Size: 36451
Comment:
|
← Revision 134 as of 2024-09-27 12:06:10 ⇥
Size: 37488
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the [[https://www.mrc-cbu.cam.ac.uk/cognestic-2023/|COGNESTIC webpage]]. Below you will find documents, videos and web links that will be used for the course or can be used for preparation. |
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the [[https://www.mrc-cbu.cam.ac.uk/events/cognestic-2024/|COGNESTIC webpage]]. |
Line 7: | Line 5: |
Access to much of the COGNESTIC-23 materials is available via Virtual Machine (VM). You will need at least 70GB of free space on your local hard drive, and at least 4GB of RAM. For instructions on how to install and set up the Cognestic23 VM see section ‘1 COGNESTIC Virtual Machine (full hands-on)’ for instructions. Data for the Structural MRI and Diffusion MRI are located inside the VM. Full '''installation instructions''' can be found [[attachment:COGNESTIC-23_hands-on_materials.pdf|here]]. The installation can take some time (potentially more than an hour, depending on your download speed), so please reserve some time for this ahead of the event. == Essential == You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course). (sessions below should be ordered as they will be in course, but just did my ones for an example) |
Attendees must read and follow these [[attachment:COGNESTIC Preparation.pdf|pre-course preparations]]. == Essential Preparation Materials == You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course). This section contains essential viewing; a second section contains less critical background, but which you might nonetheless find useful. |
Line 23: | Line 17: |
<<BR>> <<Anchor(pythonprimer )>> ||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">[[https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb|Introduction to Python and notebooks]] || <<BR>> <<Anchor(structuralmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI I and II - VBM and surface-based analysis'''+~<<BR>> Marta Correia || ||__Viewing__ ||[[https://youtu.be/Psh-GovQLiI|Introduction to MRI Physics and image contrast]] <<BR>> [[attachment:IntroductionToMRIPhysics.pdf|Slides]] || <<BR>> <<Anchor(diffusionmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - Preprocessing, model fitting and group analysis'''+~ <<BR>> Marta Correia || ||__Viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <<BR>> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] || <<BR>> <<Anchor(diffusionmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the anatomical connectome'''+~ <<BR>> Marta Correia || ||__Viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <<BR>> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] || <<BR>> <<Anchor(fmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Organisation'''+~ <<BR>> Dace Apšvalka || ||Viewing ||[[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] (6:47)<<BR>>[[https://youtu.be/5H6XaJLp2V8?si=39BLjouIy8aUaEo7|Brain imaging data structure]] (11:07) || <<BR>> <<Anchor(fmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Preprocessing'''+~ <<BR>> Dace Apšvalka || ||Viewing ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] (11:57) <<BR>> [[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] (10:17) <<BR>> [[https://youtu.be/qamRGWSC-6g|Pre-processing II]] (7:42) || <<BR>> <<Anchor(fmri3)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Analysis'''+~ <<BR>> Dace Apšvalka || ||Viewing ||[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMR]]I (11:21) <<BR>> [[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building – conditions and contrasts]] (11:48) <<BR>> [[https://www.youtube.com/watch?v=DEtwsFdFwYc%20|Model Building - nuisance variables]] (13:58) <<BR>> [[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] (9:03) <<BR>> [[https://youtu.be/__cOYPifDWk|Group-level Analysis I]] (7:05) || <<BR>> <<Anchor(connectivityfmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov || ||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|Functional Connectivity in fMRI]] || |
|
Line 30: | Line 80: |
<<BR>> <<Anchor(structuralmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI I and II'''+~''' '''<<BR>> Marta Correia || ||__Viewing__ ||[[https://youtu.be/Psh-GovQLiI|Introduction to MRI Physics and image contrast]] <<BR>> [[attachment:IntroductionToMRIPhysics.pdf|Slides]] || <<BR>> <<Anchor(diffusionmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - '''+~~+'''Preprocessing, Model Fitting and Group Analysis'''+~ <<BR>> Marta Correia || ||__Viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <<BR>> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] || <<BR>> <<Anchor(diffusionmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <<BR>> Marta Correia || ||__Viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <<BR>> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] || <<BR>> <<Anchor(fmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Management'''+~ <<BR>> Dace Apšvalka || ||Viewing ||[[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] (6:47)<<BR>>[[https://youtu.be/5H6XaJLp2V8?si=39BLjouIy8aUaEo7|Brain imaging data structure]] (11:07) || <<BR>> <<Anchor(fmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Pre-processing'''+~ <<BR>> Dace Apšvalka || ||Viewing ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] (11:57) <<BR>> [[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] (10:17) <<BR>> [[https://youtu.be/qamRGWSC-6g|Pre-processing II]] (7:42) || |
|
Line 68: | Line 82: |
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]]''' <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>> '''2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]]''' <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>''' ''''''3.''' '''[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]'''<<BR>>''' '''Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>> '''4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]]''' <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> '''5.''' '''[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]]''' <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <<BR>> Fore more on this topic see [[#eegmeg1b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]] <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>> 2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]] <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>3.[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]<<BR>>Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>> 4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]] <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> 5.[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]] <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <<BR>> Fore more on this topic see [[#eegmeg1b|here.]] || |
Line 75: | Line 89: |
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]'''<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.''' '''<<BR>> '''2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]'''<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity'''. '''<<BR>> '''3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]'''<<BR>>''' '''Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.''' '''<<BR>> '''4.''' '''[[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] '''<<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix.''' ''' <<BR>> Fore more on this topic see [[#eegmeg2b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.<<BR>> 2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity. <<BR>> 3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]<<BR>>Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.<<BR>> 4. [[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] <<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix. <<BR>> Fore more on this topic see [[#eegmeg2b|here.]] || |
Line 82: | Line 96: |
||__Viewing__ ||'''1. ''' '''[[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]]''' <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> '''2. ''' '''[[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]]''' <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> '''3.''' '''[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]]''' <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>> Fore more on this topic see [[#eegmeg3b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]] <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> 2. [[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]] <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> 3.[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]] <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>> Fore more on this topic see [[#eegmeg3b|here.]] || |
Line 89: | Line 103: |
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]'''<<BR>>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<<BR>> '''2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]'''<<BR>>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<<BR>> '''3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]]''' <<BR>> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <<BR>> Fore more on this topic see [[#eegmeg4b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]<<BR>>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<<BR>> 2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]<<BR>>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<<BR>> 3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]] <<BR>> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <<BR>> Fore more on this topic see [[#eegmeg4b|here.]] || |
Line 95: | Line 109: |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA I and II'''+~ <<BR>> Daniel Mitchell & Máté Aller || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Excellent presentations from Martin Hebart's MVPA course, on:<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/02_lecture1|Introduction to MVPA]]<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/03_lecture2|Introduction to classification]]. <<BR>> If the links don't work, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=02_lecture1_MVPA_intro.mp4|here]] and [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=03_lecture2_Classification.mp4|here]]. <<BR>> [[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/08_lecture6|Martin Hebart's lecture on RSA]]. If the link fails, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=08_lecture6_RSA.mp4|here]]. <<BR>> [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23|Primer on decoding and RSA with EEG/MEG data]] || <<BR>> |
|
Line 109: | Line 130: |
<<BR>> <<Anchor(networks)>> | <<BR>> <<Anchor(pythonprimer)>> ||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan || ||<10%>__Software__ ||[[https://www.python.org/|Python]], [[https://pandas.pydata.org/|Pandas]], [[https://numpy.org/|NumPy]], [[https://matplotlib.org/|Matplotlib]], [[https://seaborn.pydata.org/|Seaborn]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Useful references__ ||[[https://www.w3schools.com/python/default.asp|Python concepts with examples]], [[https://quickref.me/python.html|Quick reference]], [[https://blog.finxter.com/python-cheat-sheets/|Cheatsheets]] || ||__Slides and scripts__ ||[[attachment:Primer on Python.pdf|Slides]] [[https://github.com/MRC-CBU/COGNESTIC/tree/main/01_Primer_on_Python|Notebooks and HTMLs]] || <<BR>> <<Anchor(structuralmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI I - Voxel-based morphometry'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[attachment:IntroductionToGLM.pdf|Introduction to GLM for structural MRI analysis]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/11525331/|Good et al, 2001, A VBM study of ageing]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/15501092/|Smith et al, 2004, Structural MRI analysis in FSL]] || <<BR>> <<Anchor(structuralmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI II - Surface-based analyses'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://surfer.nmr.mgh.harvard.edu/|Freesurfe]]r || ||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/9931268/|Dale et al, 1999, Cortical surface-based analysis I]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/9931269/|Fischl et al, 1999, Cortical surface-based analysis II]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=6eJMxh7PlOY|Using the command line]] || <<BR>> <<Anchor(diffusionmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis '''+~<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]], [[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT|FSL Diffusion Toolbox Wiki]] <<BR>> [[https://doi.org/10.1371/journal.pbio.1002203|Le Bihan et al, 2015, What water tells us about biological tissues]] <<BR>> [[https://doi.org/10.3389/fnins.2013.00031|Soares et al, 2013, A short guide to Diffusion Tensor Imaging]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/16624579/|Smith et al, 2006, Tract-based spatial statistics (TBSS)]] || <<BR>> <<Anchor(diffusionmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]] || ||__Suggested reading__ ||[[https://www.sciencedirect.com/science/article/pii/B9780123964601000196|MR Diffusion Tractography]] || <<BR>> <<Anchor(fmri1extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Organisation'''+~ <<BR>> Dace Apšvalka || ||<10%>Software ||[[https://heudiconv.readthedocs.io/en/latest/|HeudiConv]], [[https://bids-standard.github.io/pybids/|PyBIDS]], [[https://nipy.org/nibabel/|NiBabel]], [[https://nilearn.github.io/stable/index.html|Nilearn]] || ||<10%>Websites ||[[https://bids.neuroimaging.io/|Brain Imaging Data Structure]] <<BR>> [[https://bids-standard.github.io/bids-starter-kit/|BIDS Starter Kit]] <<BR>> [[https://bids-specification.readthedocs.io/en/stable/|BIDS Specification v1.9.0]] || ||Suggested reading ||[[https://www.nature.com/articles/sdata201644|The brain imaging data structure (BIDS)]], Gorgolewski et al., 2016<<BR>>[[https://doi.org/10.1162/imag_a_00103|The past, present, and future of the brain imaging data structure (BIDS)]], Poldrack et al., 2024<<BR>> || <<BR>> <<Anchor(fmri2extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Pre-processing'''+~ <<BR>> Dace Apšvalka || ||<10%>Software__ __ ||[[https://mriqc.readthedocs.io/en/latest/|MRIQC]], [[https://fmriprep.org/en/stable/|fMRIprep]], [[https://nipype.readthedocs.io/en/latest/|NiPype]] || ||Suggested reading__ __ ||[[https://link.springer.com/article/10.1007/s11065-015-9294-9|Functional Magnetic Resonance Imaging Methods]], Chen & Glover, 2015 <<BR>> [[https://doi.org/10.3389/fnimg.2022.1073734|Quality control in functional MRI studies with MRIQC and fMRIPrep]], Provins et al., 2023 <<BR>> [[https://www.nature.com/articles/s41592-018-0235-4|fMRIPrep: a robust preprocessing pipeline for functional MRI]], Esteban et al., 2018 <<BR>> [[https://doi.org/10.3389/fninf.2011.00013|Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python]], Gorgolewski et al., 2011 || <<BR>> <<Anchor(fmri3extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Analysis'''+~ <<BR>> Dace Apšvalka || ||<10%>Software ||[[http://nilearn.github.io/stable/index.html|Nilearn]] || ||Suggested reading ||[[https://doi.org/10.1214/09-STS282|The Statistical Analysis of fMRI Data]], Lindquist, 2008 <<BR>> [[https://doi.org/10.1191/0962280203sm341ra|Controlling the familywise error rate in functional neuroimaging: a comparative review]], Nichols & Hayasaka, 2003 <<BR>> [[https://www.nature.com/articles/s41596-020-0327-3|Analysis of task-based functional MRI data preprocessed with fMRIPrep]], Esteban et al., 2020 <<BR>> [[https://doi.org/10.1016/j.neuroimage.2007.11.048|Guidelines for reporting an fMRI study]], Poldrack et al., 2008 || ||Suggested viewing ||[[https://www.youtube.com/watch?v=YfeMIcDWwko|Model Building - temporal basis sets]] (11:08)<<BR>>[[https://www.youtube.com/watch?v=Ab-5AbJ8gAs|GLM Estimation]] (9:11)<<BR>>[[https://youtu.be/Mb9LDzvhecY|Noise Models- AR models]] (9:57)<<BR>>[[https://youtu.be/NRunOo7EKD8|Inference- Contrasts and t-tests]] (11:05)<<BR>>[[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] by Martin Lindquist and Tor Wager (9:03)<<BR>>[[https://youtu.be/MxQeEdVNihg|FWER Correction]] (16:11)<<BR>>[[https://youtu.be/W9ogBO4GEzA|FDR Correction]] (5:25)<<BR>>[[https://youtu.be/N7Iittt8HrU|More about multiple comparisons]] (14:39) <<BR>> || <<BR>> <<Anchor(connectivityfmri)>> ||||||<tablewidth="734px" tableheight="239px"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov || ||<10%>__Software__ ||[[https://nilearn.github.io/stable/index.html|Nilearn]] || ||__Datasets__ ||[[https://nilearn.github.io/dev/modules/generated/nilearn.datasets.fetch_development_fmri.html|movie dataset]] || ||__Reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]]<<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.04.007|Learning and comparing functional connectomes across subjects]] || ||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|fMRI Functional Connectivity in fMRI]]<<BR>>[[https://www.youtube.com/watch?v=1VOKsWWLgjk&ab_channel=RikHenson&t=15m10s|Overview of Effective Connectivity (not covered in person)]] || ||__Tutorial slides and scripts__ ||[[https://github.com/ppraykov/FCCognestic2023|Functional Connectivity Nilearn Practical]]<<BR>>[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|DCM tutorial in SPM (not covered in-person)]] || <<BR>> <<Anchor(networksb)>> |
Line 120: | Line 221: |
<<BR>> <<Anchor(structuralmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI I - Voxel-based morphometry'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[attachment:IntroductionToGLM.pdf|Introduction to GLM for structural MRI analysis]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/11525331/|Good et al, 2001, A VBM study of ageing]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/15501092/|Smith et al, 2004, Structural MRI analysis in FSL]] || <<BR>> <<Anchor(structuralmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI II - Surface-based analyses'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://surfer.nmr.mgh.harvard.edu/|Freesurfe]]r || ||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/9931268/|Dale et al, 1999, Cortical surface-based analysis I]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/9931269/|Fischl et al, 1999, Cortical surface-based analysis II]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=6eJMxh7PlOY|Using the command line]] || <<BR>> <<Anchor(diffusionmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis '''+~<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]], [[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT|FSL Diffusion Toolbox Wiki]] <<BR>> [[https://doi.org/10.1371/journal.pbio.1002203|Le Bihan et al, 2015, What water tells us about biological tissues]] <<BR>> [[https://doi.org/10.3389/fnins.2013.00031|Soares et al, 2013, A short guide to Diffusion Tensor Imaging]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/16624579/|Smith et al, 2006, Tract-based spatial statistics (TBSS)]] || <<BR>> <<Anchor(diffusionmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]] || ||__Suggested reading__ ||[[https://www.sciencedirect.com/science/article/pii/B9780123964601000196|MR Diffusion Tractography]] || <<BR>> <<Anchor(fmri1extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Management'''+~ <<BR>> Dace Apšvalka || ||<10%>Software ||[[https://heudiconv.readthedocs.io/en/latest/|HeudiConv]], [[https://bids-standard.github.io/pybids/|PyBIDS]], [[https://nipy.org/nibabel/|NiBabel]], [[https://nilearn.github.io/stable/index.html|Nilearn]] || ||Suggested reading ||[[https://www.nature.com/articles/sdata201644|The brain imaging data structure (BIDS)]], Gorgolewski et al., 2016<<BR>>[[https://doi.org/10.1162/imag_a_00103|The past, present, and future of the brain imaging data structure (BIDS)]], Poldrack et al., 2024<<BR>>[[https://bids.neuroimaging.io/|Brain Imaging Data Structure]] || <<BR>> <<Anchor(fmri2extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Pre-processing'''+~ <<BR>> Dace Apšvalka || ||<10%>Software__ __ ||[[https://mriqc.readthedocs.io/en/latest/|MRIQC]], [[https://fmriprep.org/en/stable/|fMRIprep]], [[https://nipype.readthedocs.io/en/latest/|NiPype]] || ||Suggested reading__ __ ||[[https://link.springer.com/article/10.1007/s11065-015-9294-9|Functional Magnetic Resonance Imaging Methods]], Chen & Glover, 2015 <<BR>> [[https://doi.org/10.3389/fnimg.2022.1073734|Quality control in functional MRI studies with MRIQC and fMRIPrep]], Provins et al., 2023 <<BR>> [[https://www.nature.com/articles/s41592-018-0235-4|fMRIPrep: a robust preprocessing pipeline for functional MRI]], Esteban et al., 2018 <<BR>> [[https://doi.org/10.3389/fninf.2011.00013|Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python]], Gorgolewski et al., 2011 || <<BR>> <<Anchor(fmri3extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Analysis'''+~ <<BR>> Dace Apšvalka || ||<10%>__Software__ ||[[http://nilearn.github.io/stable/index.html|Nilearn]] || ||__Suggested reading__ ||[[https://doi.org/10.1002/hbm.460020402|Friston et al. (1994), Statistical parametric maps in functional imaging: A general linear approach]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2012.01.133|Poline & Brett (2012), Poline, J. B., & Brett, M. (2012). The general linear model and fMRI: does love last forever?]]<<BR>>[[https://doi.org/10.3389/fnhum.2011.00028|Monti (2011), Statistical analysis of fMRI time-series: a critical review of the GLM approach]]<<BR>>[[https://doi.org/10.1191/0962280203sm341ra|Nichols & Hayasaka (2003), Controlling the familywise error rate in functional neuroimaging: a comparative review]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2008.05.021|Chumbley & Friston (2009), False discovery rate revisited: FDR and topological inference using Gaussian random fields]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2013.12.058|Woo et al. (2014), Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations]]<<BR>>[[https://doi.org/10.1214/09-STS282|Lindquist (2008), The Statistical Analysis of fMRI Data]] || ||__Suggested viewing__ ||[[https://youtu.be/GDkLQuV4he4|The General Linear Model]] by Martin Lindquist and Tor Wager (12:24)<<BR>>[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMRI]] by Martin Lindquist and Tor Wager (11:21)<<BR>>[[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building I – conditions and contrasts]] by Martin Lindquist and Tor Wager (11:48)<<BR>>[[https://www.youtube.com/watch?v=YfeMIcDWwko|Model Building II – temporal basis sets]] by Martin Lindquist and Tor Wager (11:08)<<BR>>[[https://www.youtube.com/watch?v=DEtwsFdFwYc|Model Building III- nuisance variables]] by Martin Lindquist and Tor Wager (13:58)<<BR>>[[https://www.youtube.com/watch?v=Ab-5AbJ8gAs|GLM Estimation]] by Martin Lindquist and Tor Wager (9:11)<<BR>>[[https://youtu.be/Mb9LDzvhecY|Noise Models- AR models]] by Martin Lindquist and Tor Wager (9:57)<<BR>>[[https://youtu.be/NRunOo7EKD8|Inference- Contrasts and t-tests]] by Martin Lindquist and Tor Wager (11:05)<<BR>>[[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] by Martin Lindquist and Tor Wager (9:03)<<BR>>[[https://youtu.be/MxQeEdVNihg|FWER Correction]] by Martin Lindquist and Tor Wager (16:11)<<BR>>[[https://youtu.be/W9ogBO4GEzA|FDR Correction]] by Martin Lindquist and Tor Wager (5:25)<<BR>>[[https://youtu.be/N7Iittt8HrU|More about multiple comparisons]] by Martin Lindquist and Tor Wager (14:39) || |
|
Line 183: | Line 226: |
||Slides and scripts__ __ ||TBA || | ||Slides and scripts__ __ ||Slides: [[attachment:EMEG1_1_Measurement.pdf|1]] [[attachment:EMEG1_2_Preprocessing.pdf|2]] [[attachment:EMEG1_3_Averaging.pdf|3]] [[https://github.com/olafhauk/COGNESTIC2024scripts/|Scripts]] || |
Line 193: | Line 236: |
||Slides and scripts__ __ ||TBA || | ||Slides and scripts__ __ ||Slides: [[attachment:EMEG2_1_ForwardModelling.pdf|1]] [[attachment:EMEG2_2_MNE.pdf|2]] [[attachment:EMEG2_3_SpatialResolution.pdf|3]] [[https://github.com/olafhauk/COGNESTIC2024scripts/|Scripts]] || |
Line 203: | Line 246: |
||Slides and scripts ||TBA || | ||Slides and scripts ||Slides: [[attachment:EMEG3_1_TimeFrequency.pdf|1]] [[attachment:EMEG3_2_FunctionalConnectivity.pdf|2]] [[attachment:EMEG3_3_AdvancedFunctionalConnectivity.pdf|3]] [[https://github.com/olafhauk/COGNESTIC2024scripts/|Scripts]] || |
Line 219: | Line 262: |
<<BR>> <<Anchor(pythonprimer)>> ||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan || ||<10%>__Software__ ||[[https://www.python.org/|Python]], [[https://pandas.pydata.org/|Pandas]], [[https://numpy.org/|NumPy]], [[https://matplotlib.org/|Matplotlib]], [[https://seaborn.pydata.org/|Seaborn]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Useful references__ ||[[https://www.w3schools.com/python/default.asp|Python concepts with examples]], [[https://quickref.me/python.html|Quick reference]], [[https://blog.finxter.com/python-cheat-sheets/|Cheatsheets]] || ||__Slides and scripts__ ||To be added || |
|
Line 231: | Line 264: |
||<12%>__Software__ ||[[https://www.python.org/|Python 3.7+]], including numpy, matplotlib, & [[https://scikit-learn.org/stable/|scikit-learn]]. <<BR>> (To visualise MRI data, you can use your software of choice, although for nifti format data you might like to consider [[https://www.nitrc.org/projects/mricron|MRIcroN]] or [[https://www.nitrc.org/projects/mricrogl|MRIcroGL]].) || ||__Datasets__ || || |
||<12%>__Software__ ||[[https://www.python.org/|Python 3.7+]], including numpy, matplotlib, nilearn & [[https://scikit-learn.org/stable/|scikit-learn]]. <<BR>> (To visualise MRI data, you can use your software of choice, although for nifti format data you might like to consider [[https://www.nitrc.org/projects/mricron|MRIcroN]] or [[https://www.nitrc.org/projects/mricrogl|MRIcroGL]].) || ||__Datasets__ ||[[https://openneuro.org/datasets/ds003965/versions/1.0.0|"NI-edu-data-minimal" faces dataset]] || |
Line 234: | Line 267: |
||__Viewing__ ||Excellent presentations from Martin Hebart's MVPA course, on:<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/02_lecture1|Introduction to MVPA]]<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/03_lecture2|Introduction to classification]]. I've suggested these two, but the others are worth a look too. <<BR>> If the links don't work, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=02_lecture1_MVPA_intro.mp4|here]] and [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=03_lecture2_Classification.mp4|here]]. || ||Slides and scripts ||To be added nearer the time. || |
||__Slides and scripts __ ||[[https://github.com/MRC-CBU/COGNESTIC/tree/main/09_MVPA_MRI|Notebooks and slides are on the COGNESTIC github]] || |
Line 241: | Line 273: |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA II'''+~''' '''<<BR>> Daniel Mitchell & Máté Aller || ||<12% style="padding:0.25em;border:1px dotted rgb(211, 211, 211); ">Software ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Python implementation of the RSA Toolbox: [[https://github.com/rsagroup/rsatoolbox|Version 3.0]] || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Datasets ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Example data included with RSA toolbox || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Reading ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">[[https://www.frontiersin.org/articles/10.3389/neuro.06.004.2008/full|Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience]]<<BR>>[[https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(13)00127-7|Kriegeskorte & Kievit (2013) Representational geometry: integrating cognition, computation, and the brain]] <<BR>>[[https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003553|Nili et al. (2014) A toolbox for representational similarity analysis]]<<BR>> [[https://elifesciences.org/articles/82566|Schutt et al. (2023) Statistical inference on representational geometries]]<<BR>>EEG/MEG: <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/27779910/%20|Tutorial on EEG/MEG decoding]]<<BR>> [[https://www.sciencedirect.com/science/article/pii/S1364661314000199|Temporal Generalization]] [[https://www.sciencedirect.com/science/article/pii/S1053811913010914|Interpretation of Weight Vectors]] || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Viewing ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/08_lecture6|Martin Hebart's lecture on RSA]]. If the link fails, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=08_lecture6_RSA.mp4|here]]. || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Slides and scripts ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox. <<BR>>[[attachment:EEGMEG5-decoding.zip|EEGMEG Notebooks]] [[attachment:EMEG5_Decoding.pdf|EEG/MEG Slides]]<<BR>> || <<BR>> ***Below not updated yet <<BR>> <<Anchor(connectivityfmri)>> ||||||<tablewidth="734px" tableheight="239px"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov || ||<10%>__Software__ ||[[https://nilearn.github.io/stable/index.html|Nilearn Python]] || ||__Datasets__ ||[[https://nilearn.github.io/dev/modules/generated/nilearn.datasets.fetch_development_fmri.html|movie dataset]] || ||__Suggested reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]]<<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.04.007|Learning and comparing functional connectomes across subjects]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|fMRI Functional Connectivity in fMRI]]<<BR>>[[https://www.youtube.com/watch?v=1VOKsWWLgjk&ab_channel=RikHenson&t=15m10s|Overview of Effective Connectivity (not covered in person)]] || ||__Tutorial slides and scripts__ ||[[https://github.com/ppraykov/FCCognestic2023|Functional Connectivity Nilearn Practical]]<<BR>>[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|DCM tutorial in SPM (not covered in-person)]] || |
||||||<tablewidth="100%"style="text-align:center;">~+'''MVPA/RSA II'''+~''' '''<<BR>> Daniel Mitchell & Máté Aller || ||<12%>__Software__ ||Python implementation of the RSA Toolbox: [[https://github.com/rsagroup/rsatoolbox|Version 3.0]] || ||__Datasets__ ||Example data included with RSA toolbox || ||__Reading__ ||[[https://www.frontiersin.org/articles/10.3389/neuro.06.004.2008/full|Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience]]<<BR>>[[https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(13)00127-7|Kriegeskorte & Kievit (2013) Representational geometry: integrating cognition, computation, and the brain]] <<BR>>[[https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003553|Nili et al. (2014) A toolbox for representational similarity analysis]]<<BR>> [[https://elifesciences.org/articles/82566|Schutt et al. (2023) Statistical inference on representational geometries]]<<BR>>EEG/MEG: <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/27779910/%20|Tutorial on EEG/MEG decoding]]<<BR>> [[https://www.sciencedirect.com/science/article/pii/S1364661314000199|Temporal Generalization]] [[https://www.sciencedirect.com/science/article/pii/S1053811913010914|Interpretation of Weight Vectors]] || ||__Slides and scripts__ ||We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox, also available, along with the slides, on the COGNESTIC[[https://github.com/MRC-CBU/COGNESTIC/tree/main/09_MVPA_MRI|github]]. <<BR>>[[attachment:EEGMEG5-decoding.zip|EEGMEG Notebooks]] [[attachment:EMEG5_Decoding.pdf|EEG/MEG Slides]]<<BR>> || <<BR>> <<Anchor(stimulation)>> ||||||<tablewidth="100%"style="text-align:center;">~+'''Brain Stimulation'''+~''' '''<<BR>> Elizabeth Michael & Ajay Halai || ||__Reading__ ||TMS-EEG: <<BR>> https://doi.org/10.1016/j.neuroimage.2016.10.031 <<BR>> https://doi.org/10.1016/j.xpro.2022.101435 <<BR>> https://pressrelease.brainproducts.com/tms-eeg/ <<BR>> <<BR>> TMS-fMRI: <<BR>> https://doi.org/10.31234/osf.io/9fyxb <<BR>> https://doi.org/10.1101/2021.05.28.446111 || ||Slides||[[attachment:BrainStimSession2024_2.pdf|General]][[attachment:cognestic_TMSEEG.pdf|TMS+EEG]] [[attachment:TMS_FMRI_COGNESTIC_ASSEM.pdf|TMS+fMRI]] [[attachment:TMSfMRIArtifacts_V1_prt_nn.pdf|TMS+fMRI_Artefacts]]|| |
Course Material for COGNESTIC 2024
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the COGNESTIC webpage.
Software Installation Instructions
Attendees must read and follow these pre-course preparations.
Essential Preparation Materials
You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course). This section contains essential viewing; a second section contains less critical background, but which you might nonetheless find useful.
Background to Open Science |
||
Viewing |
Primer on Python |
||
Viewing |
Structural MRI I and II - VBM and surface-based analysis |
||
Viewing |
Diffusion MRI I - Preprocessing, model fitting and group analysis |
||
Viewing |
Diffusion MRI II - Tractography and the anatomical connectome |
||
Viewing |
fMRI I - Data Organisation |
||
Viewing |
fMRI Data Structure & Terminology (6:47) |
fMRI II - Preprocessing |
||
Viewing |
fMRI Artifacts and Noise (11:57) |
fMRI III - Analysis |
||
Viewing |
GLM applied to fMRI (11:21) |
fMRI Connectivity |
||
Viewing |
Network Analysis |
||
Viewing |
EEG/MEG I – Measurement and Pre-processing |
||
Viewing |
1. Overview of EEG/MEG data processing from raw data to source estimates |
EEG/MEG II – Head Modelling and Source Estimation |
||
Viewing |
1. The EEG/MEG forward model |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Viewing |
1. Frequency spectra and the Fourier analysis |
EEG/MEG IV – Further Topics and BIDS |
||
Viewing |
1. Primer on group statistics for EEG/MEG data |
MVPA/RSA I and II |
||
Viewing |
Excellent presentations from Martin Hebart's MVPA course, on: |
Additional Extra
If you want additional background, consider some of the below:
Background to Open Science |
||
Websites |
||
Reading |
Munafo et al, 2017, problems in science |
|
Viewing |
Statistical power in neuroimaging |
|
Slides |
Primer on Python |
||
Software |
||
Datasets |
||
Useful references |
||
Slides and scripts |
Structural MRI I - Voxel-based morphometry |
||
Software |
||
Suggested reading |
Introduction to GLM for structural MRI analysis |
Structural MRI II - Surface-based analyses |
||
Software |
||
Suggested reading |
Dale et al, 1999, Cortical surface-based analysis I |
|
Suggested viewing |
Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis |
||
Software |
||
Suggested reading |
FSL Diffusion Toolbox Wiki |
Diffusion MRI II - Tractography and the Anatomical Connectome |
||
Software |
||
Suggested reading |
fMRI I - Data Organisation |
||
Software |
||
Websites |
Brain Imaging Data Structure |
|
Suggested reading |
The brain imaging data structure (BIDS), Gorgolewski et al., 2016 |
fMRI II - Pre-processing |
||
Software |
||
Suggested reading |
Functional Magnetic Resonance Imaging Methods, Chen & Glover, 2015 |
fMRI III - Analysis |
||
Software |
||
Suggested reading |
The Statistical Analysis of fMRI Data, Lindquist, 2008 |
|
Suggested viewing |
Model Building - temporal basis sets (11:08) |
fMRI Connectivity |
||
Software |
||
Datasets |
||
Reading |
Resting-state functional Connectivity |
|
Viewing |
fMRI Functional Connectivity in fMRI |
|
Tutorial slides and scripts |
Functional Connectivity Nilearn Practical |
Brain Network Analysis |
||
Software |
||
Datasets |
|
|
Reading |
- (Review article) Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10, 186–198 (2009). https://doi.org/10.1038/nrn2575 |
|
Viewing |
Understanding your brain as a network and as art by Prof. Dani Bassett. |
|
Slides |
https://github.com/isebenius/COGNESTIC_network_analysis/ Slides |
EEG/MEG I – Measurement and Pre-processing |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Digitial Filtering |
|
Slides and scripts |
EEG/MEG II – Head Modelling and Source Estimation |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Linear source estimation and spatial resolution |
|
Slides and scripts |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
1. The basics of signals in the frequency domain |
|
Suggested reading |
Tutorial on Functional Connectivity |
|
Slides and scripts |
EEG/MEG IV – Statistics and BIDS |
||
Software |
||
Datasets |
Sample dataset in MNE-Python. Tutorials |
|
Suggested reading |
Estimating subcortical sources from EEG/MEG |
|
Suggested viewing |
||
Slides and scripts |
Notebooks Exercises Slides1 Slides2 |
MVPA/RSA I |
||
Software |
Python 3.7+, including numpy, matplotlib, nilearn & scikit-learn. |
|
Datasets |
||
Reading |
||
Slides and scripts |
MVPA/RSA II |
||
Software |
Python implementation of the RSA Toolbox: Version 3.0 |
|
Datasets |
Example data included with RSA toolbox |
|
Reading |
Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience |
|
Slides and scripts |
We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox, also available, along with the slides, on the COGNESTICgithub. |
Brain Stimulation |
||
Reading |
TMS-EEG: |
|
Slides |