fMRI classification analysis: a conceptual introduction

Marieke Mur CBU, march 2014

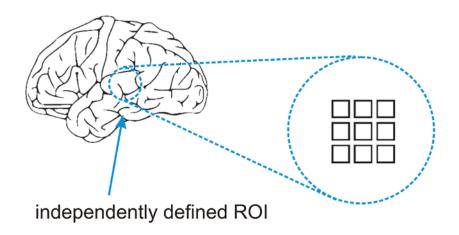
Overview

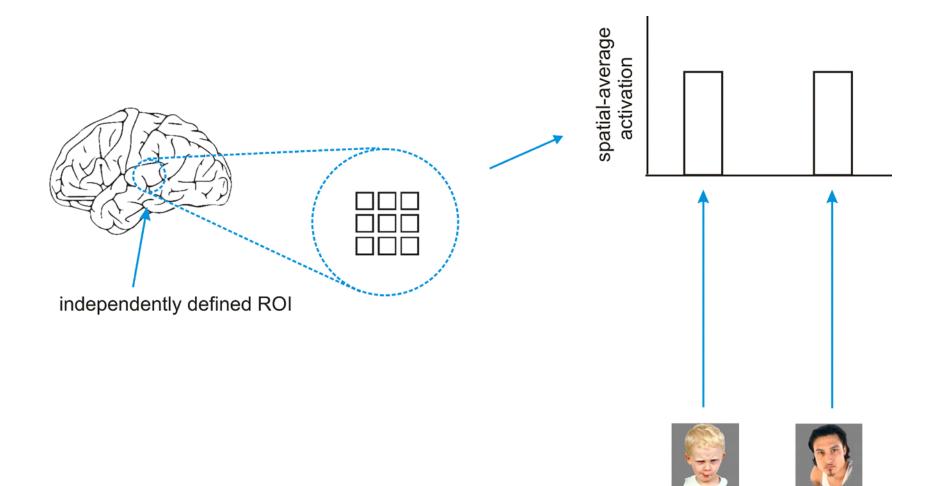
- Why classification analysis?
- Linear classification: the basic idea
- Linear classification: different classifiers
- Do it yourself: six steps
 - step 1: split data and preprocess
 - step 2: estimate single-subject activity patterns
 - o step 3: select voxels
 - o step 4: train the classifier
 - o step 5: test the classifier
 - o step 6: statistical inference
- Toolboxes
- Literature

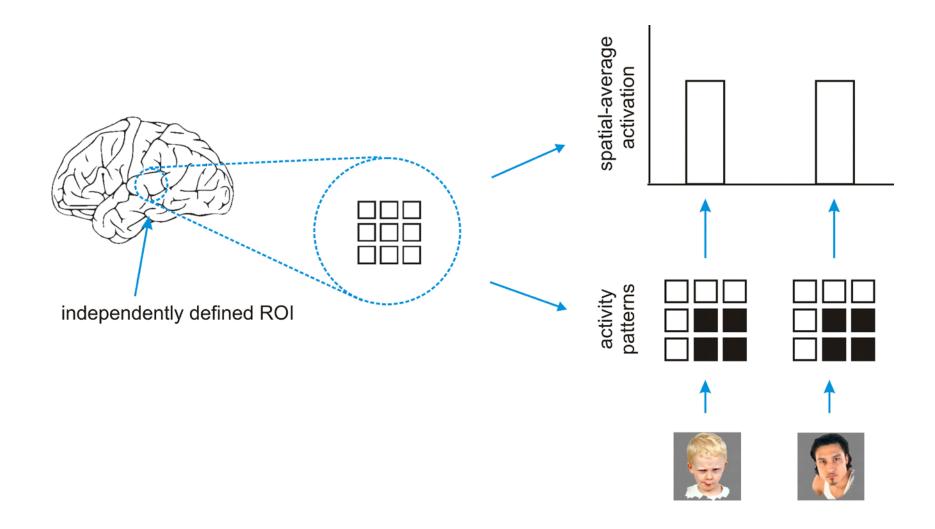
Overview

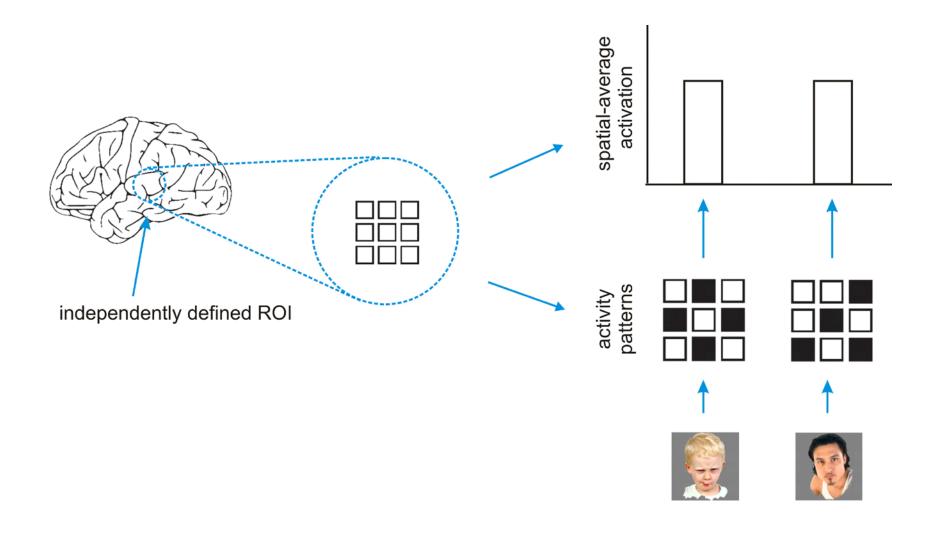
- Why classification analysis?
- Linear classification: the basic idea
- Linear classification: different classifiers
- Do it yourself: six steps
 - o step 1: split data and preprocess
 - step 2: estimate single-subject activity patterns
 - o step 3: select voxels
 - o step 4: train the classifier
 - o step 5: test the classifier
 - o step 6: statistical inference
- Toolboxes
- Literature

Activation-based analysis









Goal

Determine whether activity patterns elicited by different conditions are statistically discriminable.

How?

Multivariate analysis of variance (MANOVA)?

Goal

Determine whether activity patterns elicited by different conditions are statistically discriminable.

How?

Multivariate analysis of variance (MANOVA)?

Goal

Determine whether activity patterns elicited by different conditions are statistically discriminable.

How?

Approach pattern analysis as a classification problem.

Pattern classification

IF

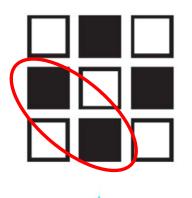
we can classify the experimental conditions on the basis of the activity patterns better than chance

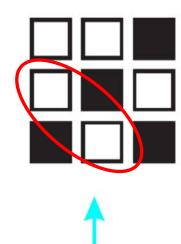
THEN

this indicates that the activity pattern carries information about the experimental conditions.

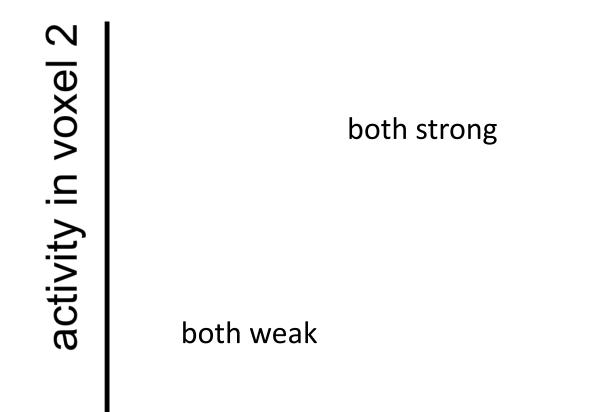
Overview

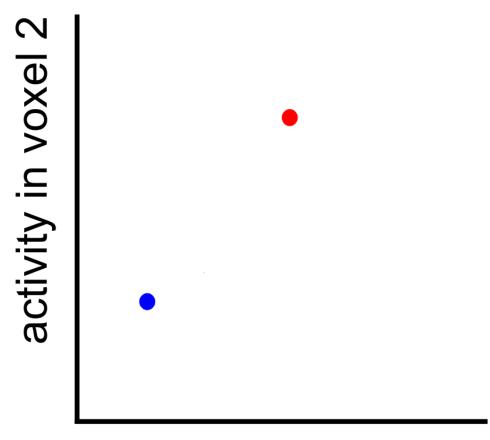
- Why classification analysis?
- Linear classification: the basic idea
- Linear classification: different classifiers
- Do it yourself: six steps
 - o step 1: split data and preprocess
 - step 2: estimate single-subject activity patterns
 - o step 3: select voxels
 - o step 4: train the classifier
 - o step 5: test the classifier
 - o step 6: statistical inference
- Toolboxes
- Literature

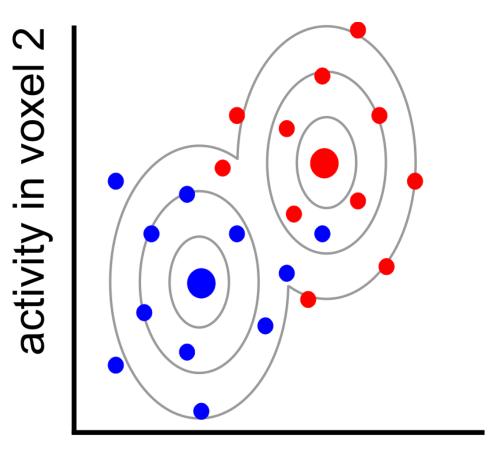


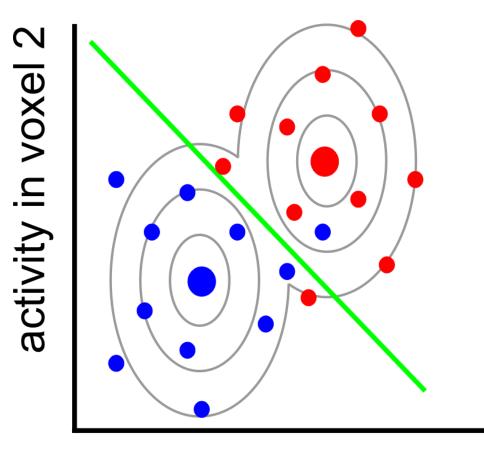


weak activity strong activity





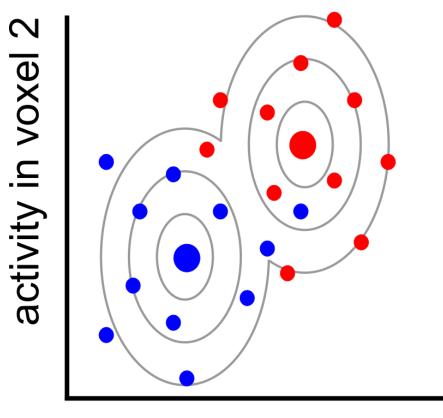


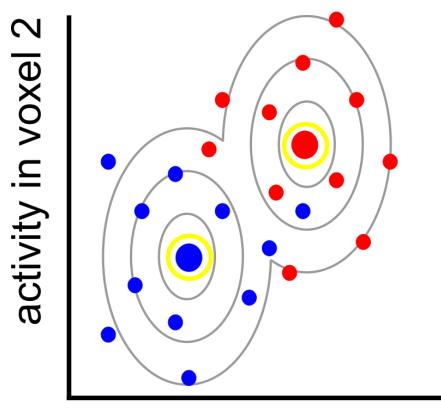


Overview

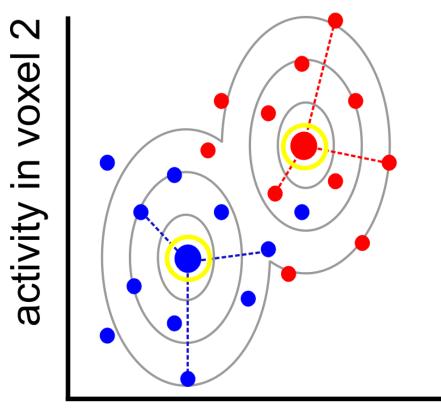
- Why classification analysis?
- Linear classification: the basic idea
- Linear classification: different classifiers
- Do it yourself: six steps
 - step 1: split data and preprocess
 - step 2: estimate single-subject activity patterns
 - o step 3: select voxels
 - o step 4: train the classifier
 - o step 5: test the classifier
 - o step 6: statistical inference
- Toolboxes
- Literature

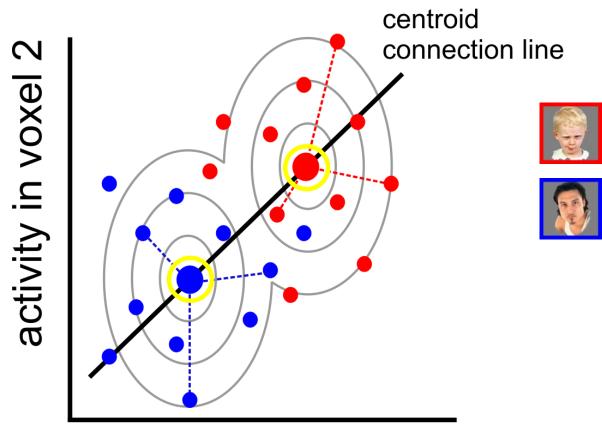
Linear classification: different classifiers

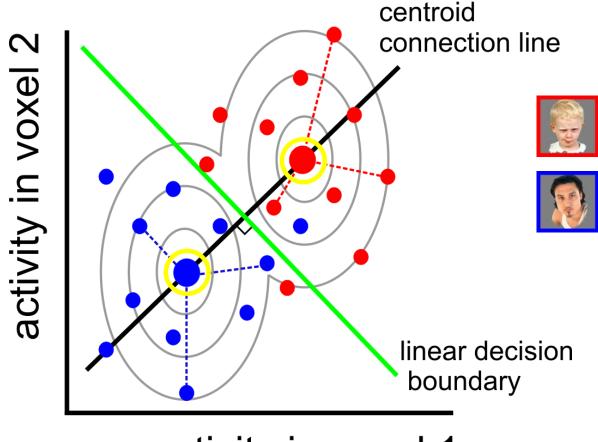




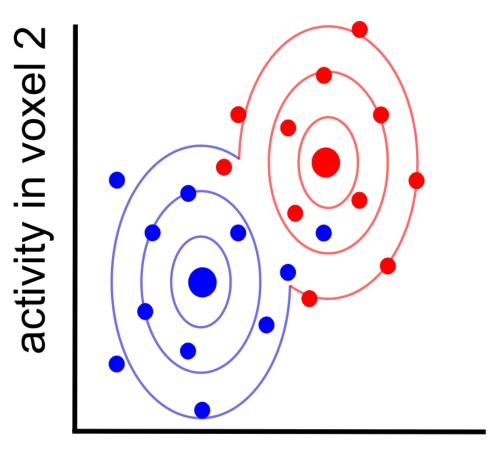
activity in voxel 1



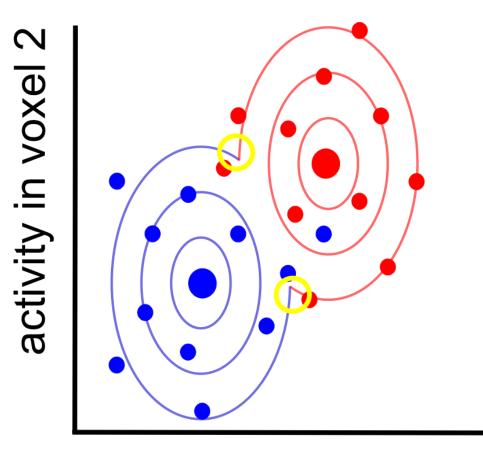




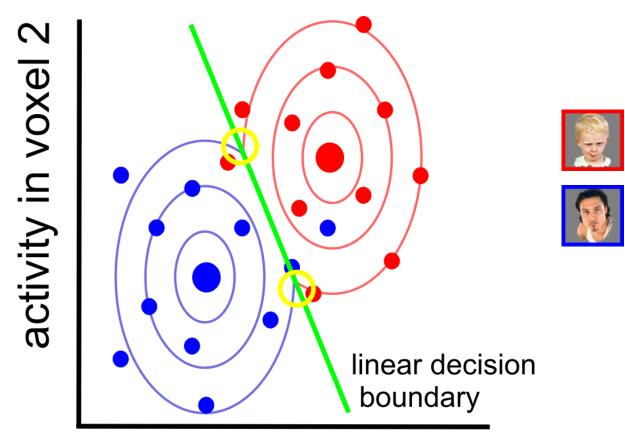
Linear classification: FLDA



Linear classification: FLDA



Linear classification: FLDA



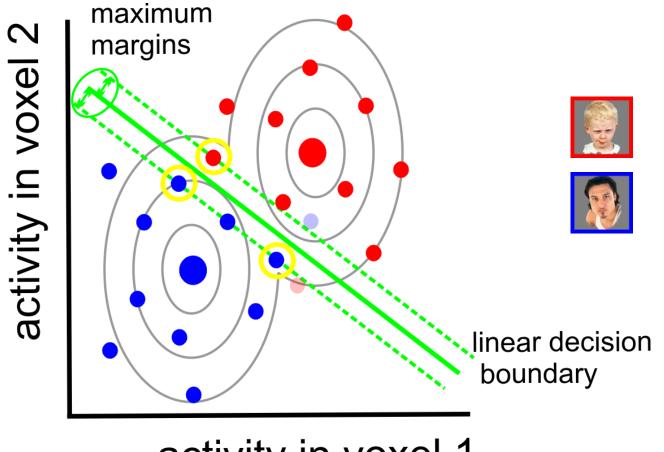
Linear classification: linear SVM

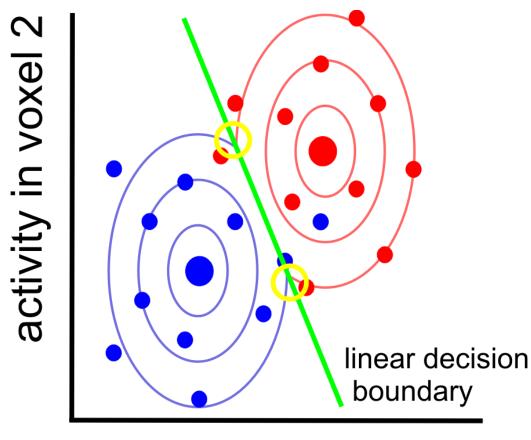
 \sim activity in voxel

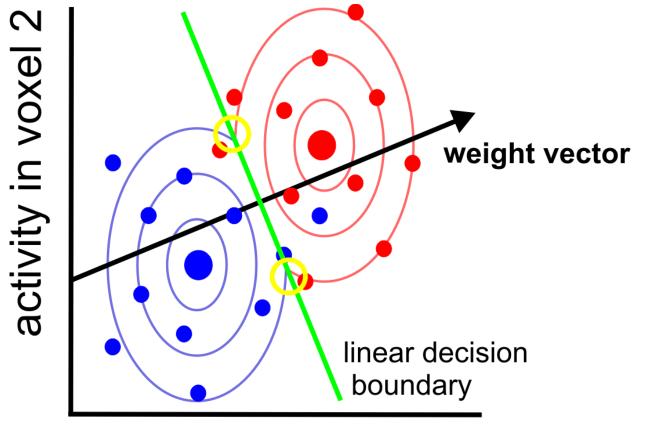
Linear classification: linear SVM

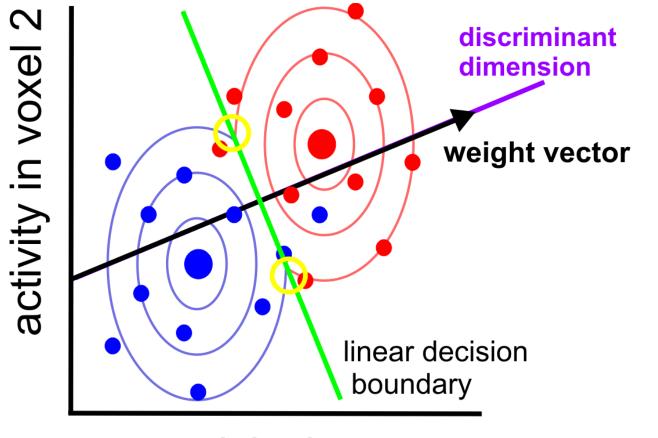
 \sim activity in voxel

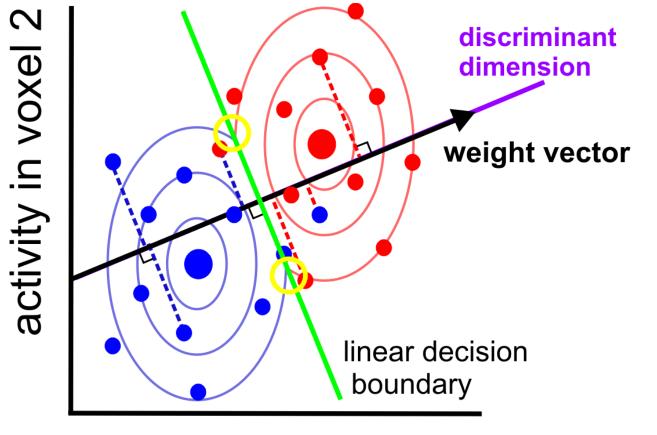
Linear classification: linear SVM

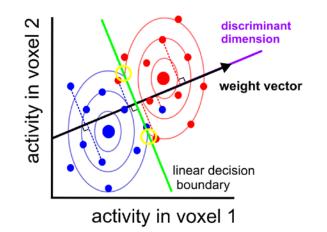










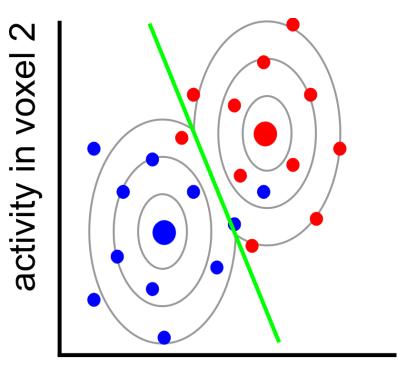


Fisher linear discriminant

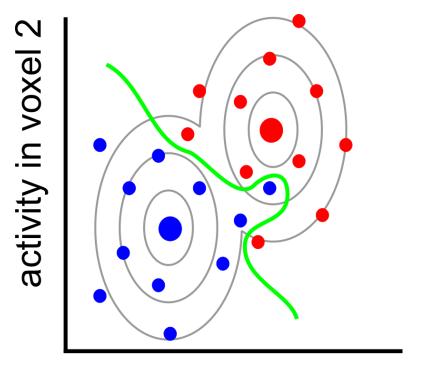
assumes identical and isotropic distributions

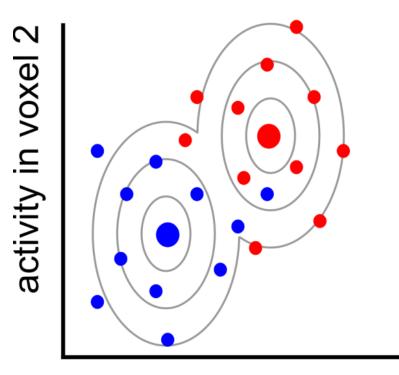
assumes identical and multivariate normal distributions no assumptions about distributions

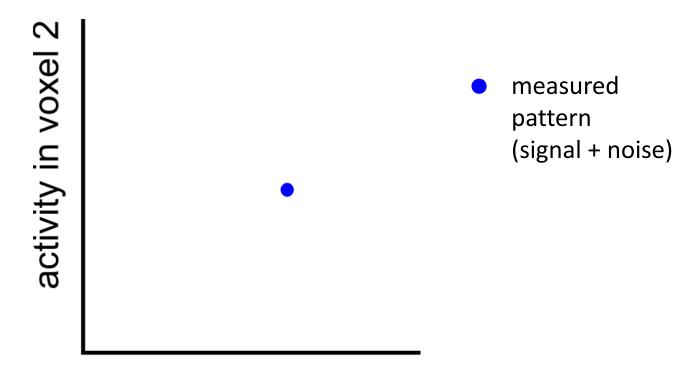
Can we do better?

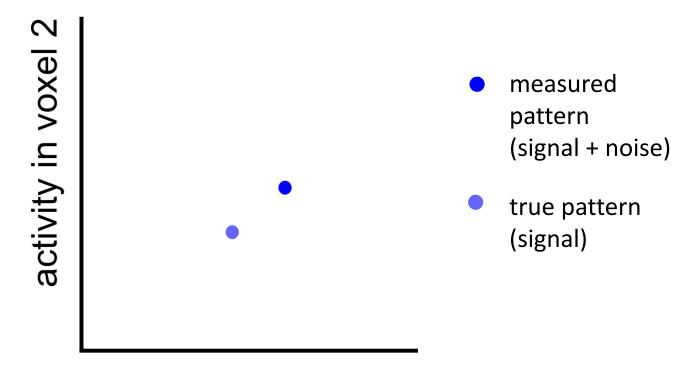


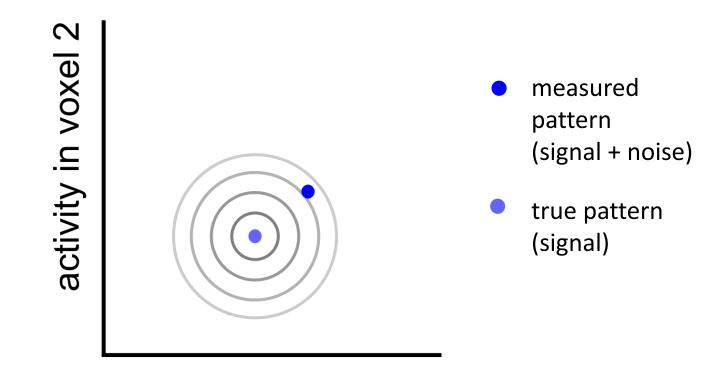
activity in voxel 1

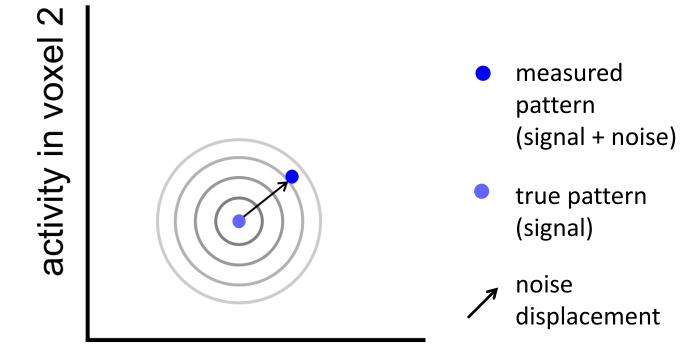




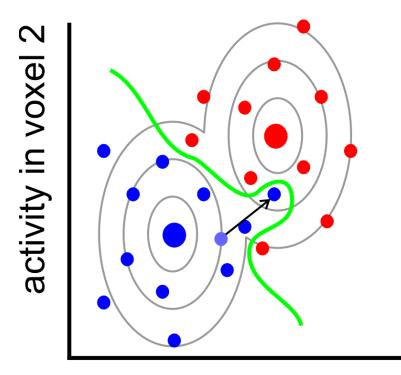






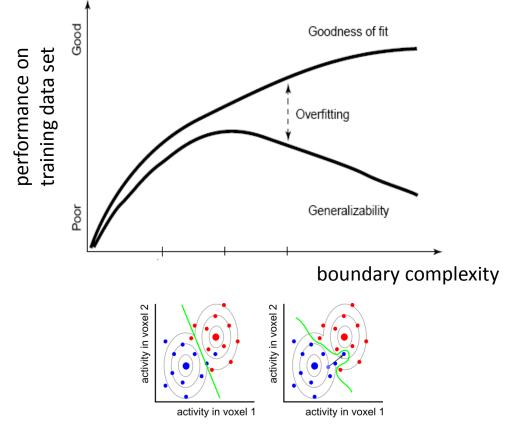


Overfitting



Overfitting

After determining the decision boundary, we need to test how well the boundary generalises to new data (cross validation).



Overfitting

After determining the decision boundary, we need to test how well the boundary generalises to new data (cross validation).

Linear classifiers usually perform better on fMRI data than nonlinear classifiers.

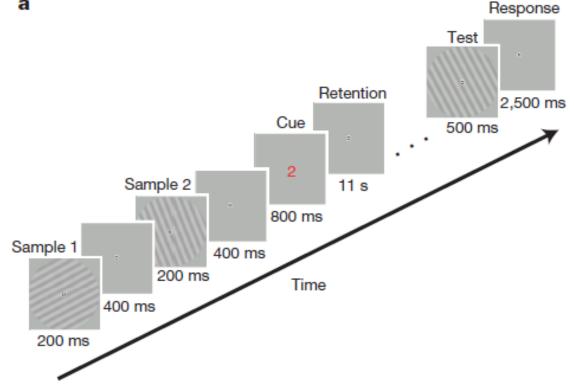
Overfitting can be further reduced by:

- regularisation
- dimensionality reduction of the activity patterns (e.g. voxel selection)

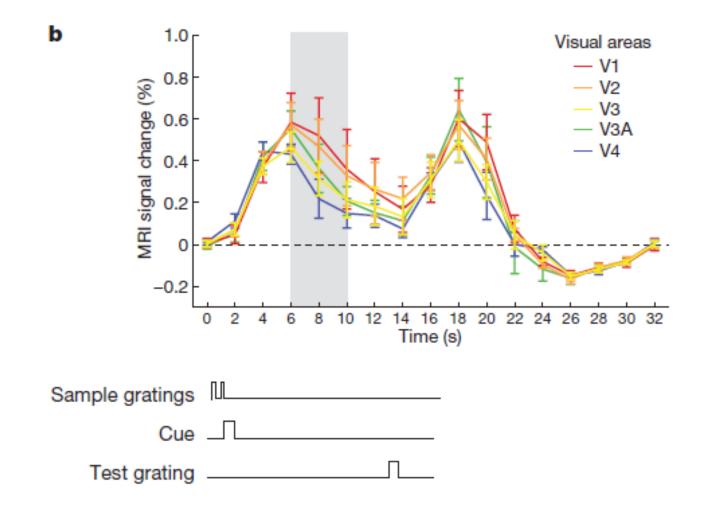
Applications: visual WM

Decoding reveals the contents of visual working memory in early visual areas

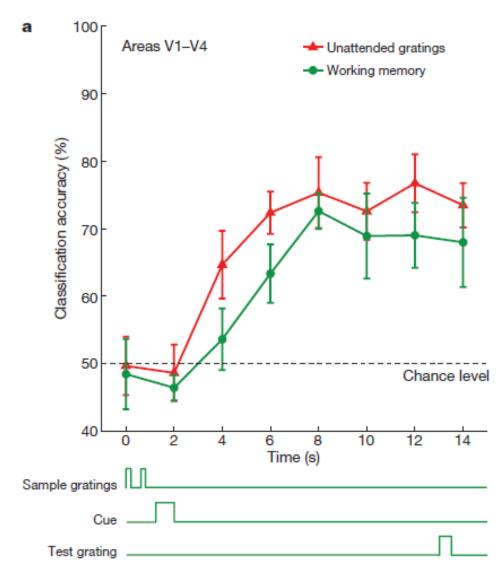
Stephenie A. Harrison¹ & Frank Tong¹



Applications: visual WM



Applications: visual WM



Overview

- Why classification analysis?
- Linear classification: the basic idea
- Linear classification: different classifiers

• Do it yourself: six steps

- step 1: split data and preprocess
- step 2: estimate single-subject activity patterns
- o step 3: select voxels
- o step 4: train the classifier
- o step 5: test the classifier
- o step 6: statistical inference
- Toolboxes
- Literature

Do it yourself: six steps

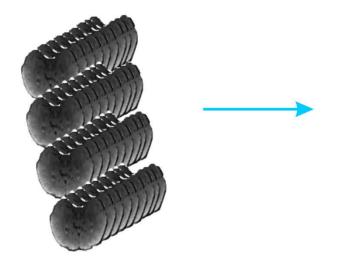
- Step 1: split data and preprocess
- Step 2: estimate single-subject activity patterns
- Step 3: select voxels
- Step 4: train the classifier
- Step 5: test the classifier
- Step 6: statistical inference

Do it yourself: six steps

Step 1: split data and preprocess

- Step 2: estimate single-subject activity patterns
- Step 3: select voxels
- Step 4: train the classifier
- Step 5: test the classifier
- Step 6: statistical inference

Step 1a: split data



full data set

Make sure that training and test data are independent.

Step 1b: preprocess

As usual:

- slice-scan-time correction
- motion-correction

Optional:

- normalisation to template (if random-effects searchlight analysis across subjects)
- spatial smoothing (to increase signal, sensitive to larger-scale spatial patterns)

Do it yourself: six steps

Step 1: split data and preprocess

Step 2: estimate single-subject activity patterns

- Step 3: select voxels
- Step 4: train the classifier
- Step 5: test the classifier
- Step 6: statistical inference

Step 2: estimate single-subject activity

patterns

training data set

(e.g. runs 1-3)

data

t patterns preferred over beta patterns (Misaki et al. 2010)

Do it yourself: six steps

Step 1: split data and preprocess

Step 2: estimate single-subject activity patterns

Step 3: select voxels

Step 4: train the classifier

Step 5: test the classifier

Step 6: statistical inference

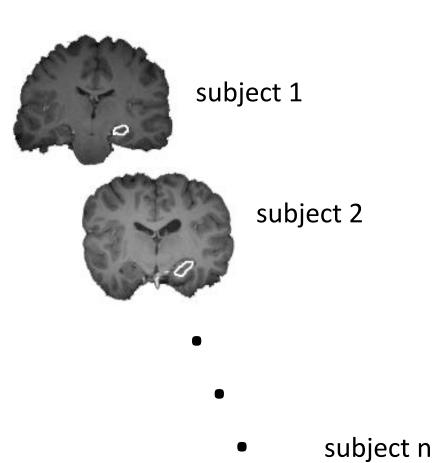
Make sure that voxel selection is based on data independent from test data set.

Most common ways of voxel selection:

- structural selection (anatomy)
- functional selection (activity)

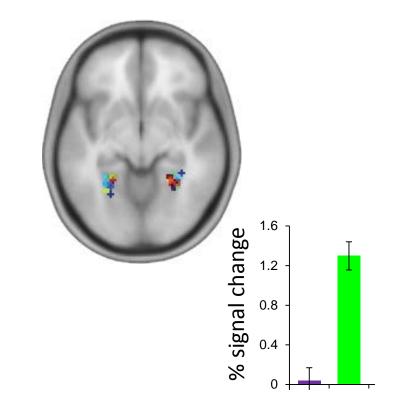
 univariate (activation differences)
 multivariate (pattern differences)
- geometrical selection
 - o multivoxel searchlight

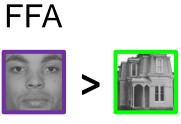
anatomy

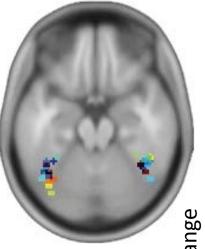


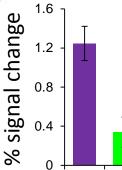
For example: hippocampus

function (activation differences)



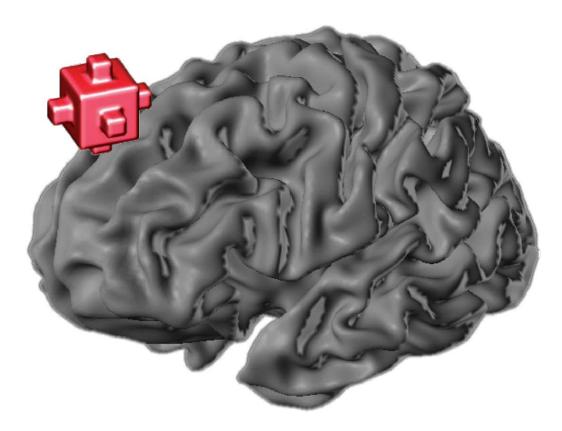




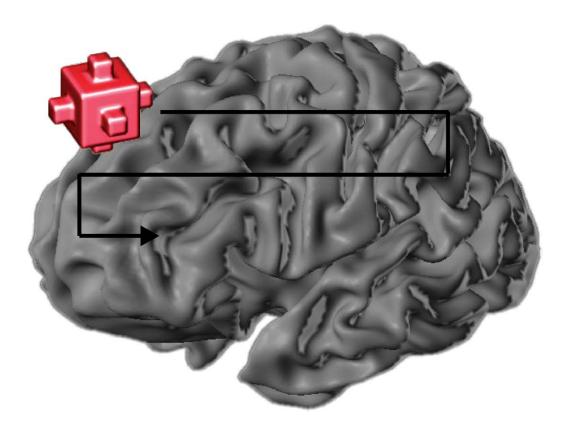


multivoxel searchlight

multivoxel searchlight



multivoxel searchlight



Kriegeskorte et al. 2006

How many voxels?

Depends on the expected spatial extent of effects.

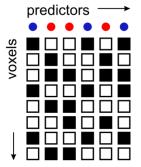
Find the right balance: too few \rightarrow risk of missing signal too many \rightarrow risk of overfitting (too noisy)

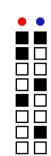
Common practice: select the same number of voxels in each subject.

training data set

test data set

single-subject activity patterns (whole-brain)



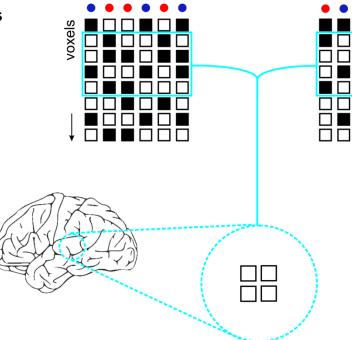


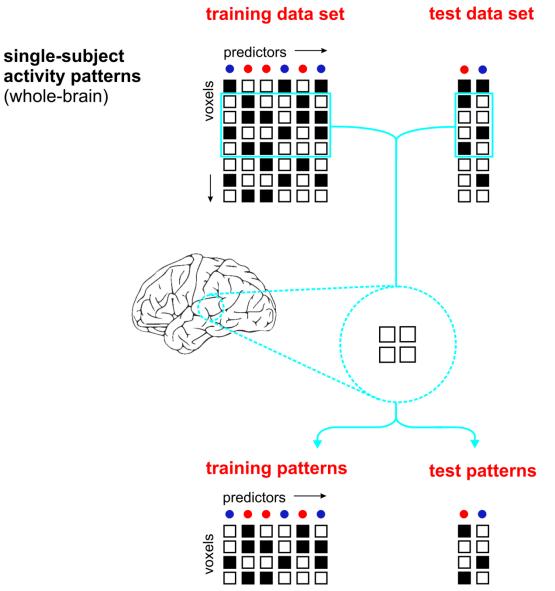
training data set

predictors

test data set

single-subject activity patterns (whole-brain)





Do it yourself: six steps

Step 1: split data and preprocess

- Step 2: estimate single-subject activity patterns
- Step 3: select voxels

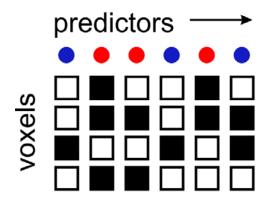
Step 4: train the classifier

Step 5: test the classifier

Step 6: statistical inference

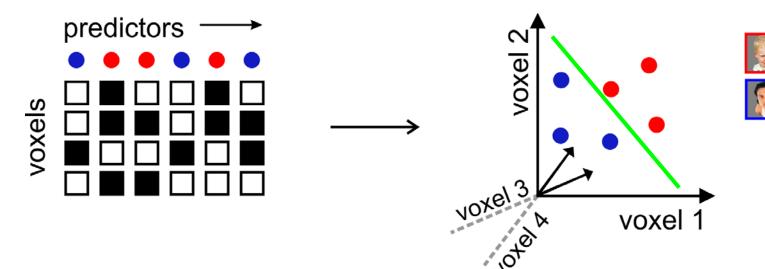
Step 4: train the classifier

training patterns



Step 4: train the classifier

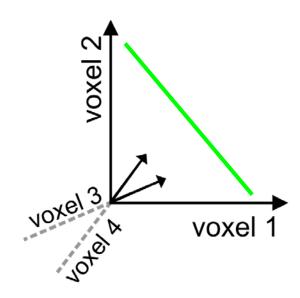
training patterns



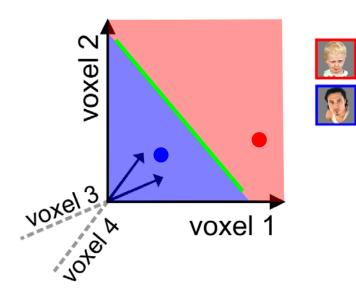
Do it yourself: six steps

- Step 1: split data and preprocess
- Step 2: estimate single-subject activity patterns
- Step 3: select voxels
- Step 4: train the classifier
- Step 5: test the classifier
- Step 6: statistical inference

Step 5: test the classifier



Step 5: test the classifier



classification accuracy for this fold = 100%

Cross-validation: generalise to....?

- different run (leave-run-out)
- different subject (leave-subject-out)
- different stimulus pair (leave-stimulus-pair-out)
- different block/trial within run (leave-block/trial-out)

Common procedure: use each run/subject etc as test data once.

For example: 4 runs → repeat cross validation 4 times (= 4-fold cross validation) → average accuracy across the 4 folds.

Do it yourself: six steps

- Step 1: split data and preprocess
- Step 2: estimate single-subject activity patterns
- Step 3: select voxels
- Step 4: train the classifier
- Step 5: test the classifier
- **Step 6: statistical inference**

If number of subjects > 20:

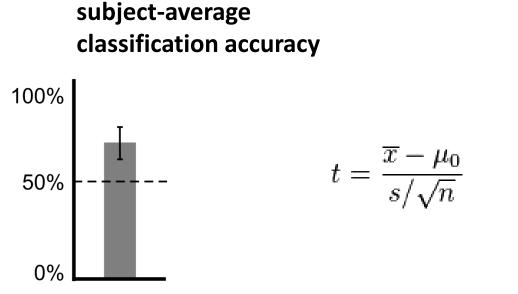
Random-effects analysis across subjects using a standard one-sample right-sided t test. H₀: μ = 50%

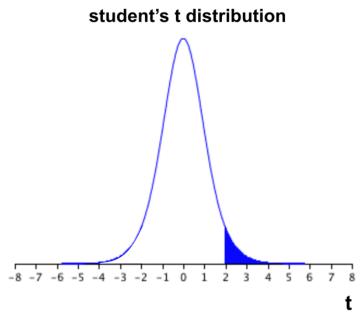
H_a: μ > 50%

single-subject classification accuracy

error bars = standard error across *folds*

error bar = standard error across *subjects*





If the computed t value falls within the top 5% (blue) of the t distribution \rightarrow reject H₀.

If number of subjects <20:

We cannot assume a t distribution (central limit theorem does not apply)

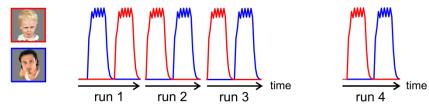
→ use a permutation test: create a null distribution by randomly shuffling the condition labels during training.

training data set

(e.g. runs 1-3)

test data set

(e.g. run 4)

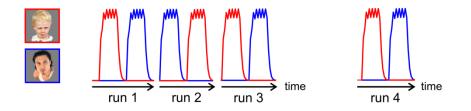


training data set

(e.g. runs 1-3)

test data set

(e.g. run 4)



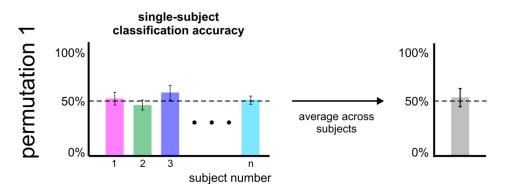
Remove the relationship between conditions and patterns.

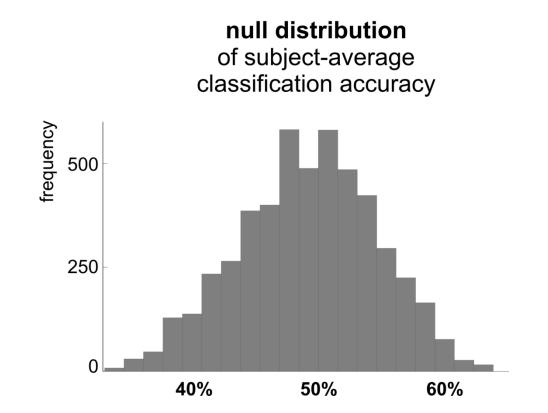
Repeat step 2 – 5 after randomly reshuffling the condition labels.

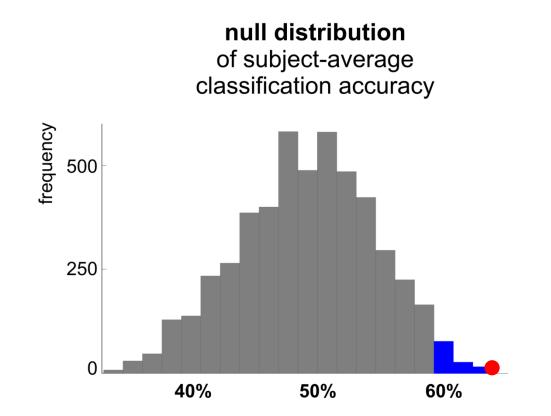
- o step 2: estimate single-subject activity patterns
- o step 3: select voxels
- o step 4: train the classifier
- o step 5: test the classifier

Do this many (e.g. 1000) times to create a null distribution.

.





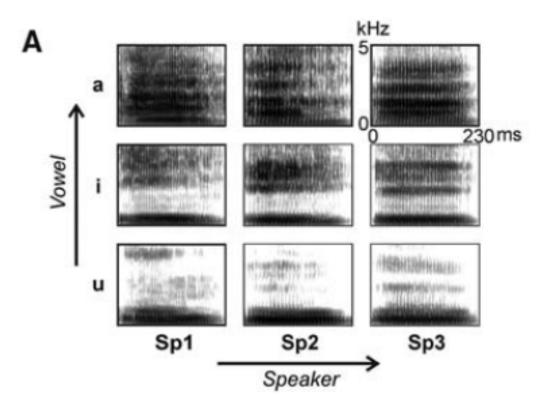


If the actual subject-average classification accuracy falls within the top 5% (blue) of the null distribution \rightarrow reject H₀.

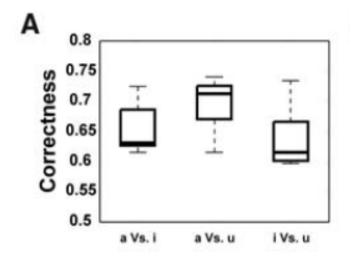
Applications: voice and speech

"Who" Is Saying "What"? Brain-Based Decoding of Human Voice and Speech

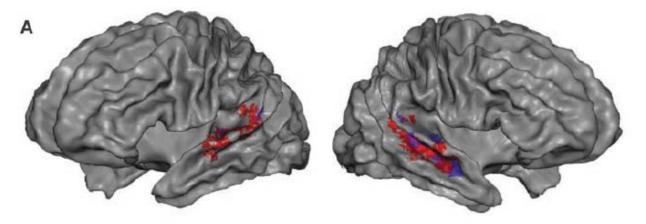
Elia Formisano,* Federico De Martino, Milene Bonte, Rainer Goebel



Applications: voice and speech



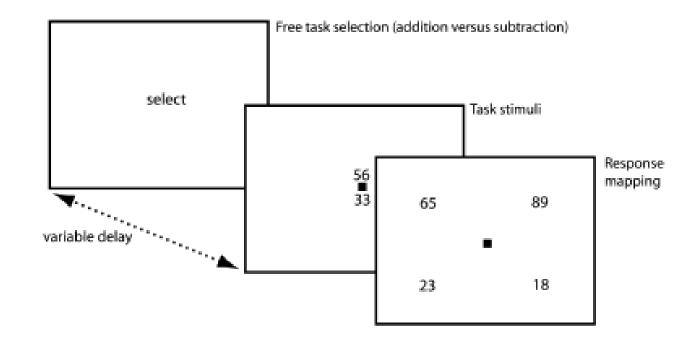
Applications: voice and speech



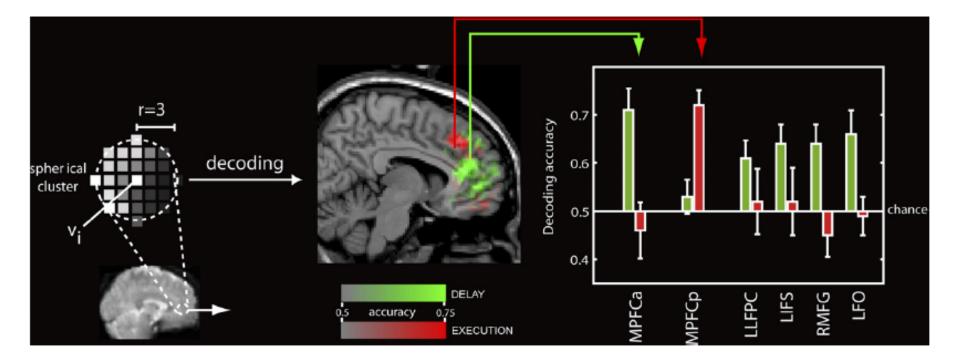
Applications: decision making

Reading Hidden Intentions in the Human Brain

John-Dylan Haynes,^{1,2,3,4,5,*} Katsuyuki Sakai,⁶ Geraint Rees,^{4,5} Sam Gilbert,⁴ Chris Frith,⁵ and Richard E. Passingham^{5,7}



Applications: decision making



Overview

- Why classification analysis?
- Linear classification: the basic idea
- Linear classification: different classifiers
- Do it yourself: six steps
 - step 1: split data and preprocess
 - step 2: estimate single-subject activity patterns
 - o step 3: select voxels
 - o step 4: train the classifier
 - o step 5: test the classifier
 - o step 6: statistical inference

Toolboxes

Literature

Toolboxes

• PRoNTo (SPM)

http://www.mlnl.cs.ucl.ac.uk/pronto/

• LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• PyMVPA

http://www.pymvpa.org/

Overview

- Why classification analysis?
- Linear classification: the basic idea
- Linear classification: different classifiers
- Do it yourself: six steps
 - step 1: split data and preprocess
 - step 2: estimate single-subject activity patterns
 - o step 3: select voxels
 - o step 4: train the classifier
 - o step 5: test the classifier
 - o step 6: statistical inference
- Toolboxes
- Literature

Literature

Linear classification tutorials

Mur M et al. (2009) *Soc Cogn Affect Neurosci* 4: 101-109. [conceptual introduction] Pereira F et al. (2009) *Neuroimage* 45(1 Suppl): S199-S209. [introduction]

Schreiber K, Krekelberg B (2013) *PLoS ONE 8*(7): e69328. [cautionary comments on statistical inference]

Kriegeskorte N et al. (2006) PNAS 103(10): 3863-3868. [multivariate searchlight]

Linear classification reviews

Norman KA et al. (2006) *Trends Cogn Sci 10*(9): 424-430. Haynes JD, Rees G (2006) *Nat Rev Neurosci 7*: 523-534.

Linear classification: applications in neuroscience

Kamitani Y, Tong F (2005) *Nat Neurosci 8*(5): 679-685. [vision: classify orientations] Formisano E et al. (2008) *Science 322*: 970-973. [voices: classify speakers & vowels] Haynes JD et al. (2007) *Curr Biol 17*(4): 323-328. [cognitive control: task preparation]

Literature

Recursive feature elimination (RFE)

De Martino F et al. (2008) *Neuroimage 43*: 44-58. **Kernels**

Jäkel F et al. (2009) Trends Cogn Sci 13: 381-388.

Which classifiers & preprocessing options are best?

Mourao-Miranda J et al. (2005) *Neuroimage 28*: 980-995. [SVM vs FLDA] Kriegeskorte et al. (2009) *Nat Neurosci 12*(5): 535-540. [how to prevent selection bias] Misaki M et al. (2010) *Neuroimage 53*: 103-118. [compares 6 different classifiers] Garrido L et al. (2013) *Front Neurosci 7*(174): 1-4. [subtract the mean pattern?]

Relationships between classification (decoding), encoding, and RSA

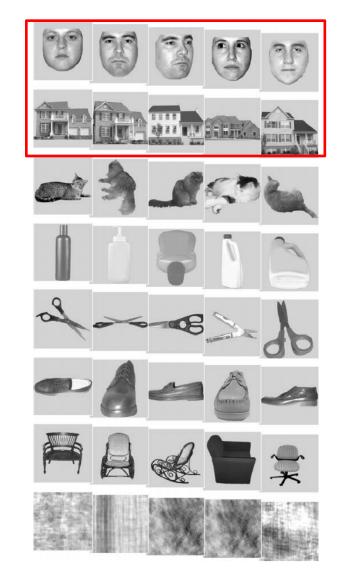
Naselaris T et al. (2011) Neuroimage 56: 400-410.

Kriegeskorte N (2011) Neuroimage 56: 411-421.

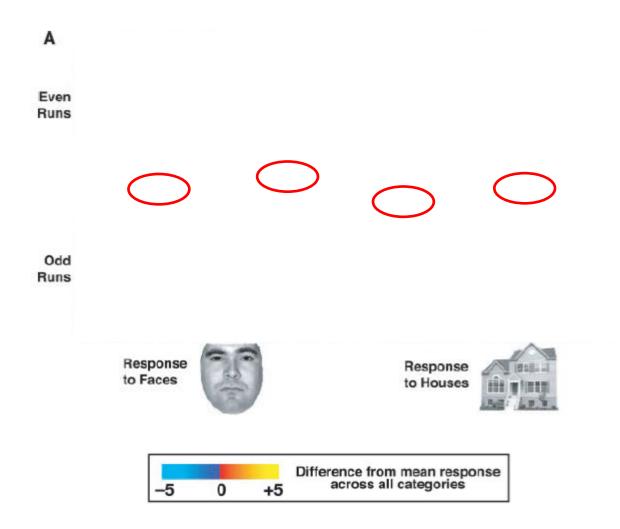
Example data set: Haxby et al. 2001

Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex

James V. Haxby,^{1*} M. Ida Gobbini,^{1,2} Maura L. Furey,^{1,2} Alumit Ishai,¹ Jennifer L. Schouten,¹ Pietro Pietrini³



Example data set: Haxby et al. 2001



Example data set: Haxby et al. 2001

Can we discriminate faces and houses based on their whole-brain activity patterns?

Use a linear SVM in PRoNTo.

Set-up your laptop for the demo

To open matlab:

- Open terminal
- Type cdw
- Type matlab

Type in matlab:

- mkdir('/imaging/trainXXlinux/Workshop/Material/pronto/')
- addpath(genpath('/imaging/trainXXlinux/Workshop/Material/'))
- addpath('/hpc-software/matlab/r2009a/toolbox/stats/')
- pronto