Size: 36760
Comment:
|
Size: 37472
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 12: | Line 12: |
Line 14: | Line 13: |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">[[https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb|Introduction to Python and notebooks]] || |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">[[https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb|Introduction to Python and notebooks]] Fore more on this topic see [[#pythonprimer_extra|here.]]|| |
Line 20: | Line 21: |
||Viewing ||[[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] (6:47)<<BR>>[[https://youtu.be/5H6XaJLp2V8?si=39BLjouIy8aUaEo7|Brain imaging data structure]] (11:07) || | ||Viewing ||[[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] (6:47)<<BR>>[[https://youtu.be/5H6XaJLp2V8?si=39BLjouIy8aUaEo7|Brain imaging data structure]] (11:07) Fore more on this topic see [[#fmriimagebids_extra|here.]]|| |
Line 24: | Line 28: |
||Viewing ||Fore more on this topic see [[#fmriimagebids_extra|here.]]|| | ||Viewing ||Fore more on this topic see [[#statistics_extra|here.]] || |
Line 29: | Line 35: |
||__Viewing__ || || | ||__Viewing__ || Fore more on this topic see [[#structuralmri1_extra|here.]]|| |
Line 33: | Line 42: |
||__Viewing__ || || | ||__Viewing__ || Fore more on this topic see [[#structuralmri2_extra|here.]]|| |
Line 38: | Line 49: |
||__Viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <<BR>> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] || | ||__Viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <<BR>> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] Fore more on this topic see [[#diffusionmri1_extra|here.]] || |
Line 43: | Line 56: |
||__Viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <<BR>> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] || | ||__Viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <<BR>> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] Fore more on this topic see [[#diffusionmri2_extra|here.]]|| |
Line 48: | Line 63: |
||Viewing ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] (11:57) <<BR>> [[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] (10:17) <<BR>> [[https://youtu.be/qamRGWSC-6g|Pre-processing II]] (7:42) || | ||Viewing ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] (11:57) <<BR>> [[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] (10:17) <<BR>> [[https://youtu.be/qamRGWSC-6g|Pre-processing II]] (7:42) Fore more on this topic see [[#fmri1_extra|here.]] || |
Line 53: | Line 70: |
||Viewing ||[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMR]]I (11:21) <<BR>> [[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building – conditions and contrasts]] (11:48) <<BR>> [[https://www.youtube.com/watch?v=DEtwsFdFwYc%20|Model Building - nuisance variables]] (13:58) <<BR>> [[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] (9:03) <<BR>> [[https://youtu.be/__cOYPifDWk|Group-level Analysis I]] (7:05) || | ||Viewing ||[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMR]]I (11:21) <<BR>> [[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building – conditions and contrasts]] (11:48) <<BR>> [[https://www.youtube.com/watch?v=DEtwsFdFwYc%20|Model Building - nuisance variables]] (13:58) <<BR>> [[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] (9:03) <<BR>> [[https://youtu.be/__cOYPifDWk|Group-level Analysis I]] (7:05) Fore more on this topic see [[#fmri2_extra|here.]]|| |
Line 60: | Line 77: |
||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|Functional Connectivity in fMRI]] || | ||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|Functional Connectivity in fMRI]] Fore more on this topic see [[#connectivityfmri1_extra|here.]]|| |
Line 65: | Line 84: |
||__Viewing__ ||[[https://www.youtube.com/watch?v=H2q3fPxiuvw|Introduction to Network Neuroscience]] || | ||__Viewing__ ||[[https://www.youtube.com/watch?v=H2q3fPxiuvw|Introduction to Network Neuroscience]] Fore more on this topic see [[#connectivitymri2_extra|here.]]|| |
Line 70: | Line 91: |
||__Viewing__ ||1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]] <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>> 2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]] <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>3.[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]<<BR>>Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>> 4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]] <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> 5.[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]] <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <<BR>> Fore more on this topic see [[#eegmeg1b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]] <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>> 2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]] <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>3.[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]<<BR>>Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>> 4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]] <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> 5.[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]] <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <<BR>> Fore more on this topic see [[#eegmeg1_extra|here.]] || |
Line 77: | Line 98: |
||__Viewing__ ||1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.<<BR>> 2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity. <<BR>> 3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]<<BR>>Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.<<BR>> 4. [[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] <<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix. <<BR>> Fore more on this topic see [[#eegmeg2b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.<<BR>> 2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity. <<BR>> 3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]<<BR>>Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.<<BR>> 4. [[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] <<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix. <<BR>> Fore more on this topic see [[#eegmeg2_extra|here.]] || |
Line 84: | Line 105: |
||__Viewing__ ||1. [[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]] <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> 2. [[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]] <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> 3.[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]] <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>> Fore more on this topic see [[#eegmeg3b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]] <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> 2. [[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]] <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> 3.[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]] <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>> Fore more on this topic see [[#eegmeg3_extra|here.]] || |
Line 91: | Line 112: |
||__Viewing__ ||1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]<<BR>>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<<BR>> 2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]<<BR>>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<<BR>> 3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]] <<BR>> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <<BR>> Fore more on this topic see [[#eegmeg4b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]<<BR>>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<<BR>> 2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]<<BR>>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<<BR>> 3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]] <<BR>> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <<BR>> Fore more on this topic see [[#eegmeg4_extra|here.]] || |
Line 97: | Line 118: |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA I and II'''+~ <<BR>> Daniel Mitchell & Máté Aller || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Excellent presentations from Martin Hebart's MVPA course, on:<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/02_lecture1|Introduction to MVPA]]<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/03_lecture2|Introduction to classification]]. <<BR>> If the links don't work, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=02_lecture1_MVPA_intro.mp4|here]] and [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=03_lecture2_Classification.mp4|here]]. <<BR>> [[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/08_lecture6|Martin Hebart's lecture on RSA]]. If the link fails, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=08_lecture6_RSA.mp4|here]]. <<BR>> [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23|Primer on decoding and RSA with EEG/MEG data]] || |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA I and II'''+~ <<BR>> Daniel Mitchell & Máté Aller || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Excellent presentations from Martin Hebart's MVPA course, on:<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/02_lecture1|Introduction to MVPA]]<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/03_lecture2|Introduction to classification]]. <<BR>> If the links don't work, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=02_lecture1_MVPA_intro.mp4|here]] and [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=03_lecture2_Classification.mp4|here]]. <<BR>> [[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/08_lecture6|Martin Hebart's lecture on RSA]]. If the link fails, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=08_lecture6_RSA.mp4|here]]. <<BR>> [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23|Primer on decoding and RSA with EEG/MEG data]] Fore more on this topic see [[#rsa_extra|here.]]|| |
Line 125: | Line 146: |
Line 132: | Line 156: |
Line 136: | Line 162: |
Line 145: | Line 173: |
Line 151: | Line 181: |
Line 155: | Line 187: |
Line 256: | Line 289: |
Course Material for COGNESTIC 2025
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the COGNESTIC webpage
The following materials are based on last year's event, and are subject to change.
Software Installation Instructions
This information will be provided in due course.
Essential Preparation Materials
You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course). This section contains essential viewing; a second section contains less critical background, but which you might nonetheless find useful.
Primer on Python |
||
Viewing |
Introduction to Python and notebooks Fore more on this topic see here. |
MRI Image Handling & BIDS |
||
Viewing |
fMRI Data Structure & Terminology (6:47) |
Statistics |
||
Viewing |
Fore more on this topic see here. |
Structural MRI I – Introduction to Group Analyses |
||
Viewing |
Fore more on this topic see here. |
Structural MRI II – Advanced Methods |
||
Viewing |
Fore more on this topic see here. |
Diffusion MRI I - Preprocessing, model fitting and group analysis |
||
Viewing |
Introduction to Diffusion MRI - Part I |
Diffusion MRI II - Tractography and the anatomical connectome |
||
Viewing |
Introduction to Diffusion MRI - Part II |
fMRI I - Preprocessing |
||
Viewing |
fMRI Artifacts and Noise (11:57) |
fMRI II - Analysis |
||
Viewing |
GLM applied to fMRI (11:21) |
fMRI Connectivity I |
||
Viewing |
Functional Connectivity in fMRI Fore more on this topic see here. |
fMRI Connectivity II |
||
Viewing |
Introduction to Network Neuroscience Fore more on this topic see here. |
EEG/MEG I – Preprocessing |
||
Viewing |
1. Overview of EEG/MEG data processing from raw data to source estimates |
EEG/MEG II – Source Estimation |
||
Viewing |
1. The EEG/MEG forward model |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Viewing |
1. Frequency spectra and the Fourier analysis |
EEG/MEG IV – Statistics and BIDS |
||
Viewing |
1. Primer on group statistics for EEG/MEG data |
MVPA/RSA I and II |
||
Viewing |
Excellent presentations from Martin Hebart's MVPA course, on: |
Additional Extra
If you want additional background, consider some of the below:
Background to Open Science |
||
Websites |
||
Reading |
Munafo et al, 2017, problems in science |
|
Viewing |
Statistical power in neuroimaging |
|
Slides |
Primer on Python |
||
Software |
||
Datasets |
||
Useful references |
||
Slides and scripts |
fMRI I - Data Organisation |
||
Software |
||
Websites |
Brain Imaging Data Structure |
|
Suggested reading |
The brain imaging data structure (BIDS), Gorgolewski et al., 2016 |
Structural MRI I - Voxel-based morphometry |
||
Software |
||
Suggested reading |
Introduction to GLM for structural MRI analysis |
Structural MRI II - Surface-based analyses |
||
Software |
||
Suggested reading |
Dale et al, 1999, Cortical surface-based analysis I |
|
Suggested viewing |
Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis |
||
Software |
||
Suggested reading |
FSL Diffusion Toolbox Wiki |
Diffusion MRI II - Tractography and the Anatomical Connectome |
||
Software |
||
Suggested reading |
fMRI II - Pre-processing |
||
Software |
||
Suggested reading |
Functional Magnetic Resonance Imaging Methods, Chen & Glover, 2015 |
fMRI III - Analysis |
||
Software |
||
Suggested reading |
The Statistical Analysis of fMRI Data, Lindquist, 2008 |
|
Suggested viewing |
Model Building - temporal basis sets (11:08) |
fMRI Connectivity |
||
Software |
||
Datasets |
||
Reading |
Resting-state functional Connectivity |
|
Viewing |
fMRI Functional Connectivity in fMRI |
|
Tutorial slides and scripts |
Functional Connectivity Nilearn Practical |
Brain Network Analysis |
||
Software |
||
Datasets |
|
|
Reading |
- (Review article) Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10, 186–198 (2009). https://doi.org/10.1038/nrn2575 |
|
Viewing |
Understanding your brain as a network and as art by Prof. Dani Bassett. |
|
Slides |
https://github.com/isebenius/COGNESTIC_network_analysis/ Slides |
EEG/MEG I – Measurement and Pre-processing |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Digitial Filtering |
|
Slides and scripts |
EEG/MEG II – Head Modelling and Source Estimation |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Linear source estimation and spatial resolution |
|
Slides and scripts |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
1. The basics of signals in the frequency domain |
|
Suggested reading |
Tutorial on Functional Connectivity |
|
Slides and scripts |
EEG/MEG IV – Statistics and BIDS |
||
Software |
||
Datasets |
Sample dataset in MNE-Python. Tutorials |
|
Suggested reading |
Estimating subcortical sources from EEG/MEG |
|
Suggested viewing |
||
Slides and scripts |
Notebooks Exercises Slides1 Slides2 |
MVPA/RSA I |
||
Software |
Python 3.7+, including numpy, matplotlib, nilearn & scikit-learn. |
|
Datasets |
||
Reading |
||
Slides and scripts |
MVPA/RSA II |
||
Software |
Python implementation of the RSA Toolbox: Version 3.0 |
|
Datasets |
Example data included with RSA toolbox |
|
Reading |
Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience |
|
Slides and scripts |
We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox, also available, along with the slides, on the COGNESTICgithub. |