively adjust the location, orientation and strength of a few dipoles...
- 3. ...until the result best fits the data

"Distributed Sources"

- 1. Assume sources are everywhere (e.g. distributed across the whole cortex)
 - 2. Find the distribution of source strengths that explains the data...
 - 3. ...AND fulfils other constraints

MRC C

Minimum Norm Estimation: Minimal Modelling Assumptions

All approaches converge to the same solution if no a priori information is available.

There are many possible assumptions, and therefore many different methods – but unfortunately no gold standard to properly compare them.

Visually Evoked Activity ~100 ms

Minimum Norm Estimate

Auditorily Evoked Activity

Minimum Norm Estimate

Source Orientation Constraints

Direction of Current Flow

Direction of Current Flow

Practice

(In)Stability – Sensitivity to Noise

Practice

Noise covariance

Some channels are noisier than others

\Rightarrow They should get different weights in your analysis

Sensors are not independent

=> Sensors that carry the same information should be downweighted relative to more independent sensors

(Full) Noise Covariance Matrix

(Diagonal) Noise Covariance Matrix

(contains only variance for sensors)

Practice

Spatial Resolution: Point-Spread and Cross-Talk/Leakage

Liu et al., HBM 2002

"How other sources may affect the spatial filter for this source"

"How this source affects other spatial filters"

Spatial Resolution of Source Estimation

Spatial resolution depends on:

modeling assumptions number of sensors (EEG/MEG or both) source location source orientation signal-to-noise ratio head modeling

=> difficult to make general statement

Spatial Resolution – A Naïve Estimate

With *n* sensors: -> *n* independent measurements -> *n* independent parameters estimable -> at best separate activity from *n* brain regions Sensors are not independent -> ~ 50 degrees of freedom

Volume of source space: Sphere 8cm minus sphere 4 cm: volume ~1877 cm³

"Resel": $38 \text{ cm}^3 \rightarrow 3.4^3 \text{ cm}^3$

The spatial resolution of the measurement is inherently limited!

Linear Methods – Superposition Principle

If you know the behaviour for point sources, you can predict the behaviour for complex sources

Practice

Spatial Resolution: Point-Spread and Cross-Talk/Leakage

Liu et al., HBM 2002

How other sources may affect the estimate for this source

How this source affects estimates for other sources

Quantifying "Resolution"

It's not just "peak localisation" that counts, but also spatial extent of the distribution ("resolution")

PSFs and CTFs for Some ROIs

For MNE, PSFs and CTFs turn out to be the same

Good

PSFs and CTFs for Some ROIs

For MNE, PSFs and CTFs turn out to be the same

Less good

Comparing Methods

Different methods make different compromises.

There is no "best" method – best for what?

One should compare methods for the same purpose and under the same assumptions.

Difficult to generalize results from one example or data set => Important to understand the principles

Method Comparison

Spatial Dispersion

Combining EEG and MEG Increases Resolution

Molins et al., Neuroimage 2008

Stenroos&Hauk, in prep

MRC Cognition and Brain Sciences Unit

Combining EEG and MEG Improves Resolution

...especially in the presence of (correlated) noise

Localisation Bias Has Consequences for ROI analysis

Desikan-Killiany Atlas parcellation

The End Of #2 Please leave your feedback.