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A Big Picture: Spatial vs Temporal Resolution



Magnetoencephalography 

(MEG)

1
/1

0
0
.0

0
0
.0

0
0

Household Batteries 

~ 1-12 V

Cell Membrane Potentials 

~ 70 mV

Raw EEG: ~ 30 μV

Eye blinks: > 100 μV

ERPs: ~ 0-10 μV

ECG: 

~ 1mV

Electroencephalography 

(EEG)

What We are Measuring



deLong, Urbach, Kutas, Nat Nsc 2005
Kutas&Hillyard, Science 1980

When Timing Is Of The Essence



Books:

Hansen, Kringelbach, Salmelin: “MEG: An Introduction to Methods”, OUP 2010.

SJ Luck: “An Introduction to The Event-Related Potential Technique”, MIT 2005.

TC Handy: “Event-Related Potentials”, MIT 2004.

Cohen, Mike X; “Analyzing Neural Time Series Data”; MIT Press 2014.

Hari R, Puce A. “MEG-EEG Primer”. Oxford University Press 2017.

Guidelines for MEG and EEG research:

Gross et al., “Good practice for conducting and reporting MEG research.“, Neuroimage

2013.

Picton et al., “Guidelines for using human event-related potentials to study cognition: 

recording standards and publication criteria.“, Psychophysiology 2000.

EEG/MEG Introductory Literature
http://imaging.mrc-cbu.cam.ac.uk/meg/MEGpapers

http://imaging.mrc-cbu.cam.ac.uk/meg/MEGpapers


Ancient Greece, 600 BC:
Thales describes static electricity
“electron”

Ancient Egypt, 2750 BC:
Electric Fish (“Thunderer of the Nile”)

Some Roman writers mention electric 

shocks as an ailment for headaches (~ 0 

AC)...

A Brief History Of Bioelectromagnetism



1771
Luigi Galvani, Bologna

“animal electricity”

In 1803:

“On the first application of the process to the face, the 

jaws of the deceased criminal began to quiver, and the 

adjoining muscles were horribly contorted, and one eye 

was actually opened. …  

Mr Pass, the beadle of the Surgeons’ Company, who was 

officially present during this experiment, was so alarmed 

that he died of fright soon after his return home.”
http://www.executedtoday.com/2009/01/18/1803-george-foster-giovanni-aldini-galvanic-reanimation/

Early Science



1852: Helmholtz, Berlin
speed of action potentials in frogs neurons

http://www.sciencemuseum.org.uk/broughttolife/objects/display.aspx?id=4360

1875: Richard Caton, Liverpool
first “ECoG” from animals

1842: Du Bois-Reymond, Berlin 
nerve action potentials neurons

Early Electrophysiology



Pravdich-Neminsky, 1913

Artery pulsation

Brain potential

Time marker

Response to sciatic nerve 
stimulation

Stimulation signal

“Danilevsky (1852-1939) … finished his thesis entitled “Investigations into the Physiology of the 

Brain (1877). … He published an extensive textbook of human physiology in 1915. … He saw his high 

hopes unfulfilled as far as the spontaneous electrical activity of the brain was concerned. … He was 

not the only EEG researcher with shattered hopes in the field of psychophysiology”.
From: Niedermeyer and Schomer, 2011

Early EEG



Hans Berger, Jena 1924
First Fourier Analysis of EEG: Berger&Dietsch 1931

1969/70: 32/48-channel EEG, “generators”

Lehmann, 1971

Early EEG



Dawson, Proceedings of the Physiological Society, 1951

Early ERPs



MCG, 1967/(63)

Cohen, Science 1967

MEG, 1968

Cohen, Science 1968

MEG pioneers MIT

Alpha Rhythm

First MEG: Pre-SQUID age



The Fast Evolution of MEG
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• Apical dendrites of pyramidal cells

• NOT action potentials (too short-lived and quadrupolar)

• EEG/MEG: same generators, different sensitivity

+

-

• ~ 1 Million synapses needed to activate simultaneously

• Luckily: ~10000 cells per mm2, ~ 1000 synapses per cell

=> several mm2 can produce measurable signal 

Main Generators of Electrical Activity in the Brain



“Primary”/”Impressed” 

Current“Volume”/”Passive” 

Current

Current Flow in the Head



primary 

current,

“dipole”

volume 

currents

http://www.nmr.mgh.harvard.edu/meg/pdfs/talks/

Volume currents affect both EEG and MEG –
but EEG more than MEG

EEG/MEG Measurements

http://www.nmr.mgh.harvard.edu/meg/pdfs/talks/


http://imaging.mrc-cbu.cam.ac.uk/meg/VectorviewDescription

306 channels in 102 locations
1 magnetometer and 2 planar gradiometers 

at each location

Up to 120 EEG electrodes
(we typically use 70, plus EOG/ECG)

http://meg.aalip.jp/scilab/CoilType.html

MEG sensor types

The Neuromag Vectorview System

http://imaging.mrc-cbu.cam.ac.uk/meg/VectorviewDescription


Elekta Neuromag

Gradiometer 

|

Gradiometer Magnetometer EEG

This bit I made up.

Leadfields are “sensitivity profiles” of individual sensors.
Each sensor is maximally sensitive to sources oriented along the arrows, and insensitive to 

sources perpendicular to the arrows.

The “right-hand-rule” comes in handy here.

Leadfields
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Typical EEG/MEG Analysis Pipeline



Artefacts can be 

• non-physiological, i.e. from outside the body (sensor-intrinsic 

noise, line noise, moving objects, vibrations)

=> Maxfilter (SSS), Frequency-Filtering, SSP, PCA/ICA

• Physiological but non-brain, e.g. eye movements, muscles

=> SSP, PCA/ICA, H/L-Filtering

• Physiological from the brain, i.e. brain sources that are not of 

interest or not included in your source model

=> choose appropriate source estimation, regularisation

Wisdoms:

“Some people’s signal is other people’s noise.”

Unfortunately, you cannot just choose what’s signals and what’s noise.

It’s always better to avoid artefacts than to correct them.

Artefacts



Elekta Neuromag

Maxmagic (spherical harmonics):

Maxfilter



Elekta Neuromag

Without With Without With

Maxfilter



Software shielding (Signal Space Separation, SSS)
By subtracting the outer SSS components from measured signals, the program suppresses artifacts from 

distance sources.

Automated detection of bad channels
By comparing the reconstructed sum with measured signals, the program can automatically detect if there 

are MEG channels with bad data that need to be excluded from Maxwell-filtering.

Spatio-temporal suppression of artifacts (“-st”)
By correlation the time courses of SSS artefact components with the cleaned signal, the program can 

identify and suppress further artefacts that arise close to the sensor array.

Notch Filter to remove 50Hz line noise.

Transformation of MEG data between different head positions (“-trans”)
By transforming the inner components into harmonic amplitudes (i.e. virtual channels), MEG signals in a 

different head position can be estimated easily.

Compensation of disturbances caused by head movements (“-movecomp”)
By extracting head position indicator (HPI) signals applied continuously during a measurement, the data 

transformation capability is utilized to estimate the corresponding MEG signals in a static reference head 

position.

Maxfilter
http://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2

http://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter_V2.2


Stable subject Moving subject,

No compensation

Moving subject,

with compensation

Elekta Neuromag

Head movement is tracked continuously (well, every 200 ms) via HPI (Head Position 

Indicator) coils.

We can take Maxfilter parameters from any time point t,

and estimate the MEG signals at sensor positions of time point t0.

This compensates – to some degree – for spatial variation caused by head movements.

Maxfilter – Movement Compensation





• Choose a “convenient” sampling rate with respect to processing speed and 

storage (usually 250 Hz to 500 Hz ok).

• We have to sample at 1000 Hz during acquisition because of head position 

indicator (HPI) signals.

• Downsampling can lead to “aliasing” if the data are not filtered appropriately 

(Nyquist theorem).

• Filtering can reduce (possibly remove) some artefacts such as sensor noise, 

muscle artefacts, line noise.

Further reading:

Widmann et al., “Digital filter design for electrophysiological data – a practical approach”, Journal of Neuroscience Methods 2015.

Filtering and Downsampling



• Downsampling can lead to “aliasing” if the data are not filtered appropriately 

(Nyquist theorem)

Aliasing

Watch:

https://www.youtube.com/watch?v=R-IVw8OKjvQ

Thanks to Alessandro.

Aliasing

https://www.youtube.com/watch?v=R-IVw8OKjvQ




EEG MEG
(Magnetometers)

front view

top view

left view right view

front view

top view

left view right view

Common Artefacts: Eye Blinks
Affects EEG and MEG



EEG MEG
(Magnetometers)

front view

top view

left view right view

front view

top view

left view right view

Common Artefacts: Eye Movement to the Right
Affects EEG and MEG



EEG MEG
(Magnetometers)

front view

top view

left view right view

front view

top view

left view right view

Common Artefacts: Heart Beat
Affects EEG and MEG



Example: Eye Blink

This will affect all source estimation methods –

get rid of your artefacts beforehand.

Artefacts in EEG and MEG
(Can) End Up in Source Space



If  signal and noise have characteristic topographies, several methods can be applied to 

remove (some) noise or extract signals:

• SSP: Signal Space Separation

The following often go under the term “blind source separation”, because the 

topographies are not pre-defined, and found by the methods themselves (under certain 

assumptions):

• PCA: Principal Component Analysis

• SVD: Singular Value Decomposition

• ICA: Independent Component Analysis

Separating Signal and Noise Components



You know the noise topography N

You decompose your data D, such that

D = a*N + Signal

You only analyse Signal.

This works well with eye-movement and blink artefacts.

Note: 

Brain signals whose topographies are highly correlated with T will also be removed 

or attenuated.

Signal Space Projection (SSP)



• Decompose data into orthogonal components T1, T2, etc. (topographies or time courses), i.e. data 

D = a*T1 + b*T2 + … 

• Find the components you don’t like (e.g. correlate highly with EOG and ECG, or components that 

explain little variance).

• Reconstitute your data only with the “good” components, 

e.g. D = a*T1 + c*T3 + … if component 2 reflects eye blinks.

Also:

• Components have an order according to the variance they explain (e.g. var(T1)>var(T2)>…)

• Can be used to determine the number of independent components (according to specified criteria)

• Relatively fast (try svd() or princomp() in Matlab).

•Unfortunately: Orthogonality and variance ordering not physiologically plausible.

PCA and SVD



Example: (De-)mixing of sources in the cocktail party effect

http://www.tqmp.org/Content/vol06-1/p031/p031.pdf

Independent Component Analysis



Basic idea is similar to PCA and SVD:

Decompose data into components T1, T2, etc. (topographies or time courses), i.e. 

data D = a*T1 + b*T2 + …

But:

ICA does not produce orthogonal components,

and does not assume Gaussianity of signals.

Independent Component Analysis





http://imaging.mrc-cbu.cam.ac.uk/meg/IntroEEGMEG

+ + + +
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Data Averaging

http://imaging.mrc-cbu.cam.ac.uk/meg/IntroEEGMEG


The necessary number of trials depends on effect size, noise, variability across participants, 
your stats etc. –

the more the better.

For random noise, variance goes down with n, and standard deviation with sqrt(n).

For “one-off” artefacts, amplitude in the average goes down with n.

“Robust Averaging” procedures exist (e.g. in SPM) that weigh epochs with an estimate of 
their reliability (e.g. distance to mean).

Data Averaging



Usually, epochs are excluded from averaging when they exceed some maximum-minimum 
criterion.

Make sure “chronically bad channels” are excluded from this procedure
(or there won’t be any data left to average).

Prior to any procedure that combines signals across channels, such as average reference, 
SSP or ICA, bad channels should be removed

(or signals from bad channels may be projected into the good ones).

Appropriate filtering and artefact correction (e.g. ICA) should be applied beforehand
(but don’t feel too safe: artefacts may slip through).

Artefact Rejection



Length (per item)

E
R

P
 a

m
p

li
tu

d
e 

(p
er

 i
te

m
)

“Short” “Long”

X

X

Length (per item)

E
R

P
 a

m
p

li
tu

d
e 

(p
er

 i
te

m
)

“Short” “Long”

X

X

Smith&Kutas, Psychophysiol 2015a

Hauk et al., Neuroimage 2006

Consider parametric analysis if stimulus variables are continuous.
(still less common in EEG/MEG than in fMRI analysis)

Parametric vs Factorial Designs

http://www.ncbi.nlm.nih.gov/pubmed/25141770
http://www.ncbi.nlm.nih.gov/pubmed/16460964


http://link.springer.com/article/10.1007%2Fs10339-009-0352-1/

Time course and topography may differ 

among different frequency bands
(and may depend on task, environment, subject group etc.)

“Brain Rhythms” and “Oscillations”

http://link.springer.com/article/10.1007/s10339-009-0352-1/


Tallon-Baudry & Bertrand, TICS 1999

evoked induced

Evoked and Induced Activity



The End Of #1


