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Abstract 
Dynamic Causal Modelling (DCM) is a widely used method for inferring effective connectivity from 
various kinds of neuroimaging data. This tutorial demonstrates a step-by-step walkthrough for using 
DCM to investigate group-level effective connectivity from a publicly available open-access MEEG 
dataset for face processing from 16 subjects. We illustrate a reproducible analysis pipeline that makes 
use of a hierarchical Bayesian framework called Parametric Empirical Bayes (PEB) to characterize 
inter-individual variability in neural circuitry. At the group level, we show various approaches for 
performing testing focused hypotheses on the estimated connectivity using Bayesian model comparison.
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1. Introduction 
This paper is a tutorial for Dynamic Causal Modelling (DCM) of fMRI data. DCM is a method for 
inferring effective connectivity between brain regions from neuroimaging data, and is part of the 
Statistical Parametric Mapping (SPM) free academic software (https://www.fil.ion.ucl.ac.uk/spm/), 
which is implemented in Matlab (The MathWorks Inc., 2018). We focus on basic DCM specification, 
estimation, Bayesian model reduction and Bayesian model comparison, using the recent Parametric 
Empirical Bayesian (PEB) framework for group-level inference across multiple subjects. Together with 
its companion document describing DCM of fMRI data, this document extends the DCM PEB tutorial 
by Zeidman and colleagues (Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, et al., 
2019) to MEG/EEG data, using a different multimodal dataset and illustrating other features of DCM 
and PEB (https://github.com/pzeidman/dcm-peb-example). 

The dataset contains fMRI and MEG+EEG data on 16 subjects from a face-processing paradigm 
described in Wakeman & Henson (2015). The raw data in BIDS format are available on OpenNeuro 
(https://openneuro.org/datasets/ds000117). This tutorial continues a previous tutorial on the same 
dataset (Henson et al., 2019), which illustrated basic pre-processing and source localisation of 
MEG/EEG data in SPM. Here we assume this pre-processing has already been done, though you can 
download the pre-processed data as described below. 

We describe practical steps using SPM’s graphical user interface (GUI), its ‘batch’ interface for linear 
pipeline creation and finally ‘scripting’ in MATLAB for (parallelised) loops across subjects. We use 
version 12.5 of DCM in version 12 of SPM. The paper is organised into sections with a brief theoretical 
background followed by a detailed step-by-step walkthrough. The background is only brief because we 
refer to previous published papers, many of which are available from the SPM website: 
https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/.  We do not provide a full tour of all the available options 
in SPM for M/EEG, which is already present in Litvak et al. (2011). Rather, we focus on the typical 
steps for group-level DCM inference using PEB. Our experience with teaching SPM is that students 
appreciate having a concrete example, which they can then adjust to their own needs.   

The steps below are also scripted in the ‘code’ directory that you can download or clone from 
https://github.com/pranaysy/MultimodalDCM. This contains two sub-directories, one for fMRI and one 
for MEG, which themselves contain two groups of files: one of these are MATLAB files derived from 
SPM’s ‘batch’ interface (filenames beginning with batch*), in which various analysis steps (batch 
‘modules’) were created by the GUI, saved and then called from loops across subjects (all within the 
‘spm_master_script_dcm_*_peb_batch.m’); the other consists of a script that implements exactly the 
same analyses, but with direct calls to underlying ‘spm*.m’ functions, bypassing SPM’s Batch interface 
(e.g., contained within the script in ‘spm_master_script_dcm_*_peb_direct.m’). 

2. The Multimodal Dataset  
The dataset comes from a paradigm in which participants saw a series of faces and phase-scrambled 
faces, and made left-right symmetry judgments to each stimulus. There were 300 unique faces and 150 
unique scrambled images. Half of the faces were famous and half non-famous, but we ignore this 
distinction in this tutorial. Each stimulus was presented for 900ms on average, followed by 2200ms on 
average. Each stimulus was repeated either immediately, or after 5-15 intervening stimuli, but again we 
ignore the effects of repetition here. Thus we only analyse two conditions: faces vs scrambled faces. 
See Lee et al. (2022) for DCM analysis of effects of repetition and recognition (familiar vs unfamiliar) 
in the fMRI data. 

To give participants a break, the fMRI experiment was split into 9 runs, with approximately equal 
numbers of each condition per run, though to avoid delayed repetition across runs, a small number of 
these trials were dropped. In addition, in order to estimate the response versus inter-stimulus baseline, 
six periods of 20s of a fixation cross were added after a block of 9-20 trials. The MEG experiment was 
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split into 6 runs, and there was no need for interspersing longer periods of fixation as in the fMRI 
experiment. For more details, see Wakeman & Henson (2015). 

3. Background  
3.1 DCM  
DCM is a tool for inferring ‘effective connectivity’ between brain regions of interest (ROIs), based on 
explicit network models and assumptions about neural dynamics. DCM is a state-space model, 
consisting of 1) first-order differential equations that relate changes in each latent neural variable to 
other variables in the network (depending on connections), and 2) an observation model that maps 
neural variables to the measured fMRI and M/EEG signals.  

For fMRI, the neural model is based on simple exponential decay of activity within each area, offset by 
input from other areas, as captured by a simple bilinear approximation. For MEG, the neural model is 
much more complex and contains several differential equations with multiple parameters describing 
each ROI, based on knowledge of the neurophysiology of human cortical layers. For more background 
on DCM, see David et al. (2006), Moran et al. (2013), Pereira et al. (2021).  

For fMRI, the observation model is a temporal model that maps brief changes in neural activity to the 
more dispersed BOLD impulse response (a so-called HaemoDynamic Model, HDM). For MEG, the 
observation model is a spatial model that maps certain neural variables to electrical/magnetic fields 
recorded by sensors outside the head. 

3.2 Current Network (model) 
Here we focus on 3 ROIs: left and right fusiform face areas (FFA) and bilateral early visual cortex 
(bVC). The right FFA is one of the peaks that survive correction for multiple comparisons in the group 
analysis of the contrast of faces versus scrambled faces (see Supplementary Figure A2.1 of Henson et 
al. (2019); https://www.frontiersin.org/articles/10.3389/fnins.2019.00300/full#supplementary-
material); the left FFA appears if the cluster threshold is reduced from 30 to 10 or fewer voxels. We 
could define these two ROIs by saving each of them as thresholded clusters (as in Section 3.2 of Henson 
et al., 2019), but here, for M/EEG, we use the coordinates of significant peaks as the prior location of 
an equivalent current dipole (ECD) at each ROI (see Section 4.2.1.3). For bVC, the centre of the sphere 
was just chosen manually to estimate midline early visual cortex. 

We connect the three ROIs as shown in Figure 1. This assumes bidirectional connections between bVC 
and FFA, and bidirectional connections between hemispheres for FFA. Together with each ROI’s 
(inhibitory) self-connection, these are the ‘A’ connections in DCM. We further assume that all of these 
fixed connections can be modulated by the presence of faces (vs scrambled faces). Finally, we will 
assume that the input (for all stimuli) enters bVC (but see Lee et al., 2022, for more nuanced treatment 
of possible inputs to the network). 



4 
 

 

Figure 1. The 3-node DCM used for fMRI and MEG/EEG. F = forward, B = backward, 
S = self, L = lateral (note F, B and L have different properties in DCM for MEG/EEG 

only). VC = Visual Cortex; FFA = Fusiform Face Area. 
 

DCM proceeds by comparing different models of the data through (an approximate lower bound on) 
the Bayesian model evidence, where models typically differ in connections (parameters), e.g. which 
connections are modulated by an experimental manipulation (here, by faces). When there are multiple 
subjects, one can create a single hierarchical model, enabling an Empirical Bayesian approach in which 
the mean and covariance of parameters across subjects can act as a prior on individual subject parameter 
values. Since DCM also assumes multivariate normal error terms (so-called ‘parametric’ assumptions), 
this approach is called Parametric Empirical Bayes (PEB); see papers by Zeidman and colleagues 
(Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, et al., 2019) for more details. 

There are many models one could compare. For example, one could ask whether face processing 
modulates connections between ROIs, or whether it is sufficient to explain face-related responses in 
each ROI simply via modulations of each ROI’s self-connections. If the latter ‘self-only modulation’ 
model were more parsimonious (had higher model evidence), then there would be no need to assume 
that faces change the effective connectivity between regions (and the traditional voxel-wise analysis of 
univariate statistics would be sufficient, as in Henson et al., 2019). 

The tutorial consists of four main sections: 1) specifying single-subject DCM for MEG and 2) 
estimating group-level DCMs for MEG with inference based on model comparisons. 

4. DCM for M/EEG 
DCM for M/EEG consists of various types of analyses that span from biologically plausible neuronal 
models that effectively describe evoked time courses and spectral activity, to phenomenological models 
of oscillatory entrainment effects. In this tutorial, we focus on DCM for evoked responses, or “DCM-
ERP”, and use the extended Jansen-Rit neuronal model, called the ‘ERP’ neuronal model. For a 
comprehensive overview of this model, see David et al. (2006) and Spiegler et al. (2010). We first 
present specification and estimation of DCM from MEG magnetometers of a single subject, and then 
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extend this to all 16 subjects from the dataset for ‘group’ DCM. Lastly, we show estimation of 2nd level 
effects using PEB and inference on connectivity based on various approaches to model comparisons. 

4.1 Preparation 
In order to run this tutorial, there are two preparatory steps involved: setting up the software 
environment, and organizing data. For preparing the environment, install SPM12 from 
https://www.fil.ion.ucl.ac.uk/spm/software/download/ somewhere on your local system. The results in 
this tutorial were obtained with release ‘r7771’. Once installed, clone or download the git repository at 
https://github.com/pranaysy/MultimodalDCM to a folder. This contains some small edits to SPM  
functions that are detailed in the README. Launch MATLAB and using the file browser panel, 
navigate to the cloned or downloaded repository folder. We will refer to this folder as ‘base_dir’ in 
the tutorial as well as scripts. 

Once the environment is ready, data can be organized depending on the kind of processing it has been 
subject to.  There are two starting points: 

1. You could begin with raw data from OpenNeuro (https://openneuro.org/datasets/ds000117) and 
process it for fitting DCMs. Note that the full data is about 85GB in size. After downloading 
the data, process the data as per the demo tutorial demo in Henson et al. (2019) except for the 
following changes: 
 

A. During processing of continuous data, do not downsample to 200Hz and keep the data 
at its original sampling rate of 1100Hz. This is crucial because the accuracy of 
numerical integration in DCM depends on the number of samples available. By keeping 
data at full sampling rate, better model fits and more precise parameter estimates can 
be obtained. 

B. During filtering, apply a low-pass filter of 40Hz only. High-pass filtering is not needed 
since baseline correction will be performed on epoched data for correcting slow trends. 

C. During epoching of continuous data, perform baseline correction for minimising 
activity around stimulus onset. This is necessary because the neuronal models for 
evoked responses in DCM assume that prior to an ‘input pulse’ to a source, the activity 
of that source is zero. Typically this input pulse (for cortical ROIs) is modelled as a 
Gaussian function peaking around 60ms after stimulus onset, to capture the typical 
transmission time for sensory information from thalamus to cortex. Therefore activity 
prior to this input pulse should be zero. 

D. In the step for aggregating epochs, use the per-condition ‘Robust averaging’ option. 
This performs a weighted average across trials for each sample, with the weights based 
on how typical a given sample is for that condition. This reduces the contribution from 
samples that are atypical (e.g, artifacts).  

E. Lastly, after creating averaged epochs for each subject, calculate two contrasts of 
conditions: the first being [0 0 1] for ‘Scrambled’, and the second being [1/2 1/2 
0] for ‘Faces’ (averaging ‘Famous’ and ‘Unfamiliar’ into one condition).  

F. Optionally, after creating the forward model, you may enforce the estimation of the 
gain matrix which is stored in a separate file (with the prefix: ‘SPMgainmatrix_*’). 
This can be done by running the command ‘spm_eeg_lgainmat(D)’. Precomputing 
the gain matrix will prevent its estimation during DCM inversion (saving some time), 
since the same gain matrix, once computed, will be used for all subsequent DCM 
inversions for that subject’s data (though if you prefer, you can let DCM estimate it). 

 
The script ‘spm_master_script_data_preprocessing.m’ in the ‘base_dir/code/meg’ 
folder includes the above steps. Once you have finished processing the data, you will have a 
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BIDS directory tree with processed derivatives in the folder 
‘base_dir/data/derivatives/SPM12’. The data in this folder are ready for fitting DCMs. 
 
You could start directly with processed DCM-ready data, which have already undergone the 
pre-processing outlined above. We provide the estimated gain matrices along with averaged 
evoked data for each subject on Figshare: https://doi.org/10.6084/m9.figshare.25192793.v1 in 
the file called ‘MEEG_DCMreadyData_with_GainMatrix.tar.xz’. 
Download the data and extract it inside the ‘data’ folder in ‘base_dir’, which is the repository 
you cloned earlier. The data folder should now have a directory tree that looks like ‘base_dir/ 
data/derivatives/SPM12’.  

Initialisation 
Open the ‘spm_master_dcm_meg_peb_batched_script.m’ from the ‘base_dir/code/meg’ folder. 
There is some MATLAB code at the start that is necessary to start SPM and define some key variables. 
First start SPM12 

SPM12PATH = <insert path to your local install of SPM12> 

addpath(SPM12PATH); 

spm eeg 
 
Then define some paths where you have downloaded the repository. The ‘base_dir’ folder is the one 
containing the folders named ‘code’, ‘data’, and ‘fits’: 
 

base_dir = '/user/py01/MultimodalDCM'; % example 
cd(base_dir) 

 

Next, add the ‘code’ folder and all subfolders in it to MATLAB’s path by running this line:  

addpath(genpath(fullfile(base_dir, 'code')))  

This ensures that all the code we provide is available in MATLAB’s environment. This is necessary 
because our scripts for batch processing rely on functions in various files – some of which enable 
parallel processing, some are ‘job files’ used by SPM’s batching interface while some are modified 
SPM functions, which have been updated for this tutorial. It is crucial to add this ‘code’ folder to the 
MATLAB path after your local installation of SPM has been added to MATLAB’s path and launched. 
This sequence of operations will put our ‘code’ folder at the top of MATLAB’s list of paths, which can 
be viewed by typing pathtool on the command line. Since the updated SPM functions we provide 
share the same filenames with the original SPM functions, adding the two in this exact order guarantees 
that when a function is to be executed, MATLAB will look for any version in our ‘code’ folder first, 
since it is higher in the path. A list of modified SPM functions with a brief overview of changes is 
provided in the README file on the GitHub repository for this tutorial, linked earlier. 

Lastly, if you have access to multiple cores (parallel processing in MATLAB), you can run below (if 
not, set ‘numworkers’ to 0): 

numworkers = 16; % Number of workers for distributed computing (depends on 

    % system, here 16 implies one worker for each subject) 

if numworkers > 0 

    delete(gcp('nocreate')) % Shut down any existing pool 

    parpool(numworkers); 

end 

 



7 
 

4.2 DCM definition: for single subject 
Specification of DCMs is done through the SPM GUI’s ‘DCM’ button after launching SPM’s M/EEG 
interface. We will start with a single subject, subject 15, as in Henson et al. (2019). In MATLAB, use 
the file selector on the left-hand side to change the working directory to 
<base_dir>/data/derivatives/SPM12/sub-15.  

4.2.1 Specifying a full model 
DCM specification for M/EEG involves four steps: choosing modelling approach, specifying data and 
design matrix, specifying the electromagnetic observer model, and lastly, defining the neuronal 
connectivity model. More practical help on DCM for fMRI can be found in Chapter 44 of the SPM12 
manual, https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf. 

4.2.1.1 Modelling approach 
 In the top-left corner of the DCM graphical interface (Figure 2), the ‘load’ button allows 

selection and loading of an existing DCM. This is useful if you want to make copies of a 
specified model with different parameters. 

 To the right of the ‘load’ button, there are two drop-down lists, the left of which allows you to 
select the type of DCM analysis. Select the option ‘ERP’ from this list. This corresponds to 
DCM for evoked responses. Other options are explained in Litvak et al. (2011). 

 The second drop-down list in the top-right corner of the DCM GUI allows you to select an 
underlying generative neuronal model for modelling each source’s dynamics and connectivity. 
The various models differ in their internal architecture and parametrisations. Detailed 
descriptions of these models can be found in (Moran, Pinotsis and Friston, 2013; Pereira et al., 
2021). We focus on the convolutional, 3-population, extended Jansen-Rit model, referred to as 
the ‘ERP’ neuronal model as described in (David et al., 2006). Select this option from the list. 

 Lastly, click on the ‘new  data’ button and select the file ‘wmaMcefspmeeg_sub‐15_ses‐
meg_task‐facerecognition_run‐01_proc‐sss_meg.mat’ from the ‘meg’ folder containing 
processed data for sub-15. Since the data consists of multiple sensor modalities, and DCM 
presently can only model one modality at a time, the interface will prompt you to select one of 
the three modalities. Select ‘MEG’ for proceeding with MEG Magnetometers. 

4.2.1.2 Data and design 
 Select data for a 400ms window after stimulus onset by setting the values 0 and 400, 

respectively, in the boxes under ‘time window’ (see Figure 2). 
 By default, only the first trial is selected in ‘between-trial effects’. In the input box, change ‘1’ 

to ‘1 2’ to select two trials, corresponding to scrambled faces and famous faces respectively. 
Click the ‘display’ button above to verify time-courses of the two observed trials across all 
sensors. 

 The large white box, located right under the box where the two trials were selected, allows you 
to specify the design matrix for modelling modulation effects as contrasts of trials. Enter the 
contrast vector ‘-1  1’ in this box, which corresponds to the difference between faces and 
scrambled faces  In the white box to the left of the design matrix, names to each contrast vector 
can be assigned. Change ‘effect 1’ to ‘Face Perception’. 

 Select the radio button for ‘hanning’ to apply a Hann taper to the time courses. This will 
improve the signal-to-noise ratio by suppressing activity towards the edges of the 0–400ms time 
window of interest, i.e., focus on effects occurring in the middle of the window. Confirm this 
by clicking the ‘display’ button. 

 Leave the remaining options to their default values and press the button with the right-pointing 
red arrowhead to continue to the next section. 
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Figure 2: Data and Design 

4.2.1.3 Electromagnetic model 
 In this set of options, we specify the spatial constraints for parametrising the leadfield used for 

projecting source activity to the sensors (Figure 3). There are two ways of doing this, the first 
approach models the leadfield of each source as an equivalent current dipole (ECD), while the 
second one, called the ‘Imaging’ solution, models each source as a ‘patch’ of dipoles on the 
cortical mantle. Alternatively, the spatial model may not be required at all if the data come from 
intra-cortical electrodes (like local field potentials), or if the data are already in source space 
after some bespoke source reconstruction. In the latter scenarios, the ‘LFP’ electromagnetic 
model should be used. Here, we use the ECD approach, so select this option from the drop-
down list in the top-left corner of this section. 

 Next, enter names and locations of sources in the two white boxes in this section. In the left 
box, enter the following names, one on each line: bVC, lFFA, rFFA. In the right box, enter their 
respective locations (in mm, in MNI coordinates), one on each line again, as: 

0 –90 0  –42 –56 –20   +42 –52 –14 
These coordinates are the same as the ones specified during VOI extraction for fMRI, in the 
DCM for fMRI tutorial. 

 The specified dipoles can be visualized by pressing the button ‘dipoles’. This will update the 
‘Graphics’ window so that the dipoles can be visualized in the brain (if you change the ‘Select 
dipole #’ from its default “1” to “all”, you can see all three dipoles on same sections). 

 Leave the remaining options to their default values, press the button with the right-pointing red 
arrowhead to continue to the next section.  
 

 

Figure 3: Electromagnetic observation model 

4.2.1.4 Neuronal model 
 In this set of options, we define how the sources defined in the previous step are connected to 

each other and how these connections are modulated by experimental effects (Figure 4). The 
connectivity architecture also depends on the underlying generative neuronal model chosen in 
Section 4.2.1.1. Since we chose the 3-population ‘ERP’ model, this section will consist of three 
A-matrices (explained next), one B-matrix and one C-matrix. 
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 The A-matrices correspond to three sets of connections that originate from the layer V 
pyramidal cell population in each modelled source: ‘forward’ ones carry bottom-up information 
and terminate in the layer IV spiny stellate cell population of another source; ‘backward’ ones 
carry top-down information and terminate in layer II/III inhibitory interneuronal as well as layer 
V pyramidal cell populations; and ‘lateral’ ones terminate in all three layers – layer II/III 
inhibitory interneuronal, layer IV spiny stellate cell and layer V pyramidal cell populations. 
These connections are distinguished because they are assumed to have different dynamics, i.e. 
affect evoked responses in different ways. Note each intrinsic connection can only be of one 
type (so no connection can be turned on in more than one A matrix). 

 The B-matrices encode gain modulations of the connections defined by the A-matrices, with 
the modulations capturing the difference between evoked responses across conditions. Like in 
the accompanying fMRI tutorial, DCM will explain the average response to ‘faces’ and 
‘scrambled faces’ by using the A-matrix only, while the response to either ‘faces’ or ‘scrambled 
faces’ is modelled by modulating the connections in the A-matrix by their corresponding 
weights in the B-matrix. These weights follow their corresponding ‘signed’ directions in the 
contrast vector specified earlier in the design matrix in Section 4.2.1.2 – positive modulation 
towards ‘faces’ and negative towards ‘scrambled faces’. Further, there are as many B-matrices 
as there are effects (rows) specified in the design matrix. Since we have only one effect of ‘Face 
Perception’ in our design matrix, we have only one B-matrix. 

 Lastly, the C-matrix allows us to specify which ROIs receive inputs, modelled as stimulus 
impulses (Gaussian functions with a mean of around 64ms and standard deviation of 16ms, to 
resemble thalamic input to cortex). 

 The rows and columns of each of the A and B matrices (only rows for C-matrix) correspond to 
the sources in the same order as specified in the electromagnetic model. The column index 
corresponds to the source ‘from’ which a connection originates, while the row index 
corresponds ‘to’ the source at which a connection terminates. A connection from a source to 
another is switched ‘on’ in a matrix by pressing the radio button located at that index. 

 Based on these rules, set up the A matrices such that bVC projects forward connections to left 
and right FFA, which then project backward connections to bVC. Further, both left and right 
FFA are connected across hemispheres by bidirectional lateral connections. In the C matrix, 
specify bVC as the only region receiving direct inputs.  

 Set up a B matrix by switching on all the between-region connections as specified in the 
‘forward’, ‘back’ and ‘lateral’ A matrices as well as self-connections that correspond to the 
diagonal of the B matrix. This corresponds to the ‘Full’ model containing all relevant sources, 
connections and modulations. 

 Lastly, enable the ‘dipolar symmetry’ radio button in the bottom-left corner of this section. 
This imposes symmetry constraints on the orientations of dipoles modelled at homologous 
sources, based on the fact that the cerebral hemispheres are organised symmetrically. 
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Figure 4: Connectivity of neuronal model and modulation by Face Perception 
 

Save this ‘full’ model as ‘DCM_Full’ in the ‘DCMs’ subdirectory located in the ‘templates’ folder under 
‘base_dir/fits/batch_gui/meg’ by pressing the ‘save’ button on the top-left corner of the DCM 
interface.  Make a copy of this template file called ‘DCM_Full_Spec.mat’. This model is now ready for 
inversion.  

4.2.2 Estimating the full model for single subject 
Press the ‘invert DCM’ button located in the bottom-right corner of the ‘neuronal model’ section to 
invert this model. The estimation process will proceed until a reasonable fit is obtained, up to a fixed 
maximum number of iterations of the underlying expectation-maximization algorithm1. Once complete 
in exactly 100 steps for this subject, the ‘invert DCM’ button will change to ‘Estimated’, and produce 
a figure like that in Figure 5. 

  

                                                      
1 The maximum number of iterations is 64 by default in v7771 of SPM, but one of the changes we made in the 
updated functions that you put on top of your MATLAB path in Section 4.1 above is to increase this maximum to 
512 steps, since we noticed that this improved convergence of these ERP models. 
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Figure 5: Completed estimation of specified DCM 
 

The inverted DCM can be inspected using the drop-down list at the bottom-left of the DCM interface. 
Estimates of various parameters as well as fits to observed data can be evaluated, such as modelled 
activity at sources (select ‘ERPs (sources)’; see Figure 6) and scalp (select ‘Response’; see Figure 7) 
for each condition. Modulation of coupling, i.e. estimates of B-matrix parameters can be inspected in 
two ways, firstly, by selecting ‘coupling (B)’ – this shows estimates as well as posterior probabilities 
in a matrix format (Figure 8), and secondly, by selecting ‘trial‐specific effects’ – which shows 
bar graphs of the change in strength (or modulation) expressed as a percentage change for Faces relative 
to Scrambled, which is held at 100% (Figure 9). The layout of this latter option is the same as that of 
the B-matrix. 
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Figure 6: Estimated activity for each trial condition at each source. Trial 1 (blue) is scrambled 
faces; Trial 2 (red) is faces; in each source, population 1 (pop. 1) corresponds to the ‘input’ 
population i.e. spiny stellate cells, population 2 corresponds to inhibitory interneurons and 

population 3 corresponds to the ‘output’ population i.e. pyramidal neurons. 
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Figure 7: Fitted time courses at sensors  
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Figure 8: Estimated B-matrix parameters (top) and 
their respective posterior probabilities (bottom)  
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Figure 9: Trial-specific modulation of connections. This figure shows change in connection 
strengths for Trial 2 (Faces) relative to Trial 1 (Scrambled), where the latter is 100% (since 

only Faces are modulated in this DCM). 
 

4.3 Group DCM (or GCM) 
We have specified a DCM for a single subject, which we can use as a template model for every subject. 
This way, all subjects’ models will be identical, except for their M/EEG time series and forward models, 
which will be customized for each subject. While there are several ways of doing this, we demonstrate 
an approach using SPM’s batch GUI interface, which replicates the ‘Full’ template model over all 
subjects, like we did in accompanying fMRI tutorial. However, rather than running this step and further 
steps one-by-one, we illustrate construction of a pipeline, using ‘dependencies’ in the batch interface, 
to chain together multiple steps for 1) replication of template models over subjects, 2) estimating these 
models as well as 3) fitting a PEB model for estimating group level effects.  
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Figure 10: Specification step: DCM for M/EEG module in the batch interface 
 

4.3.1 Replicating model specification across multiple subjects 
The first step involves preparing and setting up the batch module for specifying DCMs at a group level. 
Start the ‘Batch Editor’ by pressing the ‘Batch’ button located in the bottom row of the SPM EEG 
window. This will launch the batch interface with no modules loaded. 

 Add the first module by opening the ‘SPM’ menu from the top row, and selecting ‘DCM’ → ‘DCM 
specification’ → ‘DCM for M/EEG’ (Figure 10). 

 In module options, select ‘M/EEG  datasets’ and press the ‘Specify…’ button. In the file 
selector interface that opens up, navigate to the ‘data’ folder containing the processed files in 
the ‘derivatives’ sub-folder. Although we could select each subject’s processed data files one 
at a time, by navigating to their respective sub-directories and manually clicking on each file, 
we make use of the recursive regular-expression-based filename matching filter in this 
interface. This is especially useful since all subjects’ data underwent the same pre-processing 
steps, therefore each file has the same string of letters prepended to its name by SPM, where 
each letter corresponds to one step of processing. In the current dataset, this prepended string 
is ‘wmaMcefspmeg’. In the text box next to the ‘Filter’ option, enter the regular expression: 
‘^wmaMc.*’. This expression will match all files whose names begin with ‘wmaMc’ (indicated 
by the ‘^’) and can have any set of letters after this string. Now press the ‘Rec’ button towards 
the left in the same row as the text box. This will recursively search all sub-directories for files 
that match the pattern specified. Once the search is complete, the box at the bottom will be 
populated with 16 files corresponding to the processed SPM header files (*.mat) for all 
subjects. You can view this list and edit if needed by pressing the ‘Ed’ button, which launches 
a text editor with a populated list of all files. Press ‘Done’ to specify these 16 files for the option 
‘M/EEG datasets’. 

 Select the option ‘DCM files’ and press the ‘Specify…’ button for indicating the full template 
model. In the file selector interface, navigate to the ‘DCMs’ subdirectory in the ‘templates’ 
folder and select the file ‘DCM_Full_Spec.mat’ from the panel on the right. Press ‘Done’ to 
confirm and return to the batch editor. 

 Since we are using the default priors for our DCM parameters, we will leave the options 
‘Priors’ and ‘Initialisation’ empty as is. Select ‘Graphical feedback’ and change it to 
‘No’, as this will slow-down execution and more importantly would not produce anything if you 
run on multiple cores using MATLAB’s parallel computing, as here. 

 Leave the ‘Output’ as a ‘Single GCM *.mat file’. This is not only a compact, efficient way 
of representing group DCMs across subjects (as rows) and models (as columns), but subsequent 
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functions for fitting PEBs and model comparison also rely on this ‘GCM’ and the way it is 
structured. 

 Point the output ‘Directory’ to the 
‘base_dir/fits/batch_gui/meg/templates/GCMs/Full’ folder. Note that the GCM 
specified this way will be implicitly named after the first file specified in ‘DCM files’ above, 
with prefix ‘GCM_’. In our case, it will be named ‘GCM_DCM_Full.mat’.  

 

With this configuration, the ‘DCM for M/EEG’ module for specifying DCMs for all subjects is ready 
and could be run by either pressing the green play button or by selecting ‘File’ → ‘Run Batch’ in the 
batch interface. Doing so would generate a GCM file with the ‘.mat’ extension in the ‘fits’ directory. 
This could be inspected by loading it in MATLAB, or could be used for estimation of the specified 
models. However, here we will wait to specify some subsequent steps before running. 

4.3.2 Estimating GCM 
We will now add the estimation step and chain it with the specification step we just completed to build 
our pipeline (Figure 11). 

 

Figure 11: Estimation step: DCM estimation module in batch interface 
 

 Add the estimation module by opening the ‘SPM’ menu from the top row, and selecting ‘DCM’ 
→ ‘DCM estimation’ 

 In the option ‘Select DCMs’, you could specify DCMs per subject (= columns of GCM), or per 
model (= rows of GCM), or you could specify a GCM directly. This is the default option. If 
you have an existing GCM specified manually, you could specify a path to the file containing 
this GCM. Since we will use the GCM produced by the preceding step, we can specify the 
output of the previous module as a dependency. With the ‘Select GCM_*.mat’ option selected, 
press the ‘Dependency’ button. This will open a pop-up dialog box with only one option ‘DCM 
for M/EEG: GCM mat File(s)’ selected by default. Press ‘OK’ to continue with this selection. 

 In the ‘Output’ option, select ‘Create group GCM_*.mat file’. This will create an array of 
DCMs with subjects as rows of the array and columns corresponding to models (though only 
one in our case, at the moment). Selecting this option will also prevent overwriting the GCM 
‘specification’ created in the previous step. This may be useful for testing different ways of 
estimation (see ‘Estimation type’ below). In the selected branch ‘Create group GCM_*.mat 
file’ of ‘Output’ option, specify ‘Directory’ as the ‘meg’ subdirectory in the 
‘base_dir/fits/batch_gui’ folder and ‘Name’ as ‘Full’. The prefix ‘GCM_’ will be appended 
to the name, making ‘GCM_Full.mat’ the final filename of the estimated GCM.  
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 In the option ‘Estimation  type’, select ‘Full +  BMR’. This option will estimate the ‘full’ 
model for each subject (first column of GCM) and then uses Bayesian Model Reduction or 
BMR to infer the parameters and model evidence for any subsequent nested models. If we had 
multiple models in our GCM (i.e. more than one column), then only the first column of GCM 
corresponding to the full model for each subject will be estimated, while the remaining columns 
of GCM corresponding to the nested reduced model will be subjected to BMR for inferring 
parameters from the full model (Zeidman et al 2019). 
 
Since we only have a single model per subject in our GCM, BMR will not be performed. 
Note that the alternative of ‘Full + BMR PEB’ can be used for iterative estimation of the full 
model for each subject. This sets the priors on each parameter to the group mean from a PEB 
model and then re-estimates the full model for each subject. Doing so improves estimation by 
rescuing parameters stuck in local optima, but due to the iterative nature of fitting, can take 
much longer to estimate, and we do not use here. 

 

The estimation module is now ready and chained to the previous specification step as a dependency. If 
you ran this batch pipeline by pressing the green ‘play’ button, SPM will sequentially run both modules 
to first create a GCM specification (‘fits/batch_gui/meg/templates/GCMs/Full 
/GCM_DCM_Full.mat’), and then estimate this specified GCM 
(‘fits/batch_gui/meg/GCM_Full.mat’). The estimated GCM could then be investigated by loading 
it in MATLAB and calling various SPM functions to review DCMs in the GCM array, or could be used 
for estimating a group-level PEB model. However, here we will continue with next step of PEB to 
estimate the 2nd level group-level model. 

4.5.3 Second level analysis: PEB 
We continue and extend our pipeline to lastly estimate a group-level PEB model from the estimated 
GCM by chaining another module (Figure 12). 

 

Figure 12: PEB step: Specify / Estimate PEB module in batch interface 
 

 Add the PEB estimation module by opening the ‘SPM’ menu from the top row, and selecting 
‘DCM’ → ‘Second level’ → ‘Specify / Estimate PEB’ 

 Specify ‘Name’ as ‘Full’. The prefix ‘PEB_’ will be appended to this name and the estimated 
PEB model will have the name ‘PEB_Full.mat’, written in the same directory as the estimated 
GCM i.e. the ‘batch_gui/meg’ subdirectory in the ‘fits’ folder. 
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 With the ‘DCMs’ option selected, press the ‘Dependency’ button. This will open a pop-up dialog 
box with three options, select the last one ‘DCM estimation: GCM mat File(s)’ to use the 
output from the GCM estimation step. Press ‘OK’ to continue with this selection. 

 Leave the ‘DCM index’ option to ‘Selected DCM index’ with the value of 1 (corresponding 
to the first column of GCM with the full model for each subject). 

 Leave the ‘Covariates’ option set to ‘None’ as we illustrate this functionality later in 4.5.5. 
 Set the option ‘Fields’ to ‘Enter manually’ and then select this option and specify ‘{‘B’}’, 

including the curly braces. This option specifies which parameters of our model should be 
treated as random effects across subjects (other parameters are treated as fixed effects). Since 
our models differ in connections being modulated by the effect of face perception, we specify 
B-matrix parameters as the ones we want to model at the group level, accounting for between-
subject variability over these parameters. 

 Leave the options ‘Between‐subjects variability’, ‘Second level (GLM) priors’ and 
‘Estimation’ to their default values. Set ‘Review PEB parameters’ to ‘Yes’ as we would like 
to examine the group-level estimates at the end of the pipeline. 
 

With this module, our pipeline is now ready to be run. Press the green play button, or select ‘File’ → 
‘Run Batch’ to run this batch pipeline. This may take a while to run, and on completion, the following 
outputs will be produced: 

1. In ‘base_dir/fits/batch_gui/meg/templates/GCMs/Full’: one GCM specification file 
(‘GCM_DCM_Full.mat’) 

2. In ‘base_dir/fits/batch_gui/meg/templates/GCMs/Full’: one full DCM fitted per 
subject for a total of 16 files. 

3. In ‘base_dir/fits/batch_gui/meg’: one estimated GCM (‘GCM_Full.mat’) & PEB 
(‘PEB_Full.mat’) file each. 

 

Once the pipeline has finished, you will be presented with a window for reviewing the group PEB 
structure (as in Figure 13). This interface can be used for examining estimated group-level parameters 
(by selecting ‘Second‐level effect – Commonalities’ in the main drop down menu) as well as 
quality of fits (for example, selecting ‘Diagnostics’ will show correlations between parameters). The 
group-level parameter estimates can be thresholded based on their posterior probabilities for evaluating 
which modelled parameters were consistent across subjects.  
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Figure 13: Review of estimated PEB parameters 
 

In the batch editor, select ‘File’ → ‘Save  Batch  and  Script’ and save the pipeline as 
‘batch_specify_estimate_peb’ in the folder 
‘base_dir/code/meg/saved_from_batch_interface’. We will later modify this batch file for use 
through scripts. Create a new batch by selecting ‘File’ → ‘New Batch’ before proceeding further. 

4.4 Model Comparison 
To make use of the PEB model, we need to perform a model comparison. The simplest form of model 
comparison to run is an automatic search, which will prune parameters from the PEB model that do not 
contribute to the model evidence. The software will specify and compare hundreds of candidate reduced 
PEB models, in which different combinations of parameters have been switched off. This search can be 
performed quickly owing to a method called Bayesian Model Reduction (BMR), in which the 
parameters and model evidence for any nested model can be estimated from the full model fit by simple 
equations, without needing to re-fit each nested model to the data. Moreover, we can also average the 
parameters (connection strengths) across the whole model space, weighted by the model evidence for 
each model; a process called Bayesian Model Averaging (BMA).  
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4.4.1 Automatic Search 
 In a new empty batch, add the module for automatic nested model search by opening the ‘SPM’ 

menu from the top row, and selecting ‘DCM’ → ‘Second  level’ → ‘Search  nested  PEB 
models’. 

 In the module options, for ‘Select  PEB  file’, specify the ‘PEB_Full.mat’ file in the 
‘base_dir/fits/batch_gui/meg’ directory, and similarly, for ‘DCMs’, specify the 
‘GCM_Full.mat’ file located in the same folder. 

 Set the ‘Null prior variance’ to 0 instead of the default 0.0625. This will switch ‘off’ a 
parameter completely instead of setting a low value, and tests the null hypothesis that 
parameters are present vs absent. Lastly, select ‘Yes’ for ‘Review PEB parameters’. 

 

Press the green play button to execute this module and run an automatic search for nested PEB models. 
This should be quick, and once completed, you will be presented with three windows – one titled ‘BMR 
– all’ showing the models in the BMR model space that contribute to model evidence, another titled 
‘BMC’ showing estimates from the averaged model from BMA, and the third one titled ‘PEB – Review 
Parameters’ showing parameters and quality of fits from the BMA (as in Figures 14-17 below).  

This module will also automatically save the BMA as ‘BMA_search_PEB_Full.mat’ in the 
‘fits/batch_gui/meg’ folder. Save the batch file and script as ‘batch_bmr_search’ in the folder 
‘base_dir/code/saved_from_batch_interface’. 

  



22 
 

  

Figure 14: BMR window after searching nested models 
 

The figure titled ‘BMR –all’ (Figure 14) shows the 16 reduced candidate models that were compared 
during the automatic search. The number of models searched is 24 since only 4 out of total 9 ‘B’ matrix 
parameters were identified by the procedure to produce the least reduction in model evidence when 
switched off individually. The model space comprising these models is shown in the bottom row, left 
plot, and for each model, the parameters that were ‘on’ are shown in white, while the ones that were 
‘off’ are in black For instance, the first 8 models have the parameter B1(1,1), corresponding to 
modulation of the self-connection for bVC, switched off while the remaining 8 models have it switched 
on.  

The log of model evidence is shown in the left plot of top row, while the right plot shows these values 
converted to posterior probabilities. Note that no single model is ‘best’, although a few models appear 
more likely. The second row shows parameters of the PEB model before search (left) and those after 
search (right). Five parameters have been pruned away: 2, 4, 5, 6 and 9 which have near-zero estimates 
after search. The right plot in the bottom row shows the posterior probability for each PEB parameter 
obtained by comparing evidence for all reduced models which had that corresponding parameter 
switched on, versus all reduced models which had that same parameter switched off. 
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When comparing a large set of models, it is unusual to find a single winning model. Instead of 
comparing individual models, it is more informative to consider the weighted average of parameters of 
models, called the BMA. The window title ‘BMC’ (Figure 15) shows this average, with plots organised 
into three rows. The top row shows parameters from the estimated PEB, while the middle row shows 
parameters from the BMA, with their respective posterior probabilities in the bottom row. The bottom 
row shows posterior probabilities for each parameter as described above. After pruning parameters, 
other parameters have become less strong, eg credible interval for parameter 1 now overlaps 0 in the 
BMA (‘Reduced’ subplot). The bottom row shows the posterior probability for each parameter (as 
described above), for instance parameter 3 – B{1}(3,1), corresponding to modulation of the forward 
connection from bVC to right FFA has a probability close to 1, suggesting that it is needed. 

  

Figure 15: BMC window showing parameter estimates in reduced BMA 
 

The final window, titled ‘PEB – Review Parameters’ (Figure 16), allows an interactive way to explore 
the results of this analysis. Using the drop-down menu to view ‘Second‐level  effect  ‐ 
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Commonalities’ and thresholding parameters based on model evidence shows that only four 
parameters had strong evidence (posterior probability > 0.95) in the BMA. Clicking on the bar plots 
identifies the parameters to be the modulatory forward connection from bVC to rFFA (parameter 3), 
self-connection for lFFA (parameter 5), and the bidirectional pair of lateral connections between lFFA 
and rFFA (parameters 6 and 8). Alternatively, these can be viewed in a matrix representation by 
selecting ‘B{1}’ from the drop-down list under ‘Display as matrix’ (Figure 17).  

  

Figure 16: Review of parameter estimates in the Bayesian Model Average 
 

One can see that the connections from bVC and lFFA to rFFA is positively modulated, while the 
connection from rFFA to lFFA is reduced in addition to lower intrinsic connectivity of lFFA. This 
implies that the difference in processing ‘Faces’ over ‘Scrambled’ images is driven by an increased 
flow of information from bVC and lFFA to rFFA and a reduced involvement of lFFA. 
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Figure 17: Connectivity matrix showing significant parameters of the B-matrix after 
thresholding based on model evidence (Free energy (with vs without), Pp > 0.95) 

 

4.4.2 Model Families 
 The automatic search of all possible reducible models from the full model may not be sufficient to 
answer your questions. While it can return BMA estimates of connections that are needed, one might 
have a more general question that spans more than one connection, e.g, ‘Do we need (modulation of) 
any backward connections from left/right FFAs to bVC?’, or ‘Do we need any lateral connections 
between hemispheres?’. First, we are going to ask the question ‘Do we need any modulations of 
connections between ROIs, beyond modulations of self-connections?’ – i.e., use DCM to ask whether 
there is any evidence of effective connectivity during face processing (that cannot simply be explained 
by local activation). In order to do this, we test whether one or more combinations of between-region 
connections are modulated by Faces. This involves specifying multiple ‘nested’ models with different 
combinations of between-region connections being modulated, i.e. switched ‘off’ or ‘on’ in the B-
matrix. The model space consisting of such ‘nested’ versions of the full model, which features 
modulation of all between-region connections, can then be divided into different ‘families’ (partitions) 
according to which types of modulation are enabled. Below, we will distinguish models according to 
whether they contain self-modulations, modulations of ‘forward’ connections (from bVC to FFA), 
modulations of ‘backward’ connections (from FFA to bVC) or modulations of ‘lateral’ connections 
(between lFFA and rFFA). With these four types of connections, we can therefore define 24 = 16 models 
in total2:  

1. Modulation of forward, backward, lateral and self-connections 
2. Modulation of forward, backward and lateral but not self-connections 
3. Modulation of forward, backward and self-connections but not lateral ones 
4. Modulation of forward and backward connections only 
5. Modulation of forward, lateral and self-connections but not backward ones 
6. Modulation of forward and lateral connections only 
7. Modulation of forward and self-connections only 

                                                      
2 Note we are always combining across hemispheres, though one could of course expand the model space to ask 
whether forward, backward or self-connections are needed in specific hemispheres. However, if one does not care 
about hemispheric differences, we are reducing the problem of model dilution by not considering models that 
differ in modulations between hemispheres. 
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8. Modulation of forward connections only 
9. Modulation of backward, lateral and self-connections but not forward ones 
10. Modulation of backward and lateral connections only 
11. Modulation of backward and self-connections only 
12. Modulation of backward connections only 
13. Modulation of lateral and self-connections only 
14. Modulation of lateral connections only 
15. Modulation of self-connections only 
16. No modulation of any group of connections 

For example, by comparing the family of models 1–14 that include forward and/or backward and/or 
lateral modulations with the family of models 15 and 16 that do not contain forward, backward and 
lateral modulations (only with or without self-modulations), we can test whether between-region 
connections are needed. Comparing these two families asks the question of whether at least one type of 
between-region connection (forward and/or backward and/or lateral) is needed, regardless of whether 
self-connections are also modulated. 

4.4.2.1 Family-BMC for between-region connections 
The first step involves creation of the sixteen template models for each model in the list above, as shown 
in Figure 18. This can be done by loading the full model, switching B-matrix connections off, and 
saving through the DCM GUI interface as shown previously. However, the same can be done much 
more efficiently using simple MATLAB functions through the scripting interface, as illustrated on lines 
377-430 in the script spm_master_script_dcm_fmri_peb_batch.m.  

Either way, the resulting DCM definition files needed to be loaded into a GCM cell array, which now 
contains only one row, but sixteen columns, each column corresponding to one of the models (in same 
order as above). Note that because we will re-use the PEB that we estimated in the previous section, 
which already contains the full model for all subjects, we do not need to specify the alternative models 
for every subject; SPM will realise that the GCM now just contains the model space (for one subject), 
which is sufficient to use BMR to estimate all the nested (alternative) models for all subjects. 
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Figure 18: Model space for family-wise comparisons. White squares are connections that 
can be modulated (have value 1), whereas grey squares are connections that have been 

turned off and cannot be modulated (they have value 0). 
 

 

Next, Perform BMR using the estimated PEB to reduce this model space. 

 

load('fits/batch_gui/meg/PEB_Full.mat'); 

[BMA, BMR] = spm_dcm_peb_bmc(PEB, GCM); 

 
This BMR step only needs to be done once after the model space (GCM) has been specified. Running 
this will show a window with BMC for all 16 models along with parameter estimates as shown in Figure 
19. The model space in the top-left panel reflects the 16 models we defined earlier. Based on the middle 
left panel, model 2 with modulation of forward, backward and lateral but not self-connections appears 
to have much higher evidence (~91%) than others. This is also reflected in the parameter estimates in 
the BMA shown in panel ‘Commonalities’, which has very low (~10%) posterior probability for all 
three self-connections (parameters 1, 5 and 9) but very high probability (~100%) for forward 
(parameters 2 and 3), backward (parameters 4 and 7) and lateral connections (parameters 6 and 8).  
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Figure 19: BMR for 16 models in model space 
 

Lastly, assign models to families and perform family-wise BMC. Group these models into families by 
specifying an integer for each of the models in our model space defined in the GCM above. Models 
with the same integer belong to the same family, which is identified by that integer. Run this line of 
code to create a variable defining families. 
families = [ones([1,14]), 2, 2]; 

This lets us specify which models to pool evidence from by grouping them under a family. We 
consider each family as equally likely, and perform inference at the level of families by running: 
[BMAf, fam] = spm_dcm_peb_bmc_fam(BMA, BMR, families, 'NONE'); 

where, BMA and BMR are variables obtained from the BMR step earlier. ‘NONE’ specifies that we do 
not want an averaged model. Running this line produces a figure with three panels. 
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Figure 20: Family-wise comparison for modulation of between-region connections 
 

The top left panel shows posterior probability of each family, where the family with modulation of at 
least one between-region connection has overwhelming evidence (~1) compared to the family with no 
modulation of between-region connections. The top right panel shows posterior probabilities of each 
model conditioned by the probability of each family. Comparing this panel to the middle left panel from 
the previous figure shows that the probabilities for each model have not changed after conditioning. 
This is due to the fact that all models in our model space with a non-zero posterior probability (i.e. 
models 1–14) belong to the winning family of models. The bottom left plot shows the grouping of 
models under each family. 

4.4.2.2 Family-BMC for forward connections 
Since we have very strong evidence for modulation of between-region connections, we now test 
whether a sub-group of between-region connections is modulated by Faces. We do this for forward, 
backward and lateral connections, by specifying families for each of them.  

Repeat step 3, with the ‘families’ variable set to [ones([1,8]),  2*ones([1,8])]  and run 
 [BMAf, fam] = spm_dcm_peb_bmc_fam(BMA, BMR, families, 'NONE'); 

This will produce results for the family-wise comparison showing overwhelming evidence (~0.99) for 
the family with modulation of forward connections (i.e. family 1): 

 4.4.2.3 Family-BMC for backward connections 
Similarly, for backward connections set the ‘families’ variable set to repelem([1, 2, 1, 2], 4) 
and run [BMAf, fam] = spm_dcm_peb_bmc_fam(BMA, BMR, families, 'NONE') 

This will produce results for the family-wise comparison showing overwhelming evidence (~0.99) in 
favour of the family with modulation of backward connections (i.e. family 1).  
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4.4.2.4 Family-BMC for lateral connections 
Similarly, for lateral connections set the ‘families’ variable set to repmat([1, 1, 2, 2], [1,4]) 
and run [BMAf, fam] = spm_dcm_peb_bmc_fam(BMA, BMR, families, 'NONE'); 

This will produce results for the family-wise comparison showing overwhelming evidence (~1) in 
favour of the family with modulation of lateral connections (i.e. family 1). 

4.4.2.5 Family-BMC for self-connections 
Lastly, in addition to modulation of between-region connections, we can also test whether self-
connections are modulated by faces. 
To do so, set the ‘families’ variable set to repmat([1, 2], [1, 8]) 
and run [BMAf, fam] = spm_dcm_peb_bmc_fam(BMA, BMR, families, 'NONE'); 

This will produce results for the family-wise comparison showing high evidence (~0.91) in favour of 
family without modulation of self-connections (i.e. family 2). 

4.5 Covariates 
In this section, we demonstrate the addition of an age covariate for 2nd-level PEB estimation. Although 
we do not expect any effect of age on modulation of connections in these data (given the narrow range 
of adult participants from 23 to 31 years of age, with an average of 26 years), we conduct this exercise 
to highlight the key steps involved, since PEB was designed for testing differences between subjects 
(e.g, patients versus controls).  

In a new batch, add a module to specify PEB by selecting ‘SPM’ → ‘DCM’ → ‘Second  level’ → 
‘Specify  /  Estimate  PEB’. In the options for this module, set ‘Name’ to ‘Age’ and select 
‘GCM_Full.mat’ estimated earlier from ‘base_dir/fits/batch_gui/meg’ for ‘DCMs’. Leave the ‘DCM 
index’ option as is. 

For ‘Covariates’, select the option ‘Specify covariates individually’ from the grey box below. 
(Alternatively, a full design matrix with all covariates can be passed via this option). Then click on 
‘New: Covariate’ in the grey box to create a pair of options – ‘Name’ and ‘Value’ for the covariate. 
Set ‘Name’ to ‘Age’. For ‘Value’, enter the following numbers, one on each line in the text box that pops 
open on clicking ‘Specify’:  

4.6, ‐1.4, 3.6, ‐0.4, ‐3.4, ‐0.4, 4.6, ‐0.4, 2.6, ‐3.4, ‐2.4, ‐2.4, ‐1.4, ‐2.4, 3.6, ‐1.4 

These numbers are the ages of the 16 subjects taken from the BIDS ‘participants.tsv’ file (available 
here: https://openneuro.org/datasets/ds000117/versions/1.0.5/file-display/participants.tsv), after 
subtracting the mean age (and rounding to one decimal place). Instead of entering the numbers 
manually, this ‘participants.tsv’ can be first loaded into MATLAB’s workspace by running: 

data = spm_load(‘participants.tsv’); 

Then in the batch interface’s text box for entering values, simply enter this on the first line: 

    round(detrend(data.ages(1:16), 0), 1) 

This will take ages of the 16 participants, remove their mean and round to 1st decimal place. Leave the 
remaining lines empty and press ‘OK’. The batch interface will evaluate the specified function and 
automatically fill in mean-corrected ages for all 16 participants. 

This age covariate adds a second column to the design matrix (with the default first column still 
representing the group mean, and the mean correction of ages ensuring the two regressors are 
orthogonal, to ease interpretation). 
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Figure 21: Specification of Covariates in PEB 
 

 

Figure 22: Entry of Age covariate values 
 

The review window now shows our design matrix in the top-left corner, with age as the second 
covariate. Since age was mean-centred, the first covariate represents mean modulation of connections 
across subjects. In addition to these common effects estimated at the group level (‘Second‐level 
effect – Commonalities’), the review window now has an additional option of viewing the effect of 
age by selecting ‘Second‐level  effect  –  Age’ from the drop-down menu. Thresholding these 
parameters based on posterior probabilities shows which of the connections modulated by faces were 
influenced by the age of participants. Although we do not demonstrate here, in order to carry out further 
inference and principled hypothesis testing based on model comparisons, any of the approaches 
illustrated earlier in section 4.4 can be applied to this group-level PEB estimate. 
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Figure 23: Review of PEB Parameters: 2nd level effect of Age 
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5. Discussion 
We have demonstrated workflows for estimating PEB models for group-level inference on the 
connectivity parameters from DCMs of MEG data. These workflows make use of SPM’s graphical 
batch interface, and illustrate a systematic pipeline that begins with processed multimodal data for 
multiple subjects and ends with group-level inference about modulation of connections. We also show 
how to translate all steps of this pipeline from the graphical interface to batch scripts, which allow for 
greater flexibility and easier chaining of multiple dependent steps. This tutorial accompanies a similar 
one for fMRI, for which notable differences exist in specifying individual DCMs, but the workflow for 
group-level PEB inference (i.e, once a GCM array has been specified) is identical. 

Using our pipeline, we performed model comparisons at the group level on DCMs estimated from 16 
subjects to test our hypotheses about effective connectivity between three ROIs (bilateral visual cortex 
and left and right fusiform face areas) during perception of faces versus scrambled faces. We first 
performed an automatic ‘greedy’ search over a model space consisting of nested versions of a ‘Full’ 
model, which featured modulation of all connections due to faces. The nested models were derived 
automatically by first identifying which parameters contribute to model evidence, and then switching 
all possible combinations of those parameters ‘ON’ or ‘OFF’. In our case, 4 of 9 possible parameters 
were identified, and 16 nested models were derived from those parameters using this procedure. 
Posterior estimates and model evidence for these nested models were then analytically computed from 
the ‘Full’ model by a technique called Bayesian Model Reduction or BMR. Lastly, a model evidence-
weighted combination of these 16 ‘reduced’ models was used to estimate a Bayesian Model Average 
or BMA. We inspected this averaged model and identified dominant patterns of parameters that 
contribute to model evidence. Applying a threshold of 95% on the posterior probabilities of parameters 
in the BMA, we found that modulation of bidirectional connections (forward and backward) between 
bVC to rFFA, and the interhemispheric connection from rFFA to lFFA were needed to explain the data.  

While the automatic search is effective at pruning out parameters that do not contribute to model 
evidence, it operates at a very granular level by comparing individual parameters in the nested model 
space. This often leads to a large number of models being compared, which can lead to dilution of 
evidence. Moreover, such a finer granularity in the model space may not necessarily correspond to the 
hypothesis being tested. Alternatively, this model space can be constructed with a granularity that aligns 
closely with our hypotheses of interest, and then partitions of this model space can be systematically 
compared to identify which sets of parameters are needed in the model to explain the data. We used this 
procedure, called Family-wise Bayesian Model Comparison or FBMC, to test our hypotheses about 
specific types of connections (i.e. forward, backward, lateral and self). We created multiple nested 
models with different combinations of connections, grouped them under ‘families’, and then compared 
these families of models. Each definition of families corresponded to a hypothesis. For example, to test 
the hypothesis of whether modulation of forward connections (from visual cortex to left and right 
fusiform areas) is needed, we grouped all models with at least one forward connection in DCM’s B 
matrix into one family, and all models without into another family. By performing FBMC across these 
families, repeating this process, we observed overwhelming evidence favouring the modulation of 
forward, backward and self-connections, but only moderate evidence supporting the modulation of 
lateral connections. 

The findings from our DCM analysis suggest that an increased, bidrectional flow of information 
between bVC to left and right FFA drives the increased response to faces over scrambled images. This 
preliminary evidence favouring a role of forward and backward connections from bVC to rFFA during 
face processing is in agreement with extensive experimental findings of FFA connectivity in humans 
and non-human primates. The results differ somewhat from the companion tutorial on DCM for fMRI, 
where modulation of all connections (forward, backward and self) except lateral ones were needed, but 
the underlying neuronal models and timescales are quite different, such that there are good reasons why 
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the connectivity captures different aspects of true neuronal interactions.  Further fine-grained 
hypotheses could be tested using the demonstrated family-wise Bayesian model comparison approach 
to test for specific connections, including the role of individual connections, as well as including other 
face-sensitive regions sensitive to faces such as the occipital face area or the superior temporal sulcus 
(Lee et al., 2022).   
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