M/EEG Connectivity using Dynamic Causal Modelling (DCM) Part II - Group DCM

Rik Henson, Pranay Yadav

COGNESTIC Summer School, Sep 2022
https://www.mrc-cbu.cam.ac.uk/conferences/cognestic2022/

Batch Processing Steps for Estimation

GCM Specification

Batch Processing Steps for Estimation

GCM Specification

Batch Processing Steps for Estimation

GCM Specification

Batch Processing Steps for Estimation

GCM Specification

Batch Processing Steps for Estimation

GCM Specification

GCM Estimation

Fitted Full GCM

Batch Processing Steps for Estimation

GCM Specification

GCM Estimation

Fitted Group PEB

Search all nested models with Greedy-BMR

'Full' Model

'Full' Model

Fitted Full GCM

Switch 'off' a connection
'Nested' version of 'Full' model

Switch 'off' another connection
Another 'Nested' version of 'Full' model

Continue this process for each connection (=parameter)

Continue this process for each connection (=parameter)
Generate all possible 'Nested' versions of 'Full' model

Full Nested $_{1}$ Nested $_{2}$ Nested $_{3}$ Nested $_{4}$ Nested $_{5}$ Nested $_{6}$ Nested $_{7}$ Nested $_{8}$ Nested $_{9}$ Nested $_{10}$ Nested $_{11}$

Generate all possible 'Nested' versions of 'Full' model (=model space)

$\begin{array}{lllllllllll} & \text { Full } & \text { Nested }_{1} & \text { Nested }_{2} & \text { Nested }_{3} & \text { Nested }_{4} & \text { Nested }_{5} & \text { Nested }_{6} & \text { Nested }_{7} & \text { Nested }_{8} & \text { Nested }_{9} \\ \text { Nested }_{10} & \text { Nested }_{11}\end{array}$

Generate all possible 'Nested' versions of 'Full' model (=model space)
Infer parameters of 'Nested' models (=model reduction, BMR)

$\begin{array}{lllllllllll} & \text { Full } & \text { Nested }_{1} & \text { Nested }_{2} & \text { Nested }_{3} & \text { Nested }_{4} & \text { Nested }_{5} & \text { Nested }_{6} & \text { Nested }_{7} & \text { Nested }_{8} & \text { Nested }_{9} \\ \text { Nested }_{10} & \text { Nested }_{11}\end{array}$

Generate all possible 'Nested' versions of 'Full' model (=model space)
Infer parameters of 'Nested' models (=model reduction, BMR)
Compare evidence for all models (=model comparison, BMC)

Full Nested $_{1}$ Nested $_{2}$ Nested $_{3}$ Nested $_{4}$ Nested $_{5}$ Nested $_{6}$ Nested $_{7}$ Nested $_{8}$ Nested $_{9}$ Nested $_{10}$ Nested $_{11}$

Generate all possible 'Nested' versions of 'Full' model (=model space)
Infer parameters of 'Nested' models (=model reduction, BMR)
Compare evidence for all models (=model comparison, BMC)
Take a weighted average of model parameters (=model averaging, BMA)
*weighted by model evidence of each model

Generate all possible 'Nested' versions of 'Full' model (=model space)
Infer parameters of 'Nested' models (=model reduction, BMR)
Compare evidence for all models (=model comparison, BMC)
Take a weighted average of model parameters (=model averaging, BMA)
*weighted by model evidence of each model

Testing groups of between-region connections
'Full' model
Faces modulate Forward \& Backward connections

'Full' model
Faces modulate Forward \& Backward connections

'No-Forward' model
Faces modulate only Backward connections

'Full' model
Faces modulate Forward \& Backward connections

'No-Backward’ model

Faces modulate only Forward connections

'No-Forward' model
Faces modulate only Backward connections

'Full' model
Faces modulate Forward \& Backward connections

'No-Backward' model
Faces modulate only Forward connections

'No-Forward' model
Faces modulate only Backward connections

'Null' model
Faces modulate neither F/B connection

Compare all four models and pick 'winning' model?
'Full' model
Faces modulate Forward \& Backward connections

'No-Backward' model
Faces modulate only Forward connections

'No-Forward' model
Faces modulate only Backward connections

'Null' model
Faces modulate neither F/B connection

'Full' model
Faces modulate Forward \& Backward connections

'No-Backward' model
Faces modulate only Forward connections

'No-Forward' model
Faces modulate only Backward connections

'Null' model
Faces modulate neither F/B connection

Self-connections may not be modulated...

Model space defined by:

1. Whether forward connections are modulated
2. Whether backward connections are modulated
3. Whether lateral connections are modulated
4. Whether self-connections are modulated

Model space defined by:

1. Whether forward connections are modulated: yes / no
2. Whether backward connections are modulated: yes / no
3. Whether lateral connections are modulated: yes / no
4. Whether self-connections are modulated: yes / no

Model space defined by:

1. Whether forward connections are modulated: yes / no
2. Whether backward connections are modulated: yes / no
3. Whether lateral connections are modulated: yes / no
4. Whether self-connections are modulated: yes / no

Total number of models: $2^{4}=16$

Model space defined by:

1. Whether forward connections are modulated: yes / no
2. Whether backward connections are modulated: yes / no
3. Whether lateral connections are modulated: yes / no
4. Whether self-connections are modulated: yes / no

Total number of models: $2^{4}=16$
*Note:

- Both (bilateral) forward connections are grouped together
- Both (bilateral) backward connections are grouped together
- Both lateral connections are grouped together
- All three self-connections are grouped together

Model Space
$F+B+L+S$

Model Space

F+B+L

No S

Model Space
$\mathrm{F}+\mathrm{B}+\mathrm{S}$
NoL

Model Space

F+B
No S No L

Model Space

F+S+L

No B

Model Space
F+L
No B No S

bVC IFFA rFFA

Model Space

F+S
No B No L

bVC IFFA rFFA

bVC IFFA rFFA

\mathcal{O}			

bVC IFFA rFFA

Model Space

F
No B
No S
No L

bVC IFFA rFFA

Model Space

Model 10

Model 11

Model 12

 Model 01

bVC IFFA rFFA

Model 10
bVC IFFA rFFA

Model 03
bVC IFFA rFFA

Model 11
bVC IFFA rFFA

Model 15

Model Space
bVC IFFA rFFA

Model 12

Model 16

bVC IFFA rFFA

Model 10
bVC IFFA rFFA

Model 03
bVC IFFA rFFA

Model 11 bVC IFFA rFFA

Model Space

Model 12

Model 16

bVC IFFA rFFA

bVC IFFA rFFA

Model 10
bVC IFFA rFFA

bVC IFFA rFFA

Model 11

bVC IFFA rFFA

Model 12
bVC IFFA rFFA

Model Space
Partition into
Families

Model Space
Partition into
Families

Model Space
Partition into Families

Family 1
At least one forward or backward or lateral connection

Family 2
No
forward or backward or lateral connection
(Only self)

Family 1
At least one forward or backward or lateral connection

Are between-region

 connections modulated by Faces regardless of self-connections?Family 2 No
forward or backward or lateral connection
(Only self)

Family 1 With

 lateral connections
Are lateral

 connections modulated by Faces regardless of all other connections?Family 2
Without lateral connections

bVC			
IFFA		rFFA	
U			

Model 10
bVC IFFA rFFA

Model 12
bVC IFFA rFFA

Are self

 connections modulated by Faces regardless of all other connections?Family 2
Without self connections

Thank you

Binary BMC

Batch Processing Steps for Comparison

Define Model Space through GCM Specification

Batch Processing Steps for Comparison

Define Model Space through GCM Specification

Batch Processing Steps for Comparison

Define Model Space through GCM Specification

Batch Processing Steps for Comparison

Define Model Space through GCM Specification

BMR

GCM with inferred parameters (reduced models)

Batch Processing Steps for Comparison

Fitted PEB

Define Model Space through GCM Specification

Batch Processing Steps for Comparison

Fitted PEB

Define Model Space through GCM Specification

Batch Processing Steps for Comparison

Fitted PEB

Define Model Space through GCM Specification

'Full' model
Faces modulate bw-region \& self-connections

Visual Input
'Self' model
Faces modulate only self-connections (no bw-region)

BMC

Are between-region connections modulated?

