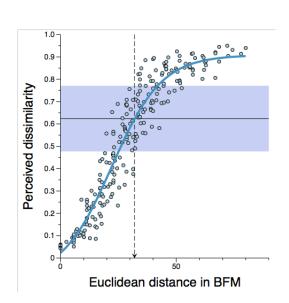
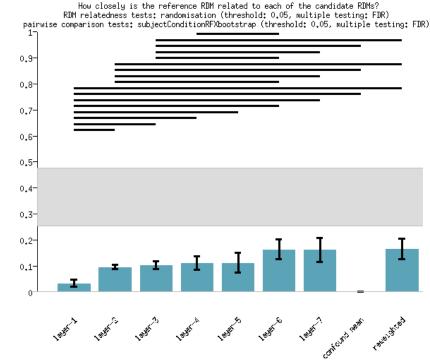


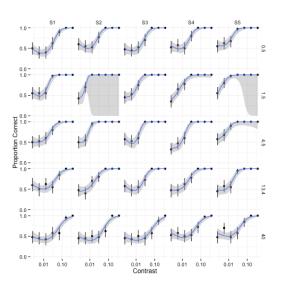
Visualising data using Matlab

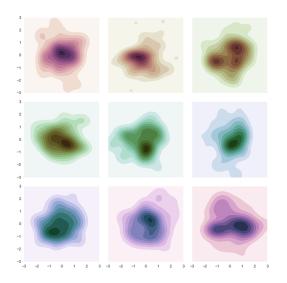

Kate Storrs


MRC Cognition and Brain Sciences Unit 7th December 2016

quick survey: what do your data look like?

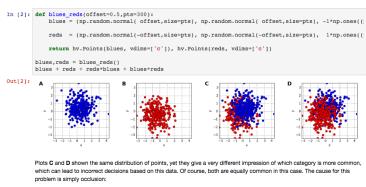
(some examples of what my data look like)

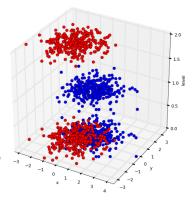



how to visualise data not using Matlab

Python / R

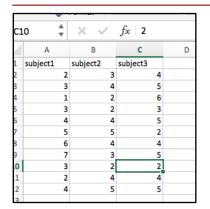
- free and open source software
- some very pretty visualisation toolboxes (e.g. ggplot2 in R, Seaborn in Python)
- interactive notebooks are great

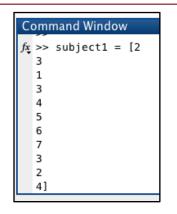

https://tomwallis.info/2014/04/ 21/graphically-exploring-datausing-ggplot2/


http://seaborn.pydata.org/index.

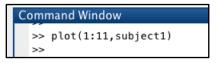
1. Overplotting

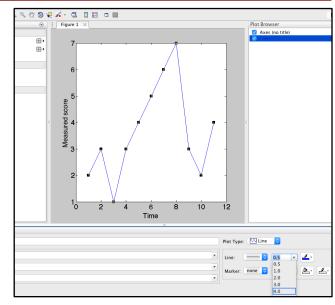
Let's consider plotting some 2D data points that come from two separate categories, here plotted as blue and red in A and B below. When the two categories are overlaid, the appearance of the result can be very different depending on which one is plotted first:


In [3]: hmap = hv.HoloMap({0:blues,0.000001:reds,1:blues,2:reds}, key_dimensions=['level'])
hv.Scatter3D(hmap.table(), kdims=['x','y','level'], vdims=['c'])


https://anaconda.org/jbednar/ plotting_pitfalls/notebook

Out[31:

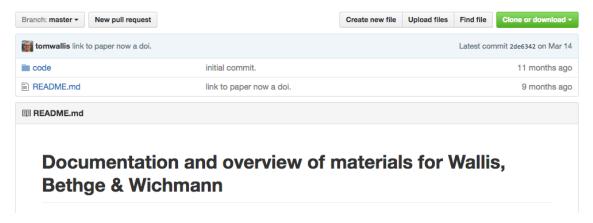

how not to visualise data using Matlab


Type data into Excel...

...copy-paste into Matlab...

...type in command line instructions to plot...

...fiddle with plot using interactive plotting interface until satisfied.


What's wrong with this?

- it's super tedious to do
- there's lots of room for human error
- it's hard to reproduce your figures (both for others and for future-you)

instead: good practice

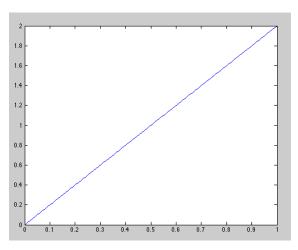
In a Perfect Science World:

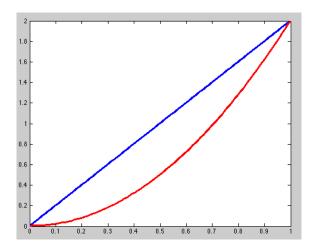
- When we're finished with a project, we have a succinct folder full of data files, analysis scripts, plotting scripts, and descriptions/instructions. Someone totally unfamiliar with our project can click a few buttons and get straight from our raw data to the figures and statistics in the paper/thesis chapter.
- cf. reproducible science (the 'carrot'). e.g.

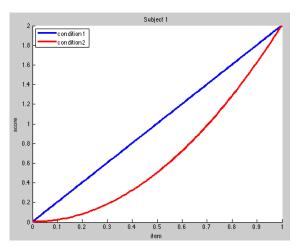
- https://github.com/tomwallis/metamers_jov
- cf. the CBU Data Repository (the 'stick')
 - http://www.mrc-cbu.cam.ac.uk/wpcontent/uploads/2016/09/Henson_CBUOpenScience_November2016.pdf

practical steps toward reproducible Matlab use

- Run plotting and analysis commands from scripts, not the command line.
- Load data, don't copy-paste or type it.
 - Likewise, automatically save outputs of experiments / analyses as .mat or .csv files for later re-use.
 - (generally no need to save figures as .fig files, as you should be able to regenerate at the click of a button)
- Curate your code, e.g.
 - Put a short description at the top of each script with your name, the date you created this script, and what it does.
 - Comment your code. For every line, if you're still new to Matlab.
 - If there's something you find yourself doing repeatedly, write it as a function in its own separate file.

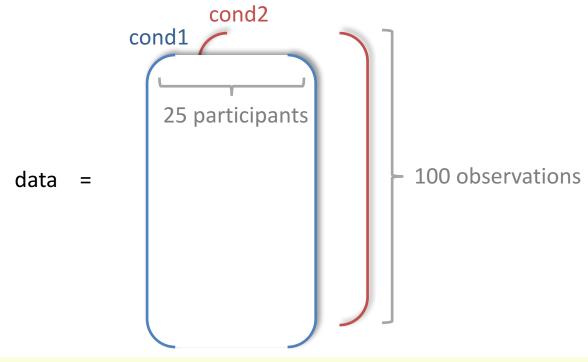

Open a new script, with short description, and type 1-2 lines to make minimal plot


Type "help plot" in command line, and add code to change line style / colour


Type "hold on" under first plotting command. Add another plot in a different style

Use "xlabel", "ylabel", and "title" to add labels

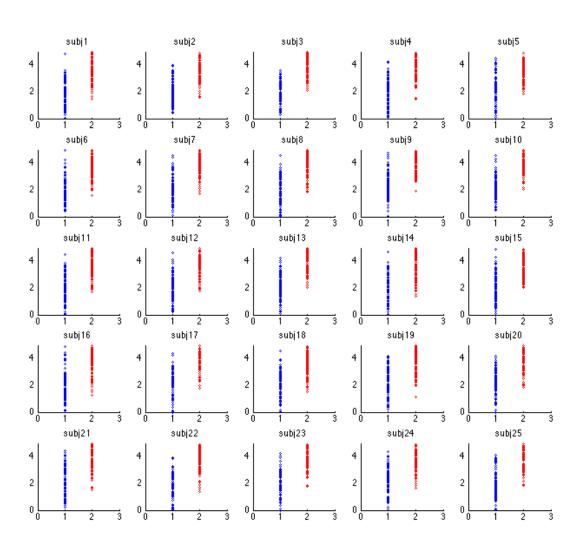
Explore "box", "axis", and "legend" commands to make plot look 'publishable'...


Figure and axis handles

Using "get current axis" and "get current figure" to set background colour, font size

```
% plot two lines
x = linspace(0,1,100);
plot(x,2*x,'linewidth',3)
hold on
plot(x,2*x.^2,'r-','linewidth',3)
legend('condition1','condition2','Location','NorthWest')
legend boxoff
                                                                      Subject 1
% adjust visual attributes
                                                          condition1
set(gca, 'fontsize', 20)
                                                          condition2
set(gcf, 'color', 'w')
                                                   1.5
box off
title('Subject 1')
xlabel('item')
                                                 score
ylabel('score')
                                                   0.5
                                                            0.2
                                                                    0.4
                                                                            0.6
                                                                                    0.8
                                                                        item
```

Imagine 100 observations of some dependent variable, in two different conditions, for 25 participants.


How would we structure our data from an experiment like this? How could we simulate it?


```
data(:,:,1) = random('norm',2,1,[100,25]);
data(:,:,2) = random('norm',4,1,[100,25]);
```

How could we best look at our raw data for each individual participant? e.g.

Individual score distributions

Example code...

```
%% simulate data and look at individual distributions
 data(:,:,1) = random('norm',2,1,[100,25]);
 data(:,:,2) = random('norm',4,1,[100,25]);
 figure(1)
for subj = 1:size(data,2)
     subplot(5,5,subj)
     plot(ones(100,1),data(:,subj,1),'bo','markersize',2)
     hold on
     plot(2.*ones(100,1),data(:,subj,2),'ro','markersize',2)
     axis([0 3 0 5])
     box off
     title(strcat('subj',num2str(subj)))
 end
 set(gcf, 'color', 'w')
 suptitle('Individual score distributions')
```

If we have time

How might we summarise and visualise these data across participants? e.g.

- Histogram
- Bar chart with error bars
- •