

Introduction to MRI Physics

Marta M Correia

MRC Cognition and Brain Sciences Unit, Cambridge, UK

25th January 2017

Overview

- Basic Principles
 - Nuclear Magnetic Resonance
 - Excitation, Relaxation and Signal
 - Image contrast

- Advanced Concepts
 - Spatial Encoding in MRI
 - Image formation and k-space

Part I Basic Principles

Nuclear Magnetic Resonance

MRC | Medical Research Council

MR images: What do we see ?

- MRI images are usually based on the signal from protons
- A proton is the nucleus of the hydrogen atom
- Hydrogen is the most common element in tissue
- The signal from protons is due to their *spin*

The Nuclear spin

- Elementary property of an atomic nucleus
- Each spin carries an elementary magnetization
- Spins align in an external magnetic field (like a compass needle)

Macroscopic sample

Macroscopic sample

Precession and Larmor Frequency

Precession and Larmor Frequency

Precession and Larmor Frequency

Macroscopic sample

Macroscopic sample

Magnetic Resonance

- Exchange of energy between two systems at a specific energy is called resonance.
- Magnetic resonance corresponds to the energetic interaction between spins and electromagnetic radiofrequency (RF).
- Only protons that spin with the same frequency as the electromagnetic RF pulse will respond to that RF pulse.

Excitation, Relaxation and Signal Formation

Excitation

- Longitudinal magnetization is due to a difference in the number of spins in parallel and anti-parallel state.
- Transverse magnetization is due to spins getting into phase coherence.

Relaxation

Two independent relaxation processes:

T₁: "longitudinal relaxation time" $(\approx 1 \text{ s})$ - energy exchange between spins and their surroundings

T₂: "transverse relaxation time" (\approx 100 ms) – dephasing due to spin/spin interactions

Relaxation

t~1000ms

Precession and signal induction

Image Contrast

T2-weighted contrast

T1-weighted contrast

Signal loss due to B₀ inhomogeneity

Effective transverse relaxation (T_2^*)

Effective transverse relaxation (T₂*)

No inhomogeneities $(T_2^* = T_2 = 100 \text{ ms})$

Moderate inhomogeneities $(T_2^* = 40 \text{ ms})$

Strong inhomogeneities $(T_2^* = 10 \text{ ms})$

T₂^{*} related signal dropouts

 T_2^* reduction due to local field inhomogeneities \Rightarrow signal dropouts

TE

EPI image

TE MRC | Medical Research Council

Part II Advanced Concepts

Spatial Encoding in MRI

The principles of MRI

Slice selective excitation

- Only spins in slice of interest have frequency ω_0
- RF pulse with frequency ω_0 excites only spins in slice of interest

Slice orientation

$$\omega = \gamma \left(\mathbf{B}_0 + \mathbf{s} \ \mathbf{G}_s \right)$$

Multi-slice MRI

$$\omega = \gamma \left(\mathbf{B}_0 + \mathbf{s} \ \mathbf{G}_s \right)$$

Slice profile

Slice profile

Slice thickness

Slth= Full width at half maximum of the slice profile

Multi-slice MRI

Tissue in the inter-slice gap contributes to the signal of the adjacent slices

Frequency and phase encoding

Frequency encoding

Pulse sequence (so far)

Phase encoding

How does phase encoding translate into spatial information?

After RF

After the phase encoding gradient

How does phase encoding translate into spatial information?

- The magnetization in the xy plane is wound into a helix directed along y axis.
- Phases are 'locked in' once the phase encode gradient is switched off.

From L. Wald

Signal after phase encoding

Gradient area and helix shape

From L. Wald

Signal intensity measured at a spatial frequency

Image reconstruction and k-space

Spatial frequency and contrast

Centre of k-space: low spatial frequency data have the highest amplitude, giving the greatest changes in grey levels (contrast).

Spatial frequency and contrast

Periphery of k-space: high spatial frequency data sharpens the image as they encode the edges (rapid changes of image signal as a function of position)

<u>Problem</u>: This sequence is rather slow

- K space is sampled line by line
- After each excitation one must wait for the longitudinal magnetization to recover

Example:
$$n = 256$$
, $TR = 2s \implies T = n TR = 8.5 min$

Echo Planar Imaging (EPI)

EPI at the CBU

How many slices ?

120 mm = 323 mm + 0.75 mm

And the minimum TR ?

32 * 62.5 ms = 2000 ms

Questions?

MRC | Medical Research Council